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Abstract

Relay nodes in an ad-hoc network can be modelled as fluid queues, in which the

available service capacity is shared by the input and output. In this paper such a

relay node is considered; jobs arrive according to a Poisson process and bring along

a random amount of work. The total transmission capacity is fairly shared, meaning

that, when n jobs are present, each job transmits traffic into the queue at rate 1/(n+1)

while the queue is drained at the same rate of 1/(n + 1). Where previous studies

mainly concentrated on the case of exponentially distributed job sizes, the present

paper addresses regularly varying jobs. The focus lies on the tail asymptotics of the

sojourn time S. Using sample-path arguments, it is proven that P {S > x} behaves

roughly as the residual job size, i.e., if the job sizes are regularly varying of index

−ν, the tail of S is regularly varying of index 1 − ν. In addition, we address the tail

asymptotics of other performance metrics, such as the workload in the queue, the

flow transfer time and the queueing delay.
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Abstract

Relay nodes in an ad-hoc network can be modelled as fluid queues, in which the

available service capacity is shared by the input and output. In this paper such a

relay node is considered; jobs arrive according to a Poisson process and bring along

a random amount of work. The total transmission capacity is fairly shared, meaning

that, when n jobs are present, each job transmits traffic into the queue at rate 1/(n+1)

while the queue is drained at the same rate of 1/(n + 1). Where previous studies

mainly concentrated on the case of exponentially distributed job sizes, the present

paper addresses regularly varying jobs. The focus lies on the tail asymptotics of the

sojourn time S. Using sample-path arguments, it is proven that P {S > x} behaves

roughly as the residual job size, i.e., if the job sizes are regularly varying of index

−ν, the tail of S is regularly varying of index 1 − ν. In addition, we address the tail

asymptotics of other performance metrics, such as the workload in the queue, the

flow transfer time and the queueing delay.

1 Introduction

Ad-hoc networks are self-configuring networks of mobile routers, connected by wireless

links. They enable infrastructure-free communication: no fixed equipment is needed,

but instead each client acts as a hub. When information needs to be transmitted across

∗Part of the research was conducted while the first author was affiliated to CWI. Hans van den Berg (TNO

Telecom) is acknowledged for bringing this model under our attention.
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the network, it is sent from the sender to the receiver by relaying the packets along in-

termediate nodes. An excellent survey on ad-hoc networks, with special emphasis on

Quality-of-Service aspects, is [9].

On an abstract level one could model nodes in an ad-hoc network as queues [2]. Indeed,

data packets arrive and are served to be relayed, and during periods in which the ar-

rival rate (temporarily) exceeds the departure rate, the buffer content of the queue grows.

There is one property, however, that distinguishes these queues from ordinary queues:

they have the interesting feature that, at any node, the available transmission capacity is

used both to (i) ‘pull’ information packets from the ‘predecessor nodes’ into the queue,

and (ii) ‘push’ information packets from the queue towards ‘successor nodes’ (and even-

tually the destination client).

Now consider the situation that at some point in time n stations send traffic through the

same relay node. Then each ‘sending node’ is assigned an equal share 1/(n + 1) of the

available medium capacity (which we may normalize to 1), which is the same fraction as

is allocated to serve the queue. In other words, the total input rate is n/(n + 1), so that

net rate of growth of the queue is (n − 1)/(n + 1). We conclude that as soon as n > 1,

the node’s input rate exceeds its output rate, and hence the excess traffic accumulates in

the node’s buffer; only when n = 0 the queue drains. Interestingly, this entails that relay

nodes are prone to becoming bottlenecks. We remark that the queue is served on a First

In First Out (FIFO) basis.

To study the relay node described above, we consider a flow-level model. Jobs arrive

at the relay node, for instance, according to a Poisson process, and bring along a ran-

dom amount of work, say i.i.d. (independent and identically distributed) samples from a

distribution B(·). At the flow level, traffic then arrives as a fluid to the queue.

There are several interesting performance measures to consider. In the first place, one

may be interested in the time F before a job is completely ‘pulled out of the predecessor

node’, in that all traffic has reached the queue of the relay node. It then still takes some

time, however, before the job has gone through the relay node: the sojourn time S equals

F , increased by the delay D of the last particle of the flow. Previous work [7] focused on

the case that B(·) corresponds to an exponential distribution, and it is a natural question

whether other distributions are amenable for analysis as well.

In this paper we consider the relevant, and technically interesting, case of heavy-tailed

jobs. More precisely, we assume that the jobs are i.i.d. samples from a regularly-varying

distribution of index −ν, i.e., P {B > x} behaves roughly like x−ν , for some ν > 0; we

write B(·) ∈ R−ν . For standard queueing models (i.e., models of M/G/1 or GI/G/1 type)

with regularly-varying input, a wealth of interesting contributions have appeared; early

papers are for instance [5, 8]. Generally speaking, under FIFO scheduling the sojourn

time (just like the workload) is in R1−ν (that is, the tail is as heavy as a residual job size),

whereas under processor-sharing [12] it is in R−ν (and hence the tail is essentially as

heavy as that of the jobs themselves). As is clear from the model description we gave
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above, our relay-node has both PS and FIFO elements, and therefore it is an interesting

fundamental question whether the sojourn time is in R1−ν or R−ν (or perhaps regularly-

varying of another index).

In our analysis, we rely on sample-path methods, comparable to those developed in [1].

A lower bound is derived by identifying a most likely scenario, and computing its tail

asymptotics. Then, in the upper bound we split the event of our interest into a number

of sub-events, and show that among these, asymptotically, only the most likely scenario

is relevant.

This paper is organized as follows. Section 2 details the model, and present some pre-

liminaries. Section 3 describes the main results, which are proven in Section 4. Section 5

concludes.

2 Model and preliminaries

In this section, we first give a description of the fluid-flow queueing system that is used

to model a relay node in an ad-hoc network. Second, we give some preliminary results

that are mainly used in the proofs of our results.

Model description

Consider a queueing system at which flows arrive according to a Poisson process with

rate λ. Each active flow brings along an amount of work; we assume that the service

requirements are i.i.d. with distribution B(·) and mean β < ∞. The flow transmits traffic

into the queue (according to a procedure detailed below) until it has sent out its full

service requirement; then we say that the flow becomes inactive. Evidently, the mean

amount of work generated per unit time is ̺ := λβ.

The total transmission capacity is, without loss of generality, normalized to 1. This trans-

mission capacity is fairly shared between all nodes present. This means that when there

are N(u) active flows at time u, each active flow transmits traffic into the queue at rate

1/(N(u) + 1). The service rate of the queue then also equals 1/(N(u) + 1), implying that

the queue is only drained when there are no active flows (and remains constant when

there is one flow present).

In this paper, particularly in the proofs, we frequently use terminology of fluid-tandem

queues; quantities associated with traffic of active flows that is not yet in the queue are

labelled class 1, while quantities associated with traffic present in the queue are labelled

class 2. The total available transmission capacity for the active flows (that is, the input

rate of the queue) during the time interval [s, t] thus equals

C1(s, t) :=

∫ t

s

N(u)

N(u) + 1
du
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and the total service rate for the queue equals

C2(s, t) :=

∫ t

s

1

N(u) + 1
du.

Since the input into the buffer during the interval [s, t] equals the total transmissions of

active flows, we obtain the following useful representation of the class-2 workload:

V2(t) = sup
s≤t

{C1(s, t) − C2(s, t)} = sup
s≤t

{
∫ t

s

N(u) − 1

N(u) + 1
du

}

. (1)

In this paper, we assume that the service requirement distribution is heavy-tailed. Let B

denote a generic service requirement, and let Br be a random variable distributed as the

residual lifetime of B, i.e.,

Br(x) := P {Br < x} =
1

β

∫ x

0
(1 − B(y))dy. (2)

More specifically, we assume that the service requirement distribution is regularly vary-

ing of index −ν (denoted as B(·) ∈ R−ν), i.e., 1−B(x) ∼ L(x)x−ν , ν > 1 (so that β < ∞),

with L(x) some slowly varying function. Here, and throughout the paper, we use the

notation f(x) ∼ g(x) to indicate that f(x)/g(x) → 1 as x → ∞. (A function L(·) is called

slowly varying if L(ηx) ∼ L(x) for all η > 1.) It follows from Karamata’s Theorem [3,

Thm. 5.1.11] that xP {B > x} ∼ (ν − 1)β P {Br > x}, and thus Br(·) ∈ R1−ν .

Preliminaries

Denote by Bi(s, t), i = 1, 2, the amount of service received by class i during the interval

[s, t]. The amounts of service satisfy the following evident inequality

B1(s, t) + B2(s, t) ≤ t − s, (3)

with equality iff V1(u) + V2(u) > 0 for all u ∈ [s, t].

Similarly, define Ai(s, t), i = 1, 2, as the total input for class i during the interval [s, t]. For

the workloads the following obvious identity relation holds, for i = 1, 2 and s < t,

Vi(t) = Vi(s) + Ai(s, t) − Bi(s, t). (4)

Furthermore, using the fact that A2(s, t) = B1(s, t), we have

V2(t) = V2(s) + B1(s, t) − B2(s, t). (5)

A1(s, t) is distributed as a Poisson number (with mean λ(t − s)) of i.i.d. service require-

ments, each with distribution B(·), and the class-1 workload obeys

V1(t) = sup
s≤t

{

A1(s, t) −

∫ t

s

N(u)

N(u) + 1
du

}

.
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We note that the above entails that the workload in the overall system can be directly

related to the stationary workload in an M/G/1 queueing model. This can be seen as

follows. In our tandem-queueing model, arriving flows are essentially served twice [2];

flows that belong to the class-1 workload require two stages of service, while for work in

the class-2 workload (that is, the queue) there is only a single stage of service left. This

entails that the stability constraint of the model is ̺ < 1
2 . Furthermore, it holds that the

total service capacity (at a constant rate of 1 per unit time) is used as long as there is any

work present, which entails that the system is work-conserving. According to Reich’s

formula [10], the steady-state overall-workload representation therefore reads

2V1 + V2 =d sup
t≥0

{2A1(−t, 0) − t}.

The distribution of 2V1 + V2 thus equals the steady-state workload distribution of an

M/G/1 queue with generic service requirement 2B. Applying the well-known asymp-

totic result for the standard M/G/1 queue [5, 8], we directly obtain the asymptotic tail

distribution of the overall workload:

Theorem 2.1. Assume that ̺ < 1/2. Then, B(·) ∈ R−ν iff P {2V1 + V2 < ·} ∈ R1−ν , and then

P {2V1 + V2 > x} ∼
2̺

1 − 2̺
P

{

Br >
x

2

}

.

Finally, we focus on the time required to serve an amount of work in the queue. Let time 0

be an arbitrary instant at which a flow becomes active and let

W0 := arg inf
t≥0

{B2(0, t) = V2(0)}

be the time required to serve the amount of work present in the queue at flow initiation.

Since active flows initiate their transmission immediately upon arrival, W0 also corre-

sponds to the epoch at which the first packet (to be interpreted as infinitesimally small

fluid particle) of the flow leaves the buffer. In queueing terminology, this quantity is fre-

quently referred to as the waiting time. Because the total transmission capacity is used

during [0,W0], we have the following identity:

W0 = V2(0) + B1(0,W0). (6)

We note that we interchangeably use W and W0 to denote such a generic waiting time.

3 Results

In this section, we present the main results of the paper. In particular, we give exact

asymptotics for the steady-state workload, flow-transfer delay, queueing delay, and so-

journ time. For the former two quantities this section also provides the proofs; the proofs

for the latter two quantities (which are considerably more involved) are given in the next

section. For each quantity, we also provide the underlying heuristics; these turn out to be

extremely useful in understanding the model’s properties (and play an important role in

the proofs of Section 4).
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3.1 Steady-state workload

We first consider the steady-state class-2 workload distribution V2. For this quantity we

can rely on the main result of [1] giving the workload asymptotics of (in the terminology

of [1]) the streaming traffic, sharing bandwidth with a second class of elastic flows accord-

ing to the PS discipline. The result indicates that the tail of the steady-state workload is

as heavy as that of Br, i.e., regularly varying of index 1 − ν.

Theorem 3.1. If B(·) ∈ R−ν and 0 < ̺ < 1
2 , then

P {V2 > x} ∼
2̺

1 − 2̺
P

{

Br >
1 − ̺

2̺
x

}

.

Proof. Using (1), we may rewrite the workload representation as

V2(t) = sup
s≤t

{

t − s −

∫ t

s

2

N(u) + 1
du

}

= 2 sup
s≤t

{

1

2
(t − s) −

∫ t

s

1

N(u) + 1
du

}

=: 2V ⋆(t). (7)

We note that V ⋆(t) equals the workload of the streaming class in case K = 1 and r = 1/2,

using the terminology of the workload representation in [1]. In that case, the condition

Kr < 1 − ̺ < (K + 1)r translates into 0 < ̺ < 1/2. Now, using (7) and applying [1,

Thm. 4.1] with K = 1 and r = 1/2 gives the result.

Heuristic arguments

The heuristics behind the workload asymptotics are as follows. Consider the workload

at an arbitrary instant, say, at time 0. The most likely way for V2(0) to become large is the

arrival of one exceptionally large job (also referred to as tagged job) of size Btag before time

−t̃1 (which is defined below). Suppose that this job arrives at time −y. For any value of

y ≥ t̃1 one can determine the minimal size of the tagged job to make sure that V2(0) > x.

We first observe that y cannot be smaller than

t̃1 :=
x

̺
.

This can be seen as follows. The amount of work stored in the queue by all jobs except for

the tagged one is close to its average amount of work generated, i.e., roughly ̺y arrives

to the queue due to the other job arrivals during the interval [−y, 0]. Assuming that the

tagged job is still transmitting into the buffer at time 0 (otherwise V2(0) would even be

smaller), it follows from the PS discipline that the tagged job brings along as much work

as is served by the queue; the buffer content at time 0 is then about ̺y. For V2(0) > x it is

thus required that y > t̃1.

Suppose that the tagged job has size Btag. Over the duration of the transmission of the

tagged job, it equally shares the remaining capacity with the queue at a rate (1 − ̺)/2.

It then takes 2Btag/(1 − ̺) time to fully put the tagged job into the buffer, i.e., at time
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−y + 2Btag/(1 − ̺) the tagged job has transmitted its full service request. Note that for

the minimal size of Btag it holds that this time should be before time 0. When the tagged

job has fully arrived at the queue, the buffer drains at a rate 1 − 2̺. Thus, the buffer

content at time 0 is

V2(0) =
2Btag

1 − ̺
̺ −

(

y −
2Btag

1 − ̺

)

(1 − 2̺) = 2Btag − (1 − 2̺)y.

To make sure that V2(0) > x, we have

Btag >
x

2
+

1 − 2̺

2
y.

Integrating with respect to y (and neglecting the asymptotically small probability of hav-

ing two or more large job arrivals), it follows that the probability of a large workload

roughly equals
∫ ∞

y=t̃1

λP

{

Btag >
x

2
+

1 − 2̺

2
y

}

dy.

After the change of variable z = y − t̃1, dividing and multiplying with β, and using (2),

we obtain the desired expression.

3.2 Flow transfer delay

Here we consider the time F it takes for an arbitrary arriving flow to transmit its traffic

into the buffer. Since the available transmission capacity at time u for each individual

active flow equals 1/(N(u) + 1) it trivially follows that the flow transfer delay equals the

sojourn time of a non-permanent customer in a M/G/1 PS queue with one permanent

customer. Applying [6, Thm. 3], it follows directly that the flow transfer delay is regularly

varying of index −ν:

Proposition 3.2. If B(·) ∈ R−ν and 0 < ̺ < 1, then

P {F > x} ∼ P

{

B >
1 − ̺

2
x

}

.

Proof. The result follows directly from [6, Thm. 3] with the identification γf := (1− ̺)/2,

see also [1, Prop. 3.1].

Heuristic arguments

Clearly, the heuristics behind the flow-transfer delay asymptotics are the same as the

heuristics for the asymptotic sojourn time in a M/G/1 PS queue with one permanent

customer. That is, a large flow-transfer delay is due to a large service requirement of the

flow itself. The ratio (1−̺)/2 is simply the average service rate received by the large flow;

over the duration of the large flow, the other flows transmission rate roughly equals their

average input rate ̺. The remaining capacity of 1− ̺ is equally shared between the large

flow and the relay node (i.e., the buffer).
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3.3 Sojourn time and queueing delay

In this part, we consider the queueing delay D and sojourn time S = F +D of an arbitrary

arriving flow. The queueing delay is here defined as the time it takes the last packet (recall

that a packet is to be interpreted as an infinitesimally small fluid particle) of the flow to

go through the queue. The sojourn time is the time between the arrival of a flow until the

last packet leaves the buffer.

In fact, the queueing delay and sojourn time are asymptotically equivalent, as presented

in the following theorem:

Theorem 3.3. Define φmax := max{1 − ̺, (1 + ̺)/2} and φmin := min{1 − ̺, (1 + ̺)/2}. If

B(·) ∈ R−ν and 0 < ̺ < 1
2 (̺ 6= 1

3 ), then

P {S > x} ∼ P {D > x} ∼
2̺

1 − 2̺
P

{

Br >
(1 − ̺)2

2̺
x

}

+
2̺

|1 − 3̺|
P

{

φmin
(1 − ̺)

2̺
x < Br < φmax

(1 − ̺)

2̺
x

}

. (8)

Proof. For any flow, the waiting time is evidently less than its sojourn time. Lower and

upper bounds for the sojourn time S that asymptotically coincide are then given by

Propositions 4.2 and 4.3, respectively, providing the asymptotic tail of S.

Since the delay of a flow is bounded by its sojourn time, Proposition 4.3 also gives an

asymptotic upper bound for the tail of D. For the lower bound, write

P {D > x} ≥ P {S > (1 + ǫ)x;F < ǫx}

≥ P {S > (1 + ǫ)x} − P {F > ǫx} .

Using Proposition 3.2 and the fact that B(·) ∈ R−ν it follows that

P {F > ǫx} = o(P {Br > x}).

The lower bound of D now follows directly by letting ǫ ↓ 0 and using the fact that S ∈

R1−ν , completing the proof.

Corollary 3.4. If P {B > x} = L(x)x−ν for some slowly varying L(·) and 0 < ̺ < 1
2 , then S

and D ∈ R1−ν , and, in particular,

P {S > x} ∼ P {D > x} ∼
1

(ν − 1)β
L(x)x1−ν · (ξ1(̺) + ξ2(̺)),

where

ξ1(̺) :=
2̺

1 − 2̺

(

2̺

(1 − ̺)2

)ν−1

;

ξ2(̺) :=
2̺

|1 − 3̺|

(

(

2̺

φmin(1 − ̺)

)ν−1

−

(

2̺

φmax(1 − ̺)

)ν−1
)

.
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Remark 3.5. Notice that the value ̺ = 1
3 plays a special role in Corollary 3.4 (and The-

orem 3.3). First observe that ̺ < 1
3 holds iff 1 − ̺ > (1 + ̺)/2; for ̺ = 1

3 we have that

φmin and φmax are equal. Elementary calculus shows that this entails that ξ2(̺) can be

alternatively written as

ξ2(̺) =
2̺

1 − 3̺

(

(

4̺

1 − ̺2

)ν−1

−

(

2̺

(1 − ̺)2

)ν−1
)

.

L’Hôptital’s rule yields that

ξ2

(

1

3

)

=
3

4
(ν − 1)

(

3

2

)ν−2

,

so that for ̺ = 1
3

P {S > x} ∼ P {D > x} ∼
1

(ν − 1)β
L(x)x1−ν ·

(

2

(

3

2

)ν−1

+
3

4
(ν − 1)

(

3

2

)ν−2
)

.

Remark 3.6. In [7], the (virtual) queueing delay is defined as the delay experienced by a

fluid particle arriving at the buffer at a random point in time. Using PASTA, it follows that

the buffer content and number of flows present at the Poisson instants of flow arrivals

are equal to these quantatities at arbitrary instants (time averages). Hence, the above

definition of the queueing delay distribution is identical to the ‘waiting time’ distribution

of the present paper and thus has the same asymptotic behavior.

Heuristic arguments

The heuristics of the sojourn time and queueing delay are as follows. Consider the job

that arrives at, say, time 0. This job has an exceptionally long sojourn time if it sees upon

arrival an exceptionally large workload, while the job itself is relatively small. This large

workload is in turn due to a single exceptionally large job (to which we refer to as the

tagged job) that arrived in the past at time, say, −y. Because the job itself is small, the

flow transfer delay can be neglected compared to the queueing delay, yielding the same

asymptotic behavior for the queueing delay, sojourn time, and also the waiting time. In

the heuristics we henceforth focus on the waiting time W0, i.e., the time required to serve

V2(0).

For any value of y > 0 one can determine the minimal size of the tagged job to make sure

that work arriving at the queue at time 0 does not leave the system before time x.

We first observe that y cannot be smaller than

t0 :=
(1 − ̺)x

2̺
.

This can be seen as follows. As long as the tagged job is in the system, the queue grows

at a rate of roughly ̺ (because the tagged job brings along as much work as is served

by the queue, and hence all ‘usual input’, arriving at an average rate of ̺, is stored in
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the queue). In other words, the buffer content at time 0 is about ̺y. Now consider a

fluid packet arriving at time 0. To maximize the time before this packet leaves the queue,

assume that the tagged job stays in the system; then the buffer drains at a rate (1 − ̺)/2.

This means that the queue is empty at time 2̺y/(1 − ̺), which cannot be larger than x if

y is smaller than t0. Therefore we assume from now on y ≥ t0.

First we consider the situation that the tagged job has transmitted its full service require-

ment into the buffer at time 0. The capacity used by all other customers to store traffic

into the queue roughly equals the amount of work generated, which is close to average.

Hence, after time 0, the buffer is drained at a rate of 1 − ̺, implying that

W0 ≈
V2(0)

1 − ̺
.

For W0 > x it is thus sufficient that V2(0) > x(1 − ̺). Using the asymptotic results for

V2(0) this directly provides the first term in the rhs of (8). We note that it follows directly

from the heuristics of the workload asymptotics (see Subsection 3.1) that the most likely

scenario for V2(0) > x(1 − ̺) to occur is the arrival of a large job at time −y, with

y ≥ t1 :=
1 − ̺

̺
x,

and with a service requirement

Btag >
1 − ̺

2
x +

1 − 2̺

2
y.

The heuristic arguments for this scenario are also depicted in the first figure of Figure 1.

Now consider the situation that the tagged job is still transmitting into the queue at time

0. The tagged job can send traffic into the queue at a rate of about (1−̺)/2. Supposing the

tagged job has size Btag, then it has been put into the buffer at time −y+2Btag/(1−̺) > 0;

since there is roughly ̺y in the buffer at time 0, the amount of work in front of the job

arriving at time 0 left at that particular instant then equals

̺y −

(

2Btag

1 − ̺
− y

)(

1 − ̺

2

)

= ̺y − Btag +
1

2
y(1 − ̺).

In other words, the waiting time W0 (or time to serve the amount of work at time 0) is

−y +
2Btag

1 − ̺
+

(

̺y − Btag +
1

2
y(1 − ̺)

)/

(1 − ̺) =
Btag

1 − ̺
+

3̺ − 1

2(1 − ̺)
y;

this time is larger than x if

Btag > (1 − ̺)x +
1

2
(1 − 3̺)y.
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−t1−y −t0 time0

̺

1 − 2̺

1 − ̺
x(1 − ̺)

x

−t1 −y −t0 time0

̺

1 − ̺1−̺
2

x

Figure 1: Two realizations of a large waiting time x; before time 0 (i.e., left of the vertical axis) the

total amount of work in the buffer is depicted, while after time 0 (i.e., right of the vertical axis) the

amount of work in the buffer in front of the fluid particle arriving at time 0 is drawn.

See also the second figure of Figure 1 for a graphical illustration of this scenario. It is

readily verified that these y should lie in the interval [t0, t1].

Now, realizing that the probability that a job arriving in interval dy around y is λdy, the

probability of a long delay (and the probability of a long sojourn time) roughly equals

∫ t1

t0

λP

{

B > (1 − ̺)x +
1

2
(1 − 3̺)y

}

dy +

∫ ∞

t1

λP

{

B >
1

2
(1 − ̺)x +

1 − 2̺

2
y

}

dy.

After a change of variable, dividing and multiplying with β, and using the definition of

the residual lifetime of B, we obtain the desired expression.

4 Proofs

In this section we derive the asymptotics of the sojourn time and queueing delay, i.e., we

prove the asymptotics of P {S > x} and P {W > x}, as stated in Theorem 3.3. We consider

the system at an arbitrary instant at which a flow becomes active, say at time 0. As

indicated earlier, we denote by W ≡ W0 its “waiting time” (defined as the time until the

first packet of the flow leaves the buffer). In Section 4.1, we obtain an asymptotic lower

bound for P {W0 > x} and thus for P {S0 > x} (with S0 denoting the sojourn time of our

flow), while in Section 4.2 an asymptotic upper bound for P {S0 > x} that asymptotically

coincides is derived.
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4.1 Lower bound

In this subsection, we derive an asymptotic lower bound for P {S > x} and P {W > x}.

First, we sketch two scenarios which enable us to show that these two scenarios provide

sufficient sample-path conditions for the event W0 > x to occur, see Lemma 4.1; it is

instructive to compare these scenarios with those heuristically derived in the previous

section. Next, we convert these sample-path inclusions into a probabilistic lower bound

for P {W0 > x}.

Define two time instants t0 < t1 as

t0 :=
1 − ̺ + δ + 5ǫ

2(̺ − δ)
x and t1 :=

1 − ̺ + δ + 3ǫ

̺ − δ
x,

that is, t0 is close to x · (1 − ̺)/2̺, and t1 is close to x · (1 − ̺)/̺. Now, consider the

following events:

1. Either ∃y ∈ [t0, t1] such that at time −y a tagged flow arrives with service require-

ment

Btag ≥
1 − ̺ + δ + 5ǫ

2(̺ − δ)

1 + ̺ − δ

2
x +

1 − 3(̺ − δ)

2
(y − t0) − ǫx (9)

= (1 − ̺ + δ + 5ǫ)x +
1 − 3(̺ − δ)

2
y − ǫx,

or ∃y ≥ t1 such that at time −y a tagged flow arrives with service requirement

Btag ≥
1 − ̺ + δ

2(̺ − δ)
(1 − ̺ + δ + 3ǫ)x +

1 − 2(̺ − δ)

2
(y − t1) + ǫx (10)

=
1

2
(1 − ̺ + δ + 3ǫ)x +

1 − 2(̺ − δ)

2
y + ǫx.

2. For the amount of arriving traffic it holds that

A1(−y, 0) ≥ (̺ − δ)y − ǫx and A1(0,W0) ≥ (̺ − δ)W0 − ǫx. (11)

3. The workload of class 1, except from the tagged flow, satisfies

V −
1 (0) ≤ ǫx and V −

1 (W0) ≤ ǫx. (12)

The next lemma gives a sample-path relation between the scenarios given above and the

event W0 > x.

Lemma 4.1. If either the events {(9), (11), (12)} or {(10), (11), (12)} occur simultaneously,

then W0 > x.
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Proof. Let us first consider the case that the events (9), (11), and (12) occur simultaneously.

We now distinguish between two cases: (i) The large tagged flow — as defined through

(9) — is still present at time W0; and (ii) the tagged flow already left before time W0.

Denote by Btag
1 (s, t) and B−

1 (s, t) the amount of service received by the tagged flow and

by class 1 except for the tagged flow, respectively, during the interval [s, t].

First consider case (i). Because the tagged flow is still present at time 0, it follows from

the PS discipline that Btag
1 (−y, 0) = B2(−y, 0). Combining this with (5) and (4), yields

V2(0) = V2(−y) + B−
1 (−y, 0) + Btag

1 (−y, 0) − B2(−y, 0)

≥ A1(−y, 0) − V −
1 (0). (13)

From the PS discipline, it follows that Btag
1 (0,W0) = V2(0) since the tagged flow is still

present at time W0. Combining this with (13) and using (6) and (4), we obtain

W0 = V2(0) + Btag
1 (0,W0) + B−

1 (0,W0)

≥ 2A1(−y, 0) + A1(0,W0) − V −
1 (0) − V −

1 (W0).

Rewriting gives

(1 − ̺ + δ)W0 ≥ 2A1(−y, 0) + A1(0,W0) − (̺ − δ)W0 − V −
1 (0) − V −

1 (W0)

(a)

≥ 2(̺ − δ)y − 5ǫx

≥ 2(̺ − δ)t0 − 5ǫx = (1 − ̺ + δ)x,

where the equality follows from the definition of t0. Notice that in Inequality (a) we have

used (11) and (12), whereas (9) does not need to be invoked in this case.

Next, consider case (ii). Applying (3) and (4), we have

Btag
1 (−y, 0) + B2(−y, 0) ≤ y − B−

1 (−y, 0)

≤ y − A1(−y, 0) + V −
1 (0).

Because of the PS discipline, it holds that Btag
1 (−y, 0) ≤ B2(−y, 0) and, hence,

Btag
1 (−y, 0) ≤

1

2
(y − A1(−y, 0) + V −

1 (0)).

Observe that

Btag
1 (−y, 0) ≤ (̺ − δ)y + ǫx +

1 − 3(̺ − δ)

2
y

≤ (̺ − δ)t1 + ǫx +
1 − 3(̺ − δ)

2
y

≤ (1 − ̺ + δ)x + 4ǫx +
1 − 3(̺ − δ)

2
y ≤ Btag,

implying that the tagged flow is still active at time 0. The lower bound (13) for V2(0) thus

applies.
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Also, because the tagged flow already left at time W0, we have

Btag
1 (0,W0) = Btag − Btag

1 (−y, 0)

≥ Btag −
1

2
(y − A1(−y, 0) + V −

1 (0)).

Thus, using (4),

B1(0,W0) = Btag
1 (0,W0) + B−

1 (0,W0)

≥ Btag −
1

2
(y − A1(−y, 0)) +

1

2
V −

1 (0) + A1(0,W0) − V −
1 (W0). (14)

Hence, upon combining (6), (13), and (14), in addition to some rewriting, we obtain

(1 − ̺ + δ)W0 ≥ Btag +
3

2
A1(−y, 0) −

1

2
y + A1(0,W0)

− (̺ − δ)W0 −
1

2
V −

1 (0) − V −
1 (W0)

(b)

≥ Btag −
1

2
(1 − 3(̺ − δ))y − 4ǫx

(c)

≥ (1 − ̺ + δ)x,

where step (b) follows from (11) and (12), and step (c) from (9). This completes the anal-

ysis of the first scenario.

We now turn to the case that the events (10), (11), and (12) occur simultaneously. Again,

we distinguish between two cases: (i) The large tagged flow is still present at time 0; and

(ii) the tagged flow already left before time 0.

In case (i) the tagged flow is present at time 0 and the lower bound (13) for V2(0) thus

applies again. Using (4), it follows that

B1(0,W0) ≥ B−
1 (0,W0) = V −

1 (0) + A1(0,W0) − V −
1 (W0). (15)

Hence, combining (6), (13), and (15) gives

(1 − ̺ + δ)W0 ≥ A1(−y, 0) + A1(0,W0) − (̺ − δ)W0 − V −
1 (W0)

(d)

≥ (̺ − δ)y − 3ǫx

≥ (̺ − δ)t1 − 3ǫx = (1 − ̺ + δ)x,

where (d) follows from (11) and (12).

Next, consider case (ii). From (4) we obtain

B1(−y, 0) = B−
1 (−y, 0) + Btag

1 (−y, 0)

≥ A1(−y, 0) − V −
1 (0) + Btag.

Applying the above together with (5) and (3), yields

V2(0) ≥ B1(−y, 0) − B2(−y, 0)

≥ 2B1(−y, 0) − y

≥ 2Btag + 2A1(−y, 0) − y − 2V −
1 (0). (16)
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Now, it follows from (6), (15), and (16) that

(1 − ̺ + δ)W0 ≥ 2Btag + 2A1(−y, 0) − y + A1(0,W0)

− (̺ − δ)W0 − V −
1 (0) − V −

1 (W0)

(e)

≥ 2Btag − (1 − 2(̺ − δ))y − 5ǫx
(f)
= (1 − ̺ + δ)x;

here (e) follows from (11) and (12), and (f) from (10). This completes the sample-path

analysis of the second scenario and the proof of the lemma.

In the next proposition, we convert the sample-path relation of Lemma 4.1 into a proba-

bilistic lower bound for the tail distribution of W0.

Proposition 4.2. (lower bound) If B(·) ∈ R−ν and 0 < ̺ < 1
2 (̺ 6= 1

3 ), then

P {W > x} ≥
2̺

1 − 2̺
P

{

Br >
(1 − ̺)2

2̺
x

}

(1 + o(1))

+
2̺

|1 − 3̺|
P

{

φmin
1 − ̺

2̺
x < Br < φmax

1 − ̺

2̺
x

}

(1 + o(1)), x → ∞.

Proof. For notational convenience, we define

g1(δ, ǫ) :=
1 − ̺ + δ + 5ǫ

2(̺ − δ)

1 + ̺ − δ

2
− ǫ; g2(δ, ǫ) :=

1 − ̺ + δ

2(̺ − δ)
(1 − ̺ + δ + 3ǫ) + ǫ.

To bound the two probabilities of (12) from below, we apply the M/G/1 PS model with 2

permanent customers and denote the workload at time t in the latter model by Vperm(t).

We thus have that V −
1 (t) ≤ Vperm(t).

Using Lemma 4.1 and the observations above, we have

P {W0 > x} ≥ P

{

∃y ∈ [t0, t1] : Btag > g1(δ, ǫ)x +
1 − 3(̺ − δ)

2
(y − t0); (11); (12)

}

+ P

{

∃y ≥ t1 : Btag > g2(δ, ǫ)x +
1 − 2(̺ − δ)

2
(y − t1); (11); (12)

}

≥

(

P

{

∃y ∈ [t0, t1] : Btag > g1(δ, ǫ)x +
1 − 3(̺ − δ)

2
(y − t0)

}

(17)

+ P

{

∃y ≥ t1 : Btag > g2(δ, ǫ)x +
1 − 2(̺ − δ)

2
(y − t1)

})

× P {(11);Vperm(0) ≤ ǫx;Vperm(W0) ≤ ǫx} .

We now treat the three probabilities on the right-hand side of (17) separately. Starting

with the second probability, we obtain, by integrating with respect to y, using the short-
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hand notation ḡ(̺, δ) := 1
2 − (̺ − δ),

P

{

∃y ≥ t1 : Btag > g2(δ, ǫ)x +
1 − 2(̺ − δ)

2
(y − t1)

}

≥

∫ ∞

0
λP {Btag > g2(δ, ǫ)x + ḡ(̺, δ)y} dy

−

∫ ∞

0

∫ ∞

y

λ2
P {Btag > g2(δ, ǫ)x + ḡ(̺, δ)y;B−z > g2(δ, ǫ)x + ḡ(̺, δ)z} dzdy

∼
2̺

1 − 2(̺ − δ)
P {Br > g2(δ, ǫ)x} (1 + o(1)),

where B−z denotes the service requirement of a second large customer arriving at time

−z (see e.g. [4] for details on the asymptotically small probability of having two or more

large flow arrivals).

The first probability on the right-hand side of (17) can be treated similarly. Neglecting the

asymptotically small probability of two or more large customer arrivals again, we have

P

{

∃y ∈ [t0, t1] : Btag > g1(δ, ǫ)x +
1 − 3(̺ − δ)

2
(y − t0)

}

=

∫ ∞

0
λP

{

Btag > g1(δ, ǫ)x +
1 − 3(̺ − δ)

2
y

}

dy

−

∫ ∞

t1−t0

λP

{

Btag > g1(δ, ǫ)x +
1 − 3(̺ − δ)

2
y

}

dy + o(P {Br > x})

∼
2̺

1 − 3(̺ − δ)
(P {Br > g1(δ, ǫ)x} − P {Br > g2(δ, ǫ)x}) (1 + o(1)),

where we used that g2(δ, ǫ)x = g1(δ, ǫ)x + (t1 − t0)(1 − 3(̺ − δ))/2 in the final step.

For the third probability on the rhs of (17), we note that A1(−y, 0), A1(0,W0), Vperm(0),

and Vperm(W0) are not independent. We therefore write

P {(11);Vperm(0) ≤ ǫx;Vperm(W0) ≤ ǫx}

≥ P {A1(−y, 0) ≥ (̺ − δ)y − ǫx} × P {A1(0,W0) ≥ (̺ − δ)W0 − ǫx}

− P {Vperm(0) > ǫx} − P {Vperm(W0) > ǫx} .

Due to the (weak) law of large numbers we have that P {A1(−y, 0) ≥ (̺ − δ)y − ǫx} con-

verges to 1 as x → ∞; similarly P {A1(0,W0) ≥ (̺ − δ)W0 − ǫx} → 1 as x → ∞. Since

Vperm(0) and Vperm(W0) have proper (that is, non-defective) distribution functions, it also

holds that

lim
x→∞

P {Vperm(0) > ǫx} = 0, and lim
x→∞

P {Vperm(W0) > ǫx} = 0.
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Finally, combining the above and using the fact that Br(·) ∈ R1−ν , we have, as x → ∞,

P {W > x} &
2̺

1 − 2(̺ − δ)
P {Br > g2(δ, ǫ)x}

+
2̺

1 − 3(̺ − δ)
(P {Br > g1(δ, ǫ)x} − P {Br > g2(δ, ǫ)x})

→
2̺

1 − 2̺
P {Br > g2(0, 0)x}

+
2̺

1 − 3̺
(P {Br > g1(0, 0)x} − P {Br > g2(0, 0)x}) , δ, ǫ ↓ 0;

here f(x) & g(x), x → ∞, indicates that lim infx→∞ f(x)/g(x) ≥ 1. The proof is now

completed by distinguishing between the cases 0 < ̺ < 1
3 and 1

3 < ̺ < 1
2 .

4.2 Upper bound

In this subsection, we let time 0 correspond to an arbitrary flow arrival, and derive an

asymptotic upper bound for P {S0 > x}. In the proofs, we use a representation of the

sojourn time S0 that is similar to the waiting time representation (6). Let F0 correspond

to the flow transfer delay of the flow that arrives at time 0 and note that the events S0 ≥ x

and B2(F0, x) ≤ V2(F0) are equivalent. Since the total service capacity is then used during

(F0, x), the latter event can be rewritten as

x − F0 ≤ V2(F0) + B1(F0, x).

Moreover, we show in Proposition 4.3 that the most likely way for the sojourn time to

become large is due to the arrival of a large tagged flow while the actual flow itself is

small. It may be seen from Proposition 3.2 that the flow transfer delay F0 of the ‘small’

flow is ‘small’ as well. Thus, assuming that S0 > x and F0 ≤ ǫx, we obtain the following

relation:

x(1 − 2ǫ) ≤ V2(0) + B1(0, x). (18)

This inequality relation will be the starting point for most of the sample-path relations in

the proofs below.

Before turning to the proof of the asymptotic upper bound for P {S0 > x} (i.e. Proposi-

tion 4.3), we first introduce some notation that will be used throughout the section. Let

Nb(s, t) be the number of flows arriving in the interval [s, t] with a service requirement

satisfying b. In particular, we are interested in so-called ‘large’ flows that have a service

requirement larger than κx, for some κ > 0 independent of x (in which case we say that

the service requirement is “> κx”). Also, for t > 0, define

W c(0, t) := sup
0≤s≤t

{A1(0, s) − cs}, (19)
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and, for u ≤ v < 0,

W c(u, v) := sup
u≤s≤v

{A1(s, v) − c(v − s)}. (20)

In case the input process is modified such that only the flows with service requirements

of at most κx are admitted, we add a subscript “≤ κx”, i.e., we write W c
≤κx(0, t) and

W c
≤κx(u, v), respectively.

Finally, similar to Subsection 4.1, define two time instants 0 < s0 < s1 as

s0 :=
1 − ̺ − δ − 2η − 10ǫ

2(̺ + δ)
x and s1 :=

1 − ̺ − δ − η − 13
2 ǫ

̺ + δ
x;

observe that s0 is close to t0, and s1 to t1. Let s⋆ := inf{0 ≤ t < s1 : V2(−t) = 0} be the

last epoch in (−s1, 0] that the system was empty, and let s⋆ = s1 in case V2(−t) > 0 for

all t ∈ (−s1, 0]. We have thus enforced that the total service capacity is used during the

interval [−s⋆, 0].

We are now settled for the proofs.

Proposition 4.3. (upper bound) If B(·) ∈ R−ν and 0 < ̺ < 1
2 (̺ 6= 1

3 ), then

P {S > x} ≤
2̺

1 − 2̺
P

{

Br >
(1 − ̺)2

2̺
x

}

(1 + o(1)) (21)

+
2̺

|1 − 3̺|
P

{

φmin
1 − ̺

2̺
x < Br < φmax

1 − ̺

2̺
x

}

(1 + o(1)), x → ∞.

Proof. First, we note that the premise for a large sojourn time to occur is that the arriving

flow finds a large workload in the buffer, while the actual flow itself is small. Using

Proposition 3.2, this implies that the flow transfer delay is small as well:

P {S0 > x} ≤ P {S0 > x;F0 ≤ ǫx} + P {F0 > ǫx}

= P {S0 > x;F0 ≤ ǫx} + o(P {Br > x}).

We henceforth assume that F0 ≤ ǫx.

There are in fact two ‘most likely scenarios’ for the event S0 > x to occur; all the other

scenarios are asymptotically negligible. To identify these most likely scenarios, decom-

pose

P {S0 > x;F0 ≤ ǫx}

≤ P {2V1(−s1) + V2(−s1) > (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1} (22)

+ P {2V1(−s1) + V2(−s1) ≤ (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1;S0 > x;F0 ≤ ǫx} .

The first probability on the right-hand side of (22) contains the first most likely scenario.

Note that the system is in steady state at time −s1. Application of Theorem 2.1, in con-

junction with the definition of s1, then provides

P {2V1(−s1) + V2(−s1) > (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1}

∼
2̺

1 − 2̺
P

{

Br >
1 − ̺ − δ − η − 13

2 ǫ

2(̺ + δ)
(1 − ̺ − δ)x +

(

η +
3

2
ǫ

)

x

}

. (23)
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We now turn to the second probability on the right-hand side of (22). Distinguishing

between 0, 1, and 2 or more large-flow arrivals during (−s1, x] and the value of 2V1(−s1)+

V2(−s1) in case of 1 large-flow arrival during (−s1, x], we obtain

P {2V1(−s1) + V2(−s1) ≤ (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1;S0 > x;F0 ≤ ǫx}

= P1(x) + P2(x) + P3(x) + P4(x),

where

P1(x) := P

{

2V1(−s1) + V2(−s1) ≤ (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1;

N>κx(−s1, x) = 0;S0 > x;F0 ≤ ǫx

}

,

P2(x) := P

{

2V1(−s1) + V2(−s1) ≤ ηx;

N>κx(−s1, x) = 1;S0 > x;F0 ≤ ǫx

}

,

P3(x) := P

{

ηx < 2V1(−s1) + V2(−s1) ≤ (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1;

N>κx(−s1, x) = 1;S0 > x;F0 ≤ ǫx

}

,

P4(x) := P

{

2V1(−s1) + V2(−s1) ≤ (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1;

N>κx(−s1, x) ≥ 2;S0 > x;F0 ≤ ǫx

}

.

The probability P2(x) contains the second most likely scenario, in that the probabilities

P1(x), P3(x), and P4(x) of the other scenarios are negligible relative to P2(x). The asymp-

totic behavior of P2(x) can be found in Lemma 4.4. Lemmas 4.7, 4.8, and 4.9 show that

the terms P1(x), P3(x), and P4(x), respectively, are negligible compared to P2(x) (and to

the tail of the other most likely scenario).

To complete the proof, we let δ, ǫ, η ↓ 0 (in (23) and (24)) and use the fact that Br(·) ∈

R1−ν . The equivalence with (21) may be seen by distinguishing between ̺ < 1
3 and ̺ > 1

3

and some straightforward rewriting.

Lemma 4.4. For δ, ǫ, η, κ > 0 sufficiently small (̺ + δ 6= 1
3 ) and ̺ < 1

2 , we have, as x → ∞,

P2(x) .
2̺

1 − 3(̺ + δ)

(

P

{

Br >
1 − ̺ − δ − 2η − 10ǫ

2(̺ + δ)

1 + ̺ + δ

2
x +

(

η +
7

2
ǫ

)

x

}

− P

{

Br >
1 − ̺ − δ − η − 13

2 ǫ

2(̺ + δ)
(1 − ̺ − δ)x

}

)

. (24)

Proof. As in Subsection 4.1, denote the service requirement of the large tagged flow by

Btag and let −y, y ∈ [−x, s1], be its arrival instant. We bound P2(x) by distinguishing

between y ≥ s0 and y < s0, and by the size of Btag in case y ≥ s0:

P2(x) ≤ P21(x) + P22(x) + P23(x),
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where

P21(x) := P

{

2V1(−s1) + V2(−s1) ≤ ηx;

N>κx(−s1,−s0) = 0;N>κx(−s0, x) = 1;S0 > x;F0 ≤ ǫx

}

P22(x) := P











2V1(−s1) + V2(−s1) ≤ ηx;

Btag ≤ (1 − ̺ − δ − η − 13
2 ǫ)x + 1

2 (1 − 3(̺ + δ))y, y ∈ [s0, s1];

N−
>κx(−s1, x) = 0;S0 > x;F0 ≤ ǫx











P23(x) := P

{

∃y ∈ [s0, s1] : Btag > (1 − ̺ − δ − η − 13
2 ǫ)x + 1

2(1 − 3(̺ + δ))y
}

.

The probabilities P21(x) and P22(x) can be bounded by Lemmas 4.5 and 4.6, respectively,

and are thus negligible compared to the dominant scenarios. For P23(x) we obtain, by

integrating with respect to y,

P23(x) =

∫ ∞

s0

λP

{

Btag >

(

1 − ̺ − δ − η −
13

2
ǫ

)

x +
1

2
(1 − 3(̺ + δ))y

}

dy

−

∫ ∞

s1

λP

{

Btag >

(

1 − ̺ − δ − η −
13

2
ǫ

)

x +
1

2
(1 − 3(̺ + δ))y

}

dy

=
2̺

1 − 3(̺ + δ)

(

P

{

Br >
1 − ̺ − δ − 2η − 10ǫ

2(̺ + δ)

1

2
(1 + ̺ + δ)x +

(

η +
7

2
ǫ

)

x

}

− P

{

Br >
1 − ̺ − δ − η − 13

2 ǫ

2(̺ + δ)
(1 − ̺ − δ)x

}

)

,

where the second equality follows from the definitions of s0 and s1. This completes the

proof.

Lemma 4.5. For δ, ǫ, η, κ > 0 sufficiently small and ̺ < 1
2 , we have

P21(x) = o(P {Br > x}) as x → ∞.

Proof. Recall that −s⋆ represents the last epoch before time 0 that the system was empty.

In case s⋆ ≥ s0, we obtain from (5), (3), and (4) that

V2(−s0) = V2(−s⋆) + B1(−s⋆,−s0) − B2(−s⋆,−s0)

= V2(−s⋆) + 2B1(−s⋆,−s0) − (s⋆ − s0)

= 2V1(−s⋆) + V2(−s⋆) + 2

(

A1(−s⋆,−s0) −
1

2
(s⋆ − s0)

)

− 2V1(−s0).

Hence,

2V1(−s0) + V2(−s0) ≤ 2V1(−s1) + V2(−s1) + 2W
1

2 (−s1,−s0). (25)

Define s′ := min{s⋆, s0}, such that the full service capacity is used during [−s′, 0]. Due to

the PS discipline, it holds that B2(−s′, 0) ≥ Btag
1 (−s′, 0). Combining the above with (5)
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and (4) gives

V2(0) = V2(−s′) + B−
1 (−s′, 0) + Btag

1 (−s′, 0) − B2(−s′, 0)

≤ V2(−s′) + V −
1 (−s′) + A−

1 (−s′, 0) − (̺ + δ)s′ + (̺ + δ)s′ − V −
1 (0)

≤ 2V1(−s1) + V2(−s1) + 2W
1

2 (−s1,−s0)

+ W ̺+δ
−tag(−s0, 0) + (̺ + δ)s0 − V −

1 (0), (26)

where W c
−tag(u, v) corresponds to W c(u, v) with the modification that the large tagged

flow is excluded from the arrival process (W c
−tag(0, t) is defined similarly).

By again applying the properties of the PS discipline we find that Btag
1 (F0, x) ≤ V2(F0) in

case S0 > x. Under the condition that F0 ≤ ǫx, we have Btag
1 (0, x) ≤ V2(0) + ǫx. Together

with (4), this yields

B1(0, x) = B−
1 (0, x) + Btag

1 (0, x)

≤ V −
1 (0) + A−

1 (0, x) + V2(0) + ǫx. (27)

Now, by combining (26) and (27), we have

V2(0) + B1(0, x) ≤ 2V2(0) + V −
1 (0) + A−

1 (0, x) − (̺ + δ)x + (̺ + δ)x + ǫx

≤ 2
(

2V1(−s1) + V2(−s1) + 2W
1

2 (−s1,−s0) + W ̺+δ
−tag(−s0, 0)

)

+ 2(̺ + δ)s0 + W ̺+δ
−tag(0, x) + (̺ + δ + ǫ)x.

Using (18) to convert this sample-path relation into a probabilistic bound gives

P21(x) ≤ P











2
(

2V1(−s1) + V2(−s1) + 2W
1

2 (−s1,−s0) + W ̺+δ
−tag(−s0, 0)

)

+ 2(̺ + δ)s0 + W ̺+δ
−tag(0, x) + (̺ + δ + ǫ)x ≥ x(1 − 2ǫ);

2V1(−s1) + V2(−s1) ≤ ηx;N>κx(−s1,−s0) = 0;N>κx(−s0, x) = 1











≤ P

{

4W
1

2 (−s1,−s0) + 2W ̺+δ
−tag(−s0, 0)

+ W ̺+δ
−tag(0, x) ≥ 7ǫx

∣

∣

∣

∣

∣

N>κx(−s1,−s0) = 0;

N>κx(−s0, x) = 1

}

≤ P

{

W
1

2

≤κx(−s1,−s0) ≥ ǫx

}

+ P

{

W ̺+δ
≤κx(−s0, 0) ≥ ǫx

}

+ P

{

W ̺+δ
≤κx(0, x) ≥ ǫx

}

,

where the second step follows from the definition of s0. Each of the three terms can now

be controlled by applying Lemma A.2, thus completing the proof.

Lemma 4.6. For δ, ǫ, η > 0 sufficiently small and ̺ < 1
2 , we have

P22(x) = o(P {Br > x}) as x → ∞.

Proof. Again, let −y, y ∈ [s0, s1], be the arrival epoch of the tagged flow. The upper bound

for V2(0) is similar to the bound for V2(0) given by (26), see Lemma 4.5. Specifically, it is

first readily verified that (25) can be modified into

2V1(−y) + V2(−y) ≤ 2V1(−s1) + V2(−s1) + 2W
1

2

−tag(−s1,−s0). (28)
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Because of the PS discipline, we have B2(−y, 0) ≥ Btag
1 (−y, 0). Combining the above

with (5) and (4) yields

V2(0) = V2(−y) + B−
1 (−y, 0) + Btag

1 (−y, 0) − B2(−y, 0)

≤ V2(−y) + V1(−y) + A−
1 (−y, 0) − (̺ + δ)y + (̺ + δ)y − V −

1 (0)

≤ V2(−y) + V1(−y) + W ̺+δ
−tag(−s1, 0) + (̺ + δ)y − V −

1 (0). (29)

We now distinguish between two different cases: (i) The large tagged flow already left

before time 0, and (ii) the large tagged flow is still present at time 0.

First consider case (i). Using (4), it holds that

B1(0, x) ≤ V −
1 (0) + A1(0, x)

≤ V −
1 (0) + W ̺+δ(0, x) + (̺ + δ)x. (30)

Thus, using (28)–(30),

V2(0) + B1(0, x)

≤ 2V1(−s1) + V2(−s1) + 2W
1

2

−tag(−s1,−s0)

+ W ̺+δ
−tag(−s1, 0) + (̺ + δ)s1 + W ̺+δ(0, x) + (̺ + δ)x

≤ (̺ + δ + η)x + (̺ + δ)s1 + 2W
1

2

−tag(−s1,−s0) +
3

2
W ̺+δ

−tag(−s1, 0) + W ̺+δ(0, x)

≤

(

1 −
13

2
ǫ

)

x + 2W
1

2

−tag(−s1,−s0) +
3

2
W ̺+δ

−tag(−s1, 0) + W ̺+δ(0, x),

where, in the second step, we added the term 1
2W ̺+δ

−tag(−s1, 0) for consistency with case (ii)

below and we used that 2V1(−s1) + V2(−s1) ≤ ηx, while the final step follows from the

definition of s1.

Next consider case (ii). Due to the PS discipline, we have Btag
1 (−y, 0) = B2(−y, 0). More-

over, because the total service capacity is used during [−y, 0], we obtain, using (3) and

(4), that

Btag
1 (−y, 0) =

1

2

(

y − B−
1 (−y, 0)

)

=
1

2

(

y − V1(−y) − A−
1 (−y, 0) + V −

1 (0)
)

.

Note that Btag
1 (0, x) ≤ Btag − Btag

1 (−y, 0). Combining the above and using (4) yields

B1(0, x) = B−
1 (0, x) + Btag

1 (0, x)

≤ V −
1 (0) + A1(0, x) + Btag −

1

2

(

y − V1(−y) − A−
1 (−y, 0) + V −

1 (0)
)

≤ V −
1 (0) + W ̺+δ(0, x) + (̺ + δ)x + Btag

+
1

2
V1(−y) +

1

2

(

W ̺+δ
−tag(−s1, 0) + (̺ + δ − 1)y

)

. (31)
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Thus, applying (28), (29), and (31),

V2(0) + B1(0, x) ≤ 2V1(−s1) + V2(−s1) + 2W
1

2

−tag(−s1,−s0) +
3

2
W ̺+δ

−tag(−s1, 0)

+ W ̺+δ(0, x) + (̺ + δ)x + Btag +
1

2
(3(̺ + δ)y − 1)

≤

(

1 −
13

2
ǫ

)

x + 2W
1

2

−tag(−s1,−s0) +
3

2
W ̺+δ

−tag(−s1, 0) + W ̺+δ(0, x),

where the final step follows from 2V1(−s1) + V2(−s1) ≤ ηx and the upper bound of the

service requirement of the tagged flow Btag.

Combining the sample-path relations for the cases (i) and (ii) with (18) provides the fol-

lowing bound:

P22(x) ≤ P

{

(

1 − 13
2 ǫ
)

x + 2W
1

2

−tag(−s1,−s0)

+3
2W ̺+δ

−tag(−s1, 0) + W ̺+δ(0, x) ≤ (1 − 2ǫ)x

∣

∣

∣

∣

∣

N>κx(−s1,−s0) = 1;

N>κx(−s0, x) = 0

}

≤ P

{

W
1

2

≤κx(−s1,−s0) ≥ ǫx

}

+ P

{

W ̺+δ
≤κx(−s1, 0) ≥ ǫx

}

+ P

{

W ̺+δ
≤κx(0, x) ≥ ǫx

}

.

Again, each of the three above terms can be controlled by an application of Lemma A.2,

which completes the proof.

Lemma 4.7. For 0 < δ < 1
2 − ̺, 0 < ǫ < (1 − ̺ − δ)/5, and ̺ < 1

2 , we have

P1(x) = o(P {Br > x}) as x → ∞.

Proof. Using (4) and (5) in addition to the fact that the total service capacity is used during

[−s⋆, 0], we have

V1(0) + V2(0) = V1(−s⋆) + V2(−s⋆) + A1(−s⋆, 0) + B1(−s⋆, 0) − s⋆

= 2V1(−s⋆) + V2(−s⋆) + 2A1(−s⋆, 0) − s⋆ − V1(0)

= 2V1(−s⋆) + V2(−s⋆) + 2(A1(−s⋆, 0) − (̺ + δ)s⋆)

− (1 − 2(̺ + δ))s⋆ − V1(0)

≤ max{2V1(−s1) + V2(−s1) − (1 − 2(̺ + δ))s1, 0} + 2W ̺+δ(−s1, 0) − V1(0),

where the last step follows by distinguishing between s⋆ = s1 and s⋆ < s1 (in addition to

δ ≤ 1
2 − ̺). Using (4) once more yields

B1(0, x) ≤ V1(0) + A1(0, x).

Combining the above and using the definitions (19) and (20), we obtain

V2(0) + B1(0, x) ≤ max{2V1(−s1) + V2(−s1) − (1 − 2(̺ + δ))s1, 0}

+ 2W ̺+δ(−s1, 0) + W ̺+δ(0, x) + (̺ + δ)x.
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Using (18), this sample-path relation can now be converted into a probabilistic bound:

P1(x) ≤ P



















max{2V1(−s1) + V2(−s1) − (1 − 2(̺ + δ))s1, 0} + 2W ̺+δ(−s1, 0)

+W ̺+δ(0, x) + (̺ + δ)x ≥ x(1 − 2ǫ);

2V1(−s1) + V2(−s1) ≤ (1 − ̺ − δ − 5ǫ)x + (1 − 2(̺ + δ))s1;

N>κx(−s1, x) = 0



















≤ P

{

2W ̺+δ(−s1, 0) + W ̺+δ(0, x) ≥ 3ǫx | N>κx(−s1, x) = 0
}

≤ P

{

W ̺+δ
≤κx(−s1, 0) ≥ ǫx

}

+ P

{

W ̺+δ
≤κx(0, x) ≥ ǫx

}

,

where we used that ǫ ≤ (1 − ̺ − δ)/5 in the second step. Both terms can be controlled by

Lemma A.2. This completes the proof.

Lemma 4.8. For all η, κ > 0 sufficiently small, κ > 0 and ̺ < 1
2 , we have

P3(x) = o(P {Br > x}) as x → ∞.

Proof. This probability corresponds to the combination of two unlikely events. Specifi-

cally, since 2V (−s1) + V2(−s1) and N>κx(−s1, x) are independent, we have

P3(x) ≤ P {2V (−s1) + V2(−s1) > ηx}P {N>κx(−s1, x) = 1} .

It follows from Theorem 2.1 and Lemma A.1 that P3(x) is bounded by o(P {Br > x}) as

x → ∞.

Lemma 4.9. For any κ > 0, we have

P4(x) = o(P {Br > x}) as x → ∞.

Proof. This follows directly from Lemma A.1.

5 Conclusion and discussion

The main conclusion of our paper is that if B is regularly varying of index ν, then so

is the flow transfer delay; the steady-state workload, sojourn time, and queueing delay,

however, are regularly varying of index 1 − ν. The results for the flow transfer delay and

workload followed in a rather straightforward fashion from earlier results; the deriva-

tion of the asymptotics of the sojourn time and queueing delay turned out to be substan-

tially more involved. The proof relies on the following principles: (1) First a most likely

scenario is identified; (2) a lower bound follows from computing the asymptotics corre-

sponding to the most likely scenario; (3) then it is shown that all other scenarios provide

negligible contributions compared to the most likely scenario.

It is interesting to compare the sojourn-time asymptotics of this system with those of

corresponding FIFO and PS systems. Under FIFO a sojourn time is extremely long essen-

tially because the job under consideration finds an extremely long queue, and this long
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queue is the result of one of the previous jobs being long. This explains why the tail of

the sojourn time resembles the tail of the workload, which [8] is known to behave as the

tail of Br, i.e., regularly varying of index 1 − ν. Under PS, on the contrary, the sojourn

time is long because the job itself is large, and therefore the tail behaves as the tail of B,

i.e., regularly varying of index −ν. The heuristics behind the sojourn-time asymptotics of

our model reveal that the sojourn time is large mainly due to finding a long queue, thus

explaining why the corresponding tail probability vanishes as a regularly varying func-

tion of index 1 − ν. However, in addition to a long queue, the long flow also affects the

sojourn time in this system by reducing the service capacity of the buffer. These effects

lead to interesting most likely scenarios for a large sojourn time to occur.

In the model we considered in this paper the queue is allocated the same share of the

service capacity as each of the transmitting flows. It could be expected that such a policy

may lead to relatively large buffer content of the queue. Alternatively, one may decide

to assign a higher weight to the queue than to the flows; one could for instance serve the

queue at rate 2/(n + 2) when there are n flows present. Under such a policy multiple

extremely large jobs are needed to cause a long sojourn time. This will be reflected in the

corresponding asymptotics, cf. [11].

A Technical lemmas

Here we present two technical lemma’s that can be frequently encountered in studies of

queues with regularly varying service times, and that are used in Subsection 4.2. For

proofs, we refer to e.g. [1, 11].

Lemma A.1. For any k ∈ N, κ > 0, and γ > 0,

P {N>κx(−γx, 0) ≥ k} = O(P {Br > x}k), as x → ∞.

Lemma A.2. There exists a κ∗ > 0 such that for all κ ∈ (0, κ∗], as x → ∞,

P

{

sup
0≤s≤γx

{A2(−s, 0) − (̺ + δ)s} > ǫx | N>κx(−γx, 0) = 0

}

= o(P {Br > x}).

The same holds for the time-reversed case, i.e., there exists a κ∗ > 0 such that for all κ ∈ (0, κ∗],

as x → ∞,

P

{

sup
0≤s≤γx

{A2(0, s) − (̺ + δ)s} > ǫx | N>κx(0, γx) = 0

}

= o(P {Br > x}),
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[4] Boxma, O.J., Foss, S.G., Lasgouttes, J.-M., Núñez-Queija, R. (2003). Waiting time asymptotics

in the single server queue with service in random order. Queueing Systems 46, 35–73.

[5] Cohen, J.W. (1973). Some results on regular variation for distributions in queueing and fluc-

tuation theory. J. Appl. Probab. 10, 343–353.

[6] Guillemin, F., Robert, Ph., Zwart, A.P. (2003). Tail asymptotics for processor sharing queues.

Adv. Appl. Probab. 36, 525–543.

[7] Mandjes, M.R.H., Roijers, F. (2007). A fluid system with coupled input and output, and its

application to bottlenecks in ad hoc networks. To appear in Queueing Systems.

[8] Pakes, A.G. (1975). On the tails of waiting-time distributions. J. Appl. Probab. 12, 555–564.

[9] Reddy, T.B., Karthigeyan, I., Manoj, B.S., Murthy, C.S.R. (2006). Quality-of-Service provision-

ing in ad hoc wireless networks: a survey of issues and solutions. Ad Hoc Networks 4, 83–124.

[10] Reich, E. (1958). On the integrodifferential equation of Takács. I. Ann. Math. Statist. 29, 563–
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