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ABSTRACT

We construct and investigate a consistent kernel-type nonparametric estimator of the intensity function of a
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1. Introduction

Let X be a Poisson point process in R with (unknown) locally integrable intensity function λ which
is assumed throughout to be periodic or, in other words, cyclic with (unknown) period τ ∈ R+, that
is

λ(s+ kτ) = λ(s) (1.1)

for all s ∈ R and k ∈ Z. Furthermore, let W1, W2, . . . be a sequence of intervals of R, called windows,
such that the size or the Lebesgue measure |Wn| of Wn is finite for each fixed n ∈N, but

|Wn| → ∞, (1.2)

as n→∞. (In order to make the paper shorter, from now on we are to suppress “n→∞” whenever
confusion is unlikely.)

Suppose now that, for some ω ∈ Ω, a single realization X(ω) of the cyclic Poisson process X is
observed, though only within a bounded interval, called ’window’ W ⊂ R. Our goal in this paper is
to construct a consistent non-parametric estimator of the intensity function λ at a given point s ∈ R
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from a single realization X(ω) of the Poisson process X observed in W := Wn. The requirement
s ∈Wn can be dropped when we know the period τ .

If it is not stated otherwise, we assume throughout that s is a Lebesgue point of λ. This assumption
appears to be a mild one since, due to the local integrability of λ, the set of all Lebesgue points of
λ is dense in R. Despite the latter observation, however, right after Theorem 1.2 below we discuss
possible results without assuming that s ∈ R is a Lebesgue point of λ.

In order to give the definition of our estimator of λ(s), we need to introduce further notations. Let
τ̂n be any consistent estimator of the period τ , that is,

τ̂n
p→ τ.

For example, one may use the estimators constructed by Helmers and Mangku [3] or Vere-Jones [4].
Furthermore, let K : R→ R be a function, called kernel, satisfying assumptions:

(K.1) K is a probability density function,

(K.2) K is bounded,

(K.3) K has support in [−1, 1].

With the above introduced notations, we now define the estimator of λ(s) as

λ̂n,K(s) :=
τ̂n
|Wn|

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ̂n)

hn

)
X(dx), (1.3)

where hn is a sequence of positive real numbers converging to 0, that is,

hn ↓ 0. (1.4)

In order to have that λ̂n,K(s) is a consistent estimator of λ(s), we need to impose another assumption
on the kernel K, that is

(K.4) K has only a finite number of discontinuities.

Theorem 1.1 Let the intensity function λ be periodic and locally integrable, and let the kernel K
satisfy assumptions (K.1)–(K.4). Furthermore, let the bandwidth hn be such that (1.4) holds true,
and

hn|Wn| → ∞. (1.5)

If

|Wn||τ̂n − τ |/hn
p→ 0, (1.6)

then

λ̂n,K(s)
p→ λ(s), (1.7)

provided s is a Lebesgue point of λ. In other words, λ̂n,K(s) is a consistent estimator of λ(s).

We note that, the assumption (K.4) can be weakened into assumption (K.4*) below. Therefore, in
the next section, we give proof of Theorems 1.1 and 1.2 under the weaker assumption (K.4*). This
assumption will allow us to control the fluctuations of the function

x 7→ K

(
x− (s+ kτ̂n)

hn

)
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depending on the fluctuations of τ̂n around τ . In particular, it will exclude functions K like

K0 :=
1
2
I[−1,1]\Q,

where Q stands for the set of all rational numbers, and IA denotes the indicator function of the set
A. A more detail discussion on the necessity of excluding functions like K0, which satisfies condition
(K.1) - (K.3), is given in the Appendix.

Before the condition (K.4*), we note that, according to the Lusin’s theorem, the measurability of
function K (which is implicitly assumed by (K.1)) implies that

(L) For any α > 0, there exists a compact set Aα and a continuous function Kα : R→ R such that
the Lebesgue measure of the set [−1, 1] \Aα does not exceed α, and |K(u)−Kα(u)| ≤ α for all
u ∈ Aα.

By slightly strengthening assumption (L), we can exclude all the functions K like K0 and, conse-
quently, prove consistency of the estimator λ̂n,K(s) under assumption (K.4*), that is

(K.4*) For any α > 0, there exists a finite collection of disjoint compact intervals B1,..., BMα and a
continuous function Kα : R → R such that the Lebesgue measure of the set [−1, 1] \ ∪Mα

i=1Bi
does not exceed α, and |K(u)−Kα(u)| ≤ α for all u ∈ ∪Mα

i=1Bi.

Note, that by taking Aα = ∪Mα
i=1Bi, we immediately obtain that any kernel satisfying assumption

(K.4*) also satisfies (L). However, assumption (K.4*) still covers all the kernel functions K of statistical
relevance that we can think of. For example, any kernel K whose all discontinuity points can, for any
fixed α > 0, be covered by a finite collection of open intervals of total size not exceeding α obviously
satisfies assumption (K.4*).

We are now to discuss possible affects of the estimator τ̂n on λ̂n,K(s). Recall first that the Poisson
process X is observed only in the window Wn. Using the available for us information in Wn, we
construct an estimator τ̂n of τ (cf., for example, Helmers and Mangku [3] and Vere-Jones [4]. Let us
furthermore assume that

|Wn|γ |τ̂n − τ |
p→ 0, (1.8)

as n→∞, for some γ ≥ 0. Then, assumption (1.6) holds true if, for example,

|Wn|/hn ≤ |Wn|γ (1.9)

for all sufficiently large n. We can find hn converging to 0 and satisfying (1.9) if γ > 1. If, however,
γ ≤ 1, then in order to find hn converging to 0 and satisfying (1.9), we have to replace the window
Wn in the definition (1.3) of λ̂n,K(s), as well as in Theorem 1.1, by a smaller window W0,n ⊂ Wn of
size

|W0,n| ∼ |Wn|γ−ρ (1.10)

for some (no matter how small) ρ > 0. Indeed, if the estimator τ̂n does not converge to τ sufficiently
fast, then the estimator λ̂n,K(s) may not be consistent due to the slow convergence of τ̂n to τ .
Therefore, by using the smaller window W0,n in the definition of λ̂n,K(s), even though X is observed
and the estimator τ̂n is constructed in the bigger window Wn, we can reduce the accumulated error
by τ̂n and make the estimator λ̂n,K(s) converge to λ(s). Let us look, for example, at two estimators
constructed by Helmers and Mangku [3] which are shown therein to satisfy (1.8) for any γ ∈ [0, 1/4)
and γ ∈ [0, 1). Therefore, with either of the two estimators of Helmers and Mangku [3] that are
constructed there using the observations of X in the window Wn, we now use, according to the
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above discussion, smaller windows W0,n of the sizes |Wn|γ for any fixed γ ∈ [0, 1/4) and γ ∈ [0, 1),
respectively, to construct λ̂n,K(s) as in definition (1.3).

Under, naturally, stronger assumptions than those of Theorem 1.1, we also have the complete
convergence of the estimator λ̂n,K(s) which, in turn, gives a rate of consistency of the estimator
λ̂n,K(s). Throughout this paper, we use c→ to denote complete convergence.

Theorem 1.2 Let the intensity function λ be periodic and locally integrable, and let the kernel K
satisfy assumptions (K.1)–(K.4). Furthermore, let the bandwidth hn be such that (1.4) holds true,
and

∞∑
n=1

exp
{
− ε
√
|Wn|hn

}
<∞ (1.11)

for any ε > 0. If

|Wn||τ̂n − τ |/hn c→ 0, (1.12)

then

λ̂n,K(s) c→ λ(s), (1.13)

provided s is a Lebesgue point of λ.

One may naturally want to know where the estimator λ̂n,K(s) converges when it is not assumed that
s is a Lebesgue point. A careful inspection of the proof (given in the next section) of Theorem 1.1
shows, for example, that under the assumption

1
h

∫ h

−h
λ(s+ x)dx = O(1), h→ 0,

the estimator λ̂n,K(s) estimates

λ∗(s) := lim
h→0

∫ 1

−1

K(x)λ(s + xh)dx, (1.14)

provided that the limit in (1.14) exists. For example, if the left- and right-hand limits λ(s−) and
λ(s−) of λ at s exist, then

λ∗(s) = λ(s−)
∫ 0

−1

K(x)dx+ λ(s+)
∫ 1

0

K(x)dx.

Consequently, if we assume that the function K is symmetric, then, due to the fact that K is a
probability density function by assumption (K.1), we have the following representation

λ∗(s) =
1
2
{λ(s−) + λ(s+)}.

In turn, if s is a continuity point of λ, then the latter representation implies the following one

λ∗(s) = λ(s), (1.15)

as it should be expected. Let us note in passing that if λ is known to be either right- or left-
continuous, then we also have equality (1.15), provided that K has “one-sided” supports [0, 1] and
[−1, 0], respectively.

In a follow-up paper, we compute the bias, variance, and mean squared error (MSE) of the estimator
λ̂n,K(s).
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2. Proof of Theorems 1.1 and 1.2

To give a better insight into our proof of Theorems 1.1 and 1.2, we are now to describe the idea behind
the construction of the estimator λ̂n,K(s). To start with, we note that since there is available only one
realization of the Poisson process X , we have to collect necessary information about the (unknown)
value of λ(s) from different places of the window Wn. For this reason, assumption (1.1) plays a crucial
role and leads to the following string of (approximate) equations

λ(s) =
1
Nn

∞∑
k=−∞

λ(s+ kτ)I{s+ kτ ∈Wn}

≈ 1
Nn

∞∑
k=−∞

1
|Bhn(s+ kτ)|

∫
Bhn (s+kτ)∩Wn

λ(x)dx

=
1
Nn

∞∑
k=−∞

1
2hn

µ(Bhn(s+ kτ) ∩Wn)

≈ 1
Nn

∞∑
k=−∞

1
2hn

X(Bhn(s+ kτ) ∩Wn)

≈ τ

|Wn|

∞∑
k=−∞

1
2hn

X(Bhn(s+ kτ) ∩Wn), (2.1)

where

Nn = #{k : s+ kτ ∈Wn},

hn denotes a sequence of positive numbers converging to 0, Bh(x) stands for the interval [x−h, x+h],
and µ denote the measure defined as

µ(A) := EX(A) =
∫
A

λ(x)dx, A ∈ B(R).

[We note that in order to make the first ≈ in (2.1) work, we have assumed that s is a Lebesgue point
of λ and hn converges to 0.] Thus, from (2.1) we conclude that

λn(s) :=
τ

|Wn|

∞∑
k=−∞

1
2hn

X(Bhn(s+ kτ) ∩Wn), (2.2)

is an estimator of λ(s), provided that the period τ is known.

Remark 2.1 The idea described in (2.1) and (2.2) of constructing an estimator for λ(s) resembles
that of Helmers and Zitikis [2] where we obtained in a similar fashion a non-parametric estimator for
an intensity function which, in addition to the periodic trend, also has a polynomial trend. In Helmers
and Zitikis [2], just like when constructing the estimator λn(s) in (2.2), the period τ is supposed to
be known.

The estimator λn(s) of (2.2) can be modified in order to cover intensity functions with unknown
periods as well. Namely, let τ̂n be a consistent estimator of τ . For example, one can think about
the estimators of Helmers and Mangku [3], or Vere-Jones [4], or any other estimator of the period
τ . Then, we modify the estimator (2.2) by replacing the unknown period τ by its estimator τ̂n and
obtain the following estimator

λ̂n(s) =
τ̂n
|Wn|

∞∑
k=−∞

1
2hn

X (Bhn(s+ kτ̂n) ∩Wn)
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of λ(s). Note that the estimator λ̂n(s) can be rewritten as

λ̂n(s) =
τ̂n
|Wn|

∞∑
k=−∞

1
hn

∫
Wn

1
2
I[−1,1] (Bhn(s+ kτ̂n))X(dx). (2.3)

By replacing the function 2−1I[−1,1](·) in (2.3) by the general kernel K, we immediately arrive at the
estimator introduced in (1.3).

We are now to prove Theorems 1.1 and 1.2. These theorems are a consequence of the basic proba-
bilistic tool, which is given in Theorem 2.1.

Theorem 2.1 Let the intensity function λ be periodic and locally integrable, and let the kernel K
satisfy assumptions (K.1)–(K.3) and (K.4*). Furthermore, let the bandwidth hn be such that (1.4)
holds true. Then, for every ε > 0, there exists a (small) β := β(ε) > 0 and a (large) n(ε) such that
the bound

P{|λ̂n,K(s)− λ(s)| ≥ ε} ≤ c exp{−ε
√
|Wn|hn}+ P{|Wn| |τ̂n − τ | ≥ βhn}, (2.4)

holds true for all n ≥ n(ε), provided s is a Lebesgue point of the intensity function λ.

To prove Theorem 2.1, we need the following three lemmas.

Lemma 2.1 Let the intensity function λ be periodic and locally integrable, and let the kernel K satisfy
assumptions (K.1)–(K.3). Furthermore, let the bandwidth hn be such that (1.4) holds true. Then

1
Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ)

hn

)
µ(dx)→ λ(s), (2.5)

provided s is a Lebesgue point of λ.

Proof: Obviously,

1
Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ)

hn

)
µ(dx)

=
1
Nn

∞∑
k=−∞

1
hn

∫
R

K

(
x− (s+ kτ)

hn

)
λ(x)I(x ∈Wn)dx

=
1

Nnhn

∫
R

K

(
x

hn

) ∞∑
k=−∞

λ(x+ s+ kτ)I(x + s+ kτ ∈Wn)dx. (2.6)

Since λ is periodic with period τ , we have λ(x+ s+ kτ) = λ(x + s). Furthermore, it is obvious that

∞∑
k=−∞

I(x+ s+ kτ ∈Wn) ∈ [Nn − 1, Nn + 1]. (2.7)

Consequently, the r.h.s of (2.6) converges to λ(s) when n→∞, provided that

1
hn

∫
R

K

(
x

hn

)
λ(x+ s)dx→ λ(s). (2.8)
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Note that

1
hn

∫
R

K

(
x

hn

)
λ(s)dx = λ(s)

∫
R

K (x) dx = λ(s), (2.9)

where we used the assumption that K is a probability density function. Consequently, statement (2.8)
follows if

1
hn

∫
R

K

(
x

hn

)
{λ(x + s)− λ(s)} dx→ 0, (2.10)

when n → ∞. The latter statement obviously follows from the assumptions that K is bounded and
with support in [−1, 1], and that s is a Lebesgue point of λ. This completes the proof of Lemma 2.1.
�

Denote

Dn :=
1
Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ)

hn

)
X(dx)− 1

Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ)

hn

)
µ(dx)

Lemma 2.2 Let the intensity function λ be periodic and locally integrable, and let the kernel K satisfy
assumptions (K.1)–(K.3). Furthermore, let the bandwidth hn be such that (1.4) holds true. Then there
is a (large) constant n1 such that for any constant c1 > 0 there exists another one c2 > 0 such that

P{|Dn| ≥ c1ε} ≤ c2 exp
{
− ε
√
|Wn|hn

}
, (2.11)

for every ε > 0 and all n ≥ n1, provided s is a Lebesgue point of λ.

Proof: For every t > 0, we have that

P{|Dn| ≥ c1ε} ≤ exp{−c1εt}
(
E exp{tDn}+ E exp{−tDn}

)
. (2.12)

To make our further considerations more transparent, we denote

ξk :=
∫
Wn

K

(
x− (s+ kτ)

hn

)
X(dx)

and then rewrite Dn as

Dn =
1
Nn

∞∑
k=−∞

1
hn
{ξk − Eξk}.

Since hn ↓ 0, the random variables ξk, k = 1, 2, ... are independent for all sufficiently large n (depending
on the period τ). Thus, for sufficiently large n, we obtain

E exp{±tDn} =
∞∏

k=−∞
E exp

{
± t

Nnhn
(ξk −Eξk)

}
. (2.13)

Using the well known formula for the Laplace transform of the Poisson process, we obtain that

E exp
{
± t

Nnhn
ξk

}
= exp

{∫
Wn

(eK
∗(x) − 1)λ(x)dx

}
,



8

where we used the notation

K∗(x) := ± t

Nnhn
K

(
x− (s+ kτ)

hn

)
Consequently, for every factor on the r.h.s. of (2.13) we have the following formula

E exp
{
± t

Nnhn
{ξk −Eξk}

}
= exp

{∫
Wn

(eK
∗(x) − 1−K∗(x))λ(x)dx

}
. (2.14)

Since | exp{x} − 1− x| does not exceed x2 exp{|x|}, we obtain from (2.14) that

E exp
{
± t

Nnhn
{ξk −Eξk}

}
≤ exp

{∫
Wn

|K∗(x)|2e|K
∗(x)|λ(x)dx

}
. (2.15)

We now make the following choice

t :=
1
c1

√
Nnhn. (2.16)

Using the assumption that K is bounded and has support in the interval [−1, 1], we obtain from (2.15)
with (2.16) that

E exp
{
± t

Nnhn
{ξk −Eξk}

}
≤ exp

{
c

1
Nnhn

µ (Bhn(s+ kτ) ∩Wn)
}
, (2.17)

for a constant c that does not depend on n. Applying bound (2.17) on the r.h.s. of (2.13), we obtain

E exp{±tDn} ≤ exp

{
c

1
Nn

∞∑
k=−∞

1
hn
µ (Bhn(s+ kτ) ∩Wn)

}
. (2.18)

Furthermore, we note that the quantity µ (Bhn(s+ kτ) ∩Wn) obviously equals to∫
Bhn (0)

λ(s+ kτ + x)I(s + kτ + x ∈Wn)dx.

Consequently, using the periodicity of λ and (2.7) on the r.h.s. of (2.18), we obtain that

E exp{±tDn} ≤ exp

{
c

1
hn

∫
Bhn (0)

λ(s+ x)dx

}
. (2.19)

Since s is a Lebesgue point of λ, we have that

1
2hn

∫
Bhn (0)

λ(s+ x)dx→ λ(s),

when n→∞. Thus,

lim
n→∞

E exp{±tDn} ≤ c <∞. (2.20)

Bound (2.20), when applied on the r.h.s. of (2.12), implies that

P{|Dn| ≥ ε} ≤ exp
{
−ε
√
Nnhn

}
, (2.21)
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due to our choice of t as in (2.16). Lemma 2.2 is therefore proved. �

We denote

Λn :=
1
Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ)

hn

)
X(dx)

− 1
Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ̂n)

hn

)
X(dx). (2.22)

Lemma 2.3 Let the intensity function λ be periodic and locally integrable, and let the kernel K satisfy
assumptions (K.1)–(K.3) and (K.4*). Furthermore, let the bandwidth hn be such that (1.4) holds true.
Then, for every ε > 0, there exists a (small) β := β(ε) > 0 and a (large) n(ε) ∈ N such that the bound

P{|Λn| ≥ ε} ≤ c exp
{
−ε
√
|Wn|hn

}
+ P {|Wn||τ̂n − τ | ≥ βhn} , (2.23)

holds true for all n ≥ n(ε), provided s is a Lebesgue point of λ.

Proof: Fix any α > 0 and denote

Aα :=
Mα⋃
i=1

Bi ⊂ [−1, 1],

where B1,..., BMα are compact disjoint intervals defined in assumption (K.4*). Furthermore, using
the (continuous) function Kα of assumption (K.4*) and the Weierstrass’s theorem, we get that there
exists a Lipschitz function Lα such that |K(u)−Lα(u)| ≤ α for all u ∈ Aα. Now, we decompose both
K on the right-hand side of (2.22) as follows

K(u) ={K(u)− Lα(u)}IAcα(u)
+ {K(u)− Lα(u)}IAα(u)
+ Lα(u). (2.24)

Since K and Lα are bounded, we easily see that the quantity∣∣∣∣ 1
Nn

∞∑
k=−∞

1
hn

∫
Wn

(K − Lα)
(
x− (s+ kτ)

hn

)
IAcα

(
x− (s+ kτ)

hn

)
X(dx)

− 1
Nn

∞∑
k=−∞

1
hn

∫
Wn

(K − Lα)
(
x− (s+ kτ̂n)

hn

)
IAcα

(
x− (s+ kτ̂n)

hn

)
X(dx)

∣∣∣∣
does not exceed the sum of the following two quantities

Λn,1 := c(K,Lα)
1
Nn

∞∑
k=−∞

1
hn
X ({s+ kτ + hnA

c
α} ∩Wn) ,

Λn,2 := c(K,Lα)
1
Nn

∞∑
k=−∞

1
hn
X ({s+ kτ̂n + hnA

c
α} ∩Wn) ,

where c(K,Lα) denotes a constant depending only on sup{|K(u)| : u ∈ [−1, 1]} and sup{|Lα(u)| : u ∈
[−1, 1]}.
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The quantity∣∣∣∣ 1
Nn

∞∑
k=−∞

1
hn

∫
Wn

(K − Lα)
(
x− (s+ kτ)

hn

)
IAα

(
x− (s+ kτ)

hn

)
X(dx)

− 1
Nn

∞∑
k=−∞

1
hn

∫
Wn

(K − Lα)
(
x− (s+ kτ̂n)

hn

)
IAα

(
x− (s+ kτ̂n)

hn

)
X(dx)

∣∣∣∣
does not exceed the sum of the following two quantities

Λn,3 := α
1
Nn

∞∑
k=−∞

1
hn
X ({s+ kτ + hn[−1, 1]} ∩Wn) ,

Λn,4 := α
1
Nn

∞∑
k=−∞

1
hn
X ({s+ kτ̂n + hn[−1, 1]} ∩Wn) .

Next, without loss of generality we assume that the support of the Lipschitz function Lα is in the
interval [−1, 1]. Using this fact, we obtain that

|Lα(u)− Lα(v)| ≤ c(Lα)|u− v| (I{u ∈ [−1, 1]}+ I{v ∈ [−1, 1]})

for all u, v ∈ [−1, 1]. Consequently, the quantity∣∣∣∣ 1
Nn

∞∑
k=−∞

1
hn

∫
Wn

Lα

(
x− (s+ kτ)

hn

)
X(dx)− 1

Nn

∞∑
k=−∞

1
hn

∫
Wn

Lα

(
x− (s+ kτ̂n)

hn

)
X(dx)

∣∣∣∣
does not exceed the sum of the following two quantities

Λn,5 := c(Lα)
1
Nn

∞∑
k=−∞

∣∣∣∣k(τ̂n − τ)
hn

∣∣∣∣ 1
hn
X ({s+ kτ + hn[−1, 1]} ∩Wn) ,

Λn,6 := c(Lα)
1
Nn

∞∑
k=−∞

∣∣∣∣k(τ̂n − τ)
hn

∣∣∣∣ 1
hn
X ({s+ kτ̂n + hn[−1, 1]} ∩Wn) .

Taking above obtained bounds together we see that the probability that Λn ≥ ε does not exceed
the probability that Λn,1 + · · ·+ Λn,6 ≥ ε. This observation, in turn, implies that, for any β > 0,

P{Λn ≥ ε} ≤ P{Λn,1 + · · ·+ Λn,6 ≥ ε, |Wn| |τ̂n − τ | ≤ βhn}+ P{|Wn| |τ̂n − τ | ≥ βhn}. (2.25)

We are now to estimate Λn,1,..., Λn,6 under the restriction |Wn| |τ̂n − τ | ≤ βhn. Let start with the
observation that even though Λn,1,..., Λn,6 are infinite sums, in each sum there is only a finite number
of non-zero summands. As an example, let us first give a close look at Λn,1. Since X(∅) = 0, we have
that

X ({s+ kτ + hnA
c
α} ∩Wn) = 0

when, for example,

{s+ kτ + hn[−1, 1]} ∩Wn = ∅.

The latter statement is, obviously, equivalent to the following one{
k + hn

[
−1
τ
,

1
τ

]}
∩
{

1
τ

(Wn − s)
}

= ∅. (2.26)



11

Since s ∈ Wn by assumption, the set τ−1(Wn − s) contains 0. Therefore, (2.26) holds true if, for
example,

|k| ≥
∣∣∣∣1τ (Wn − s)

∣∣∣∣+
1
τ
hn =

1
τ
{|Wn|+ hn}. (2.27)

We are now to apply similar reasoning to the quantity Λn,2. Namely, using the restriction |Wn| |τ̂n−
τ | ≤ βhn, we get that

X ({s+ kτ̂n + hnA
c
α} ∩Wn) = 0

if, for example,{
s+ kτ + hn

k

|Wn|
[−β, β] + hn[−1, 1]

}
∩Wn = ∅.

The latter statement is equivalent to the following one{
k

(
1 + hn

[
− β

τ |Wn|
,

β

τ |Wn|

])
+ hn

[
−1
τ
,

1
τ

]}
∩
{

1
τ

(Wn − s)
}

= ∅. (2.28)

Obviously, (2.28) holds true, for example, for all k such that

|k| ≥ 1
τ

(|Wn|+ hn)/
(

1− hn
β

|Wn|τ

)
. (2.29)

Due to assumptions hn → 0 and |Wn| → ∞, we have that, for all sufficiently large n, both bounds
(2.27) and (2.29) hold true for all k such that, for example,

|k| ≥ 2
τ
|Wn|. (2.30)

The above presented consideration actually prove that the summands of Λn,3,..., Λn,6 are also 0 for
all k such that (2.30) holds true. Consequently, when estimating Λn,1,..., Λn,6 we can always restrict
ourselves to the summands with k such that |k| ≤ 2τ−1|Wn| only. This immediately implies the
following bounds

Λn,1,Λn,2 ≤ c(K,Lα)Λ∗n,
Λn,3,Λn,4 ≤ αΛ∗∗n ,
Λn,5,Λn,6 ≤ c(Lα)Λ∗∗n , (2.31)

where

Λ∗n :=
1
Nn

∞∑
k=−∞

1
hn
X

({
s+ kτ + hn

[
−2β
τ
,

2β
τ

]
+ hnA

c
α

}
∩Wn

)
,

Λ∗∗n :=
1
Nn

∞∑
k=−∞

1
hn
X

({
s+ kτ + hn

[
−1− 2β

τ
, 1 +

2β
τ

]}
∩Wn

)
.

Consequently, we have proved the following bound

P{|Λn| ≥ ε} ≤ P {c(K,Lα)Λ∗n + {α+ βc(Lα)}Λ∗∗n ≥ ε}+ P {|Wn| |τ̂n − τ | ≥ βhn} .

The latter bound shows that the proof of Lemma 2.3 is completed if we show that

P {c(K,Lα)Λ∗n + {α+ βc(Lα)}Λ∗∗n ≥ ε} ≤ c exp
{
−ε
√
|Wn|hn

}
. (2.32)
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The left-hand side of bound (2.32) does not exceed

P {c(K,Lα)|Λ∗n −EΛ∗n|+ {α+ βc(Lα)}|Λ∗∗n −EΛ∗∗n | ≥ cε} , (2.33)

where

cε := ε− c(K,Lα)EΛ∗n − {α+ βc(Lα)}EΛ∗∗n .

We now want to show that the parameters α and β can be chosen in such a way that, for example,

cε ≥
ε

2
(2.34)

when n is sufficiently large. To start with, we note that EΛ∗∗n can be rewritten in the following way

2
(

1 +
2β
τ

)
1
Nn

∞∑
k=−∞

1
h∗n

∫
Wn

1
2
I[−1,1]

(
x− (s+ kτ)

h∗n

)
µ(dx), (2.35)

where h∗n := (1 + 2β/τ)hn. Using Lemma 2.1 with K = 2−1I[−1,1], we immediately obtain that the
quantity of (2.35) converges to 2(1 + 2β/τ)λ(s) when n → ∞, and so does EΛ∗∗n . This implies that
by choosing α > 0 and β > 0 sufficiently small, we can make the quantity {α+ βc(Lα)}EΛ∗∗n smaller
than ε/4 for all sufficiently large n. In view of this fact, we obtain the desired bound (2.34), provided
that

c(K,Lα)EΛ∗n ≤
ε

4
(2.36)

for all sufficiently large n. We are now to prove (2.36). Denote

A :=
[
−2β
τ
,

2β
τ

]
+Acα

for notational simplicity. Then

EΛ∗n =
1
Nn

∞∑
k=−∞

1
hn

EX ({s+ kτ + hnA} ∩Wn)

=
1
Nn

∞∑
k=−∞

1
hn

∫
hnA

λ(x + s+ kτ)IWn(x + s+ kτ)dx

=
1

Nnhn

∫
hnA

λ(x+ s)
∞∑

k=−∞
IWn(x + s+ kτ)dx

≤ 2
hn

∫
hnA

λ(x+ s)dx

≤ 2
hn

∣∣ ∫
hnA

{λ(x+ s)− λ(s)}dx
∣∣ + 2λ(s)|A|. (2.37)

Note that the first summand on the right-hand side of (2.37) converges to 0, due to the assumption that
s is a Lebesgue point of λ. Thus, in order to achieve the desired bound (2.36) we have to demonstrate
that by choosing sufficiently small parameters α > 0 and β > 0 we can make the quantity |A| as small
as we want. Here, only here, we need to employ assumption (K.4*).

Remark 2.2 If we do not assume (K.4*), then we only have (L). In this case, the set Acα can be so
scattered over the interval [−1, 1] that the set [−β, β]+Acα may fill almost all interval [−1, 1] and thus
the Lebesgue measure of [−β, β] + Acα may be close, for example, to that of [−1, 1] – the case which
we definitely want to avoid by assuming (K.4*). �
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By choosing the parameter β > 0 sufficiently small, we can achieve the situation when A is a disjoint
union of the sets [−2β/τ, 2β/τ ] +Bi, i = 1,..., Mα. Consequently,

|A| =
Mα∑
i=1

∣∣∣∣[−2β
τ
,
2β
τ

]
+ Bi

∣∣∣∣ =
Mα∑
i=1

|Bi|+ 2Mα
2β
τ

= |Acα|+ 2Mα
2β
τ

≤ α+ 2Mα
2β
τ
. (2.38)

Obviously, the right-hand side of (2.38) can be made as small as we want by taking α > 0 and β > 0
sufficiently small. Thus, the desired bound (2.36) can indeed be achieved for all sufficiently large n.
This, in turn, implies that, for all sufficiently large n, the quantity of (2.33) does not exceed

P
{
c(K,Lα)|Λ∗n −EΛ∗n|+ {α+ βc(Lα)}|Λ∗∗n −EΛ∗∗n | ≥

ε

2

}
.

The latter quantity does not exceed the sum of P{|Λ∗n − EΛ∗n| ≥ c∗1ε} and P{|Λ∗∗n − EΛ∗∗n | ≥ c∗∗1 ε},
where c∗1 > 0 and c∗∗1 > 0 are some constants. Using Lemma 2.2 with the kernel K := |A|−1IA we
obtain the bound

P{|Λ∗n −EΛ∗n| ≥ c∗1ε} ≤ c∗2 exp
{
− ε
√
|Wn|hn

}
,

Furthermore, an application of Lemma 2.2 with the kernel K := |B|−1IB, where

B :=
[
−1− 2β

τ
, 1 +

2β
τ

]
implies

P{|Λ∗∗n −EΛ∗∗n | ≥ c∗∗1 ε} ≤ c∗∗2 exp
{
− ε
√
|Wn|hn

}
,

Thus, the quantity of (2.33) does not exceed c exp
{
−ε
√
|Wn|hn

}
, which completes the proof of bound

(2.32) and, in turn, Lemma 2.3. �

Let us denote

λ̄n,K(s) :=
1
Nn

∞∑
k=−∞

1
hn

∫
Wn

K

(
x− (s+ kτ̂n)

hn

)
X(dx).

Then it is easy to see that Lemmas 2.1, 2.2 and 2.3 taken together imply that, for every ε > 0, there
exists a (small) β := β(ε) > 0 and a (large) n(ε) ∈ N such that the bound

P
{
|λ̄n,K(s)− λ(s)| ≥ ε

}
≤ c exp

{
−ε
√
|Wn|hn

}
+ P {|Wn| |τ̂n − τ | ≥ βhn} , (2.39)

holds true for all n ≥ n(ε). In a little while we shall use this result to complete the proof of Theorem
2.1. Now, we proceed as follows.

Elementary algebra shows that

P
{
|λ̂n,K(s)− λ(s)| ≥ ε

}
≤ P

{(∣∣ τ̂nNn
|Wn|

− 1
∣∣+ 1

)
|λ̄n,K(s)− λ(s)|+

∣∣ τ̂nNn
|Wn|

− 1
∣∣λ(s) ≥ ε

}
.

(2.40)
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It is also easy to check that∣∣∣∣ τ̂nNn|Wn|
− 1
∣∣∣∣ ≤ |τ̂n − τ |τ

∣∣∣∣ τNn|Wn|
− 1
∣∣∣∣+
|τ̂n − τ |

τ
+
∣∣∣∣ τNn|Wn|

− 1
∣∣∣∣

≤ |τ̂n − τ |
τ

(
τ

|Wn|
+ 1
)

+
τ

|Wn|
, (2.41)

where the second bound of (2.41) was obtained using |τNn − |Wn|| ≤ τ. Since |Wn| converges to∞ by
assumption, we can make the right-hand side of (2.41) as small as we want provided that we assume
|Wn| |τ̂n − τ | ≤ βhn. Consequently, the right-hand side of (2.40) does not exceed

P
{
|λ̄n,K(s)− λ(s)| ≥ ε

2

}
+ P {|Wn| |τ̂n − τ | ≥ βhn} ,

This fact together with (2.39) completes the proof of Theorem 2.1. �

3. Appendix: Discussion concerning assumptions (K.4) and (K.4*)

We are now to discuss the role of assumption (K.4*) in our considerations and in Theorem 1.1 in
particular, and to give an explanation about the necessity to exclude kernel functions like K0. Let we
decompose K0 as

K0 = K1 −K2,

where

K1 :=
1
2
I[−1,1],

K2 :=
1
2
I[−1,1]∩Q.

Consequently, we have the following decomposition

λ̂n,K0(s) = λ̂n,K1(s)− λ̂n,K2(s). (3.1)

Note that the kernel K1 satisfies all four assumptions (K.1)-(K.3), (K.4*). Therefore, by Theorem
2.1, we have the following bound

P
{
|λ̂n,K1(s)− λ(s)| ≥ ε

}
≤ c exp

{
−ε
√
|Wn|hn

}
+ P {|Wn| |τ̂n − τ | ≥ βhn} ,

with the same parameters as in Theorem 2.1. We now easily see that if hn|Wn| → ∞ and |Wn||τ̂n −
τ |/hn

p→ 0, as n → ∞, then λ̂n,K1(s) is a consistent estimator of λ(s). In view of this fact and
decomposition (3.1), the random variable λ̂n,K0(s) can be a consistent estimator of λ(s) if and only if

λ̂n,K2(s)
p→ 0, (3.2)

as n→∞. Let us now look at λ̂n,K2(s) more closely. By the very definition, λ̂n,K2(s) has the following
form

λ̂n,K2(s) =
τ̂n
|Wn|

∞∑
k=−∞

1
2hn

X ({s+ kτ̂n + hnQ} ∩Wn) .

If τ̂n were identically equal to τ , the expectation of the random variable

X ({s+ kτ̂n + hnQ} ∩Wn) [= X ({s+ kτ + hnQ} ∩Wn)]
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would obviously be equal to 0, which, in turn, would be a strong evidence that the statement (3.2)
holds true (in fact, one can easily verify that it is so under the assumption τ̂n ≡ τ). However, if τ̂n
is a truly random estimator of τ , then the validity of statement (3.2) becomes highly questionable,
provided that no additional information about τ̂n is available except that |Wn| |τ̂n − τ |/hn

p→ 0, for
example. To give a more rigorous justification of the latter claim, we note that statement (3.2) can
be reduced to showing that, for ant ε > 0 and β > 0,

P
{
λ̂n,K2(s) ≥ ε, |Wn| |τ̂n − τ | ≤ βhn

}
→ 0, (3.3)

as n → ∞. The “restriction” |Wn| |τ̂n − τ | ≤ βhn in (3.3) actually says that what we really know
about the estimator τ̂n is only the following confidence interval

τ̂n ∈ τ +
β

|Wn|
hn[−1, 1]. (3.4)

With the notation of (3.4), we rewrite (3.3) more explicitly as

P

{
τ̂n
|Wn|

∞∑
k=−∞

1
2hn

X ({s+ kτ̂n + hnQ} ∩Wn) ≥ ε, τ̂n ∈ τ +
β

|Wn|
hn[−1, 1]

}
→ 0, (3.5)

as n→∞. If we now use the only available for us information τ̂n ∈ τ + β|Wn|−1hn[−1, 1] to estimate
the random variable X({s+ kτ̂n + hnQ}∩Wn) in (3.5), we shall inevitably end up with the necessity
of proving that

P{λ̂∗n,K2
(s) ≥ ε} → 0, (3.6)

as n→ 0, where

λ̂∗n,K2
(s) :=

τ̂n
|Wn|

∞∑
k=−∞

1
2hn

X
(
{s+ kτ + kβ|Wn|−1hn[−1, 1] + hnQ} ∩Wn

)
.

But statement (3.6) appears to be impossible if λ(s) > 0. Indeed, since the interval β|Wn|−1hn[−1, 1]
has a positive Lebesgue measure (and it does not matter how small it is), we have that the set
kβ|Wn|−1hn[−1, 1] + hnQ completely covers the interval hn[−1, 1]. This observation immediately
implies that

λ̂∗n,K2
(s) ≥ λ̂n,K1(s).

But we have already noted above that λ̂n,K1(s) is a consistent estimator of λ(s). Thus, λ̂∗n,K2
(s)

cannot converge in probability to 0, as n→∞, if λ(s) > 0.
The above given discussion indicates that without additional information about the relationship

between X and τ̂n in the expression

X ({s+ kτ̂n + hnQ} ∩Wn) ,

it may be impossible to prove statements like (3.3) or (3.2). And we emphasise that, by not considering
any specific estimator τ̂n in the present paper, we do not have more information about τ̂n except that
τ̂n is a consistent estimator of τ and, possibly, a rate of consistency like |Wn| |τ̂n − τ |/hn

p→ 0, as
n→∞. However, it is important to call readers attention that no matter how attractive the problem
of including the kernel K0 into Theorem 1.1 could be from the mathematical point of view, it does
not seem relevant from the statistical point of view at all. Indeed, as far as we understand, all the
kernels K of statistical relevance satisfy assumptions (K.1)–(K.4), and are thus covered by Theorems
1.1.
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