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Non-separable 2D wavelets with two-row filters

ABSTRACT
In the literature 2D (or bivariate) wavelets are usually constructed as a tensor product of 1D
wavelets. Such wavelets are called separable. However, there are various applications, e.g. in
image processing, for which non-separable 2D wavelets are preferable. In this paper, we
investigate the class of compactly supported orthonormal 2D wavelets that was introduced by
Belogay and Wang [2]. A characteristic feature of this class of wavelets is that the support of the
corresponding filter comprises only two rows. We are concerned with the biorthogonal extension
of this kind of wavelets. It turns out that the 2D wavelets in this class are intimately related to
some underlying 1D wavelet. We explore this relation in detail, and we explain how the 2D
wavelet transforms can be realized by means of a lifting scheme, thus allowing an efficient
implementation. We also describe an easy way to construct wavelets with more rows and
shorter columns.
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biorthogonality, subband scheme, Laurent polynomial.
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1. Introduction

Since their ‘invention’ in the early 80’s, wavelets have been thoroughly investigated by re-
searchers from various fields, in particular applied mathematics and signal and image process-
ing. Depending on the context, wavelets are defined in various ways, e.g., as linear transfor-
mations, as perfect reconstruction filter banks, or as bases representations for an underlying
Hilbert space. These definitions are all intimately connected, and we refer to [7, 10, 11] for
more details. In this paper we regard wavelets as translated and dilated versions of a single
mother wavelet function. Thanks to the work of Mallat and Meyer [11], wavelets can be de-
rived from a so-called multiresolution analysis, henceforth abbreviated as MRA. Within the
MRA framework, many useful analytical and approximation properties have been developed.

For practical reasons wavelets with compact supports have drawn a great deal of atten-
tion. Important families of compactly supported wavelets include Daubechies’s orthonormal
wavelets [6, 7] and the class biorthogonal wavelets introduced by Cohen, Daubechies, and
Feauveau [5, 6]. The lifting scheme introduced by Sweldens [8, 14] gives an enormous flexi-
bility and freedom in the design of new wavelets from existing ones, and moreover, it allows
fast and efficient implementations.

In this paper, we are concerned with 2D (or bivariate) wavelets. Wavelets in two and
higher dimensions are often constructed as tensor products of 1D wavelets, resulting in so-
called separable wavelets. But the tensor product approach has several drawbacks. In fact,
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this approach is only suited for basic square grids, and cannot cope with arbitrary sampling
lattices, such as the quincunx lattice. The emphasis on separable wavelets in the past is
understandable if one takes into account that construction of non-separable 2D wavelets is
far from trivial [9]. The spectrum factorization method that has been used with great success
in the 1D case, is hard to extend to two dimensions.

A typical construction of 2D wavelets follows McClellen’s transformation; see [12] and [15].
In general such a transform works on the quincunx grid and results in interpolatory wavelets.
In [2], Belogay and Wang construct a family of 2D non-separable orthonormal wavelets related
to the dilation matrix

(

0 2
1 0

)

, which are not interpolatory.
The support of the associated wavelet filters comprises two rows and the spectrum fac-

torization method can be used thanks to the special structure of these filters. Furthermore,
the members of this wavelet family can have any prescribed accuracy. Unfortunately, the
wavelets derived by Belogay and Wang [2] lack symmetry, a property which is very useful in
various applications, in this paper, we will extend the class of orthonormal wavelets by Belo-
gay and Wang with their biorthogonal counterparts. Furthermore, we investigate the relation
between 2D wavelets with the aforementioned dilation matrix

(

0 2
1 0

)

and 1D wavelets with
scaling factor 2. We also show how to design lifting schemes for our family of 2D wavelets.
In [3], Borup and Nielsen utilize the 2-row orthonormal wavelets in wavelet packets. The lift-
ing scheme developed in this paper can provide fast computation in the best basis selection
in wavelet packets.

Finally, we present an easy way to construct wavelets with more rows but shorter columns.
More precisely, for a given accuracy r, the support of the two-row filters constructed in [2]
lie within the range [0, 4r − 1] × [0, 1] whereas the support of the filters with more rows lie
within the range [0, 2r − 1] × [0, r].

2. Multiresolution analysis

2.1 Notation
Denote by R, C and Z the sets of real numbers, complex numbers and integers, respectively.
For a positive integer d, we use d-tuple column vectors to represent points in R

d and C
d or

indices in Z
d, e.g., x = (x1, · · · , x2)

T , n = (n1, · · · , n2)
T , and ω = (ω1, · · · , ω2)

T , where the
superscript T indicates the transpose. The conjugate of ω is ω̄ = (ω̄1, · · · , ω̄2)

T .
We use |·| to denote the absolute value of a real number, the modulus of a complex number,

as well as the (Euclidean) length of a vector in R
d or C

d. However, if n is an index, i.e.,
n = (n1, · · · , n2)

T ∈ (Z+)d, then we define |n| =
∑d

k=1 nk, called the cardinality of n.
We denote by T the unit circle in C, i.e., T = {z ∈ C; |z| = 1}. Given two points a =

(a1, · · · , ad)
T ,b = (b1, · · · , bd)T ∈ C

d, define the power a
b as

∏d
k=1 a

bk

k .
A d× d square matrix D with integer entries is said to be a dilation matrix if the modules

of its eigenvalues are larger than 1. It is easy to show that N = |detD| is an integer large
than 1.

Denote by L2(R
d) the space of square integrable functions on R

d and by `2(Z
d) the space

of square summable sequences indexed by Z
d. Then ‖ · ‖ denotes the L2 norm of a function

in L2(R
d) or the `2 norm of a sequence in `2(Z

d). We use 〈·, ·〉 to denote the inner product of
two vectors (or functions) in an inner product space. For a function f in L2(R

d), we define
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its Fourier transform as

f̂(ω) =

∫

x∈Rd

f(x) exp(−i〈ω,x〉)dx, ω ∈ R
d.

2.2 A general definition of MRA
Throughout this subsection we assume that D is an arbitrary dilation matrix, and we put
N = |detD|.
2.1 Definition. A multiresolution analysis (MRA) with dilation matrix D is a series of
closed subspaces Vj in R

d, j ∈ Z, such that

1. Vj ⊂ Vj+1 (monotonicity);

2. ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R
d) (approximation);

3. f(x) ∈ Vj ⇔ f(Dx) ∈ Vj+1 (dilation invariance);

4. f(x) ∈ V0 ⇒ f(x− n) ∈ V0, n ∈ Z
d (translation invariance);

5. there exists a scaling function φ ∈ V0 such that {φ(·−n) | n ∈ Z
d} is a Riesz basis of V0,

i.e., the span of {φ(· − n) | n ∈ Z
d} is dense in V0 and there exist constants 0 < c ≤ C

such that

c‖a‖ ≤

∥

∥

∥

∥

∥

∥

∑

n∈Zd

anφ(· − n)

∥

∥

∥

∥

∥

∥

≤ C‖a‖ (2.1)

for any sequence a = {an | n ∈ Z
d} ∈ `2(Z

d). We say that φ generates the MRA {Vj}.
Strictly speaking, property 4 is redundant because of property 5. This last property, in

combination with property 3, implies that the scaling function φ satisfies the so-calledD-scale
dilation equation

φ(x) = |detD|1/2
∑

n∈Zd

hnφ(Dx− n) . (2.2)

In the sequel we use the notation

fj,n(x) = |detD|j/2f(Dj
x − n).

for f ∈ L2(R
d). The sequence {hn} ∈ `2 is called the mask of φ.

In the Fourier domain, the dilation relation becomes

φ̂(Dω) = |detD|−1/2H(ω)φ̂(ω), (2.3)

where H is called the symbol of φ :

H(ω) =
∑

n∈Zd

hn exp(−i〈n,ω〉). (2.4)

Suppose that φ ∈ L2(R
d) is a scaling function with dilation matrix D which generates an

MRA {Vj}. One can show that there exists a dual scaling function φ̃ ∈ L2(R
d), which satisfies

the biorthogonality relations

〈φ(· − n), φ̃(· − k)〉 = δn,k, n,k ∈ Z
d, (2.5)
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and which generates a dual MRA {Ṽj}.
Define the space Wj (resp. W̃j) as the algebraic complement of Vj (resp. Ṽj) in Vj+1 (resp.

Ṽj+1), i.e.,
Vj+̇Wj = Vj+1 and Ṽj+̇W̃j = Ṽj+1.

It is easy to see that both Wj and W̃j satisfy the dilation invariance property, i.e.,

f(x) ∈Wj ⇔ f(Dx) ∈Wj+1

(same for W̃j). Furthermore, the two systems are biorthogonal:

Wj ⊥ Ṽj and W̃j ⊥ Vj .

Obviously, {φj,n | n ∈ Z
d} is a Riesz basis of Vj , for j ∈ Z. Recall that N = |detD|. To

characterizeWj and W̃j , we introduce the wavelet functions ψs, s = 1, · · · , N−1, and the dual
wavelet functions ψ̃s, s = 1, · · · , N − 1. Unfortunately, there is not an unified approach to
construct wavelets from the scaling function. In the 1D case, spectral factorization method
can be used to construct wavelets with 2-scale relations but in the multivariate case, this
method fails in general.

Define W s
j = span{ψs

j,n;n ∈ Z
d} and W̃ s

j = span{ψ̃s
j,n | n ∈ Z

d}, s = 1, · · · , N − 1,
j ∈ Z, where spanU denotes the closed span of the vectors in U . Now we have the following
properties:

• dilation invariance: f(x) ∈W s
j ⇔ f(Dx) ∈W s

j+1 and f(x) ∈ W̃ s
j ⇔ f(Dx) ∈ W̃ s

j+1;

• Riesz basis: {ψs
j,n;n ∈ Z

d} is a Riesz basis of W s
j and {ψ̃s

j,n;n ∈ Z
d} is a Riesz basis of

W̃ s
j ;

• decomposition: Wj = +̇
N−1
s=1 W

s
j and W̃j = +̇

N−1
s=1 W̃

s
j .

Now take ψ0 = φ and ψ̃0 = φ̃. Then we have perfect reconstruction formula

f =
N−1
∑

s=0

∑

j∈Z,n∈Zd

〈f, ψs
j,n〉ψ̃s

j,n =
N−1
∑

s=0

∑

j∈Z,n∈Zd

〈f, ψ̃s
j,n〉ψs

j,n .

If, in property 5 of Definition 1, ‘Riesz basis’ is replaced with ‘orthonormal basis’, then
the biorthogonality property above turns into an orthogonality property: the direct sums are
orthogonal sums and the dual MRA coincides with the primary MRA.

Finally, we point out that {V2j; j ∈ Z} is an MRA with dilation matrix D2 generated by
the same scaling function φ but with symbol H2(ω).

2.3 The univariate case

In this subsection we consider the one-dimensional case, i.e., d = 1. The dilation matrix, or
rather factor, D is taken to be 2. This is the simplest but most useful case and has been
fully investigated by various authors; cf. [6, 7]. In this subsection all the functions involved
are univariate.



2. Multiresolution analysis 5

Figure 1: 2-D tensor product wavelet transform vs D0-generated wavelet transform. Here L
represents the low-pass band and H the high-pass band.

Figure 2: D0-generated wavelet transform applied to ‘Lenna’ image.

An important research question in wavelet theory is to look for wavelets with prescribed
properties like orthogonality, finite support, vanishing moments, accuracies and symmetries.
The MRA framework can be very useful to address such questions.

Suppose φ and φ̃ are the scaling functions associated with an MRA in and its dual MRA in
L2(R), and assume that H and H̃, which are both 2π-periodic functions, are the symbols of
φ and φ̃ respectively. Then the biorthogonality of φ and φ̃, as given in (2.5), can be written
as

H(ω)H̃(ω) +H(ω + π)H̃(ω + π) = 2 . (2.6)

If φ and φ̃ have compact supports, H and H̃ are trigonometric polynomials and a solution of
(2.6) is given in [7]. We omit the details here and refer the reader to [7].
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2.4 Bivariate extension by tensor products

In image processing, or more generally two-dimensional signal processing, we are interested
in 2D wavelets, also called bivariate wavelets. Such wavelets are often based on the dilation
matrix D =

(

2 0
0 2

)

.
Given two1 univariate MRA’s V r

j , V
c
j with scaling function φr, φc and wavelet function

ψr, ψc. By taking tensor products, we can construct an MRA of L2(R
2) as Vj = Vj

r × Vj
c,

j ∈ Z with scaling function φ(x) = φr(x1) · φc(x2). The wavelets are ψ1(x) = φr(x1) ·ψc(x2),
ψ2(x) = ψr(x1) ·φc(x2), and ψ3(x) = ψr(x1) ·ψc(x2). Define W 1

j = V r
j ×W c

j , W
2
j = W r

j ×V c
j

and W 3
j = W r

j ×W c
j as well as Wj = W 1

j +̇W 2
j +̇W 3

j . Then Vj+1 = Vj+̇Wj and ψs generates
W s

j , for s = 1, 2, 3.
Computation of the corresponding wavelet transform amounts to two successive steps, i.e.,

first filtering the image row by row and then column by column; see Figure 1.
Both steps are related to matrices Dr =

(

2 0
0 1

)

and Dc =
(

1 0
0 2

)

respectively. Note that
these matrices are not dilation matrices in the sense of the definition in §2.1, as each of them
dilates only in one direction.

If we interchange the two columns of Dr or the two rows of Dc we get a new matrix

D0 =

(

0 2
1 0

)

.

It is easy to see that D0 has eigenvalues ±
√

2 and therefore D0 can serve as a dilation matrix.
Since D = (D0)

2, we can apply D0 twice to obtain tensor-product-like wavelets. However,
there is a slight difference: the tensor product wavelet transform results in 4 subbands whereas
the D0-generated wavelet, when applied twice on the low-pass subband, results in 3 subbands.
In order to get the same subband decomposition as for the tensor product, we have to apply
the D0-generated wavelet on both the low-pass and the high-pass subband. See Figures 1
and 2 for an illustration.

3. Non-separable cases

3.1 Analysis of dilation matrices
Let e1 = (1, 0)T and e2 = (0, 1)T and let D = (mij)2×2 be a dilation matrix with |detD| = 2.
Suppose adjD is the adjugate of D, i.e.,

D−1 = adjD/(detD).

3.1 Lemma. There exists (at least) one odd entry in D and in adjD.

Proof. If this were not true, the determinant of D would have an integer factor 4, which
contradicts the condition |detD| = 2. QED

3.2 Theorem. Suppose adjD has an odd entry indexed (l, k). Take u = ek and v
T =

e
T
l adjD, the l-th row of adjD. Then

1. The set Z
2 can be divided into two disjoint sets DZ

2 and DZ
2 + u :

Z
2 = DZ

2 ∪ (DZ
2 + u);

1
‘r’ stands for ‘row’ and ‘c’ for ‘column’.
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2. v
T
u is odd and v

TDn is even for any n ∈ Z
2.

Proof. Notice that any suitable candidate for u in the partition Z
2 = DZ

2 ∪ (DZ
2 + u)

is such that D−1
u 6= Z

2. Since D−1 = ±adjD/2, this means that u can be chosen so that
adjDu has an odd entry. Therefore we can take u = ek, which proves the first statement.

For the second statement, it is obvious that v
T
u = e

T
l adjDek is odd. Showing that v

TDn

is even for every n ∈ Z
2 is equivalent to showing that both v

TDe1 and v
TDe2 are even. This

induces that v
TD = 2nT for some n ∈ Z

2, that is v
T = n

T adjD. So it suffices to take n = el.

Example Take D =
(

0 2
1 0

)

. Obviously, detD = 2 and adjD =
(

0 −2
−1 0

)

has an odd entry −1
indexed (2, 1)T . By Theorem 3.2, u = e1 = (1, 0)T and v = (−1, 0)T .

3.2 Subband schemes with perfect reconstruction
In practice, we are interested in compactly supported wavelets. From the dilation equation
in an MRA, we see that if a scale function or a wavelet function is compactly supported, its
mask is necessarily of finite length and hence its symbol is a trigonometric polynomial. The
following discussion is focused only on such cases.

Suppose T (ω) is a trigonometric polynomial:

T (ω) =
∑

n∈Λ

cn exp(−i〈ω,n〉), ω = (ω1, ω2) ∈ R
2,

with a finite index set Λ ⊂ Z
2. Putting z = exp(−in1ω1) and w = exp(−in2ω2) we can

rewrite T as a function of z = (z, w):

T (z) =
∑

n∈Λ

cnz
n, z ∈ T

2.

In other words, T is a Laurent polynomial in z = (z, w) ∈ C
2. The only difference between

Laurent polynomials and other polynomials is that the former permits terms with negative
powers.

Because of the tight relationship between trigonometric polynomials and Laurent polynomi-
als, we will use the same (capital) letter, i.e., C(ω) =

∑

cn exp(−i〈ω,n〉), ω = (ω1, ω2) ∈ R
2,

respectively C(z) =
∑

cnz
n, z ∈ T

2.

3.3 Definition. Define C by C(ω) = C(ω + πv) for a trigonometric polynomial, or equiv-
alently C(z) = C((−1)v1z, (−1)v2w) for a Laurent polynomial. Here vector v is taken as in
Theorem 1 related to the dilation matrix D.

Suppose two trigonometric polynomials H and G are the symbols of a pair of biorthogonal
scaling and wavelet functions and assume that H̃ and G̃ are their duals. The relations between
H,G, H̃ and G̃ can be expressed by means of the subband scheme in Figure 3. This scheme,
which allows perfect reconstruction, is a two-band system since |detD| = 2.

Let x ∈ `2(Z
d) be a signal and let X(z) be its z-form. The output y of downsampling x

using dilation matrix D is given by yn = xDn, and we write y = D↓(x). Similarly, the output
y of upsampling x with dilation matrix D is yn = xk, if n = Dk, and yn = 0 otherwise; we
write y = D↑(x). The composition D↑D↓ has a compact formulation in the z-form:

D↑D↓(X) = (X +X)/2.
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-x

H̄ k↓ k↑ H̃

Ḡ k↓ k↑ G̃

-g x̃

Figure 3: Subband transformation: ↓ means down-sampling and ↑ means up-sampling.

Now suppose that X is an input signal of the subband system in Figure 3 and that X̃ the
output. According to the above discussion we have

X̃ =
1

2
(H̄X + H̄X)H̃ +

1

2
(ḠX + ḠX)G̃ .

The perfect reconstruction condition X̃ = X is equivalent to

H̄H̃ + ḠG̃ = 2,

H̄H̃ + ḠG̃ = 0.
(3.1)

Now take the modulation matrices

M =

(

H H
G G

)

, M̃ =

(

H̃ H̃

G̃ G̃

)

.

Then the perfect reconstruction conditions in (3.1) are equivalent to

M̃T M̄ = 2I, (3.2)

where I is the identity matrix. From (3.2) it follows that detM and det M̃ are monomials.
We get:

M̃ = 2(M̄−1)T = αadj ĀT ,

where α = (det M̃)/2 is a monomial. From this relation, we get

H̃ = αḠ, G̃ = αH̄, (3.3)

and
α = −α. (3.4)

Substituting (3.3) into the first formula in (3.1) we get

H̄H̃ + H̄H̃ = 2. (3.5)

We will use this equation in the following subsection.
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3.3 Construction of biorthogonal-like wavelets

In [2], Belogay and Wang developed a kind of non-separable bivariate orthonormal wavelets.
Both the scaling functions and the wavelet functions correspond with two-row filters. Because
orthogonal wavelets lack symmetry in general, we will present below the biorthogonal versions
of their constructions.

From now on, we are focusing wavelets corresponding with the dilation matrix

D =

(

0 2
1 0

)

. (3.6)

Like in Example in § 3.1, we take u = e1 = (1, 0)T and v = (−1, 0)T .
We can show that for the specific dilation matrix in (3.6), we have

H(z, w) = H(−z, w).

Hence, if H(z) = a(z), then H(z) = a(−z), and if H(z) = a(w), then H(z) = a(w). Suppose
that H, H̃ are of the form

H(z) = a(z) + (w − 1)b(z), H̃(z) = ã(z) + (w − 1)b̃(z). (3.7)

From (3.5), we get that
āã+ āã = 2 (3.8)

and
(ā− b̄)b̃+ (ā− b̄)b̃ = 0, (ã− b̃)b̄+ (ã− b̃)b̄ = 0. (3.9)

Let P (z) =
∑N2

n=N1
pnz

n, N1 ≤ N2, pN1
pN2

6= 0, be a univariate Laurent polynomial with
degree degP = N2−N1. Suppose P is nontrivial, i.e., degP > 0. Note that P can be written
as

P (z) = pN2
zN1P̃ (z), P̃ (z) =

N2−N1
∑

n=0

pn+N1
zn.

so that P̃ is a polynomial in z. The roots of P̃ (z) can be categorized into two sets. A root γ
lies in the first set if also −γ is a root (which then also lies in the first set). The second set
comprises all remaining roots. Thus we can factorize P̃ as

P̃ (z) =

r1
∏

n=1

(z2 − γ2
n)

r2
∏

m=1

(z − vm) .

Thus we arrive at the following result.

3.4 Lemma. Let P (z) be a univariate Laurent polynomial. If P is nontrivial, then P can be
written as P (z) = s(z)q(z), where the factor s(z) is even in z and has maximal degree, and
where q(z) and q(−z) have no common nontrivial factors.

Using this lemma, we get that condition (3.9) is equivalent to

ā− b̄ = s(z2)l, b̃ = zνq(z2)l (3.10)

¯̃a− ¯̃
b = s̃(z2)l̃, b = zν̃ q̃(z2)l̃, (3.11)
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where ν and ν̃ are odd numbers. Then

ā = b̄+ s(z2)l = z−ν̃ q̃(z−2)
¯̃
l + s(z2)l, (3.12)

ã = b̃+ s̃(z−2)
¯̃
l = zνq(z2)l + s̃(z−2)

¯̃
l. (3.13)

Substituting a and ã into (3.8), we derive

(l
¯̃
l + l

¯̃
l)

(

zν−ν̃q(z2)¯̃q(z2) + s(z2)¯̃s(z2)
)

= 2 .

Now both factors are necessarily monomials, and without loss of generality, we may assume
that

l
¯̃
l + l

¯̃
l = 2 (3.14)

zν−ν̃q(z2)¯̃q(z2) + s(z2)¯̃s(z2) = 1. (3.15)

For (3.14), we just follow the one-dimensional case to find l and l̃. Furthermore, by replacing
z2 by z (3.15) can be rewritten as

zdq ¯̃q + s¯̃s = 1 (3.16)

where d = (ν − ν̃)/2 is an integer since both ν and ν̃ are odd numbers.

3.4 Accuracy and symmetry

To find solutions of H and H̃ for which (3.14) and (3.16) hold, we have to impose additional
restrictions. One typical restriction concerns the accuracy. Depending on the context, it can
be formulated in terms of vanishing moments or “sum rules”. In the univariate case, if a
scaling function φ has r vanishing moments i.e.

∫

xtφ(x)dx = 0, for t = 0, · · · , r− 1, then its
mask H(z) has a factor (1 + z)r; this property plays an essential role in the formulation and
analysis of univariate wavelets. The vanishing moment property can be generalized to higher
dimensions. A scaling function φ is said to have r vanishing moments if

∫

x
αφ(x)dx = 0, for

|α| < r. But unfortunately, in this case the mask H(z) cannot be factorized like the univariate
case. Instead we can invoke the “sum rules” of its coefficients(cf. [2, 4]) to characterize the
accuracy: we assume that H satisfies

∂p+q

∂zp∂wq
H(−1, 1) = 0, ∀p, q ≥ 0, p+ q < r. (3.17)

Then, using (3.17), it is easy to obtain the following result.

3.5 Lemma. Suppose that H and H̃ in (3.7) have accuracies r and r̃ respectively. Then we
have

a =

(

1 + z

2

)r+1

a0, b =

(

1 + z

2

)r

b0, (3.18)

ã =

(

1 + z

2

)r̃+1

ã0, b̃ =

(

1 + z

2

)r̃

b0. (3.19)
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Using (3.10) and (3.11), we can assume that q and q̃ are of the form

q̃(z2) =

(

1 + z

2

)r (

1 − z

2

)r

q0(z
2), q(z2) =

(

1 + z

2

)r̃ (

1 − z

2

)r̃

q̃0(z
2), (3.20)

in order for b and b̃ to have accuracy r and r̃, while l and l̃ are chosen to be

l(z) =

(

1 + z

2

)r

l0(z), l̃(z) =

(

1 + z

2

)r̃

l̃0(z) (3.21)

in order for a and ã to have accuracy r and r̃. Furthermore, in order that a and ã have
accuracy r + 1 and r̃ + 1, it is necessary that

(−1)rq0(1)l̃0(1) = s(1)l0(−1), (−1)r̃q̃0(1)l0(1) = s̃(1)l̃0(−1). (3.22)

If we put a(1) = ã(1) =
√

2, b(1) = b̃(1) = 0, and l(1) = l̃(1) =
√

2, then s(1) = s̃(1) = 1, and

q0(1) = (−1)r

√
2

2
l0(−1), q̃0(1) = (−1)r̃

√
2

2
l̃0(−1). (3.23)

By the construction of univariate biorthogonal wavelets in [5], r and r̃ have the same parity.
Take N = (r + r̃)/2, then

l0(−1)l̃0(−1) = 2
N−1
∑

k=0

(

N + k − 1
k

)

or

q0(1)q̃0(1) =
N−1
∑

k=0

(

N + k − 1
k

)

.

The symmetry of l and l̃ is guaranteed by the symmetry of l0 and l̃0 (see [7]). If we can find
symmetric solutions of (3.16), then we get a pair of symmetric solutions H and H̃.

3.6 Theorem. Let l given by (3.21), where l0 is a Laurent polynomial, be a 1D low-pass
filter of accuracy r satisfying (3.14) and l0(1) =

√
2. Let q be given by (3.20) where q0 is a

Laurent polynomial satisfying (3.23) and let s be a Laurent polynomial such that (3.15) holds
and s(1) = 1. Then H given by (3.7), where a, b are given by (3.10)–(3.13), defines a 2D
low-pass filter with accuracy r + 1.

4. Lifting scheme

4.1 Implementation of the wavelet transform
A well-known implementation of a wavelet transformation is provided by Mallat’s algo-
rithm [11] which, for the two band case, looks as follows.

Suppose that {Vj ; j ∈ Z} is an MRA of L2(R
2) with dilation matrix D, and assume that

φ and ψ are the respective scaling and wavelet functions that satisfy dilation relations

φ(x) =
∑

n∈Z2

gnφ(Dx − n), ψ(x) =
∑

n∈Z2

hnφ(Dx − n).
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X - split

-

Xe

-

Xo

Γ X - split

-

Xe

-

Xo

Γ0 p

j+

u

j+

Figure 4: Lifting scheme. Left: original transformation with polyphase matrix Γ. Right:
alternative with polyphase matrix Γ0 and lifting steps p (prediction) and u (update).

Given f ∈ L2(R
2), denote by cjn and dj

n the coefficients

cjn = 〈f, φj,n〉, dj
n = 〈f, ψj,n〉.

Then
cj−1
n =

∑

k

hk−Dnc
j
k
, dj−1

n =
∑

n

gk−Dnc
j
k
,

and
cj
k

=
∑

hk−Dnc
j−1
n +

∑

gk−Dnd
j−1
n .

An alternative way to implement the wavelet transform is by using the so-called lifting
schemes first developed by Sweldens [14]. The advantages of the lifting scheme over Mallat’s
algorithm are its flexibility and efficiency. In the following subsections we describe the lifting
scheme implementation of our wavelet family.

4.2 The lifting scheme
Let X(z, w) represent an input signal, which is split into its even part Xe and its odd part
Xo according to the dilation matrix D. Denote by Γ(z, w) the associated polyphase matrix;
see also Figure 4. Suppose that we can write

Γ(z, w) =

(

1 0
p 1

) (

1 u
0 1

)

Γ0(z, w).

Then the transformation Γ is equivalent to the transformation Γ0 followed by two successive
lifting steps:

Xo = Xo + pXe: prediction lifting
Xe = Xe + uXo: update lifting.

See Figure 4 for an illustration.
Any 1D wavelet transform using finite impulse response (FIR) filters can be factorized into

lifting steps by means of the Euclidean algorithm [8]. Unfortunately, the factorization results
for the 1D case do not have a straightforward generalization to the general non-separable 2D
case (see [13]).

For the two-row filters, we will show in the following that the related transformations can
be realized in lifting schemes.
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4.3 Factorizing the modulation matrix

From the above deduction, we have

M =

(

H H
G G

)

=

(

sl + βql̄w sl − βql̄w
α[s̄l̄ − β̄q̄lw̄] −α[s̄l̄ + β̄q̄lw̄]

)

=

(

1 0
0 w̄

)

S(z2)

(

1 0
0 w

)

L(z) , (4.1)

where α(z) = zµ, β(z) = zν , and

Q(z) = z(ν−µ)/2q(z), (4.2)

S(z) =

(

s(z) Q(z)
−Q̄(z) s̄(z)

)

, (4.3)

L(z) =

(

l(z) l(−z)
α(z)l(−z−1) −α(z)l(z−1)

)

. (4.4)

Recall that both µ and ν are odd, and therefore (ν − µ)/2 is an integer. It is interesting to
note that the matrix in (4.4) is nothing but the modulation matrix of a 1D subband scheme.
Therefore, we can follow Daubechies’ construction in [7] to obtain l. We will not give any
further details here. Note also that the matrix S in (4.3) depends only on the variable z. Thus
(4.1) means that the filters with 2-row support can be factorized in terms of one-dimensional
filters.

4.4 Lifting implementation

The key point for the lifting realization of a wavelet transform is that its polyphase matrix
can be factorized into fundamental matrices, each of which corresponds to a lifting step. For
the two-row case, we use the modulation matrix to construct the corresponding polyphase
matrix. Recall that the monomial α(z) = zµ in (3.3) is odd in z. We may assume without
loss of generality (and for the sake of simplicity) that α(z) = z−1, i.e., µ = −1.

We split the univariate z-form l(z) into two parts:

l(z) = le(z
2) + z−1lo(z

2),

where le contains the even coefficients and lo the odd. If p(z) = z−1l(−z−1), then

pe(z) = −po(z
−1), po(z) = le(z

−1).

Therefore the modulation matrix L in (4.4) can be written as

L(z) = P1(z
2)

(

1 1
z −z

)

with P1 =

(

le lo
−l̄o l̄e

)

.

Note that P1 is the 1D polyphase matrix.
Analogously to the 1D case, the bivariate Laurent polynomialH(z, w) = a(z)+wb(z) can be

split into the odd part Ho(z, w) = ao(z)+wbo(z) and the even part He(z, w) = ae(z)+wbe(z).
Now the following relation holds:

H(z, w) = He(z
2, w) + z−1Ho(z

2, w).
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Suppose that H is the two-row filter defined in §3, which has polyphase matrix

P (z) =

(

ae + wbe ao + wbo
−āo − w̄b̄o āe + w̄b̄e

)

. (4.5)

It is easy to show that

M(z, w) = P (z2, w)

(

1 1
z−1 −z−1

)

.

Using that MT M̄ = 2I (see (3.2)) we find that P is unitary. We obtain from (4.1) that

P (z, w) =

(

1 0
0 w

)

S(z)

(

1 0
0 w̄

)

P1(z). (4.6)

In this formulation, matrices S and P1 are univariate unitary matrices and therefore they
can be factorized into fundamental matrices. Thanks to this factorization, we can design
an algorithm for the 2D transform based on the underlying 1D wavelet transforms. The
algorithm below is given only for the forward transform, in which case we must use P̄ rather
than P . In the following, ‘?R’ denotes row-wise convolution. Furthermore, x0 is the input
signal and (x, y) is the transformed signal comprising the approximation band x and the
detail band y.

1. Let (x1, y1) be the row-wise wavelet transform of x0 with a 1D wavelet of given accuracy
r; this corresponds with the matrix P1(z) in (4.6).

2. Apply forward vertical shift to y1; this corresponds with the diagonal matrix
(

1 0
0 w̄

)

.

3a. Compute x2 = x1 ?R s̄+ y1 ?R Q̄.

3b. Compute y2 = −x1 ?R Q+ y1 ?R s.
Note that these two expressions correspond with the multiplication with matrix S in
(4.3).

4. Apply backward vertical shift to y2.

5. Define x = xT
2 and y = yT

2 . This step is necessary because of the transpose in dilation
matrix D.

5. Shorter filters with more rows

The factorization in (4.6) shows that the supports of the two-row filters are horizontally
stretched versions of the supports of the underlying 1D filter P1.

Here we will give an alternative factorization with filters that are less stretched. Toward
this goal we replace S(z) in factorization (4.6) by S(w). Thus we get a polyphase matrix

P (z, w) =

(

1 0
0 w̄

)

S(w)

(

1 0
0 w

)

P1(z). (5.1)

This matrix corresponds to the 2D low-pass filter

Hs(z, w) = A(z, w) + wB(z, w) (5.2)
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where A and B are 2D Laurent polynomials defined as

A(z, w) = s(w)l(z), B(z, w) = zν̃ q̃(w)l̃(z) . (5.3)

Here l and l̃ satisfy (3.14), q̃ is the same as in (3.20), but with z replaced by w, and s and
s̃ satisfy (3.15). The subscript s in Hs indicates that Hs is a ‘short’ version of H defined in
(3.7), which will be explained below.

The factors
(

1+z
2

)r
of l(z) and

(

1−w
2

)r
of q(w) ensure that the filter Hs as defined in (5.2)

is of accuracy r. But ∂r

∂zrHs(−1, 1) = 0 results in s(1) = 0, which is not possible. This means
that, unlike the two row case, the filter (5.2) cannot have accuracy r + 1.

We can prove the following analogue of Theorem 3.6.

5.1 Theorem. Let l given by (3.21), where l0 is a Laurent polynomial, be a 1D low-pass
filter of accuracy r satisfying (3.14) and l0(1) =

√
2. Let q be given by (3.20) where q0 is a

Laurent polynomial satisfying (3.23) and let s be a Laurent polynomial such that (3.15) holds
and s(1) = 1. Then Hs given by (5.2), where A,B are given by (5.3), defines a 2D low-pass
filter with accuracy r.

For a 2D Laurent polynomial

A(z, w) =
∑

I1≤i≤I2

∑

J1≤j≤J2

aijz
iwj ,

we can define the degree of A as

degA = (I2 − I1, J2 − J1).

If A serves as a filter, its degree specifies its filter length. Note that just like in the univariate
case, the degree of filter A equals the size of A. The degree of a separable bivariate Laurent
polynomial follows immediately from the degrees of its univariate parts. For example, if
A(z, w) = B(z)C(w), then degA = (degB,degC). Using this observation, we give an analysis
of the degrees of the filters defined in (3.7) and (5.2).

Suppose B(z) =
∑

I1≤i≤I2
biz

i and C(z) =
∑

J1≤i≤J2
ciz

i. Let A(z, w) = B(z) + wC(z).
Then degA = (max{I2, J2} − min{I1, J1}, 1). If, for instance, I1 ≤ J1 ≤ J2 ≤ I2, degA =
(degB, 1).

In order to simplify our discussion, we can assume in (3.7) that with suitably chosen ν and
ν̃ in (3.10) and (3.11)

degH = (max{deg(a− b),deg b}, 1) = (max{2 deg s+ deg l, 2 deg q̃ + deg l̃}, 1).

Similarly, we can assume

degHs = (max{deg s,deg q̃},max{deg l,deg l̃}).

Therefore H has height 2 but its width is large compared to that of Hs which has a support
that is more square-shaped.

We can regard the orthonormal case as a special example of the biorthogonal case with
primary and dual filters that are the same, i.e., H = H̃, G = G̃, and so on. In this special
case, given the assumptions in Theorem 5.1, it is easy to see that

degA = degB = (2r − 1, r).
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i.e., degHs = (2r − 1, r), whereas the two-row filter H is supported on [0, 4r − 1] × [0, 1].
If we compare the expressions for A,B in (5.3) with those for a, b in (3.10)–(3.13), we see

that s(z2) has been replaced by s(w). A similar substitution should be used when we compute
the modified modulation matrix. However, in the polyphase matrix in (5.1) we encounter
the matrix S(w) whereas in (4.6), the matrix S(z) occurs. The algorithm at the end of §4.1
remains unchanged except for steps 3a and 3b which have to be changed into

3a’. Compute x2 = x1 ?C s̄+ y1 ?C Q̄.

3b’. Compute y2 = −x1 ?C Q+ y1 ?C s.

here ‘?C’ denotes column-wise convolution.

6. Conclusion

We have investigated the class of orthonormal 2D filters that was introduced by Belogay and
Wang in [2], and we have given an extension to the biorthogonal case. Furthermore, we have
described a factorization of the corresponding modulation matrices, and shown how such a
factorization can be used to obtain a realization in terms of 1D filters and allows an efficient
implementation based on the lifting scheme.

We have also given a modification of the Belogay-Wang approach so that the resulting
filters have a support that is less stretched along the horizontal direction. It uses, in the
orthonormal case, r + 1 rows and 2r columns for a decomposition with accuracy r.
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