
The Curse of Ties in Congestion Games with Limited Lookahead
Extended Abstract

Carla Groenland
∗

University of Oxford

groenland@maths.ox.ac.uk

Guido Schäfer

CWI, Vrije Universiteit Amsterdam

g.schaefer@cwi.nl

ABSTRACT
We introduce a novel framework to model limited lookahead in con-

gestion games. Intuitively, the players enter the game sequentially

and choose an optimal action under the assumption that the k − 1

subsequent players play subgame-perfectly. Our model naturally

interpolates between outcomes of greedy best-response (k = 1)

and subgame-perfect outcomes (k = n, the number of players). We

study the impact of limited lookahead (parameterized by k) on the

stability and inefficiency of the resulting outcomes. As our results

reveal, increased lookahead does not necessarily lead to better out-

comes; in fact, its effect crucially depends on the existence of ties

and the type of game under consideration.
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1 INTRODUCTION
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Consider the following situation, where two

players want to travel from origin o to desti-

nation d in the (extension-parallel) graph on the

right. They can take the metrom, which takes

6 minutes, or they can take the bike b and then

walk either the long (but scenic) route ℓ, which

takes 2minutes, or the short route s , which takes
1 minute. There is only one bike: if only one of

them takes the bike it takes 3 minutes; other-

wise, someone has to sit on the backseat and

it takes them 5 minutes. Both players want to

minimize their own travel time.

Suppose they announce their decisions sequentially. There are

two possible orders: either the red player 1 moves first or the blue

player 2 moves first. We consider the sequential-move version of

the game where player 1 moves first. There are three possible

subgames that player 2 may end up in, for which the corresponding

game trees are depicted below. A strategy for player 2 is a function

S2 : {bℓ,bs,m} → {bℓ,bs,m} that tells us which action player 2
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plays given the action of player 1. Player 2 will always choose an

action that minimizes his travel time and may break ties arbitrarily

when being indifferent. The boldface arcs give a possible subgame-

perfect strategy for player 2.
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If player 2 fixes this strategy, then player 1 is strictly better off

taking the bike and walking the long route (for a travel time of 5

compared to a travel time of 6 for the other cases). That is, the only

subgame-perfect response for player 1 is bℓ. This shows (bℓ,m) is a

subgame-perfect outcome. However, this outcome is rather peculiar:

Why would player 1 walk the long route if his goal is to arrive as

quickly as possible? In fact, the outcome (bℓ,m) is not stable, i.e., it
does not correspond to a Nash equilibrium.

Subgame-perfect outcomes are introduced as a natural model for

farsightedness [14, 15], or “full anticipation”, and have been studied

for various types of congestion games [2–4, 14]. Another well-

studied notion in this context are outcomes of greedy best-response
[6, 7, 11, 17], i.e., players enter the game one after another and give

a best response to the actions played already, thus playing with

“no anticipation”. In the above example both (bs,m) and (bs,bs) are
greedy best-response outcomes and they are stable. The example

thus illustrates that full lookahead may have a negative effect on

the stability of the outcomes. After a moment’s thought, we realize

that in the subgame-perfect outcome the indifference of player 2

is exploited (by breaking ties accordingly) to force player 1 to play

a suboptimal action. Immediate questions that arise are: Does full

lookahead guarantee stable outcomes if we adjust the travel times

such that the players are no longer indifferent (i.e., if we make the

game generic)? What is the lookahead that is required to guarantee

stable outcomes? What about the inefficiency of these outcomes?

2 LOOKAHEAD OUTCOMES
We introducek-lookahead outcomes as a model for situations which

arise if players enter the game sequentially and anticipate the next

k players. The cases k = 1 and k = n correspond to the greedy

best-response outcomes and subgame-perfect outcomes mentioned

above, respectively. Intermediate lookahead (1 < k < n) might be

useful when the availability of computational resources or infor-

mation is limited.

We study the efficiency and stability of k-lookahead outcomes,

where we call an outcome stable if it is a Nash equilibrium (NE). In

order to assess the inefficiency of k-lookahead outcomes, we intro-

duce the k-Lookahead Price of Anarchy (k-LPoA) which generalizes
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both the standard Price of Anarchy (PoA) [9] and the Sequential

Price of Anarchy [14]. Paes Leme et al. [14] show that the Sequen-

tial Price of Anarchy can be much lower than the Price of Anarchy

if the game is generic. On the other hand, this does not necessarily

hold if the game is non-generic (see, e.g., [2, 3, 12]).

The idea of limited backward induction dates back to the 1950s

[16] and has been studied in game-theoretic settings before (e.g.

[1, 10, 13]). For example, Mirrokni et al. [13] introduce k-lookahead
equilibria that incorporate various levels of anticipation as well.

However, their 1-lookahead equilibria correspond to Nash equi-

libria rather than greedy best-response outcomes and none of the

equilibria correspond to subgame-perfect outcomes.

We will require the following definitions. A congestion game is
a tuple G = (N ,R, (Ai )i ∈N , (dr )r ∈R ) where N = {1, . . . ,n} is a
finite set of players, R a finite set of resources, Ai ⊆ 2

R
the action

set of player i , and dr : N→ R≥0 a delay function (r ∈ R). Unless
stated otherwise, we assume that dr is non-decreasing. The cost

function ci of player i ∈ N is given by ci (A) =
∑
r ∈Ai dr (x(A)r )

where x(A)r = |{i ∈ N : r ∈ Ai }|. A congestion game is symmetric
if Ai = Aj = A for all i, j ∈ N . A congestion game G is generic
if for all N ⊆ N , A,B ∈

∏
i ∈N Ai and j ∈ N , Aj , Bj implies

c j (A) , c j (B). An order on the players is a bijection σ : N → [n].
We denote the sequential-move version ofG with respect to order σ
by Gσ

. The outcome on the equilibrium path of a subgame-perfect

equilibrium in Gσ
is an action profile of G and we refer to it as the

subgame-perfect outcome (SPO).
Our definition of k-lookahead outcome is given below; a more

general definition can be found in the full version of the paper [8].

Definition 2.1. Let G be an n-player congestion game and let

k ∈ [n]. Let Gk
denote the same game with player set {1, . . . ,k}.

An action profile A is a k-lookahead outcome of G if Ai equals
the action Bi played by player i in some subgame-perfect outcome

B of G ′k
, where G ′

is the subgame of G induced by (Aj )j<i .
1

3 SYMMETRIC NETWORK CONGESTION
GAMES

In a symmetric network congestion game (SNCG), the common set

of actions A is given by the set of all directed paths in a single-

commodity network. A series-parallel graph (SP-graph) either con-
sists of (i) a single arc, or (ii) two series-parallel graphs in parallel

or series. An extension-parallel graph (EP-graph) either consists of
(i) a single arc, (ii) two extension-parallel graphs in parallel, or (iii)

a single arc in series with an extension-parallel graph. Fotakis et

al. [6] show that each 1-lookahead outcome is a Nash equilibrium

for SNCG on SP-graphs. We prove that the converse also holds for

EP-graphs.

Theorem 3.1. For every SNCG on an EP-graph, the set of 1-lookahead
outcomes coincides with the set of Nash equilibria.

3.1 Stability and inefficiency of generic games
As shown in the introduction, SPOs are not guaranteed to be stable

for SNCGs on EP-graphs. However, stability is guaranteed if the

game is generic.

1G′ = ({i, . . . , n }, R, (Aj )j≥i , (d ′
r )r ∈R ) where d

′
r (y) = dr (y + x ((Aj )j<i )r ).

Theorem 3.2. Let G be a generic SNCG on an EP-graph. Then for
every k the set of k-lookahead outcomes coincides with the set of Nash
equilibria. As a consequence, k-LPoA(G) = PoA(G).

The result of Theorem 3.2 does not extend to series-parallel

graphs.

Proposition 3.3. For any SP-graph Γ that is not EP, there is
a generic SNCG G on Γ such that the sets of 1-lookahead and n-
lookahead outcomes are disjoint.

Anticipation may still be beneficial for the first player.

Theorem 3.4. Let G be a generic SNCG on an EP-graph. Let B
be a subgame-perfect outcome with respect to the identity. Then
c1(B) ≤ · · · ≤ cn (B). In particular, c1(B) ≤ c1(A) for anyk-lookahead
outcome A with respect to the identity.

3.2 Inefficiency of non-generic games
By proving that each 1-lookahead outcome is a global optimum of

Rosenthal’s potential function, combined with a result of Fotakis

[5, Lemma 3], we derive the following result.

Corollary 3.5. For SNCGs on SP-graphs 1-LPoA ≤ PoS.

This result only guarantees 1-lookahead outcomes to be optimal

Nash equilibria for games with the worst Price of Stability (PoS); a
procedure for finding an optimal Nash equilibrium for every SNCG

on a SP-graph is an NP-hard problem [17].

Our result below shows it is no coincidence that the instable

SPO of the introduction still had an optimal egalitarian social cost.

Theorem 3.6. For every SNCGG on an EP-graph, each SPO A has
optimal egalitarian social cost.

4 EXTENSIONS
As for the introductory example, it can be shown that the curse of

ties also applies to cost-sharing games and consensus games.

A cost-sharing game is a congestion game, where the delay func-

tions are non-increasing. We show that there exist symmetric sin-

gleton congestion games with unstable subgame-perfect outcomes.

On the other hand, the instability can be resolved for either sym-

metric or singleton cost-sharing games if no ties exist. We moreover

identify a class of cost-sharing games for which the k-Lookahead
Price of Anarchy increases monotonically and non-trivially with k .

In a consensus game, each player is a vertex in a weighted graph

Γ = (V ,E,w) and can choose between actions L and R. The cost of
player i in outcome A is given by the sum of the weightswi j of all

incident edges ij ∈ E for which Ai , Aj . We show that subgame-

perfect outcomes of consensus games can be unstable, but that

all k-lookahead outcomes are optimal (in particular stable) if all

players adopt a common tie-breaking rule.

While the focus in our paper is on congestion games, our notion

of k-lookahead outcomes naturally extends to arbitrary normal-

form games. It will be interesting to study k-lookahead outcomes

for other classes of games. In particular, it would be interesting to

further explore the relation between ties and anticipation within

this framework.
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