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1 Introduction

Linear optimization is a relatively young area of applied mathematics. Even though the world is
nonlinear, as physicists never stop to point out, it seems that in many practical situations a linearized
model describes key features of a problem quite accurately.

The success of linear optimization in many real-world applications has led to the study of integer
linear programming, which permits to model optimal decision making under finitely many alternatives.
A natural way to approach these types of problems consists in using again linear theory, in this case
polyhedral combinatorics, to solve them. Mathematically, one tries to find (at least) a (partial) linear
description of the convex hull of all integral solutions. While this approach was succesful for many
combinatorial optimization problems, it turned out that some graph optimization problems, such as
Max-Cut or Max-Clique, can not be approximated tightly by purely linear methods.

Stronger relaxation methods have therefore attracted the focus of recent research. The extension
of linear optimization to semidefinite optimization has turned out to be particularly interesting for
the following reasons. First, algorithmic ideas can be extended quite naturally from linear to semidef-
inite optimization. Secondly, there is theoretical evidence that semidefinite models are sometimes
significantly stronger than purely linear ones, justifying the computational overhead to solve them.

It is the purpose of this chapter to explain in detail how semidefinite programming is used to solve
integer programming problems. Specifically, we start out in the next section with explaining the rel-
evant mathematical background underlying semidefinite programming by summarizing the necessary
duality theory, explaining algorithmic ideas and recalling computational complexity results related to
semidefinite programming. In Section 3 we show how semidefinite relaxations arise from integer 0/1
programming by lifting the problem formulated in R™ to a problem in the space of symmetric matrices.

A detailed study of two prominent special graph optimization problems follows in Sections 4,
dealing with the stable set problem, and Section 5, devoted to Max-Cut. For both these problems
the extension of polyhedral to semidefinite relaxations has led to a significant improvement in the
approximation of the original problem. Section 5 also introduces the hyperplane rounding idea of
Goemans and Williamson, which opened the way to many other approximation approaches, many of
which are discussed in Section 6.

Section 7 discusses possible alternatives to the use of semidefinite models to get stronger relaxations
of integer programs.

Finally, we summarize in Section 8 some recent semidefinite and other nonlinear relaxations applied
to the Quadratic Assignment Problem, which have led to a computational breack-through in Branch
and Bound computations for this problem.

2 Semidefinite Programming: Duality, Algorithms, Complexity, and
Geometry

2.1 Duality

To develop a duality theory for semidefinite programming problems, we take a more general point of
view, and look at Linear Programs over Cones.
Suppose K is a closed convex cone in R", ¢ € R",b € R™ and A is an m x n matrix. The problem

p*i=sup{clz: Az =b, z € K} (1)



is called Cone-LP, because we optimize a linear function subject to linear equations, and we have
the condition that the decision variables x lie in the cone K.
The dual cone K™* is defined as follows:

K :={ycR":y"z>0Vzc K}.

It is a well known fact, not hard to verify, that K* is also a closed convex cone.

We will derive the dual of (1) by introducing Lagrange multipliers for the equality constraints and
using the Minimax Inequality. Let y € R™ denote the Lagrange multipliers for Ax = b. Using the
Lagrangian L(z,y) := cl'z + y? (b — Azx) we get

e ifAz =0

—oo otherwise

ir;fL(ac,y) = {

Therefore,
p* = sup inf L(z,y) < inf sup L(z,y).
zeK Y Y zeK
The inequality is usually called "Minimax inequality’, and holds for any real-valued function L(z,y)
where x and y are from some ground sets X and Y respectively.
We can rewrite L as L = bly — 27 (ATy — ¢). The definition of K* implies the following. If
ATy — c ¢ K* then there exists x € K such that z7(ATy — ¢) < 0. Therefore we conclude

by if ATy—ce K*
sup L(z,y) = .
zeK oo  otherwise
This translates into
p* <inf{bly:y e R™ ATy —cec K*} = d*. (2)

The problem on the right side of the inequality sign is again a Cone-LP, but this time over the cone
K*. We call this problem the dual to (1). By construction, a pair of dual cone-LP satisfies weak
duality.

Lemma 1. (Weak Duality) Letz € K,y € R™ be given with Az = b, ATy—c € K*. Then, c'z < bly.

One crucial issue in duality theory consists in identifying sufficient conditions that insure equality
in (2), also called Strong Duality. The following condition insures strong duality. We say that the
cone-LP (1) satisfies the Slater constraint qualification if there exists x € int(K) such that Az = b.
(A similar definition holds for the dual problem.) Duffin [58] shows the following result.

Theorem 2. If (1) satisfies the Slater constraint qualification and p* is finite, then p* = d*, and the
dual infimum is attained.

Returning to semidefinite programs, we consider the vector space S, of symmetric n X n matrices as
the ground set for the primal problem. It is equipped with the usual inner product (X,Y) = Tr(XY')
for X,Y € S,. In this case, the linear operator A, mapping symmetric matrices into R™ is most
conveniently represented by A(X); := Tr(A;X) for given symmetric matrices A;,i = 1,...,m. The
adjoint in this case has the representation AT(y) = > 1y;A;. From Fejer’s Theorem, which states that

A > 0 if and only if Tr(AB) > 0 VB = 0,



we see that the cone of positive semidefinite matrices is selfdual. Hence we arrive at the following
primal-dual pair of semidefinite programs:

max{Tr(CX) : A(X) =b,X = 0}, (3)

min{b"y : AT (y) — C > 0}. (4)

In our combinatorial applications, we usually have the property that both the primal and the dual
problem satisfy the Slater constraint qualification, hence we have strong duality and both optima are
attained.

Stronger duals for semidefinite programs have been introduced having the property that there is
no duality gap, in particular, by Borwein and Wolkowicz [37], Ramana [169] (see [171] for a compari-
son). In Section 2.3, we will come back briefly to the implications for the complexity of semidefinite
programming.

The semidefiniteness of a matrix X can equivalently be expressed as X having only nonnegative
eigenvalues. Thus there is some close connection between semidefinite programs and spectral theory
of matrices. The following simple examples of semidefinite programs throw some more light onto this
connection.

Example 3. Let C be a symmetric matriz. Consider
max Tr(CX) such that Tr(X) =1, X > 0.

The dual is
miny such that yI — C = 0.

Both problems clearly satisfy the Slater constraint qualification. In fact, dual feasibility implies that
Y > Amax(C), hence at the optimum y = Apax(C). It is in fact well known that the primal semidefinite
program is equivalent to

maxz! Cz such that z7z = 1,

by taking X = zal.

Example 4. More generally, the sum A1 + ... + \i of the k largest eigenvalues of C € S, can be
expressed as the optimum value of the following semidefinite program.:

max Tr(CX) suchthat I = X >0, Tr(X) =k (5)
which is equivalent to
max Tr(CYYT) such that Y is an n x k matriz with YTY = I, (6)

The fact that A1 + ...+ A\ is equal to the optimum value of (6) is known as Fan’s theorem; see [154]
for discussion.

Let us sketch the proof. The fact that the optimum values of the two programs (5) and (6) are
equal follows from a nice geometric property of the feasible set of (5) (namely, that its extreme points
correspond to the feasible solutions of (6); cf. Lemma 7 below). Let yi,. ..,y be a set of orthonormal
eigenvectors of C' for its k largest eigenvalues and let Y be the matrixz with columns y1,...,yr. Then



Y is feasible for (6) and Tr(CYYT) = Y8 Tr(yF Cyi) = S5, \i, which shows that Y% | \; is less
than or equal to the mazimum of (6). Conversely, let Y be an n X k matriz such that YTY = I;
we show that Tr(CYYT) < Z;c:l Xi. For this, let C = QTDQ where Q € S, with QTQ = I, and
D := diag(A1,...,\n). Set Z := QY and X := ZZT. As Z is an n x k matriz with ZTZ = I, it
follows that the only nonzero eigenvalue of X is 1 with multiplicity k and thus X is feasible for (5).
Hence, Te(CYYT) = Te(DX) = 0, Nwyg < S8\ since 0 < zy; < 1 for all i.

By taking the dual of the semidefinite program (5), we obtain the following alternative formulation
for the sum of k largest eigenvalues of C':

M+ ...+ X =min kz+ Tr(Z) such that zI+7Z > C, Z = 0. (7)

This latter formulation permits to derive the following semidefinite programming characterization for
minimizing the sum of the k largest eigenvalues of a symmetric matriz staifying linear constraints (cf.
[5]):

min A (X)+ ...+ A (X) such that X € S, Tr(A;X) =b; (j=1,...,m)

=min kz+Tr(Z) suchthat zI +Z —-X =0, Z =0, Tr(A;X)=b; (j=1,...,m).

More recently, Anstreicher and Wolkowicz showed a strong connection between a theorem of Hoffman
and Wielandt and semidefinite programming.

Theorem 5. (Hoffman and Wielandt [93]) Let A and B be symmetric matrices of order n with
spectral decomposition A = PDPT, B = QEQ™T. We assume that the diagonal matriz D contains the

etgenvalues of A in nondecreasing order, and E contains the eigenvalues of B in nonincreasing order.
Furthermore, PPT = QQT = I. Then

min{Tr(AXBX"): XTX = I} = Tr(DE). (8)
Moreover, the minimum is attained for X = PQT.

A proof of this theorem can be found for instance in [93], the result can be traced back to the work
of John von Neumann [152]. Anstreicher and Wolkowicz [14] have recently shown that the nonconvex
quadratic minimization problem (5) over the set of orthogonal matrices can equivalently be expressed
through semidefinite programming. This connection will be a useful tool to bound the Quadratic
Assignment Problem, so we recall how this connection can be established. We have:

TrDE = min{TrAXBX" : XX = I} = min{TrDYEY' : YYT = I}

The second equation follows because the mapping Y = PTX(Q is a bijection on the set of orthogonal
matrices. We next introduce Lagrange multipliers S and T for the equations YY7 = I,YTY = I, and
get

TrDE = min Iglz%FXTr(DXEXT +S(I-XX")+T(I-X"X))

>max min TrS+TrT+2T(E®D-1®85 - T® I)z.
S, T z=vec(X)



T1
If X = (z1,...,2y) is a matrix with columns z;, we define z = vec(X) = : to be the vector

T
obtained from stacking the columns of X. The vec-operator leads to the following identity, see [94].

vec(AXB) = (BT ® A)vec(X). (9)
A ® B denotes the Kronecker product of A and B. Formally,
AQ B = (a”B)

The inner minimization is bounded only if EQ D —1® S5 —-T® 1 > 0. Since D and FE are diagonal,
we may restrict also S and T to be diagonal, S = diag(s),T = diag(t). This leads to

TrDE > max{z S; + Zti : diej -8 —tj > 0 Vl,]}
The last problem is the dual of the assignment problem. Therefore we get
TrDE > min{z diejzij : Z = (z;;) doubly stochastic } = TrDE.
tj

The first term equals the last, so there must be equality throughout. We summarize this as follows.

Theorem 6. [14] Let A and B be symmetric matrices. Then,

min{TrAXBXT : XXT = I} =max{TtS+ TtT: BRA-I® S - T ® I = 0}.

2.2 Algorithms

Semidefinite programs are convex minimization problems, hence they can be solved in polynomial
time to any fixed prescribed precision using for instance the ellipsoid method [80]. More recently,
interior point methods have turned out to be the method of choice to solve SDP, since they give faster
algorithms than the ellipsoid method whose running time is prohibitively high in practice; see for
instance the monograph [194].

We will now review the main ideas underlying the interior point approach for SDP. The basic
assumption is that both the primal (3) and the dual (4) problem satisfy the Slater constraint qualifi-
cation, which means we assume that there exists a triple (X, y, Z) such that

X0, Z>0, AX)=0b, Z=AT(y)-C.

To avoid trivialities, it is usually also assumed that the linear equations A(X) = b are linearly inde-
pendent. In view of Theorem 2, we get the following necessary and sufficient optimality conditions.
A triple (X,y, Z) solves (3) and (4) if and only if

AX)=b, X =0 (primal feasibility) (10)
ATy -Z=C,Z=0 (dual feasibility) (11)
ZX =0 (complementarity) (12)



To see how (12) follows from Theorem 2, we note that both the primal and the dual optimum are
attained, and the duality gap is 0. If (X,y, Z) is optimal, we get

0=0bTy —TrCX = yT(A(X)) - TrCX = Tr(AT (y) - C)X = TrZX.
Since X =0, Z > 0, we also have X = UU”, Z =VVT, for U and V of appropriate size. Thus
0=TrZX = TeVVvIuu” = |v'U|%,

hence VIU = 0, so that ZX = VVTUUT = 0.
In the interior point approach, the condition ZX = 0 is replaced by ZX = ul, leading to a
parameterized system of equations:

AX)—b
F.(X,y,2)=| Z-AT(y)+C | =0. (13)
ZX —ul

Under our assumptions, there exists a unique solution (X,y, Z) for every u > 0, see for instance [194]
(Chapter 10). (To get this result, one interprets (13) as the KKT system of a convex problem with
strictly convex cost function.) Denoting this solution by (X,,y,, Z,), it is not too hard to show that
the set

{(Xu Y, Zu) - > 0}

defines a smooth curve parameterized by p, which is usually called the ’central path’.

The interior point approach, more precisely the 'primal-dual interior-point path-following method’
consists in applying Newton’s method to follow this curve until ;4 — 0. This sounds straightforward,
and it is, except for the following aspect. The equation (13) has 2("'2”) +m variables, but (""2“) +n’+m
equations. The difference arises from ZX — ul, which need not be symmetric, even if X and Z are.
Therefore, some sort of symmetrization of the last equation in (13) is necessary to overcome this
problem.

The first papers exploiting this approach [90, 112] use some ad-hoc ideas to symmetrize the
last equation. Later, Monteiro [145] and Zhang [199] introduced a rather general scheme to deal
with the equation ZX = ulI. Let P be invertible. Zhang considers the mapping Hp(M) :=

L [PMP~L+ (PMPY)T] and shows that for X =0, Z - 0
Hp(ZX) = pl if and only if ZX = ul.

Of course, different choices for P produce different search directions after replacing ZX = ul by
Hp(ZX)) = pl. Various choices for P have been proposed and investigated with respect to theoretical
properties and behaviour in practise.

Todd [189] reviews about 20 different variants for the choice of P and investigates some basic
theoretical properties of the resulting search directions. The main message seems to be at present
that there is no clear champion among these choices in the sense that it would dominate both with
respect to theoretical convergence properties and practical efficiency.

The following variant was introduced by [90], and independently by [112]. It is simple, and yet
computationally quite efficient. To simplify the presentation, we assume that there is some starting
triple (X,y, Z) which satisfies A(X) =b, AT(y) — Z = C and X = 0, Z = 0. If this triple would lie
on the central path, its 'path parameter’ © would be u = %TrZX. We do not assume that it lies on



the central path, but would like to move from this triple towards the central path, and follow it until
= 0. Therefore we head for a point on the central path, given by the path parameter

1
w=—TrzZX.
2n

Applying a Newton step to F,(Xy,Z) =0 at (X,y, Z), with p as above, leads to

A(AX) =0 (14)
AZ = AT (Ay) (15)
Z(AX) + (AZ)X = ul — ZX. (16)

The second equation can be used to eliminate AZ, the last to eliminate AX:
AX =pZ ' — X — 27147 (Ay)X.

Substituting this into the first equation gives the following linear system for Ay.
A(Z7TAT (Ay)X) = pA(Z71) —b.

This system is positive definite, see [90], and can therefore be solved quite efficiently by standard
methods, yielding Ay. Backsubstitution gives AZ, which is symmetric, and AX, which need not be.
Taking the symmetric part of AX gives the following new point (X *,y*, Z1):

Xt=X +t%(AX +AXxT

y" =y +tAy
Zt =Z+tAZ.

The stepsize t > 0 is chosen so that X > 0, Z* = 0. In practise one starts with ¢ = 1 (full Newton
step), and backtracks by multiplying the current ¢ with a factor smaller than 1, such as 0.8, until
positive definiteness of X and ZT holds.

A theoretical convergence analysis shows the following. Let a small scalar ¢ > 0 be given. If
the path parameter p to start a new iteration is chosen properly, then the full step (¢ = 1 above)
is feasible in each iteration, and a primal feasible solution X and a dual feasible solution y, whose
duality gap b1y — Tr(CX) is less than ¢, can be found after O(/n|log ¢|) iterations; see the handbook
[194], chapter 10.

2.3 Complexity

We consider here complexity issues for semidefinite programming. We saw above that for semidefinite
programs satisfying the Slater constraint qualification, the primal problem (3) and its dual (4) can be
solved in polynomial time to any fixed prescribed precision using interior point methods.

However, even if all input data Ai,..., A, C,b are rational valued, no polynomial bound has
been established for the bitlengths of the intermediate numbers occurring in interior point algorithms.
Therefore, interior point algorithms for semidefinite programming are shown to be polynomial in the
real number model only, not in the bit number model of computation.

As a matter of fact, there are semidefinite programs with no rational optimum solution. For

1 2z 2
instance, the matrix <ac g) &) < 29: :n) is positive semidefinite if and only if z = /2. (Given



0 B
programming, where every rational linear program has a rational optimal solution whose bitlength is

polynomially bounded in terms of the bit lengths of the input data (see [175]).

A
two matrices A, B, A ® B denotes the matrix < 0 >) This contrasts with the situation of linear

Another ‘pathological’ situation which may occur in semidefinite programming is that all feasible
solutions are doubly exponential. Consider, for instance, the matrix (taken from [169]): Q(z) :=
Q1(#) & ... ® Qu(x), where Q1(z) = (z1 — 2) and Q;(x) = (xl "’”;—1) for i = 2,....n. Then,

i—1 i
Q(z) = 0 if and only if Q;(x) = 0 for all i = 1,...,n which implies that z; > 22"~ fori = 1,...,n.
Therefore, every rational feasible solution has exponential bitlength.

Semidefinite programs can be solved in polynomial time to an arbitrary prescribed precision in
the bit model using the ellipsoid method (see [80]). More precisely, let K denote the set of feasible
solutions to (3) and, given € > 0, set S(K,¢) := {Y | 3X € K with || X — Y| < €} (‘the points that
are in the e-neighborhood of K’) and S(K, —¢) :={X € K | | X - Y| > efor all Y ¢ K} (‘the points
in K that are at distance at least € from the border of K’). Let L denote the maximum bit size of the
entries of the matrices Ay,..., A, and the vector b and assume that there is a constant R > 0 such
that 3X € K with || X|| < R if K # (). Then, the ellipsoid based algorithm, given € > 0, either finds
X € S(K,e¢) for which Tr(CY) < Tr(CX) + € for all Y € S(K, —¢), or asserts that S(K, —e) = 0. Its
running time is polynomial in n,m, L, and loge.

One of the fundamental open problems in semidefinite programming is the complexity of the
following semidefinite programming feasibility problem® (F):

Given integral n X n symmetric matrices Qo, Q1, - - ., Qm, decide whether there exist real numbers
T1y...,Tm Such that Qyp +x21Q1 + ... + £, Qm = 0.

This problem belongs obviously to NP in the real number model (since one can test whether a
matrix is positive semidefinite in polynomial time using Gaussian elimination), but it is not known
whether it belongs to NP in the bit model of computation. Ramana [169] shows that problem (F)
belongs to co-NP in the real number model, and that (F) belongs to NP if and only if it belongs to co-
NP in the bit model. These two results are based on an extended exact duality theory for semidefinite
programming. Namely, given a semidefinite program (P), Ramana [169] defines another semidefinite
program (D) whose number of variables and coefficients bitlengths are polynomial in terms of the size
of data in (P) and with the property that (P) is feasible if and only if (D) is infeasible.

Porkolab and Khachiyan [164] show that problem (F) can be solved in polynomial time (in the
bit model) for fired n or m. (More precisely, problem (F) can be solved in O(mn?) 4 nO(min(m.n®))
arithmetic operations over LnOmin(m,n®)_pit numbers, where L is the maximum bitlength of the entries
of matrices Qo,...,Qm.) Moreover, for any fized m, one can decide in polynomial time (in the bit
model) whether there exist rational numbers z1, ..., z,, such that Qo+z1Q1+. ..+ 2mQm = 0 ([104]);
this extends Lenstra’s result ([128]) about polynomial time solvability of integer linear programming
in fixed dimension to semidefinite programming. More generally, given a convex semi-algebraic set
K C R", one can find in polynomial time an integral point in K (if some exists) for any fixed dimension
n [105]. When all the polynomials defining K are quadratic, this result still holds without the convexity
assumption [25].

!The following is an equivalent form for the feasibility region of a semidefinite program (3). Indeed, a matrix X is of
the form Qo + Zzl z;Q; if and only if it satisfies the system: Tr(A4;X)=10b; (j=1,...,p), where A4,..., A, span the
orthogonal complement of the subspace of S,, generated by Q1,...,Qm and b; = Tr(A4,;Qo) for j =1,...,p.
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A special instance of the semidefinite programming feasibility problem is the semidefinite matrixz
completion problem (MC), which consists of deciding whether a partially specified matrix can be
completed to a positive semidefinite matrix. The complexity of problem (MC) is not known in general,
even not for the class of partial matrices whose entries are specified on the main diagonal and on the
positions corresponding to the edge set of a circuit. However, for circuits (and, more generally, for
graphs with no K4-minor), problem (MC) is known to be polynomial-time solvable in the real number
model [121]. In the bit model, problem (MC) is known to be polynomial time solvable when the graph
corresponding to the positions of the specified entries is chordal or can be made chordal by adding a
fized number of edges [121]. A crucial tool is a result of [79] asserting that a partial matrix A whose
entries are specified on the edge set of a chordal graph can be completed to a positive semidefinite
matrix if and only if every fully specified principal submatrix of A is positive semidefinite.

As mentioned above, one of the difficulties in the complexity analysis of semidefinite programming
is the possible nonexistence of rational solutions. However, in the special case of the matrix completion
problem, no example is known of a rational partial matrix having only irrational positive semidefinite
completions. (Obviously, a rational completion exists if a positive definite completion exists.)

Further conditions are known for existence of positive semidefinite matrix completions, involving
cut and metric polyhedra (see [118]); see the surveys [96], [120] for more information. In practice,
positive semidefinite matrix completions can be computed using, e.g., the interior point algorithm of
Johnson et al. [97]. This algorithm solves the problem:

min f(X) subject to X >0,

where f(X) := ?,J-Zl(hij)2(acij —a;;)?. Here H is a given nonnegative symmetric matrix with a posi-
tive diagonal and A is a given symmetric matrix corresponding to the partial matrix to be completed;
the condition h;; = 0 means that entry z;; is free while h;; > 0 puts a weight on forcing entry z;; to be
as close as possible to a;;. The optimum value of the above program is equal to 0 precisely when there
is a positive semidefinite matrix completion of A, where the entries of A corresponding to h;; = 0 are

unspecified.

2.4 Geometry

We discuss here some geometric properties of semidefinite programming. We refer to Chapter 3 in
[194] for a detailed treatment. Let

K :={X ePSD,, | Tr(A;X)=0b;fori=1,...,m}

denote the feasible region of a semidefinite program, where A;,..., A, € S, and b € R™. The set K
is a convex set (called a spectrahedron in [170]) which inherits several of the geometric properties of
the positive semidefinite cone PSD,,, in particular, concerning the structure of its faces. Recall that
aset FC K is a faceof K if X,)Y € F and Z := aX 4+ (1 — )Y € K for some 0 < a < 1 implies
that Z € F. Given A € K, Fg(A) denotes the smallest face of K containing A. A point A € K is
an extreme point if Fix(A) = {A}. It is well known (see [92]) that, given a matrix A € PSD,,, the
smallest face Fpsp(A) of PSD,, that contains A is given by

Fpsp(A) = {X € PSD,, | ker A C ker X }.

(For a matrix X, ker X := {z € R" | Xz = 0}.) Hence, if A has rank r, then Fpgp(A) is isomorphic to
the cone PSD, and thus has dimension (rgl). As K is the intersection of PSD,, with the affine space

A:{XESH|T‘I‘(A2X):Z)Z fori:l,...,m},
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the face Fx(A) for A € K is given by
Frg(A) = Fpsp(A)NA={X € K | ker A C ker X }.

One can compute the dimension of faces of K in the following manner (see Chapter 31.5 in [57]).

Let r denote the rank of A and let A = QQ”, where Q is a n X r matrix of rank r. A matrix
B € S, is called a perturbation of A if A+ tB € K for some small ¢ > 0. One can verify that B is a
perturbation of A if and only if B = QRQ' for some matrix R € S, satisfying Tr(RQ* A;Q) = 0 for
all i =1,...,m. Then the dimension of Fk(A) is equal to the rank of the set of perturbations of A
and, therefore,

1
dim Fg(A) = (r—;— ) —rank{QTA4;Q |i=1,...,m}.
This implies:

r+1

A is an extreme point of K < ( 5

> =rank{QTA;Q |i=1,...,m}. (17)

We will use semidefinite programs as relaxations for 0/1 polytopes associated to combinatorial
optimization problems; often the rank one matrices in the feasible region K correspond to the integer
solutions of the combinatorial problem at hand. With this in mind, it is desirable to find a matrix
A € K optimizing a given linear objective function over K having smallest possible rank. The smallest
possible ranks are obviously achieved at extremal matrices of K. Some results have been obtained
along these lines which we now mention.

As an application of (17), we have that if K # () and rank{A4; | i =1,...,m} < (TJQFQ), then there
exists a matrix X € K with rank X <r (][26], [158]). In fact, every extremal matrix X of K has this
property; we will see below how to construct extremal matrices.

Barvinok [27] shows the following refinement. Suppose that K is a nonempty bounded set and
that rank{A4; |i=1,...,m} = (TJ2“2) for some 1 <7 < n — 2, then there exists a matrix X € K with
rank X < r. Barvinok’s proof is nonconstructive and it is an open question how to find efficiently
such X.

Barvinok [26] suggests the following approach for finding an extremal matrix in K. Let C € S,
be a positive definite matrix and let A € K minimizing Tr(C'X) over K. Barvinok shows that if C is
sufficiently generic then A is an extremal point of K.

The following algorithm for constructing an extreme point of K has been suggested by several
authors (see [3], [158]). Suppose we want to minimize the objective function Tr(C'X) over K and
assume that the minimum is finite. Given A € K, the algorithm will construct an extremal matrix
A" € K with objective value Tr(C'A’) < Tr(C'A). Using (17), one can verify whether A is an extreme
point of K. If yes, then stop and return A’ = A. Otherwise, one can find a nonzero matrix R belonging
to the orthogonal complement in S, of the space spanned by QT 4;Q (i = 1,...,m); then B := QRQT
is a perturbation of A. If Tr(CB) > 0 then replace B by —B. Let t be the largest possible scalar
for which A+ tB > 0. Then, A + tB belongs to the boundary of the face Fx(A) and thus the face
Fi(A + tB) is strictly contained in Fg(A). We iterate with A + tB in place of A. In at most n
iterations the algorithm returns an extreme point of K.

We conclude with some examples.
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The Max-Cut spectrahedron. The following spectrahedron
gn = {XEPSDn |X“:1V7,: ]_,...,TI,}

underlies the semidefinite relaxation for Max-Cut and will be treated in detail in Section 5. Its
geometric properties have been investigated in [126, 127]. In particular, it is shown there that the
only vertices (that is, the extreme points having a full dimensional normal cone) of &, are its rank one
matrices (corresponding to the cuts, i.e., the combinatorial objects in which we are interested). The
spectrum of possible dimensions for the faces of &, is shown to be equal to

P(3))e 0,002 )

where k,, := | §] + 1. Moreover it is shown that the possible dimensions for the polyhedral faces of &,

are all integers k satisfying (kgl) < n. Geometric properties of other tighter spectrahedra for max-cut

are studied in [11], [125].

Sum of largest eigenvalues. We introduced in Example 4 two programs (5) and (6) permitting
to express the sum of the k largest eigenvalues of a symmetric matrix. Let K and ) denote their
respective feasible regions; that is,

K:={X€e€&8 |I=X=0, Tr(X) =k},

YV={vyYT|Y e R"* with YTY = I,,}.

Lemma 7. The extreme points of the set K are the matrices of Y. Therefore, K is equal to the
convez hull of the set ).

PROOF. Let X be an extreme point of K. Then all its eigenvalues belong to the segment [0,1]. As
Tr(X) = k, it follows that X has at least k nonzero eigenvalues and thus rank(X) > k. In fact,
rank(X) = k since X is an extreme point of K. Now this implies that the only nonzero eigenvalue of
X is 1 with multiplicity & and thus X € ). Conversely, every matrix of ) is obviously an extreme
point of K. |

Note the resemblance of the above result to the Birkhoff-Konig theorem asserting that the set of
stochastic matrices is equal to the convex hull of the set of permutation matrices.

Euclidean distance matrix completions. Let G = (V,E;d) be a weighted graph with V =
{1,...,n} and nonnegative edge weights d € QE. Given an integer r, we say that G is r-realizable
if there exist points vi,...,v, € R such that d;; = ||v; — vj|| for all edges ij € E; G is said to
be realizable if it r-realizable for some r. The problem of testing existence of a realization is known
as the Euclidean distance matriz completion problem (EDM) (cf. [120] and Chapter 18 in [194] for
surveys). It has important applications, e.g., to molecular conformation problems in chemistry and
distance geometry (see [50]). As is well known, problem (EDM) can be formulated as a semidefinite
programming problem. Namely, G is realizable if and only if the system:

X =0, Xii+ Xj; — 2X;j = (dij)? forij € E (18)
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is feasible; moreover G is r-realizable if and only if the system (18) has a solution X with rank X <r.
It follows from the above mentioned results about ranks of extremal points that if G is realizable, then
G is r-realizable for some r satisfying (Tgl) < |E|. Such a realization can be found using the above
mentioned algorithm for finding extremal points (see [3], [26]).

It is also well known that the Euclidean distance matrix completion problem can be recast in terms
of the positive semidefinite matrix completion problem (MC) treated earlier in Section 2.3 (see [119]
for details). As a consequence, the complexity results mentioned earlier for problem (MC) also hold
for problem (EDM). Namely, problem (EDM) can be solved in polynomial time in the bit number
model when G can be made chordal by adding fixed number of edges, and (EDM) can be solved in
polynomial time in the real number model when G has no K4-minor [121].

An interior point algorithm is proposed in [4] for computing graph realizations. Alfakih [1, 2]
studies rigidity properties of graph realizations in terms of geometric properties of certain associated
spectrahedra.

When the graph G is not realizable, one can look for the smallest distortion needed to be applied
to the edge weights in order to ensure existence of a realization. Namely, define this smallest distortion
as the smallest scalar C for which there exist points vy,...,v, € R" satisfying

1
i = llvi =il < di

for all 45 € E. The smallest distortion can be computed using semidefinite programming. Bourgain
[38] has shown that C' = O(logn) if G = K, and d satisfies the triangle inequalities: d;; < d;, + dji
for all ¢,j,k € V (see also Chapter 10 in [57]). Since then research has been done for evaluating the
minimum distortion for several classes of metric spaces including graph metrics (that is, when d is the
path metric of graph G); see in particular [129], [130], [131].
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3 Semidefinite Programming Versus Integer 0/1 Programming

3.1 A general paradigm

Suppose we want to solve a 0/1 linear programming problem:
max ¢l z subject to Az <b, z € {0,1}". (19)

The classic polyhedral approach to this problem consists of formulating (19) as a linear programming
problem:
max ¢!z subject to z € P

over the polytope
P :=conv({z € {0,1}" | Az < b})

and of applying to it linear programming techniques. For this one has to find the linear description
of P or, at least, good linear relaxations of P. An initial linear relaxation of P is

K :={zeR"| Az <b}

and, if K # P, one has to find ‘cutting planes’ permitting to strengthen the relaxation K by cutting
off its fractional vertices. Extensive research has been done for finding (partial) linear descriptions
for many polyhedra arising from specific combinatorial optimization problems by exploiting the com-
binatorial structure of the problem at hand. Next to that, research has also focused on developing
general purpose methods applying to arbitrary 0/1 problems (or, more generally, integer programming
problems).

An early such method, developed in the sixties by Gomory and based on integer rounding, permits
to generate the so-called Chvatal-Gomory cuts. This class of cutting planes was later extended,
in particular, by Balas [17] who introduced the disjunctive cuts. In the nineties several authors
investigated lift-and-project methods for constructing cutting planes; the basic idea being of trying
to represent a 0/1 polytope as projection of a polytope lying in higher dimension. These methods
aim at constructing good linear relaxations of a given 0/1 polytope; all with the exception of the
lift-and-project method of Lovéasz and Schrijver which permits, moreover, to construct semidefinite
relaxations.

This idea of constructing semidefinite relaxations for a combinatorial problem goes back to the
seminal work of Lovéasz [134] who introduced the semidefinite bound ¥(G) for the stability number of
a graph G, obtained by optimizing over a semidefinite relaxation TH(G) of the stable set polytope.
An important application is the polynomial time solvability of the maximum stable set problem in
perfect graphs. This idea was later again used successfully by Goemans and Williamson [77] who,
using a semidefinite relaxation of the cut polytope, could prove an approximation algorithm with
a good performance guarantee for the max-cut problem. Since then semidefinite programming has
been widely used for approximating a variety of combinatorial optimization problems. This will be
discussed in detail in further sections of this chapter.

For now we want to go back to the basic question of how to embed the 0/1 linear problem (19)
in a semidefinite framework. A natural way of involving positive semidefiniteness is to introduce the
matrix variable

Y =(;)a=").
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Then Y can be constrained to satisfy
Y >0, (i) Yu=YuVi=1,...,n.

Condition (ii) expresses the fact that 22 = z; as z; € {0,1}. One can write (i), (ii) equivalently as

y = (1 %) = 0 where # = diag(X) (20)
=\, x ) =0 wherez:= diag(X).

The objective function ¢!z can be modeled as (diag(c), X). There are several possibilities for modeling

a linear constraint e’z < B from the system Az < b. The simplest way is to use the diagonal
representation:

(diag(a), X) < B. (21)

One can also replace a’'z < § by its square (3 — a’'x)? > 0, giving the inequality (8 — aT)Y(;Ba> >0
which is however redundant under the assumption Y > 0. Instead, when a,8 > 0, one can use the
squared representation: (a’x)? < f3%; that is,

(aa™, X) < B2 (22)
or the extended square representation: (a’x)? < B (a’z); that is,
(aa” — B diag(a), X) < 0. (23)

Another possibility is to exploit the fact that the variable x; satisfies 0 < z; < 1 and to multiply
a’z < B by z; and 1 — z;, which yields the system:

Y aiXii <BXy (i=1,...,n), > aj(X;; —Xij) <B(l—Xy) (i=1,...,n). (24)
j=1 j=1

One can easily compare the strengths of these various representations of the inequality o’z < 8 and
verify that, if (20) holds, then

(24) = (23) = (22) = (21).

Therefore, the constraints (24) define the strongest relaxation; they are, in fact, at the core of the lift-
and-project methods by Lovasz and Schrijver and by Sherali and Adams as we will see in Section 3.4.
From an algorithmic point of view they are however the most expensive ones, as they involve 2n
inequalities as opposed to one for the other relaxations. Helmberg et al. [91] made an experimental
comparison of the various relaxations which seems to indicate that the best trade off between running
time and quality is obtained when working with the squared representation.

Instead of treating each inequality of the system Az < b separately, one can also consider pairwise
products of inequalities: (3; —al x) - (Bj — aJT:v) > 0, yielding the inequalities: (8; — a?)Y(féj) > 0.
This operation is also central to the lift-and-project methods as we will see later in this section.
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3.2 Introduction on cutting planes and lift-and-project methods

Given a set F' C {0,1}", we are interested in finding the linear description of the polytope P :=
conv(F'). A first (easy) step is to find a linear programming formulation for P; that is, to find a linear
system Az < b for which the polytope K := {z € R* | Az < b} satisfies KN{0,1}" = F. If all vertices
of K are integral, then P = K and we are done. Otherwise we have to find cutting planes permitting
to tighten the relaxation K and possibly find P after a finite number of iterations.

One of the first methods, which applies to general integral polyhedra, is the method of Gomory for
constructing cutting planes. Given a linear inequality > ; a;z; < « valid for K where all the coefficients
a; are integers, the inequality Y, a;z; < |a] (known as a Gomory-Chvdtal cut) is still valid for P but
may eliminate some part of K. The Chuvdtal closure K' of K is defined as the solution set of all

Chvatal-Gomory cuts; that is,
K :={z cR" |ul Az < [u"b| for all u > 0 such that u” A integral}.

Then,
PCK CK. (25)

Set K1) := K’ and define recursively K(“+1) := (K(®))’. Chvétal [43] proved that K’ is a polytope and
that K®) = conv(K) for some t; the smallest ¢ for which this is true is the Chuvdtal rank of the polytope
K. The Chvétal rank may be very large as it depends not only on the dimension n but also on the
coefficients of the inequalities involved. However, when K is assumed to be contained in the cube
[0, 1]", its Chvétal rank is bounded by O(n?logn); if, moreover, K N {0,1}" = (), then the Chvétal
rank is at most n [34, 60]. Even if we can optimize a linear objective function over K in polynomial
time, optimizing a linear objective function over the first Chvatal closure K’ is a co-NP-hard problem
in general [59].

Further classes of cutting planes have been investigated; in particular, the class of disjunctive
cuts (studied in [17], and in [47] under the name of split cuts) which is known to be equivalent to
Gomory’s mixed integer cuts (cf. [48]). An inequality a’z < o being a disjunctive cut for K if
it is valid for the polytope conv ((K N{z|clz<c}) UEKN{z|clz>co+ 1})) for some integral
c €Z", cg € Z. The disjunctive closure K' of K, defined as the solution set to all disjunctive cuts,
is a polytope which satisfies again (25) [47]. One can iterate this operation of taking the disjunctive
closure and it follows from results in [17] that P is found after n steps. However, optimizing over the
first disjunctive closure is again a hard problem [39]. If we consider only the disjunctive cuts obtained
from the disjunctions z; < 0 and z; > 1, then we obtain a tractable relaxation of K which coincides
with the relaxation obtained in one iteration of the Balas-Ceria-Cornuéjols lift-and-project method
(which will be described later in Section 3.4).

Another popular method is to try to represent P as the projection of another polytope @ lying in a
higher (but preferably still polynomial) dimensional space. The idea behind being that the projection
of a polytope @@ may have more facets than @ itself. Hence it could be that even if P has an exponential
number of facets, such @) exists having only a polynomial number of facets and lying in a space whose
dimension is polynomial in the original dimension of P (such @ is then called a compact representation
of P). If this is the case then we have a proof that any linear optimization problem over P can be
solved in polynomial time. At this point let us stress that it is not difficult to find a lift @) of P with a
simple structure and lying in a space of exponential dimension; indeed, as pointed out in Section 3.3,
any n-dimensional 0/1 polytope can be realized as projection of a canonical simplex lying in the
(2™ — 1)-space.
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This idea of finding compact representations has been investigated for several polyhedra arising
from combinatorial optimization problems; for instance, Barahona [20], Barahona and Mahjoub [23,
24], Ball, Liu and Pulleyblank [19], Maculan [138], Liu [132] have provided such representations for
certain polyhedra related to Steiner trees, stable sets, metrics, etc. On the negative side, Yannakakis
[195] proved that the matching polytope cannot have a compact representation satisfying a certain
symmetry assumption.

Several general purpose methods have been developed for constructing projection representations
for general 0/1 polyhedra; in particular, by Balas, Ceria and Cornuéjols [18] (the BCC method),
by Sherali and Adams [178] (the SA method), by Lovasz and Schrijver [136] (the LS method) and,
recently, by Lasserre [116]. [These methods are also known under the following names: lift-and-project
for BCC, Linearization-Reformulation Technique (RLT) for SA, and matrix-cuts for LS.] A common
feature of these methods is the construction of a hierarchy

KDODKi DKyD...OK,2DOP

of linear or semidefinite relaxations of P which finds the exact convex hull in n steps; that is, K,, = P.
The methods also share the following important algorithmic property: If one can optimize a linear
objective function over the initial relaxation K in polynomial time, then the same holds for the next
relaxations K; for any fized t, when applying the BCC, SA or LS constructions; for the Lasserre
construction, this is true under the more restrictive assumption that the matrix A has a polynomial
number of rows.

The first three methods (BCC, SA and LS) provide three hierarchies of linear relaxations of P
satisfying the following inclusions: the Sherali-Adams relaxation is contained in the Lovasz-Schrijver
relaxation which in turn is contained in the Balas-Ceria-Cornuéjols relaxation. All three can be
described following a common recipe: Multiply each inequality of the system Ax < b by certain
products of the bound inequalities z; > 0 and 1 — x; > 0, replace each square a:f by z;, and linearize
the products x;x; (i # j) by introducing a new variable y;; = x;z;. In this way, we obtain polyhedra
in a higher dimensional space whose projection on the subspace R™ of the original z variable contains
P and is contained in K. The three methods differ in the way of chosing the variables employed
as multipliers and of iterating the basic step. The Lovasz-Schrijver method can be strengthened by
requiring positive semidefiniteness of the matrix (y;;), which leads then to a hierarchy of positive
semidefinite relaxations of P.

The construction of Lasserre produces a hierarchy of semidefinite relaxations of P which refines
each of the above three hierarchies (BCC, SA and LS, even its positive semidefinite version). It was
originally motivated by results about moment sequences and the dual theory of representation of
nonnegative polynomials as sums of squares. It is however closely related to the SA method as both
can be described in terms of requiring positive semidefiniteness of certain principal submatrices of the
moment matrices of the problem.

We present in Section 3.3 some preliminary results which permit to show the convergence of the
Lasserre and SA methods and to prove that every 0/1 polytope can be represented as the projection of
a simplex in the (2" — 1)-space. Then we describe in Section 3.4 the four lift-and-project methods and
Sections 3.5 and 3.6 contain applications of these methods to the maximum stable set and cut problems.
Section 3.7 presents extensions to (in general non convex) polynomial programming problems.

It will sometimes be convenient to view a polytope in R" as being embedded in the hyperplane
xo = 1 of R, The following notation will be used throughout this paragraph. For a polytope P in
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R", its homogenization

Pi={)(;)lz€P, A>0}
is a cone in R"*! such that P = {x € R" | (i) € P}. For a cone C in R”,

C*={yeR"|zTy>0VeeC}

denotes its dual cone.

3.3 A canonical lifting construction

Let P(V) := 2V denote the collection of all subsets of V' = {1,...,n} and let Z be the square 0/1
matrix indexed by P(V) with entries

Z(I,J)=1if and only if I C J.

As Z is upper triangular with ones on its main diagonal, it is nonsingular and its inverse Z~! has
entries
Z7YI,J) = (—)PMif 1 C g, Z7Y(1,J) = 0 otherwise.

For J C V, let Z7 denote the J-th column of Z. [The matrix Z is known as the zeta matriz of the
lattice P(V) and the matrix Z ! as its Mébius matriz.]

Given a subset J C P(V), let C denote the cone in RP(V) generated by the columns Z7 (J € J)
of Z and let P7 be the 0/1 polytope in R™ defined as the convex hull of the incidence vectors of the
sets in J. Then C7 is a simplicial cone,

Cr={yeRPV) | z7ly >0, (Z'y);=0for J € P(V)\ T},

and Py is the projection on R” of the simplex C7 N{y | yp = 1}. This shows therefore that any 0/1
polytope in R” is the projection of a simplex lying in R?" 1.
Given y € RP(V) let My (y) be the square matrix indexed by P(V) with entries

My (y)(L,J) ==y(IUJ) (26)

for I, J C V; My (y) is known as the moment matriz of the sequence y. (See Section 7.1 for motivation
and further information.) As noted in [136], we have:

My (y) = Zdiag(Z 'y)Z".

Therefore, the cone Cp(y) can be alternatively characterized by any of the following linear and positive
semidefinite conditions:
y €Cpv) <= Z 'y >0 <= My(y) = 0. (27)

Suppose that J corresponds to the set of 0/1 solutions of a semi-algebraic system
ge(x) >0 fort=1,...,m

where the gy’s are polynomials in . One can assume without loss of generality that each gy has degree
at most one in every variable x; and then one can identify g, with its sequence of coefficients indexed
by P(V). Given g,y € RP(Y) define g xy € RP(V) by

g*xy:= M(y)g; that is, gxy(J) := ZegIUJ for JC V. (28)
I
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It is noted in [124] that the cone C; can be alternatively characterized by the following positive
semidefinite conditions:

yelCy < My(y) = 0and My(gexy) =0for{=1,...,m. (29)

This holds, in particular, when J corresponds to the set of 0/1 solutions of a linear system Az < b,
i.e., in the case when each polynomial g, has degree 1.

3.4 The Balas-Ceria-Cornuéjols, Lovasz-Schrijver, Sherali-Adams, and Lasserre
methods

As before, K = {z € [0,1]" | Az < b} and P = conv(K N {0,1}") is the 0/1 polytope whose
linear description is to be found. It is convenient to assume that the bound constraints 0 < z; <1
(1 € {1,...,n}) are explicitely present in the linear description of K; let us rewrite the two systems
Az <band 0<z; <1 (i€ {l,...,n}) as Az < b and let m denote the number of rows of A.

The Balas-Ceria-Cornuéjols construction. Fix an index j € {1,...,n}. Multiply the system
Az < b by z; and 1 —z; to obtain the nonlinear system: z;(Az—b) <0, (1—=z;)(Az—0b) < 0. Replace
xj2 by x; and linearize by introducing new variables y; = z;z; (i = 1,...,n); thus y; = x;. This defines

a polytope in the (z,y)-space defined by 2(m 4 2n) inequalities: Ay —bz; < 0, A(z—y)—b(1—2;) <0.
Its projection P;(K) on the subspace R" indexed by the original z-variable satisfies

PCP(K)CK

and it can be verified that P;(K) = conv(K N {z | z; = 0,1}). Iterate by defining P; _;,(K) :=
P;, (P; .(Pj,(K))...). Then,

t—1 "

PCP j,(K)CP j, (K)C...CPy,(K)CK

and P = le_“]'n (K)

The Sherali-Adams construction. The first step is analogue to the first step of the BCC method
except that we now multiply the system Az < b by z; and 1 — z; for all indices j € {1,...,n}. More
generally, for t = 1,...,n, the t-th step goes as follows. Multiply the system Az < b by each product
ft(J1,J2) = [ljep zj - [1jes (1 — x;) where Ji and J> are disjoint subsets of V' with |J1 U Jo| = t.
Replace each square z; by x; and linearize each product [[;,.; z; by a new variable y;. This defines
a polytope Ry(K) in the space of dimension n + (3) + ...+ (7) where T := min(t 4+ 1,n) (defined
by 2(%)(m + 2n) inequalities) whose projection S¢(K) on the subspace R™ of the original z-variable
satisfies
PCS,(K)C...CS1(K)C S(K)C...CS5(K)CK

and P = S, (K). The latter equality follows from facts in Section 3.3 as we now see.
Write the linear system Az <bas ggT (;) >0 (=1,...,m+ 2n) where g, € R**+1. Extend g, to

a vector in RP(V) by adding zero coordinates. The linearization of the inequality géT (i) - fi(I,J) >0
reads:

S (~)IEVg xy(H) > 0.
ICHCIUJ
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Using relation (27), one can verify that the set R;(K) can be alternatively described by the positive
semidefinite conditions:

M( =0 for{=1,...,mand U CV with |U| =t,

ge *Y)
My(y) = 0 for U C V with |U] = ¢ + 1 (30)

(where g1, ..., gm correspond to the system Az < b). It then follows from (29) that the projection
Sn(K) of R,(K) is equal to P.

The Lovéasz-Schrijver construction. Let U be another linear relaxation of P which is also con-
tained in the cube @Q := [0,1]™; write U as {x € R" | uT<1> > 0Vr =1,...,s}. Multiply each
inequality g; ( ) > 0 by each inequality u; ( ) > 0 to obtain the nonlinear system: uT( ) 9; < ) >0
forall £ =1,....m+2n,r = 1,...,s. Replace each %’ by x; and linearize by introducing a new
matrix variable Y = (;)(1 xT). This defines the set M(K,U) consisting of the symmetric matrices
Y = (yij); j—o satistying
yj; =yoj for j=1,...,n, (31)
u'Yge>0forallr=1,...,s, £=1,...,m+ 2n [equivalently, YU* C K]. (32)
The first LS relaxation of P is defined as

N(K,U) = {z € R* | (}) = Yeo for some ¥ € M(K,U)}.

Then, P C N(K,U) C N(K,Q) € K and N(K,K) C N(K,U) if K C U. One can obtain stronger
relaxations by adding positive semidefiniteness. Let M (K, U) denote the set of positive semidefinite
matrices in M(K,U) and N4 (K,U) :={z € R" | (i) = Yeg for some Y € M, (K,U)}. Then,

PCN,(K,U)C N(K,U) C K.

The most extensively studied choice for U is U := @, leading to the N operator. Set N(K) :=
N(K,Q) and, for t > 2, NY(K) := N(NH(K)) N(N*YK),Q). Tt follows from condition (32)
that N(K) C conv(K N {x | z; = 0,1}) = P;(K), the first BCC relaxation, and thus

N(K) C No(K) := (] B(K). (33)

[One can verify that No(K') consists of the vectors € R™ for which (;) = Yep for some matrix Y (not
necessarily symmetric) satisfying (31) and (32) (with U = Q).] More generally, N*(K) C Pj,._;,(K)
and, therefore, P = N™(K).
The choice U := K leads to the stronger operator N’, where we define N'(K) := N(K, K) and,
for t > 2,
(N')'(K) == N((N')'"{(K), K). (34)

This operator is considered in [123] when applied to the cut polytope.

When using the relaxation U = @, the first steps in the SA and LS constructions are identical; that
is, S1(K) = N(K). The next steps are however distinct. A main difference between the two methods
is that the LS procedure constructs the successive relaxations by a succession of ¢ lift-and-project
steps, each lifting taking place in a space of dimension O(n?), whereas the SA procedure carries out
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t+1)

only one lifting step, occurring now in a space of dimension O(n ; moreover, the projection step is

not mandatory in the SA construction.

The Lasserre construction. We saw in relation (30) that the SA method can be interpreted as
requiring positive semidefiniteness of certain principal submatrices of the moment matrices My (y)
and My (ge * y). The Lasserre method consists of requiring positive semidefiniteness of certain other
principal matrices of those moment matrices. Namely, given an integer ¢ = 0,...,n, let P;(K) be
defined by the conditions

Mii1(y) =0, My(gexy) =0for£=1,....,m (35)

and let Q;(K) denote the projection of P;(K) on R*. (For a vector z € RP(Y) M;(z) denotes the
principal submatrix of My (z) indexed by all sets I C V' with |I| < t.) Then,

PCQn(K)CQun1(K)C...CQi(K)C Qo(K)C K

and it follows from (29) that P = Q,(K).

The construction of Lasserre [114, 116] was originally presented in terms of moment matrices
indexed by integer sequences (rather than subsets of V') and his proof of convergence used results
about moment theory and the representation of nonnegative polynomials as sums of squares. The
presentation and the proof of convergence given here are taken from [124].

How do the four hierarchies of relaxations relate? The following inclusions hold among the
relaxations Pj, . ;,(K) (BCC), S¢(K) (SA), N*(K) and N:(K) (LS), and Q;(K) (Lasserre):

(i) Qi1(K) C Ny (K) C Qo(K)
(i) [136] For ¢ > 1, S,(K) C N(K) C P;,._,(K)

(i) [124] For t > 1, §,(K) € N(S, 1(K)), Qu(K) € Ny (Qu 1(K),
and thus Q;(K) C Sy(K) N NL(K).

Summarizing, the Lasserre relaxation is the strongest among all four types of relaxations.

Algorithmic aspects. Efficient approximations to linear optimization problems over the 0/1 poly-
tope P can be obtained by optimizing over its initial relaxation K or any of the stronger relaxations
constructed using the BCC, LS, SA and Lasserre methods. Indeed, if one can optimize in polynomial
time any linear objective function over K [equivalently (by the results in [80]), one can solve the
separation problem for K in polynomial time|, then, for any fized ¢, the same holds for each of the
relaxations Pj, . j,(K), S;(K), N*(K), Ni(K) in the BCC, SA, and LS hierarchies. This holds for
the Lasserre relaxation Q:(K) under the more restrictive assumption that the linear system defining
K has polynomial number of rows. Better approximations are obtained for higher values of ¢, at an
increasing cost however. Computational experiments have been carried out using the various methods;
see, in particular, [18], [41], [42] for results using the BCC method, [180] (and further references there)
for results using the SA method, and to [52] for a computational study of the N, operator.

Worst case examples where n iterations are needed for finding P. Let us define the rank
of K with respect to a certain lift-and-project method as the smallest number of iterations needed
for finding P. Specifically, the N-rank of K is the smallest integer ¢ for which P = N(K); define
similarly the Ny, Ny, SA and Lasserre ranks. We saw above that n is a common upper bound for any
such rank.
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As we will see in Section 3.5, the relaxation of the stable set polytope obtained with the Lovész-
Schrijver N operator is much weaker than that obtained with the N,-operator. For example, the
fractionnal stable set polytope of K, (defined by nonnegativity and the edge constraints) has N-rank
n — 2 while its N-rank is equal to 1! However, in the case of max-cut, no graph is known for which
a similar result holds. Thus it is not clear in which situations the N -operator is significantly better,
especially when applied iteratively. Some geometric results about the compared strengths of the NV,
N, and Ny operators are given in [75]. As a matter of fact, there exist polytopes K having N, -rank
equal to n (thus, for them, adding positive semidefiniteness does not help!). As a first example, let

n 1
K:={zx€el[0,1]" Ti > =
{ [ ]l; 2}

then P = {z € [0,1]" | >/, #; > 1} and the Chvatal rank of K is therefore equal to 1. The Nj-rank
of K is equal to n [46, 52] and its SA-rank as well [124]. As a second example, let

K = {we 0,1 | > @i+ > (1) >

iel igl

DN | =

VIg{l,...,n}};

then K N {0,1}" = 0 and thus P = (). Then the N,-rank of K is equal to n [46, 75] as well as its
SA-rank [124]. In fact, the Chvéatal rank of K is also equal to n [45]. The rank of K remains equal to
n for the iterated operator N* defined by N*(K) := N, (K) N K', combining the Chvétal closure and
the N, -operator [46, 52]. The rank is also equal to n if in the definition of N* we replace the Chvétal
closure by the disjunctive closure [49].

General setting in which the four methods apply. We have described above how the various
lift-and-project methods apply to 0/1 linear programs, i.e., to the case when K is a polytope and
P = conv(K N{0,1}"). In fact, they apply in a more general context, still retaining the property that
P is found after n steps. Namely, the Lovasz-Schrijver method applies to the case when K and U are
arbitrary convex sets, the condition (32) reading then YU* C K. The BCC and SA methods apply
to mixed 0/1 linear programs [18, 179]. Finally, the Lasserre and Sherali-Adams methods apply to
the case when K is a semi-algebraic set, i.e., when K is the solution set of a system of polynomial
inequalities (since relation (29) holds in this context).

Moreover, various strengthenings of the basic SA method have been proposed involving, in par-
ticular, products of other inequalities than the bounds 0 < z; < 1 (cf., e.g., [41], [180], [181], [182]).
A comparison between the Lasserre and SA methods for polynomial programming from the algebraic
point of view of representations of positive polynomials is made in [117].

3.5 Application to the stable set problem

Given a graph G = (V,E), a set I C V is stable if no two nodes of I form an edge and the stable
set polytope STAB(G) is the convex hull of the incidence vectors x° of all stable sets S of G, where
Xy =1ifi € Sand xJ =0ifi € V\S. As linear programming formulation for STAB(G), we consider
the fractional stable set polytope FRAC(G) which is defined by the nonnegativity constraints: x > 0
and the edge inequalities:

T + T <1 forij € E. (36)

Let us indicate how the various lift-and-project methods apply to the pair P := STAB(G), K :=
FRAC(G).
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The LS relaxations N(FRAC(G)) and N4 (FRAC(G)) are studied in detail in [136] where the
following results are shown. The polytope N(FRAC(G)) is completely described by nonnegativity,
the edge constraints (36) and the odd hole inequalities:

Y @i <

1€V (C)

C]-1

for C odd circuit in G. (37)

Moreover, N(FRAC(G)) = No(FRAC(G)). Therefore, this gives a compact representation for the
stable set polytope of ¢t-perfect graphs (they are the graphs whose stable set polytope is completely
determined by nonnegativity together with edge and odd hole constraints).

Other valid inequalities for STAB(G) include the clique inequalities:

Y @ <1 for Q clique in G. (38)
1€Q
The smallest integer ¢ for which (38) is valid for N*(FRAC(G)) is t = |Q| — 2 while (38) is valid
for N; (FRAC(G)). Hence the N, operator yields a stronger relaxation of STAB(G) and equality
N, (FRAC(G)) = STAB(G) holds for perfect graphs (they are the graphs for which STAB(G) is
completely determined by nonnegativity and the clique inequalities; cf. Theorem 8). Odd antihole
and odd wheel inequalities are also valid for Ny (FRAC(G)).

Given a graph G on n nodes with stability number «(G) (i.e., the maximum size of a stable set in
G), the following bounds hold for the N-rank ¢ of FRAC(G) and its N,-rank ¢, :

%—2St§n—a(0)—1, ty < a(G).

The Sherali-Adams method does not seem to give a significant improvement, since the quantity
_n__

a(G) — 2 remains a lower bound for the SA-rank [124].

The Lasserre hierarchy refines the sequence NX (FRAC(G)). Indeed, it is shown in [124] that, for
t > 1, the set Q;(FRAC(G)) can be alternatively described as the projection of the set

Mi11(y) >0, y;5 =0 for all edges ij € E, yp = 1. (39)

This implies that Qq(g)—1(FRAC(G)) = STAB(G); that is, the Lasserre rank of FRAC(G) is at most

a(G) — 1. The inclusion Q4 (g)—1(FRAC(G)) C Ni(G)fl(FRAC(G)) is strict, for instance, when G is
the line graph of K, (n odd) since the N -rank of FRAC(G) is then equal to a(G) ([188]).

We conclude with a comparison with the basic semidefinite relaxation of STAB(G) by the theta
body TH(G), which is defined by

TH(G) = {z € R"| (1) =Yep for some ¥ = 05, Vi = Yo (i€ V), Yy =0 (ij € B)}.  (40)

Comparing with (39), we see that Q,(FRAC(G)) (¢ > 1) is a natural generalization of the SDP
relaxation TH(G) satisfying the following chain of inclusions:

Q.(FRAC(G)) C Q1(FRAC(G)) C N4 (FRAC(G)) C TH(G) C Qo(FRAC(G)).

Section 4.2 below contains a detailed treatment of the relaxation TH(G).

24



3.6 Application to the max-cut problem

We consider here how the various lift-and-project methods can be used for constructing relaxations
of the cut polytope. Section 5 will focus on the most basic SDP relaxation of the cut polytope and,
in particular, on how it can be used for designing good approximation algorithms for the max-cut
problem. As is well known (cf. (68)), the max-cut problem can be formulated as an unconstrained
quadratic 1 problem:

max z! Az subject to z € {£1}" (41)

for some (suitably defined) symmetric matrix A.

As we are now working with 41 variables instead of 0/1 variables, one should appropriately modify
some of the definitions given earlier in this section. For instance, the condition (31) in the definition
of the LS matrix operator M now reads y;; = yoo for all i € {1,...,n} (in place of y;; = yo;) and the
(I,J)-th entry of the moment matrix My (y) is now y(IAJ) (instead of y(I U J) as in (26)).

There are two possible strategies for constructing relaxations of the max-cut problem (41). The
first possible strategy is to linearize the quadratic objective function, to formulate (41) as a linear
problem

max (A, X) subject to X € CUT,,

over the cut polytope
CUT,, := conv(zz! | z € {£1}"),

and to apply the various lift-and-project methods to some linear relaxation of CUT(K,,). As linear
programming formulation for CUT,,, one can take the metric polytope MET,, which is defined as the
set of symmetric matrices X with diagonal entries 1 satisfying the triangle inequalities:

Xij + Xie + Xji 2 =1, Xij — Xop — Xje 2 -1

for all distinct ¢,7,k € {1,...,n}.

Given a graph G = (V,E) (V = {1,...,n}), CUT(G) and MET(G) denote, respectively, the
projections of CUT,, and MET,, on the subspace RF indexed by the edge set of G. Barahona and
Mahjoub [23] show that CUT(G) C MET(G) with equality if and only if G has no Ks-minor. Laurent
[123] studies how the Lovész-Schrijver construction applies to the pair P := CUT(G) and K :=
MET(G). The following results are shown there: Equality Nj(MET(G)) = CUT(G) holds if G has
a set of ¢ edges whose contraction produces a graph with no Kj-minor (recall the definition of Ny
from (33)). In particular, N*~*(%)=3(MET(G)) = CUT(G) if G has a maximum stable set whose
deletion leaves at most three connected components and N* *(¢)-3(GQ) = CUT(G). Here, N*(Q)
denotes the projection on the subspace indexed by the edge set of G of the set N*(MET(K,)). The
inclusion N*(G) C N*(MET(G)) holds obviously. Therefore, the N-rank of MET(K,,) is at most n—4,
with equality for n < 7 (equality is conjectured for any n). A stronger relaxation is obtained when
using the N’ operator (recall the definition of N’ from (34)). Indeed, N'(MET(Ks)) = CUT(Kg) C
N(MET(Kg)) and the N'-rank of MET(K,,) is at most n — 5 for n > 6.

Another possible strategy is to apply the lift-and-project constructions to the set K := [—1, 1] and
to project on the subspace indexed by the set E,, of all pairs ij of points of V' (instead of projecting
on the space R” indexed by the singletons of V'). The SA and Lasserre methods converge now in n — 1
steps (as there is no additional linear constraint beside the constraints expressing membership in the

cube).
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The t-th relaxation in the SA hierarchy is determined by all the inequalities valid for CUT(K,)
that are induced by at most ¢ + 1 points. Thus, the relaxation of order ¢t = 1 is the cube [—1, 1]¥ while
the relaxation of order ¢ = 2 is the metric polytope MET(K,,).

The t-th relaxation in the Lasserre hierarchy, denoted as Q¢(G), is the projection on the subspace
RE indexed by the edge set of G of the set of vectors y satisfying

Mi1(y) = (yiag) rocv =0, yp=1. (42)

2], [7]<t+1

Equivalently, one can replace in (42) the matrix M;;1(y) by its principal submatrix indexed by the
subsets whose cardinality has the same parity as ¢t + 1. Therefore, for ¢t = 0, Qo(K,,) coincides with
the basic semidefinite relaxation

{X = (Xij)j=1 | X =0, Xyy=1Vie{l,...,n}}

of the cut polytope. For t = 1, Q1(K,) consists of the vectors x € RF» for which (i) = Yeq for some
matrix Y > 0 indexed by {0} U E,, satisfying

Yijik = Yo ik, (43)

Yiink = Yinjk = Yikjn (44)
for all distinct ¢, j,h,k € {1,...,n}.

Using Lagrangian duality, Anjos and Wolkowicz [10] introduced the relaxation F), of CUT(K,)
which is defined as the set of all x € RE» for which (i) = Yeq for some Y > 0 indexed by {0} U E,,
satisfying (43). Thus

Q1(Kn) C Fy

(with strict inclusion if » > 5). It is interesting to note that the relaxation F), is stronger than the
basic linear relaxation by the metric polytope [10]; that is,

F, C MET(K,,).

Indeed, let x € F,, with (i) = Yeq for some Y > 0 satisfying (43). The principal submatrix X of Y
0 12 13 23

13| z13 w23 1 12
23 \z23 13 T12 1

implies one of the triangle inequalities for the triple (1,2,3); the other triangle inequalities follow by
suitably flipping signs in X.

0 1 x12 ®13 w23
indexed by {0,12,13,23} has the form 2 [ @12 1 @3 213 ) Now el Xe = 4(1+z19+213+203) > 0

Laurent [125] shows that
Q:(G) C NI 1H(G)

for any ¢t > 1. Therefore, the second strategy seems to be the most attractive one. Indeed, the
relaxation Q;(G) is at least as tight as N'"'(G) and moreover it has a simpler explicit description
(given by (42)) while the set N% !(G) has only a recursive definition. We refer to [125] for a detailed
study of geometric properties of the set of (moment) matrices of the form (42).
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3.7 Extensions to polynomial programming

Quadratic programming. Suppose we want to solve the program

p* :=min go(z) subject to ge(z) >0 ({=1,...,m) (45)
where go, g1, - ., gm are quadratic functions of the form: gy(z) = 27 Q. + 2q{m + v (Q symmetric
n X n matrix, ¢ € R, 794 € R). For any /¢, define the matrix Py := (Zj q@i) Then, g(z) =
(P, (i ;wTT > ). This suggests the following natural positive semidefinite relaxation of (45):

min (Py,Y) subjecttoY =0, Yoo =1, (P,Y)>0({=1,...,m). (46)

Let F:={x € R" | go(z) >0 (£=1,...,m)} denote the feasible set of (45) and
Fi={zeR"| (})="Ye for some Y = 0 satisfying (P, Y) > 0 forall £=1,...,m}  (47)

its natural semidefinite relaxation. It is shown in [71, 113] that F can be alternatively described by
the following quadratic system:

F={zeR"| Y%, tuge(x)>0forall t; >0 for which 7, ,Q, < 0}. (48)

If, in (47), one omits the condition ¥ > 0 and, in (48), the condition ) ,¢,Q; =< 0 is replaced by
> ¢teQ¢ = 0, then one obtains a linear relaxation Fy of F such that conv(F) C F CFy.

Using this construction of linear/semidefinite relaxations, Kojima and Tungel [113] construct a
hierarchy of successive relaxations of F' that converges asymptotically to conv(F'). Lasserre [115] also
constructs such a hierarchy which applies, more generally, to polynomial programs; we expose it below.

Polynomial programming. Consider now the program (45) where all the g,’s are polynomials in
z = (z1,...,%,). Let wy be the degree of gy, vy := [%]| and v := maxy_y, ., v, We need some
definitions.

Given a sequence y = (ya)aem indexed by 7', its moment matriz is

MZ(y) = (ya+ﬂ)a,ﬁ621 (49)

and, given an integer t > 0, MZ(y) is the principal submatrix of M%(y) indexed by the sequences
a € ZI with |a := ;a5 < t. [Note that the moment matrix My (y) defined earlier in (26) corresponds
to the principal submatrix of M%(y) indexed by the sequences a € {0,1}", after replacing yo by Yo
where o; := min(a;, 1) for all i.] The operation from (28) extends to sequences indexed by Z in the
following way:

9, y ER™ ~ gy = (Y gpYarp)acen - (50)
B
Given z € R, define the sequence y € RZ} with a-th entry y, = g for a € ZI . Then,

MF(y) = yy© = 0 (where we use the same symbol y for denoting the truncated vector (Ya) jal<t)
and MZ(go *y) = ge(z) - MZ(y) = 0 if gg(z) > 0. This observation leads naturally to the following
relaxations of the set F', introduced by Lasserre [115].
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For t > v — 1, let Q;(F) be the convex set defined as the projection of the solution set to the
system
ME L (y) =0, ME,, 1(gexy) =0 for £=1,...,m, yo =1 (51)

on the subspace R" indexed by the variables y, for « = (1,0,...,0),...,(0,...,0,1) (identified with
Zl,...,ZTpn). Then,
conv(F) C Qi1 1(F) C Qu(F).
Lasserre [115] shows that
ﬂ Qi(F) = conv(F);
t>v—1

that is, the hierarchy (Q;(F)); converges asymptotically to conv(F'). This equality holds under some
technical assumption on F which holds, for instance, when F' is the set of 0/1 solutions of a polynomial
system and the constraints z;(1 —z;) =0 (¢ € {1,...,n}) are present in the description of F', or when
the set {z | g¢(z) > 0} is compact for at least one of the constraints defining F'. Lasserre’s result relies
on a result about representations of positive polynomials as sums of squares, to which we will come
back in Section 7.1.

In the quadratic case, when all gy are quadratic polynomials, one can verify that the first Lasserre
relaxation Qy(F') coincides with the basic SDP relaxation F' defined in (47); that is,

A

Qo(F)=F.
Consider now the 0/1 case when F is the set of 0/1 solutions of a polynomial system; write F' as

F={zcR"|gz)>0L=1,...,m), hi(z) :=ax; —22=0(i=1,...,n)}

P =

One can assume without loss of generality that each g, has degree at most 1 in every variable. The
set
K ={ce0,1]"] ()20 (¢=1,...,m)}

is a natural relaxation of F'. We have constructed in Section 3.4 the successive relaxations Q:(K) of
conv(F) satisfying conv(F) = Qpn4y—1(K); their construction used moment matrices indexed by the
subsets of V' while the definition of Q;(F') involves moment matrices indexed by integer sequences.
However, the condition MZ(h; x y) = 0 (present in the definition of Q;(F)) permits to show that the
two definitions are equivalent; that is,

Qi(K) = Q(F) fort>v—1.

See [124] for details.
In the quadratic 0/1 case, we find therefore that

A

F = Qy(F) = Qo(K).
As an example, given a graph G = (V = {1,...,n}, E), consider the set
F:={z e {0,1}" | zjz; =0 for all ij € E};

then conv(F) is equal to the stable set polytope of G. It follows from the definitions that F' coincides
with the basic SDP relaxation TH(G) (defined in (40)). Therefore, Qp(F) = TH(G) while the inclusion
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TH(G) C Qo(FRAC(G)) is strict in general. Hence one obtains stronger relaxations for the stable set
polytope STAB(G) when starting from the above quadratic representation F' for stable sets rather
than from the linear relaxation FRAC(G). Applying the equivalent definition (48) for F', one finds
that

TH(G) = {x eR"” |xTM:c—ZMiixi <0 for M >0 with M;; =0 (i # j € V,ij ¢E)} (52)
i=1

(This formulation of TH(G) also follows using the duality between the cone of completable partial
positive semidefinite matrices and the cone of positive semidefinite matrices having zeros at the posi-
tions of unspecified entries; cf. [122].) See Section 4.2 for further information about the semidefinite
relaxation TH(G).
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4 Semidefinite Relaxation for the Maximum Stable Set Problem

Given a graph G = (V, E), its stability number a(G) is the maximum cardinality of a stable set in G,
and its cligue number w(G) is the maximum cardinality of a clique in G. Given an integer k > 1, a
k-colouring of G is an assignment of numbers from {1,...,k} (colours) to the nodes of G in such a
way that adjacent nodes receive distinct colours; in other words, a k-colouring is a partition of V into
k stable sets. The colouring number (or chromatic number) x(G) is the smallest integer £ for which
G has a k-colouring. With G = (V, E) denoting the complementary graph of G, the following holds
trivially:
a(G) = w(G) < X(G).

The inequality w(G) < x(G) is strict, for instance, for odd circuits of length > 5 and their complements.
Berge [30] defined a graph G to be perfect if w(G') = x(G') for every induced subgraph G’ of G and
he conjectured that a graph is perfect if and only if it does not contain a circuit of length > 5 or its
complement as an induced subgraph; this is the (still open) strong perfect graph conjecture. Lovéasz
[133] proved that the complement of a perfect graph is again perfect, solving another conjecture of
Berge. As we will see later in this section, perfect graphs can also be characterized in terms of
integrality of certain associated polyhedra.

Computing the stability number or the chromatic number of a graph are hard problems; more
precisely, given an integer k, it is an NP-complete problem to decide whether o(G) > k or x(G) < k
[103]. Deciding whether a graph is 2-colourable can be done in polynomial time (as this happens if
and only if the graph is bipartite). On the other hand, while every planar graph is 4-colourable (by the
celebrated four colour theorem), it is NP-complete to decide whether a planar graph is 3-colourable
[73]. When restricted to the class of perfect graphs, the maximum stable set problem and the colouring
problem can be solved in polynomial time. This result relies on the use of the Lovasz theta function
Y¥(G) which can be computed (with an arbitrary precision) in polynomial time (as the optimum of a
semidefinite program) and satisfies the ‘sandwich’ inequalities:

a(G) < 9(G) < X(@).

The polynomial time solvability of the maximum stable set problem for perfect graphs is one of the first
beautiful applications of semidefinite programming to combinatorial optimization and, up to today,
no other purely combinatorial method is known for proving this.

4.1 The basic linear relaxation

As before, the stable set polytope STAB(G) is the polytope in R defined as the convex hull of the
incidence vectors of the stable sets of G, FRAC(G) is its linear relaxation defined by nonnegativity
and the edge inequalities (36), and QSTAB(G) denotes the linear relaxation of STAB(G) defined by
nonnegativity and the clique inequalities (38). Therefore,

STAB(G) C QSTAB(G) C FRAC(G)

and
(@) = max(efz | £ € STAB(Q))

setting e := (1,...,1)7. One can easily see that equality STAB(G) = FRAC(G) holds if and only
if G is a bipartite graph with no isolated nodes; thus the maximum stable set problem for bipartite
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graphs can be solved in polynomial time as a linear programming problem over FRAC(G). Fulkerson
[72] and Chvatal [44] show:

Theorem 8. A graph G is perfect if and only if STAB(G) = QSTAB(G).

This result does not (yet) help for computing efficiently a(G) for perfect graphs. Indeed, optimizing
over the linear relaxation QSTAB(G) is, unfortunately, a hard problem in general (as hard as the
original problem, since the membership problem for QSTAB(G) is nothing but a maximum weight
clique problem in G.) Proving polynomiality requires the use of the semidefinite relaxation TH(G) as
we see later in this section.

4.2 The theta function J(G) and the basic semidefinite relaxation TH(G)

Lovész [134] introduced the following parameter J(G), known as the theta number:

9(G) := max elXe
st. Tr(X)=1
Xij=0(i#j, ij € E)
X = 0.

(53)

The theta number has two important properties: it can be computed with an arbitrary precision in
polynomial time (as optimum value of a semidefinite program) and it provides bounds for the stability
and chromatic numbers. Namely,

a(G) < 9(G) < X(@). (54)

To see that a(G) < ¥(G), consider a maximum stable set S; then the matrix X := ﬁxS(XS)T is
feasible for the program (53) and a(G) = e’ Xe. To see that ¥9(G) < x(G), consider a matrix X

feasible for (53) and a partition V = Q1 U...U Qy into k := x(G) cliques. Then,
k
0< Z(kXQh —e)TX (kx9 —e) = K®Tr(X) — kel Xe = k* — kel Xe,
h=1

which implies e Xe < k and thus 9(G) < x(G).
Several equivalent definitions are known for ¥(G) that we recall below. (See [80] or [111] for a
detailed treatment.) The dual semidefinite program of (53) reads:

min(¢ |t + Z NijEij —J = 0), (55)
IS

where J := ee” is the all ones matrix and E;; is the elementary matrix with all zero entries except
1 at positions (i,7) and (j,7). As the program (53) has a strictly feasible solution (e.g., X = %I)7
there is no duality gap and the optimum value of (55) is equal to the theta number ¥(G). Setting
Y =J- Z XijEij, Z == tI =Y and U := 45 Z in (55), we obtain the following reformulations for
ijeE
¥(G):
Y(G) = min Apax(Y)
st. Yij=1(i=j orij € E) (56)
Y symmetric matrix,
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Y(G) = min ¢ = min ¢
st. Zy=t-1 (Z € V) st. U;=1 (Z € V)
Zij=-1 (ij€E) Uj=—-7 (ij€E) (57)
Z >0 U>=0,t>2.

The formulation (57) will be used later in Section 6 for the colouring and max k-cut problems. One
can also express ¥(G) as the optimum value of the linear objective function e’z maximized over a
convex set forming a relaxation of STAB(G). Namely, let M denote the set of positive semidefinite
matrices Y indexed by the set V' U {0} satisfying y;; = yo; for i € V and y;; = 0 for i # j € V adjacent
in G, and set

TH(G) := {z € RV | (i) = Yeg for some Y € Mg}, (58)
where eg := (1,0,...,0)T € R*™!. (Same definition as (40).)
Lemma 9. For any graph G, STAB(G) C TH(G) C QSTAB(G).

PROOF. If S is a stable set in G and = := x°, then ¥ := (i)(l zT) € Mg and (;) = Yeq; from

this follows that STAB(G) C TH(G). Let = € TH(G), Y € Mg such that () = Yeo, and let @ be a

clique in G. The principal submatrix Yy of Y whose rows and columns are indexed by the set {0} UQ
1 zT

. > = 0, ie., di —zxl > i
has the form <9: diag(a:)) As Y > 0, we have Yy > 0, ie., diag(z) — zz' > 0 (taking a Schur
complement), which implies that e’ (diag(z) —zz’)e = el'z(1 —el'x) > 0 and thus e’z = YicgTi < 1.
This shows the inclusion TH(G) C QSTAB(G).

Theorem 10. 9¥(G) = max(elz |z € TH(G)).

PROOF. We use the formulation of ¥(G) from (53). Let ug denote the maximum of e!'z over TH(G).
We first show that ¥(G) < pg. For this, let X be an optimum solution to the program (53). Let
v1,...,v, € R such that z;; = vl v; for all4,j € V; thus 9(GQ) = || 0 vil|?, S0 (v:)? = Tr(X) =1,

and vl'v; = 0 if 4,5 are adjacent in G. Set P := {i € V | v; # 0}, ug := ﬁzgl Vi, U; 1= Hz—zl\

for i € P, and let u; (¢ € V' \ P) be an orthonormal basis of the orthogonal complement of the space
spanned by {v; | ¢ € P}. Let D denote the diagonal matrix indexed by {0} UV with diagonal entries
udu; (i=0,1,...,n), let Z denote the Gram matrix of ug, u1,...,u, and set Y := DZD, with entries
vij = (uluj)(udw;)(ulu;) (3,5 =0,1,...,n). Then, Y € Mg with yoo = 1. It remains to verify that
Y(G) < 37 yoi- By the definition of ug, we find

9(G) = (Q_ugvi)* = (D_ugvi)® = (Y uguillvil)® < Q_ ol Q_(ugua)) = Y woi,
i=1 =1

ieP ieP i€P i€P

where the inequality follows using the Cauchy-Schwartz inequality. We now show the converse in-
equality pug < 9¥(G). For this, let z € TH(G) be optimum for the program defining ug, let Y € Mg

such that (i) =Yeg, and vy, v1, ..., v, € R*1 such that Yij = U;‘ij foralli,7 =0,1,...,n. It suffices

to construct X feasible for (53) satisfying >°;';_; ij > pg. Define the n x n matrix X with entries

Tij = %U?Uj (i,7 = 1,...,n); then X is feasible for (53). Moreover, g = 1" 1 Yoi = d.rq Vg v; =

m
vd (P, v;) is less than or equal to || 7 v;|| (by the Cauchy-Schwartz inequality, since |lvg| = 1).
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As Y0 g wij = ,%G(Z?:l v;)?, we find that ue < 37 ij. |

An orthonormal representation of G is a set of unit vectors u1,...,u, € RY (N > 1) satisfying
ul'u; =0 for all ij € E.

Theorem 11. 9(G) = maxqy, > ey (dFvi)?, where the mazimum is taken over all unit vectors d € RN
and all orthonormal representations vy, ...,v, € RN of G.

PROOF. Let ¥(G) = ¢! Xe, where X is an optimum solution to the program (53) and let by, ..., b, be
vectors such that X;; = b1'b; fori,j € V. Set d := Lievh P:={ieV|b #0} and v; := Hg—?” for

ey bill?
i € P. Let v; (i € V'\ P) be an orthonormal basis of the orthogonal complement of the space spanned
by v; (i € P). Then, v1,...,v, is an orthonormal representation of G. We have:
VG =11 _bil =d" (Z bi> = _lbillold <[> lIbill* - > (el d)* <[> (v] d)?
icP icP icP icP icP eV

(using the Cauchy-Schwartz inequality and Tr(X) = 1). This implies that 9(G) < 3o (dFv;)2.

Conversely, let d be a unit vector and let v1,...,v, be an orthonormal representation of G. Let
Y denote the Gram matrix of the vectors d, (d'vi)vi,...,(dTv,)v,. Then, Y € Mg. Therefore,
(dTv1)?%,..., (dTv,)?)T € TH(G) which implies that 3,y (d7v;)? < 9(G). |

Let Ag denote the convex hull of all vectors ((d%v1)?,..., (d"v,)?)T where d is a unit vector and
v1,...,vU, is an orthonormal representation of G, let Bg denote the set of z € RK satisfying the

orthonormal representation constraints:
Z(cTui)in <1 (59)
%
for all unit vectors ¢ and all orthonormal representations uq, ..., u, of G, and let Cg denote the set
of x € RK satisfying

. 1

Z T; < minmax ———

= T, )2

= cui i€V (cluy)

where the minimum is taken over all unit vectors ¢ and all orthonormal representations ug, ..., u, of

G.
Lemma 12. Ag C TH(G) C Bg C Cg.

ProOF. The inclusion Ag C TH(G) follows from the second part of the proof of Theorem 11 and
the inclusion Bg C Cg is easy to verify. Let z € TH(G) and let z := ((cTu1)?,..., (c''u,)?)T where
¢ is a unit vector and w1, ..., u, is an orthonormal representation of G; we show that z7z < 1. By
the above, z € Az C TH(G). Let Y € Mg and Z € Mg such that (i) = Yep and (1) = Zey.
Denote by Y’ the matrix obtained from Y by changing the signs on its first row and column. Then,
(Y',Z) =1 =23 icy Yoizoi + Yiey Yiizis = 1 — Y ey Tizi > 0 (since Y/, Z > 0) and thus zTz < 1.
This shows the inclusion TH(G) C Bg. |
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Theorem 13. ¥(G) = min,,, max;cy ﬁ, where the minimum is taken over all unit vectors c and

all orthonormal representations uq,...,u, of G.

PrOOF. The inequality ¥(G) < min... follows from the inclusion TH(G) C C¢. For the reverse
inequality, we use the definition of J(G) from (56). Let Y be a symmetric matrix with ¥;; =1 (: € V)
and Y;; =1 (ij € E) and 9(G) = Amax(Y). As 9(G)I —Y = 0, there exist vectors by, ..., b, such that
b? = 9(G) —1 (i € V) and b'b; = —1 (ij € E). Let c be a unit vector orthogonal to all b; (which

exists since ¥(G)I — Y is singular) and set u; := % (t € V). Then, uy,...,uy is an orthonormal

representation of G and J9(G) = m for all 4. |

Theorems 11 and 13 and Lemma 12 show that one obtains the same optimum value when optimizing
the linear objective function e’z over TH(G) or over any of the sets Ag, Bg or Cg. In fact, the same
remains true for an arbitrary linear objective function w? z where w € ]RK, as the above extends easily
to the weighted case. Therefore,

TH(G) = Ag = Bg = Cg.

Moreover, TH(G) is the antiblocker of TH(G); that is, TH(G) = {z € RY | 272 < 1 Vz € TH(G)}.
One can show that the only orthonormal representation inequalities (59) defining facets of TH(G) are
the clique inequalities. From this follows:

TH(G) is a polytope <= G is perfect <= TH(G) = QSTAB(G) < TH(G) = STAB(G).

We refer to ([172], chapter 12) for a detailed exposition on the theta body TH(G).

4.3 Sharpening the theta function

The number ¥'(G). McEliece, Rodemich, Rumsey [142] and Schrijver [174] introduce the parameter
¥(G) as
¥ (G) = max elXe

st. Tr(X)=1
Xij =0 (i # j, ij € B) (60)
X0, X >0.

Comparing with (53), it follows that
a(G) <9(GQ) <I(G).
As was done for ¥(G) one can prove the following equivalent formulations for ¢ (G):

Y (G)= min  Apax(Y)
st. Yi;>1(i=j orij € E) (61)
Y symmetric matrix;

¥(G)= min ¢ = min ¢
s.t Zu=t—1 (ZGV) s.t Us; =1 (ZEV) 9
Zij<—-1 (ij€E) Uj<—+7 (ijeE) (62)
Z =0 U=0,t>2;
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and ¥'(G) = max(elz | (i) = Yep for some nonnegative matrix Y € Mg}. The inequality ¥/ (G) <
9(G) is strict, for instance, for the graph with node set {0,1}% where two nodes are adjacent if their
Hamming distance is at most 3 (then, 9(G) = ¥ and ¥/'(G) = a(G) = 4).

The number 97 (G). In a similar vein, Meurdesoif [143] introduces the parameter ¥*(G) which
provides a sharper lower bound for the chromatic number of G:

9H(G):= min ¢
s.t Yii=t—1 (Z € V)
Vj=-1 (ijeE) (63)
Y,;>-1 (ij€E)
Y »~ 0.

Then,
3(G) < 0+ (C) < X(G).

A graph achieving strict inequality ¥(G) < 97 (G) is given in [143]. The inequality 9(G) < 97 (G)
is obvious using (57) and the inequality 9+ (G) < x(G) follows from the following formulation of the
chromatic number as a bivalent SDP program:

st. YVi=t—-1 (ieV)
Vi = -1 (ij € B) (64)
Yije{-1,t—1} (ijeE)
Y = 0.

Indeed, let pug denote the minimum value of the program (64). If V.= S; U...U Sy is a partition into
stable sets and if Y is the matrix with entries —1 except Y;; = k — 1 for ¢,5 € S, h = 1,...,k, then
(Y, k) is feasible for (64) which shows that ug < x(G). Conversely, let (¢,Y) be an optimum solution
for (64), let v1,...,v, € RY such that Y;; = vlv; (i,j € V), and let v;,,...,v;, denote the distinct
vectors among vi,...,v,. For h € {1,...,k}, the set Sy, :={t € {1,...,n}|v; =wv;,} is a clique in G
(since v} v; = t—1if and only if v; = v;) and thus k > x(G). From 0 < || SF_; vy, || = k(t—1)—k(k—1)

follows that ¢ > k and thus ug > x(G). Thus equality pug = x(G) holds.

Bounding the Shannon capacity. The theta number ¥(G) was introduced by Lovész [134] in
connection with a problem of Shannon in coding theory. The strong product G - H of two graphs G
and H has node set V(G) x V(H) with two distinct nodes (u,v) and (u/,v") being adjacent if u, v’
are equal or adjacent in G and v,v’ are equal or adjacent in H. Then G* is the strong product of k
copies of G. The Shannon capacity of G is defined by

O(G) := sup y/a(G*).

k>1
As a(G*) > (a(G))* and 9(G*) < (9(G))F, one finds
a(G) < 9(G) <I(G).

Using these inequalities, Lovész [134] could show that the Shannon capacity of Cs is v/5 (as a(C2) =5

and 0(Cs) = v/5). For n > 7 odd, 9(C,) = lic:;((%g)), but the value of ©(Cy) is not known.
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The theta number versus Delsarte’s bound. Let G be a graph whose adjacency matrix can be
written as ;s Ai, where M C {1,...,N} and Ap, Ay,..., Ay are 0/1 symmetric matrices forming
an association scheme; that is, Ag = I, Z?Lo A; = J, there exist scalars pfj (¢,j,k=1,...,N) such
that A;A; = A;A; = Eszo pfjAk. As the matrices Ag,..., Any commute, they have a common basis of
eigenvectors and therefore positive semidefiniteness of a matrix X := Zi\io x;A; can be expressed by
a linear system of inequalities in 1, ...,z y. Therefore, one finds that the theta numbers ¥(G), ¥'(G)
can be computed by solving a linear programming problem. Based on this, Schrijver [174] shows that
¥ (G) coincides with a linear programming bound introduced earlier by Delsarte [56].
These ideas have been extended to general semidefinite programs by Goemans and Rendl [74].

4.4 Colouring and finding maximum stable sets in perfect graphs

The stability number «(G) and the chromatic number x(G) of a perfect graph G can be computed in
polynomial time. (Indeed, it suffices to compute an approximated value of J(G) with precision < 1/2
in order to determine a(G) = x(G) = ¥(G).) We now mention how to find in polynomial time a stable
set of size a(G) and a x(G)-colouring in a perfect graph. The weighted versions of these problems can
also be solved in polynomial time (cf. [80] for details).

Finding a maximum cardinality stable set in a perfect graph. Let G = (V, E) be a perfect
graph and let v1,...,v, be an ordering of its nodes. We construct a sequence of graphs Gy := G D
G1D...2G; 2Git1 2 ... 2 Gy in the following manner: For each i > 1, compute a(Gi—1\v;); if
a(Gi—1\vi) = a(Q), then set G; := G;_1\v;, otherwise set G; := G;_1. Then, a(G;) = a(G) for all i
and G, is a stable set, thus providing a maximum stable set in G. Therefore, a maximum stable set
in a perfect graph G can be found by applying n times an algorithm for computing the theta function.

Finding a minimum colouring in a perfect graph. We follow the presentation of Schrijver
[176]. Let G = (V, E) be a perfect graph. A crucial observation is that it suffices to find a stable
set S which intersects all the maximum cardinality cliques of G. Indeed, if such S is found, then one
can recursively colour G\ S with w(G\S) = w(S) — 1 colours and thus G with w(G) = x(G) colours.
For t > 1, we grow iteratively a list Q1,...,Q; of maximum cardinality cliques. Suppose @1, ..., Q;
have been found. We begin with finding a stable set S meeting each of @1,...,Q:. For this, setting
w =Yt x@, it suffices to find a maximum weight stable set S. (This can be done by applying the
above maximum cardinality stable set algorithm to the graph G’ obtained from G by replacing every
node ¢ by a set W; of w; nonadjacent nodes, making two nodes u € W, v € W; adjacent in G’ if the
nodes 4,j are adjacent in G.) Then S has weight ¢ which means that S meets each of Q1,...,Q;.
Now, if w(G\S) < w(G), then S meets all the maximum cardinality cliques in G and we are done.
Otherwise, we find a clique Q11 in G\S of size w(G) and add it to our list.

The algorithm has a polynomial running time since the number of iterations is bounded by |V|.
To see it, consider the affine space L; := {x € RV | (Q;) =1Vi=1,...,t}. Then, L; D Ly D ... D
L; O Liyq O .... The dimension of the spaces L; decreases at each step since XS € Ly \ Li41, where
S is the stable set constructed at the ¢-th iteration as above.
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5 Semidefinite Relaxation for the Max-Cut Problem

We present here results dealing with the basic semidefinite relaxation of the cut polytope and its
application to desigining good approximation algorithms for the max-cut problem.

Given a graph G = (V, E), the cut §(S) induced by a vertex set S C V is the set of edges with
exactly one endpoint in S. Given edge weights w € QF, the maz-cut problem consists of finding
a cut 6(S) whose weight w(d(S)) := > ;je5(s) wij is maximum. Let mc(G,w) denote the maximum
weight of a cut in G. A comprehensive survey about the max-cut problem can be found in [163]. The
max-cut problem is one of the basic NP-hard problems studied by Karp [103]. Moreover, it cannot be
approximated with an arbitrary precision; namely, Hastad [89] shows that for p > % = 0.94117 there
is no p-approximation algorithm for max-cut if P # NP. [A p-approximation algorithm is an algorithm
that returns in polynomial time a cut whose weight is at least p times the maximum weight of a cut;
p being called the performance ratio or guarantee.] On the other hand, Goemans and Williamson [77]
prove a 0.878-approximation algorithm for max-cut that will be presented in Section 5.3 below.

5.1 The basic linear relaxation

As before, the cut polytope CUT(G) is the polytope in R¥ defined as the convex hull of the vectors
25 € {£1}F for S C V, where z;s; = —1if and only if |S N {i,5}| = 1. The weight of the cut §(S) can
be expressed as

1

3 Z wii (1 — zi5). (65)

ijel

Hence the max-cut problem is the problem of optimizing the linear objective function (65) over
CUT(G). The circuit inequalities:

dmii— >, wmip=2-]C|, (66)

ijEF ijeE(C)\F

where C is a circuit in G and F' is a subset of E(C) with an odd cardinality, are valid for CUT(G)
as they express the fact that a cut and a circuit must have an even intersection. Together with the
bounds —1 < z;; < 1 (ij € E) they define the metric polytope MET(G). Thus CUT(G) € MET(G);
moreover, the only 41 vectors in MET(G) are the cut vectors z° (S C V). An inequality (66) defines
a facet of CUT(G) if and only if C is a chordless circuit in G while an inequality +xz;; < 1 is facet
defining if and only if ij does not belong to a triangle [23]. Hence the metric polytope MET(K),,) is
defined by the 4(3) triangle inequalities:

Tij + @ik + Tk = —1, @i — ik — x> —1 (67)

for all triples i,7,k € {1,...,n}. Therefore, one can optimize any linear objective function over
MET(K,) in polynomial time. The same holds for MET(G), since MET(G) is equal to the projection
of MET(K,) on the subspace R” indexed by the edge set of G [20]. The inclusion CUT(G) C MET(G)
holds at equality if and only if G has no Ks-minor [23]. Therefore, the max-cut problem can be solved
in polynomial time for the graphs with no Ks-minor (including the planar graphs).

Let met(G,w) denote the optimum value of (65) maximized over z € MET(G). When all edge
weights are equal to 1, we also use the notation met(G) in place of met(G, w) (and analogously mc(G)
in place of mc(G,w)). How well does the polyhedral bound met(G, w) approximate the max-cut value
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mc(G,w)? In order to compare the two bounds, we assume that all edge weights are nonnegative.
Then,

met(G,w) < w(E) = Z w;; and mc(G,w) >
ijeE

1
—w(E).

Su(E)
(To see the latter inequality, consider an optimum cut §(S) and the associated partition (S,V '\ 5).
Then, for every node ¢ € V, the sum of the weights of the edges connecting i to the opposite class of
the partition is greater than or equal to the sum of the weights of the edges connecting ¢ to nodes in
the same class, since otherwise moving i to the other class would produce a heavier cut.) Therefore,

mc(G, w) S 1
met(G,w) ~ 2
In fact, the ratio Izl;((%jfﬂ)) tends to & for certain classes of graphs (cf. [160], [162]) which shows that in

the worst case the metric polytope does not provide a better approximation than the trivial relaxation
of CUT(G) by the cube [-1,1].
The polytope

Q(G) :={z e [-1,1]7 | Z zi; > 2 —|C| for all odd circuits C' in G}
1ijeE(C)

contains the metric polytope MET(G) and its d1-vectors correspond to the bipartite subgraphs of
G. Therefore, the max-cut problem for nonnegative weights can be reformulated as the problem of
maximizing (65) over the +1-vectors in Q(G). A graph G is said to be weakly bipartite when all the
vertices of Q(G) are £1-valued. It is shown in [81] that one can optimize in polynomial time a linear
objective function over Q(G). Therefore, the max-cut problem can be solved in polynomial time for
weakly bipartite graphs with nonnegative edge weights. Guenin [83] characterized the weakly bipartite
graphs as those graphs containing no odd Ks-minor (they include the graphs with no Ks-minor, the
graphs having two nodes covering all odd circuits, etc.), settling a conjecture posed by Seymour [177].
Poljak [160] shows that, for nonnegative edge weights, one obtains in fact the same optimum value
when optimizing (65) over MET(G) or over Q(G).

5.2 The basic semidefinite relaxation

The max-cut problem can be reformulated as the following integer quadratic program:

mc(G,w) = max 1% Z wij (1 — zizy)
ijeE (68)
st.  xi,...,z, € {£1}.

For x € {#1}", the matrix X := z2’ is positive semidefinite with all diagonal elements equal to
one. Thus relaxing the rank one condition on X, we obtain the following semidefinite relaxzation for
max-cut:
sdp(G,w) == max 3 Z wij (1 — xi5)
ijEE
st. xp=1Vie{l,...,n} (69)
The set
gn = {X = (xij)zjzl | X>0and z;; =1Vi € {1, . ,n}} (70)

38



is the basic semidefinite relaxation of the cut polytope CUT(K,,). More precisely,
z € CUT(K,) = mat(x) € &, (71)

where mat(x) is the n X n symmetric matrix with ones on its main diagonal and z;; as off-diagonal
entries.

The quantity sdp(G,w) can be computed in polynomial time (with an arbitrary precision). The
objective function in (69) is equal to (L, X), where L, = (l;;) is the Laplacian matrix defined by
lii == w(d(¢)) and l;; := —w;j for ¢ # j (assigning weight 0 to non edges). Hence, the dual of the
semidefinite program (69) is

n
Jmin{>" y; | ding(y) ~ Lu = 0} (72)
i=1
and there is no duality gap (since I is a stricty feasible solution to (69)). Set s = %yTe and u = se —y;
then u’e = 0 and diag(y) — L, = sI — diag(u) — L, = 0 if and only if Apax(L. + diag(u)) < s.
Therefore, (72) can be rewritten as the following eigenvalue optimization problem:

n

% min{ Amax (Lo + diag(w)) | 3 u; = 0}; (73)
=1

this eigenvalue upper bound for max-cut had been introduced and studied earlier by Delorme and
Poljak [53, 54]. One can also verify directly that (73) is an upper bound for max-cut. Indeed, for
z € {+1}" and u € R"™ with }_, u; = 0, one has:

1 1 . n T (L, + diag(u))x
w(B(8)) = o7 Ly = Lo (Ly + ding(u))e = 1 - Fo* die8(w)

which is less than or equal to % Amax(Lw + diag(u)) by the Rayleigh principle. The program (73) can
be shown to have a unique minimizer v (when w # 0); this minimizer v is equal to the null vector,
for instance, when G is vertex transitive, in which case the computation of the semidefinite bound
amounts to an eigenvalue computation [53]. Based on this, one can compute the semidefinite bound
for unweighted circuits. Namely, mc(Co) = sdp(Cax) = 2k and mc(Cag+1) = 2k while sdp(Cox11) =
2L (2 + 2 cos(5%7)). Hence, me(Cs) _ __32 _ , (.88445; the same ratio is obtained for some other

2k+1 sdp(C5) — 25455
circulant graphs [144].

mc(G,w)
sdp(G,w)
hedral and semidefinite bounds. Poljak [160] proved the following inequality relating the two bounds:

Much research has been done for evaluating the integrality ratio and comparing the poly-

met(G, w) 32
>
sdp(G,w) ~ 25+ 55

Therefore, the inequality

for any graph G and w > 0. (74)

mc(G, w) S 32
sdp(G,w) ~ 25+ 5v/5

holds for any weakly bipartite graph (G,w) with w > 0. The bound (75) remains valid for unweighted
line graphs and the better bound % was proved for the complete graph K,, with edge weights w;; := b;b;
(given by, ...,b, € Ry ) or for Paley graphs [563]. Moreover, the integrality ratio is asymptotically equal
to 1 for the random graphs Gy, (p denoting the edge probability) [53].

(75)
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Goemans and Williamson [77] proved the following bound for the integrality ratio:

mc(G,w)

Sdp(G.w) > ag for any graph G and w > 0, (76)

where 0.87856 < ag < 0.87857 and ag is defined by

2 0
Qo= min ——— 7
07 g<o<r 1 — cosf’ (77)
Moreover, they present a randomized algorithm producing a cut whose expected weight is at least
ap - sdp(G,w); their result will be described in the next subsection.
Until recently, no example was known of a graph having a worst integrality ratio than Cs and
it had been conjectured by Delorme and Poljak [53] that 5t 5 \/— is the worst possible value for the

integrality ratio. Recently, Feige and Schechtman [66] disproved this conjecture and proved that the

worst case value for the integrality ratio _; (((é )) is equal to the Goemans-Williamson quantity ag; we
will come back to this result later in this section.

5.3 The Goemans-Williamson randomized approximation algorithm for max-cut

The randomized approximation algorithm of Goemans and Williamson [77] for max-cut goes as follows;
its analysis will need the assumption that the edge weights are nonnegative.

1. The semidefinite optimization phase: Solve the semidefinite program (69). Let X = (zj;) be
an optimum solution and let vy,...,v, € R? (for some d < n) such that z;; = vlv; for all

i,7 €41,...,n}.

2. The random hyperplane rounding phase: Generate a random unit vector r and set S := {i |
vIr > 0}. Then, §(S) is the randomized cut returned by the algorithm.

The hyperplane H, with normal r cuts the space into two half-spaces and an edge 75 belongs to the cut
§(S) if and only if the vectors v; and v; do not belong to the same half-space. Hence the probability

and the expected weight E(w(S)) of the cut

arccos(vI v;)

that an edge ij belongs to §(.5) is equal to
0(95) is equal to

arccos( v 1-— v v; 2 arccos(viv;
E(w(S)) Z wlji Z (s .= (Tl ) > oy - sdp(G,w).
ijeE ijek

™ 1—-v;v;
The last inequality holds if we assume that w > 0. As E(w(S)) < mc(G,w), we find

mc(G, w)
sdp(G, w)

E(w(5))
sdp(G,w)

> > a > 0.87856. (78)

As a biproduct of the analysis, we obtain the following trigonometric reformulation for max-cut with
w > 0:

arccos(vI v;)
mc(G,w) = max ZUGEw % . (79)
s.t.  wv1,...,v, unit vectors in R™.
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Mahajan and Ramesh [139] have shown that the above randomized algorithm can be derandomized,
therefore giving a deterministic ag-approximation algorithm for max-cut. Let us stress that until then
the best known approximation algorithm was the simple random partition algorithm (which assigns a
node to either side of the partition independently with probability %) with a performance ratio of %

As mentioned above, the integrality ratio Srg;((g’j:}u)) is equal to agp in the worst case. More precisely,

Feige and Schechtman [66] show that for every € > 0 there exists a graph G (unweighted) for which
the ratio is at most ag + €. The basic idea of their construction is as follows. Let 8y denote the
angle where the minimum in the definition of ap = ming.g<, %ﬁ is attained; 6y ~ 2,331122 is
the nonzero root of cosf + fsinf = 1. Let [f1, 03] be the largest interval containing 6y satisfying
0 € 01,0 = %Pgﬁ < ap + €. Distribute n points vy, . .., v, uniformly on the unit sphere ¢! in
R¢ and let G be the graph on n nodes where there is an edge 4j if and only if the angle between v;
and v; belongs to [61,62]. Applying the random hyperplane rounding phase to the vectors vy, ..., vy,
the above analysis shows that the expected weight of the returned cut satisfies

E(w(S))
sdp(G)
The crucial part of the proof consists then of showing that for some suitable choice of the dimension

d and of the distribution of the n points on the sphere S?~! the expected weight E(w(S)) is not far
from the max-cut value mc(G).

<ap+e

Nesterov [149] shows the weaker bound:

E(w(S))

AW
sdp(G,w) ~

2
— ~ 0.63661 (80)
i

for the larger class of weight functions w satisfying L,, »= 0. (Note indeed that L,, > 0 if w > 0.)
Hence, the GW rounding technique applies to a larger class of instances at the cost of obtaining a
weaker performance ratio. Cf. Section 6.1 for more details.

The above analysis of the GW algorithm shows that its performance guarantee is at least «p.

Karloff [101] shows that it is, in fact, equal to ag. For this, he constructs a class of graphs G (edge

weights are equal to 1) for which the ratio SEdSE’g;)) can be made arbitrarily close to ag. (The graphs

constructed by Feige and Schechtman [66] display the same behaviour; the construction of Karloff has
however a simpler proof.) These graphs are the Johnson graphs J(m, %, b) for m even, b < {5 having
the collection of subsets of {1,...,m} of cardinality % as node set and two nodes being adjacent if their
intersection has cardinality b. An additional feature of these graphs is that mc(G,w) = sdp(G,w).
Hence, one of the problems that the Karloff’s example emphasizes is that although the semidefinite
program already solves the max-cut problem at optimality, the GW approximation algorithm is not
able to recognize this fact and to take advantage of it for producing a better cut. As a matter of fact,
recognizing whether sdp(G,w) = mc(G, w) for given weights w is an NP-complete problem [54, 126].

Goemans and Williamson [77] show that their algorithm behaves, in fact, better for graphs having

Sdg((%’)w ) > 22 (and thus for graphs having very large cuts). To express their result, set h(t) :=

Larccos(1 — 2t), to := =58 ~ 0.84458, where 6 ~ 2,331122 is the angle at which the minimum

™

in the definition of ap = mingp<, %ﬁ is attained. Then, h(tzo) = ag and it follows from the
definition of g that h(t) > apt for t € [0,1]. Further, set
h(t) . .
agw(t) == —~ if t € [to, 1] and agw(t) := ag if t € [0, o).
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One can verify that the function h(t

) =
E(w(S))

aw(t)t is convex on [0,1] and k < h. From this follows that

sdp(G, w)
> A here A := ———=. 1
sdp(G,w) = aGw(4), where w(E) sy
Indeed, setting y;; := PUT"TUJ', we have:
E(w(S)) Wi wij 3 7 Wij
= h(yij) > h(yij) > h vij | = h(A) = agw(4) - A
w(E) UXE;E w(E) 7Y UXE;E w(E) 7Y zjze:E w(E)7"

which implies (81). Therefore, the performance guarantee of the GW algorithm is at least agw(A)

which is greater than oy when A > tj and tends to 1 as A tends to 1. Extending Karloff’s result, Alon

and Sudakov [7] construct (unweighted) graphs G for which mc(G,w) = sdp(G,w) and dé(ésgj)) =

agw(A) for any A = % > tg, which shows that the performance guarantee of the GW algorithm

is equal to agw(A). For the remaining values of 4, 3 < A < tg, Alon, Sudakov and Zwick [8] construct

graphs satisfying mc(G,w) = sdp(G,w) and dé(((? 3))) = a9 which shows that the analsyis of Goemans

and Williamson is also tight in this case.

5.4 How to improve the Goemans-Williamson algorithm?

There are several ways in which one can try to modify the basic algorithm of Goemans and Williamson
in order to obtain an approximation algorithm with a better performance ratio.

Adding valid inequalities. Perhaps the most natural idea is to strengthen the basic semidefinite
relaxation by adding inequalities valid for the cut polytope. For instance, one can add all triangle
inequalities; denote by sdp’(G,w) the optimum value of the semidefinite program obtained by adding
Ks-minor (thus for C5). For K5 (with edge weights 1) it is equal to %—g = 0.96. However this is not
the worst case; Feige and Schechtman [66] construct graphs for which the new integrality ratio is no
better than roughly 0.891.

On the other hand, the example of Karloff shows that the GW randomized approximation algorithm
applied to the tighter semidefinite relaxation does not have a better performance guarantee. The same
remains true if we would add to the semidefinite relaxation all inequalities valid for the cut polytope
(because the Karloff’s graphs satisfy E(zz’(s))) ~ ap while mc(G,w) = sdp(G,w)!). Therefore, in
order to improve the performance guarantee, beside adding some valid inequalities, a new rounding
technique will be needed. We now present two ideas along these lines: the first from [64] uses triangle
inequalities and adds a ‘local search’ phase to the GW algorithm, the second from [202] can be seen
as a mixing of the hyperplane rounding technique and the basic random algorithm.

the triangle inequalities to (69). The new integrality ratio is equal to 1 for graphs with no

Adding valid inequalities and a local search phase. Feige, Karpinski and Langberg [64] have
presented an approximation algorithm for max-cut with a better performance guarantee for graphs
with a bounded maximum degree A (edge weights are assumed to be equal to one). Their algorithm has
two new features: triangle inequalities are added to the basic semidefinite relaxation (also some triangle
equalities in the case A = 3) and an additional ‘greedy’ phase is added after the GW hyperplane
rounding phase.

Given a partition (5,5 \ S), a vertex v belonging, say, to S, is called misplaced if it has more
neighbours in S than in V'\ S; then the cut §(S\{v}) has more edges than the cut §(S). One of the basic
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ideas underlying the FKL algorithm is that, if (S,V \ S) is the partition produced by the hyperplane
rounding phase and if all angles arccos(vfv;) are equal to 6y (which implies E(w(S)) = ag-sdp(G,w)),
then there is a positive probability (depending on A alone) of finding a misplaced vertex in the partition
and, therefore, one can improve the cut.

In the case A = 3 the FKL algorithm goes as follows. In the first step one solves the semidefinite
program (69) to which have been added all triangle inequalities as well as the triangle equalities
Tij + i + xj,, = —1 for all triples (4,7, k) for which ij,ik € E (such equality is indeed valid for a
maximum cut for, if not, the vertex i would be misplaced). Then the hyperplane rounding phase is
applied to the optimum matrix X, producing a partition (S,V \ S). After that comes an additional
greedy phase: If the partition (S,V \ S) has a misplaced vertex v, move it to the other side of the
partition and repeat until no misplaced vertex can be found. If at some step there several misplaced
vertices, we move the misplaced vertex v for which the ratio between the number of edges gained in
the cut by moving v and the number of triples (i, j, k) with ij,ik € E and ¢ misplaced destroyed by
this action, is maximal.

It is shown in [64] that the expected weight of the final partition returned by the FKL algorithm
satisfies

E(w(8)) > 0.919 - sdp(G, w). (82)

For regular graphs of degree 3, one can show an approximation ratio of 0.924 and, for graphs with
maximum degree A, a ratio of ag+ ﬁ. Note that, when A > 4, one cannot incorporate the triangle
equality x;; + xir + x5 = —1 (with 4j,ik € E) as it is no longer valid for maximum cuts.

Recently, Halperin, Livnat and Zwick [85] gave an improved approximation algorithm for max-
cut in graphs of maximum degree 3 with performance guarantee 0.9326. Their algorithm has an
additional preprocessing phase (which converts the input graph into a cubic graph satisfying some
additional property) and performs the greedy phase in a more global manner; moreover, it applies to
a more general problem than max-cut.

Mixing the random hyperplane and the basic random rounding techniques. We saw above
that the performance guarantee of the GW algorithm is greater than o for graphs with large cuts
(with weight at least 85% of the total weight of edges). Zwick [202] presents a modification of the GW
algorithm which, on the other hand, has a better performance guarantee for graphs having no large
cuts.

Note that the simple randomized algorithm, which constructs a partition (S,V \ S) by assigning
a vertex with probability % to either side of the partition, produces a cut with expected weight @
and thus its performance ratio is

1 sdp(G, w)
A) := — where A = SN
@rand(4) 1= 577 where w(E)

Note, moreover, that this algorithm is equivalent to applying the hyperplane rounding technique to
the standard unit vectors ey, . .., e,, with the identity matrix as Gram matrix. As ogand(4) > agw(4)
when % <AL ﬁ ~ 0.569113, Zwick’s idea is to make a ‘mix’ of the hyperplane rounding and basic
random algorithms. For this, if X is the optimum matrix obtained when solving the basic semidefinite
program (69), set

X' := (cos® ya) X + (sin® y4)T

where y4 € [0, 7] is suitable chosen. Namely, if A > ¢y then 4 := 0 and if %A < tg, then solve the
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following equations for ¢ and t:

arccos(c(l — 2t)) — arccosc 2¢ 1- % 1—2t

t VIl =262 V1= J1—c2(1—2t)2

(there is a unique solution cy4,t4 such that 0 < c4q <1 and % < ta <tp) and set y4 := arccos(,/ca).
Note that y4 tends to 5 as A tends to % Then a randomized cut §(.5) is produced by applying the
hyperplane rounding phase to the modified matrix X’. Zwick shows that

m > iot(4) for any graph G and w >0 (8

where auor(A4) := agw(A) for A >t and, setting he(t) := 2ecos(c=2t)

s

1 1

o (4) = (5 = - Mhea(0) + e t)

for % < A < tyg. The new performance guarantee is at least ayot(A), which is greater than ayanq(A)
and agw(A) when A < tp. For instance, ayor(A4) > 0.88 if A < 0.75, ayot(A) > 0.91 if A < 0.6.
Alon, Sudakov and Zwick [8] show that the analysis is tight; for this they construct graphs having
mc(G,w) = sdp(G, w) and % = 0ot (A) for any 3 < A < t,.

Inapproximability results. Summarizing, the best performance guarantee of an approximation
algorithm for max-cut known so far is ap ~ 0.87856. In fact, i—g ~ 0.94117 is the best performance
guarantee that one can hope for. Indeed, Hastad [89] shows that, for any € > 0, there is no (% + ¢€)-
approximation algorithm for max-cut if P # NP. Berman and Karpinski [31] show that it is NP-
hard to approximate max-cut in cubic graphs beyond the ratio of 0.997 (while there is an 0.932-
approximation algorithm as we saw above).

On the positive side, Arora, Karger and Karpinski [15] show that the max-cut problem has a
polynomial time approximation scheme (that is, an (1—e¢)-approximation algorithm for any € > 0) when
restricted to dense graphs, that is, graphs with O(n?) edges. De la Vega [192] described independently
a randomized approximation scheme for max-cut in graphs with minimum degree cn for some constant
c> 0.

We have seen in Section 3.6 several techniques permitting to construct semidefinite relaxations of
the cut polytope refining the basic one. Thus a natural and very interesting question is whether some
of them can be used for proving a better integrality ratio (better than the Goemans-Williamson bound
ap) and for designing an approximation algorithm for max-cut with an improved performance ratio.
The most natural candidate to consider might be the Lasserre relaxation Q1(Ky) (defined using (43)
and (44)) or its subset, the Anjos-Wolkowicz relaxation F, (defined using (43)).
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6 Applications of Semidefinite Programming and the Rounding Hy-
perplane Technique to Other Combinatorial Optimization Prob-
lems

The method developped by Goemans and Williamson for approximating the max-cut problem has been
applied and generalized to a large number of combinatorial optimization problems. Summarizing, their
method consists of the following two phases:

1. The semidefinite optimization phase, which finds a set of vectors vy, ..., v, providing a Cholesky
factorization of an optimum solution to the SDP program relaxing the original combinatorial
problem.

2. The random hyperplane rounding phase, which constructs a solution to the original combinatorial
problem by looking at the positions of the vectors v; with respect to some random hyperplane.

The basic method of Goemans and Williamson may have to be modified in order to be applied
to some other combinatorial problems. In the first phase, one has to choose an appropriate SDP
relaxation of the problem at hand and, in the second phase, one may have to adapt the rouding
procedure. For instance, if one wants to approximate graph colouring and max k-cut problems, one
should consider more general partitions of the space using more than one random hyperplane. One
may also have to add an additionnal phase permitting to modify the returned solution; for instance,
to turn the returned cut into a bisection if one wants to approximate the bisection problem. It turns
out that the analysis of the extended approximation algorithms is often more complicated than that
of the basic GW algorithm; it sometimes needs the evaluation of certain integral formulas that are
hard to evaluate numerically.

In this section we present approximation algorithms based on these ideas for the following problems:
general quadratic programming problems, maximum bisection and k-cut problems, colouring, stable
sets, MAX SAT and maximum directed cut problems.

6.1 Approximating quadratic programming

We consider here the boolean quadratic programming problem:

m*(A) .= max z7Ax (84)
st.  xi,...,zn € {£1}"
where A is a symmetric matrix of order n, and its natural SDP relaxation:
s*(A) := max (A4,X)
st. Xuy=1(=1,...,n) (85)

X = 0.

Obviously, m*(A4) < s*(A). How well does the semidefinite bound s*(A) approximate m*(A)? Obvi-

ously m*(A) = s*(A) when all off-diagonal entries of A are nonnegative. We saw in Section 5.3 that
%(AA)) > o (the GW ratio from (77)) in the special case when A is the Laplacian matrix of a graph;
that is, when Ae = 0 and A;; < 0 for all 4 # j. (Note that these conditions imply that A > 0.)

Nesterov [149] studies the quality of the SDP relaxation for general A. When A > 0 he shows the

lower bound % for the ratio T:((f)) and, based on this, he gives upper bounds for the relative accuracy
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s*(A) —m*(A) for indefinite A. The basic step consists in giving a trigonometric reformulation of the
problem (84), analogue to the trigonometric reformulation (79) for max-cut.

Proposition 14. Given a symmetric matriz A,

m*(A) = max 2(A,arcsin(X))
s.t. X” =1 (’I, = 1,...,n) (86)
X>=0

setting arcsin(X) := (arcsin(z;;))7;—,. Moreover, m*(A) > 25%(A) if A= 0.

PROOF. Denote by p the maximum of the program (86). Let z be an optimum solution to the
program (84) and set X := zz”. Then X is feasible for (86) with objective value 2(A, arcsin(X)) =
(A, zzT) = m*(A), which shows that m*(A4) < pu. Conversely, let X be an optimum solution to (86)
and let vq,...,v, be vectors such that X;; = viij for all 4,5. Let r be a random unit vector. Then
the expected value of sign(rfv;)sign(r?v;) is equal to

T

arccos(v; v;)

7 T

2 arcsin(vTv;)
= — arcsin(v; v;).
T T 1 Y]

1-2 prob(sign(rTvi) + sign(rij)) =1-2

T

Therefore, the expected value E4 of 3, ; aijsign(r?v;)sign(r’v;) is equal to %Zi’j aij arcsin(v] v;) =
2(A,arcsin(X)) = p. On the other hand, > i aijsign(rTv;)sign(rfv;) < m*(A), since the vector
(sign(rfv;))2, is feasible for (84) for any unit vector r. This implies that E4 < m*(A) and thus
p < m*(A). Assume A > 0. Then, (A, arcsin(X)) = (A, arcsin(X) — X) 4+ (4, X) > (A, X), using the

fact that arcsin(X) — X = 0 if X = 0. Hence, m*(A) > 2s*(A) if A = 0. |

Let m4(A) (resp. s«(A)) denote the optimum value of the program (84) (resp. (85)) where we
replace maximization by minimization. Applying the duality theorem for semidefinite programming,
we obtain:

s*(A) = min(e’'y | diag(y) — A > 0), (87)
s«(A) = max(eTz | A — diag(z) = 0). (88)
For 0 < a <1, set sq := as™(A4) + (1 — a)s«(A).

Lemma 15. For a = 2, 5,(A) < my(A) < s1—a < sa < m*(A) < s*(A).

PRrROOF. We show the inequality m.(A) < s1_4(A), that is, s*(A) — m.(4) >
y (resp. z) be an optimum solution to (87) (resp. (88)). Then,

B

(s*(A) — s«(A)). Let

s*(4) = m.(A) = ey + m*(—A) = m*(diag(y) — A) > 25*(diag(y) — 4)

by Proposition 14, since diag(y) — A = 0. To conclude, note that s*(diag(y) — A) = ey + s*(—A)
ely — 5,(A) = s*(A) — s.(A). The inequality s,(A) < m*(A) can be shown similarily.

The above lemma can be used for proving the following bounds on the relative accuracy m*(A) —sq.
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The above results can be extended to quadratic problems of the form:
max z! Az subject to [z]> € F

where F is a closed convex set in R* and [z]? := (z%,...,22). See [191], chapter 13 in [194], [197],

rrn
[200] for further results. Inapproximability results are given in [29].

6.2 Approximating the maximum bisection problem

The mazimum weight bisection problem is a variant of the max-cut problem where one wants to find a
n

cut 0(S) such that |S| = 5 (a bisection or equicut) (n being assumed even) having maximum weight.
This is an NP-hard problem, for which no approximation algorithm with a performance ratio > i—?
exists unless P = NP [89]. Polynomial time approximation schemes are known to exist for this
problem over dense graphs [15] and over planar graphs [95].

Extending the Goemans-Williamson approach to max-cut, Frieze and Jerrum [70] gave a random-
ized 0.651-approximation algorithm for the maximum weight bisection problem. Ye [198] improved
the performance ratio to 0.6993 by combining the Frieze-Jerrum approach with some rotation argu-
ment applied to the optimum solution of the semidefinite relaxation. Halperin and Zwick [86] further
improved the approximation ratio to 0.7016 by strengthening the SDP relaxation with the triangle

inequalities. Details are given below.

Given a graph G = (V,E) (V = {1,...,n}) and edge weights w € RE, the maximum weight
bisection problem reads:
max % 2 ijeR wi;(1 — ziz;)
st. Y,z =0 (89)
Ti,...,Tn € {£1}.

A natural semidefinite relaxation is:

W*:= max %ZijEE wij(l — Xij)
s.t. Xi=1 (Z S V)
(J,X) =0
X >0

(90)

The Frieze-Jerrum approximation algorithm:

1. The SDP optimization phase: Solve the SDP (90), let X be an optimum solution and let
v1,...,Un be vectors such that X;; = UZ-TU]' for all 7, j.

2. The random hyperplane rounding phase: Choose a random unit vector 7 and define the associated
cut §(S) where S := {i € V | rTv; > 0}.
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3. Constructing a bisection: Without loss of generality, assume that |S| > §. For ¢ € S, set W (i) :=
> jes Wij- Order the elements of S as i1,...,%5| in such a way that W (i) > ... > W(i|g) and
define S := {ir, ... in}

Then §(S) is a bisection whose weight satisfies
~ n

w(8(S)) = mww(s». (91)

Consider the random variables W := w(d§(S)) and C := |S|(n — |S|); W is the weight of the cut
§(8) in G while C is the number of pairs (i,j) € V? that are cut by the partition (S,V \ S) (that
is, the cardinality of the cut 6(S) viewed as cut in the complete graph K,,). The analysis of the GW
algorithm from Section 5.3 shows the following lower bounds for the expected values E(W) and E(C):

E(W) > apW*, (92)
E(C) > apC* (93)
where C* := "Tz. Define the random variable

L (94)

Z =
W= = C*

Then, Z < 2 and E(Z) > 2.
Lemma 17. If Z > 2aq then w(5(S)) > 2 (v2a0 — 1) W*.

ProOOF. Set w(d6(S)) = AW* and |S| = on. Then, Z = X+ 40(1 — o) > 2ap, implying A >
2ap — 40(1 — o). Using (91), we obtain that

~ n AW 200 —40(1—0) .
> — = > W > 2(v209 —1 .
w(B()) 2 5 w() = 5 > 009 5 oz - W
(The last inequality being a simple verification.) |

As E(Z) > 2ayp, the strategy employed by Frieze and Jerrum in order to find a bisection satisfying
the conclusion of Lemma 17 is to repeat the above steps 2 and 3 of the algorithm N times, where N
depends on some small € > 0 (N = [1In1]) and to choose as output bisection the heaviest among
the N bisections produced throughout the N runs. Then, with high probability, the largest among
the variables Z produced throughout the N runs will be greater than or equal to 2ag. Therefore, it
follows from Lemma 17 that the weight of the output bisection is at least (2(y/2ap — 1) — ¢)W*. For
€ small enough, this shows a performance ratio of 0.651.

Ye [198] shows an improved approximation ratio of 0.6993. For this, he modifies the Jerrum-Frieze
algorithm in the following way. Instead of applying the random hyperplane rounding phase to the
optimum solution X of (90), he applies it to the modified matrix pX + (1 — p)I, where p is a parameter
to be determined. This operation is analogue to the ‘outward rotation’ used by Zwick [202] for the
max-cut problem and mentioned in Section 5.4.
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The starting point is to replace relations (92) and (93) by
E(W) > aW?* and E(C) > yC* (95)

EW) .4 EC)

where a = a(p) and v = (p) are lower bounds to be determined on the ratios == s

respectively. In fact, the following choices can be made for a,y:

2 arccos(pz)

alp)i= min T, (96)

2 arccos(pz) — x arccos p

’Y(,O) = —1n§nxn<1 p 1—z

(97)

Indeed, E(W) = %ZijeE w;; 2 arccos(pXij) > a(p)W*. By the definition of v(p), 2 arccos(pz) >
(1 —z)y(p) + 2z arccos p for = € [—1,1]. Therefore,

2

2 1 n
E(C)=7 Y. “arccos(pXij) > v(p) Y (1= Xij) + 5 arccosp )y Xij = —(p)
. s e 27 e 4
i#je{l,...,n} i#£] ]

arccos p
2 '

I

For n large enough, the linear term can be ignored and the result follows.
Modify the definition of Z from (94) as

w c
Z = —
we T

a 1

where 7 := 35 < = 1). The proof of Lemma 17 can be adapted to show that, if Z > a + 77,

[0 * —
then E(w(S)) > 1+\/mW . For p = 0.89, one can compute that a(p) > 0.8355, v(p) > 0.9621, and

ﬁ > 0.6993. Therefore, this shows that Ye’s algorithm is a 0.6993-approximation algorithm.

Halperin and Zwick [86] can improve the performance ratio to 0.7016. They achieve this by adding
one more ingredient to Ye’s algorithm; namely, they strengthen the SDP relaxation (90) by adding
the triangle inequalities:

Xij + Xik +Xjk > —1, Xij - X — Xjk > —1 for distinct 4,7,k € {1, R ,n}.

Although triangle inequalities had already been used earlier by some authors to obtain better approx-
imations (e.g., in [64] for the max-cut problem in bounded degree graphs as mentioned in Section 5.4),
they were always analyzed from a local point of view (e.g., in the above mentioned example, in a local
search phase, searching for misplaced vertices). In contrast, Halperin and Zwick are able to make a
global analysis of the contribution of triangle inequalities. Namely, they show that the function ~y(p)
from (97) can be replaced by

1 3(z+1) p> 1- 3z )
/ L — — [ —_
v (p) : _lrgn;;l_% - <arccos(px) + = arccos ( 3 +——arccosp |,

which enables them to demonstrate a better performance ratio (using appropriate values for the
parameters p and 7). (Note that 7/(p) > y(p) for 0 < p < 1.)
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Let us give a flavor of how the function +'(p) comes up. The goal is to find a lower bound for
the ratio Eéf:’) =4 Y 1<i<j<n arccos(pXij). Let A (resp. B, C) denote the set of pairs ij for which
Xi; < —% (resp. —% < X;; <0, 0 < X;; <1). By the triangle inequalities, the graph on {1,...,n}

with edge set A is triangle free, which implies that |A| < %. Thus the optimum value of the following

nonlinear program is a lower bound for Ec(f):

. 4
min  — 5 >, arccos(pzij)

—1§Zij§1(i<j)
.. 2
{ig | 25 < =3} < %
Halperin and Zwick show then that the above minimum can be expressed in closed form as 7'(p).

Feige, Karpinski and Langberg [65] design a 0.795-approximation algorithm for the maximum
bisection problem restricted to regular graphs. One of their key results is the following: Given a cut
4(S) in a regular graph G, one can efficiently construct a bisection 6(S’) whose weight is at least
0.9027 w(d(S)). Hence, if we start with the cut §(S) given as output of the Goemans-Williamson
algorithm, then this gives an approximation algorithm with performance ratio 0.9027 - 0.878 ~ 0.793;
a further improvement is demonstrated in [65].

Extensions to variations of the bisection problem. The following variations of the bisection
problem have been studied in the literature: (i) the mazimum %-vertex cover problem, (ii) the maz-

imum %-dense subgraph problem, (iii) the mazimum F-uncut problem, which ask for a subset S C V/

of size 5 maximizing the total weight of the edges incident to S, contained in S, contained in S or
its complement, respectively. Halperin and Zwick [86] treat these three problems (together with the
maximum bisection problem as well as some directed analogues) in a unified framework and they can
show the best approximation ratios known up to today, namely, 0.8452 for problem (i), 0.6221 for

problem (ii) and 0.6436 for problem (iii).

6.3 Approximating the max k-cut problem

Given a graph G = (V, E), edge weights w € Rff and an integer k > 2, the max k-cut problem asks for
a partition P = (S1,...,Sk) of V whose weight w(P) := 3 1<pcp<k Zijerlics,,jes,, Wij is maximum.
The set of edges whose end nodes belong to distinct classes of the partition is a k-cut, denoted as
0(S1,...,S;). For k = 2, we find the max-cut problem. For any k£ > 2, the max k-cut problem is
NP-hard; moreover, there can be no polynomial time approximation algorithm for it with performance
ratio 1 — 537, unless P=NP [99].

A simple heuristic for max k-cut is to partition V randomly into k£ sets. As the probability
that two nodes fall in the same class is %, the expected weight of the k-cut produced in this way is
Yijer Wij(1— 1) > w(E)(1—4) and, therefore, the simple random partition heuristic has a performance
guarantee of 1 — %

Frieze and Jerrum [70] present an approximation algorithm for max k-cut with performance guar-
antee oy, satisfying

ak—(l—%) _ 1

. 1 .
(1) Qg > 1-— % and llmk%oo 2k—ZInk — o

(ii) ag = ap > 0.878567 (recall (77)), az > 0.832718, ay > 0.850304, a5 > 0.874243, ajp > 0.926642,
Q100 Z 0.990625.
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In particular, the Frieze-Jerrum algorithm has a better performance guarantee than the simple random
heuristic.

One can model the max k-cut problem on a graph G = (V,E) (V = {1,...,n}) by having n

variables x1,...,x, taking one of k£ possible values. For k = 2 the 2 possible values are +1 and for
k > 2 one can choose as possible values a set of k unit vectors aq, ...,a; € RF1 satisfying
78 1 .
aiaj:—j for 1 <i+#j<k.

(Such vectors exist since the matrix k—flfk — k—ile is positive semidefinite.) Hence the max k-cut
problem can be formulated as

mc(G,w) := max % Y ijeE wii (1 — xZT:c]) (98)
st.  z1,...,2n € {a1,...,ar}
and the following is a semidefinite relaxation of (98):
sdpy,(G,w) = max Fl Z ep wij (1 — Xij)
st Xi= (1€V)
. 99
Xij > —,% (i#jeV) (%9)
X t 0

The Frieze-Jerrum approximation algorithm for max k-cut:

1. Solve (99) to obtain unit vectors v1,...,v, satisfying vl v; > —211 (i,7 € V) and sdp(G,w) =
k—1
bt Yijepwii(1 — vl vj).

2. Choose k independent random vectors ry,...,r; € R™. (This can be done by chosing their kn
components as independant random variables from the standard normal distribution with mean
0 and variance 1.)

3. Partition V into Si, ..., S; where S}, consists of the nodes ¢ € V for which v;frh = maxp/—1,. k U;‘Frh/.
(Break ties arbitrarily as they occur with probability 0.)

When k& = 2 the algorithm reduces to the Goemans-Williamson algorithm for max-cut. Given two
unit vectors u,v € R", the probability that max;<x<k uT'r, and maxi<p<k vTr, are both attained by
the same vector within r1,...,7rg depends only on the angle between u and v, i.e., on p := uTv, and
it is equal to k - prob(u?r; = maxi<p<k uT'ry, and vTr) = maxi<p<i vV Try); denote thls probability as
kEI(p) . Then the expected weight of the k-cut §(Si, ..., Sk) produced by the Frieze-Jerrum algorithm
is equal to

Yijer wijprob(ij € 6(S1,. .., Sk)) = Xyjep wii (1 — kI(v] vy))
kI(viv
=Y ijcE Wij <%#ﬂjﬂ)> (kT(l — v} v])) > oy, sdpg (G, w),

setting E 1— k()
— rI(p

= . 100

077 _m1<np<1k—1 1—p (100)

For k = 2, as = ag can be computed exactly. For & > 3, the evaluation of o} is more complicated and
relies on the computation of the function I(p) which can be expressed as a multiple integral. Using a
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Taylor series expansion for I(p), Frieze and Jerrum could show the lower bounds for a; mentioned at
the beginning of this subsection.
For k = 3, de Klerk and Pasechnik [109] give a closed form expression for I(p) which enables them

to show that
73 )
ag =15+ 4,2 arceos (—1/4).

Thus a3 > 0.836008 (instead of the lower bound 0.832718 of Frieze and Jerrum). Goemans and
Williamson [78] find the same expression for ag using another formulation for max 3-cut based on
complex semidefinite programming.

De Klerk, Pasechnik and Warners [108] prove a better lower bound for «y for small k¥ > 3. For
instance, they show that as > 0.857487 (instead of 0.850304). For this they present another approx-
imation algorithm for max k-cut (equivalent to the Frieze-Jerrum algorithm for the graphs G with

Y(G) < k) which enables them to reformulate the function I(p) in terms of the volume of a spherical
simplex and do more precise computations.

6.4 Approximating graph colouring

Determining the chromatic number of a graph is a hard problem. Lund and Yannakakis [137] show
that there is a constant € > 0 for which there exists no polynomial algorithm which can colour any
graph G using at most ny(G) unless P=NP. Khanna, Linial and Safra [106] show that it is not
possible to colour a 3-colourable graph with 4 colours in polynomial time unless P=NP.

On the positive side, Wigderson [193] shows that it is possible to colour in polynomial time a

3-colourable graph with 3[y/n| colours and, more generally, a k-colourable graph with 2kn17k_i1
colours; we will come back to this result later in this section. Later Blum [32] gives a polynomial
time algorithm colouring a 3-colourable graph with O(n% logg n). Using semidefinite programming
and randomized rounding, Karger, Motwani and Sudan [100] could design a better approximation
algorithm. Namely, they present a randomized polynomial time algorithm which colours a 3-colourable
graph with maximum degree A with O(A% VIog Alogn) or O(n%\/loﬂ) colours and, more generally,
a k-colourable graph with O(A!~%/Tog A logn) or O(nlf%ﬂ\/@) colours.

We will show below a weaker version of the Karger-Motwani-Sudan result; namely, how to find a
O(n%387) colouring for a 3-colourable graph.

The first step in the Karger-Motwani-Sudan algorithm consists in solving a semidefinite relaxation
for the colouring problem. We saw in Section 4.2 that the theta numbers 9(G) and ¥'(G) constitute
lower bounds for the chromatic number of G. Karger, Motwani and Sudan consider the SDP program
(62) defining ¥'(G) as SDP relaxation for the colouring problem and they introduce the notion of vector
colouring. A wvector k-colouring of G is an assignment of vectors vy, ..., v, to the nodes of G such that

vl v; < —k—il for every edge ij € E. Then the vector colouring number x,(G) is defined as the smallest
k > 2 for which there exists a vector k-colouring. By the discussion above, x,(G) = ¥'(G); if in the
definition of vector colouring one requires that the inequalities v} v; < —k—il hold at equality for all
edges, then we obtain the strict vector colouring number which coincides with ¥(G). Let us point out
that the gap between the vector chromatic number and the chromatic number can be arbitrarily large.
Indeed, a class of graphs is constructed in [100] having x,(G) = 3 while x(G) > n%013. Moreover,

Feige [61] shows that for all € > 0 there exist families of graphs with x(G) > 9(G)n!~¢.

The hard part in the Karger-Motwani-Sudan algorithm consists of constructing a good proper
colouring from a vector k-colouring. There are two steps: first construct a semicolouring and then
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from it a proper colouring. A k-semicolouring of a graph on n nodes being an assignment of k colours
to at least half of the nodes in such a way that no two adjacent nodes receive the same colour. This
is a useful notion, as an algorithm for semicolouring yields an algorithm for proper colouring.

Lemma 18. Let f : Zy — Z4 be a monotone increasing function. If there is a randomized poly-
nomial time algorithm which f(i)-semicolours every i-vertex subgraph of graph G, then this algorithm
can colour G with O(f(n)logn) colours. Moreover, if there exists some € > 0 such that f(i) = O(i)
for all i, then the algorithm can colour G with f(n) colours.

PrROOF. We show how to colour any p-vertex subgraph H of G. By assumption one can semicolour
H with f(p) colours. Let S denote the set of nodes of H that have not been coloured; then |S| < L.
One can recursively colour the subgraph of H induced by S using a new set of colours.

Let ¢(p) denote the maximum number of colours that the above algorithm needs for colouring an
arbitrary p-vertex subgraph of G. Then,

e(p) <c (12—’) + ).

This recurrence relation implies that ¢(p) = O(f(p) logp). Moreover, if f(p) = p, one can easily verify
that c(p) = O(f(p))- I

In view of Lemma 18, we are now left with the task of transforming a vector k-colouring into a
good semicolouring.

Theorem 19. Every vector 3-colourable graph G with mazimum degree A has a O(Al°8s 2)-semicolouring
which can be constructed in polynomial time with high probability.

PRrROOF. Let vy,...,v, € R® be unit vectors forming a vector 3-colouring of G, i.e., viij < —% for
all edges ij € E; this means that the angle between v; and v; is at least %’r for all edges ij € E.
Choose independently N random hyperplanes. This induces a partition of the space R™ into 2V
regions and one colours the nodes of G with 2%V colours depending in which region their associated
vectors v; are located. Then the probability that an edge is monochromatic is at most 3~V and thus
the expected number of monochromatic edges is at most |E|3~Y < %nAB*N . By Markov’s inequality,
the probability that the number of monochromatic edges is more than twice the expected number is
at most % After repeating the process t times, we find with probability > 1 — % a colouring of G for
which the number of monochromatic edges is at most nA3~. Setting N := 2 + [logg A], we have
nA3™N < 7- As the number of nodes that are incident to a monochromatic edge is < 5, we have
found a semicolouring using 2V < 8Al°832 colours. |

As logz 2 < 0.631, Theorem 19 and Lemma 18 imply a colouring with O(n%%3!) colours. This is

yet weaker than Wigderson’s O(n%?)-colouring algorithm. In fact, the result can be improved using
the following idea of Wigderson.

Theorem 20. There is a polynomial time algorithm which, given a 3-colourable graph G and a con-

stant 6 < n, finds an induced subgraph H of G with maximum degree Ag < § and a 27” colouring of
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G\H.

PrOOF. If G has a node v of degree > ¢, colour the subgraph induced by N(v) with two colours and
delete {v} UN (v) from G. We repeat this process using two new colours at each deleted neighborhood
and stop when we arrive at a graph H whose maximum degree is less than 4. |

Applying Theorem 20 with 6 = y/n and the fact that a graph with maximum degree A has a
(A +1)-colouring, one finds Wigderson’s polynomial algorithm for colouring a 3-colourable graph with

3[v/n] colours.

Theorem 21. A 3-colourable graph can be coloured with O(n®387)

domized algorithm.

colours by a polynomial time ran-

PROOF. Let G be a 3-colourable graph. Applying Theorem 20 with § := n%613 we find an induced
subgraph H of maximum degree Ay < ¢ and a colouring of G\ H using %T" = O(n37) colours. By
Theorem 19 and Lemma 18, H can be coloured with O('°832) = O(n®387) colours. This shows the
result. |

In order to achieve the better O(n% v/Iogn) colouring for a 3-colourable graph, one has to improve
Theorem 19 and show a O(A%M)—semicolouring. For this, Karger, Motwani and Sudan use
another randomized technique for constructing a colouring from a vector colouring whose analysis is
more sophisticated, that we do not describe here.

6.5 Approximating the maximum stable set and vertex cover problems

Determining the stability number of a graph is a hard problem. Arora et al. [16] show the existence
of a constant ¢ > 0 for which there is no polynomial time algorithm permitting to find a stable set
in a graph G of size at least n™a(G) unless P=NP. We saw in Section 4.2 that the theta number
Y¥(G) is a polynomially computable upper bound for a(G) which is tight for perfect graphs, in which
case a maximum cardinality stable set can be found in polynomial time. For general graphs, the gap
between a(G) and ¥(G) can be arbitrarily large. Indeed, Feige [61] shows that for all € > 0 there is a
family of graphs for which 9(G) > n'=¢a(G). The proof of Feige is nonconstructive; Alon and Kahale
[6] give the following constructive proof for this result.

Theorem 22. For every € > 0 one can construct a family of graphs on n nodes for which 9(G) >
(3 —e)n and a(G) = O(n®) where 0 < § < 1 is a constant depending on .

Proor. Given integers 0 < s < g, let Gy, denote the graph on n = (2qq) nodes corresponding to all
subsets A of @ := {1,...,2q} with cardinality |A| = g, where A, B are adjacent if |AN B| =s. We
begin with evaluating the theta number of G 5. For every vertex A of Gys, set da := (z 4+ 1)x* — x©,
where z is the largest root of the quadratic polynomial sz — 2(g—s)z+s =0. Then, d:";dB = 0 for all
adjacent A, B. Therefore, the vectors vy := Hg—:” form an orthonormal representation of @qs. Setting
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(1,...,1)T and using the definition from Theorem 11, we obtain:

Sy
_Q

(x —1)2 _ng—2s
2z2+1) 2q-s

D(Ggs) > D (d"va)> =n
A

In order to evaluate the stability number of Gy,, one can use the following result of Frankl and Raodl
[69]: For every v > 0, there exists 0 < § < 1 for which a(Gys) < nd if y¢ < s < (1 —7)q.
We now indicate how to choose the parameters g,s in order to achieve the conclusion of the

theorem. Let € > 0 be given. Define s as the largest integer for which s <  and 2‘%;3; > % — € (ie.,

s < 1%356). Choose 7 such that 0 <y < 2. Then 7¢ < s < (1 — v)q and thus a(Gys) < n® for some
0 < § <1 by the Frankl-R6dl result. |

On the positive side, Alon and Kahale [6] show the following two results; we present the second
one without proof.

Theorem 23. Let G be a graph on n nodes, k > 3, m > 1 be integers. If 9(G) > T +m, then an

3
independent set of cardinality Q(mF+1 log_% m) can be found in randomized polynomial time.

PRrROOF. Using the definition of ¥(G) from Theorem 11, there exist unit vectors d,vi,...,v, where
v1,...,v, form an orthonormal representation of G. These vectors can be found in polynomial time
since, as the proof of Theorem 11 shows, they can be computed from an optimum solution to the SDP
program (53). Order the nodes in such a way that (d7vy)? > ... > (dTv,)?. As 9(G) > % + m and
(d"v;)? < 1 for all i, we have (d"v;,)? > £. Let H denote the subgraph of G induced by the nodes
1,...,m. Then, vq,...,v,, is an orthonormal representation of H, the complementary graph of H.
Using the definition of the theta number from Theorem 13, we deduce that

— 1
HH) < — < k.
(H) < max oms7 S
Therefore, H has a vector k-colouring. Applying the Karger-Motwani-Sudan results from the preceding
3
subsection, one can find in randomized polynomial time a O(m'~#+1y/logm) colouring of H. Then

the largest colour class in this colouring has cardinality Q(mk%l logfé m). |

Theorem 24. If G is a graph on n nodes such that ¥(G) > Mnl=% for an appropriate absolute
constant M, one can find in polynomial time a stable set in G of cardinality k. |

We now turn to the vertex cover problem. A subset X C V is a vertex cover if every edge is
adjacent to a node in X; that is, if V'\ X is a stable set. Denote by vc(G) the minimum cardinality of
a vertex cover in G. Thus ve(G) = n— a(G) and determining ve(G) is therefore an NP-hard problem.

It is well known that ve(G) can be approximated to within a factor of 2 in polynomial time using
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an LP relaxation of the problem. Indeed, consider the LP problem:

Ip(G):== min >,y
st. xi+xz;>1 (ij € E) (101)
0<z; <1 (i€V)

which is a linear relaxation of the vertex cover problem:

ve(G) == min Yy @
st. zTit+z;>1 (ij € E) (102)
z; € {0,1} (ieV).

Obviously, Ip(G) < ve(G). Moreover, ve(G) < 2-1p(G); indeed, given an optimum solution z to (101),
the set X := {i € V | z; > 1} is a vertex cover whose cardinality satisfies |I| < 2 Ip(G).

The existence of a polynomial time approximation algorithm for the vertex cover problem with
performance ratio 2 — € is open for any € > 0. A natural idea for finding a better approximation
algorithm is to try using a semidefinite relaxation, the most natural candidate being the theta number;
more precisely, the quantity n — ¥(G) which constitutes a lower bound for ve(G). A first observation
is that this SDP bound is at least as good as the LP bound; namely,

n—9(G) > Ip(G).

To see it, use the definition from Theorem 11. let d be a unit vector and vy, ...,v, an orthonormal
representation of G such that 9(G) = 3,y (d7v;)2. Set z; :=1— (d"v;)? (i € V). Then z is a feasible
solution to the program (101) which shows that Ip(G) < >, z; = n — 9(QG).

Kleinberg and Goemans [107] construct a class of graphs G for which the ratio nvféc’g converges
to 2 as n goes to infinity, which shows that no improvement is made by using SDP instead of LP. In
fact, the class of graphs constructed in Theorem 22 displays the same behaviour.

6.6 Approximating MAX SAT

An instance of the MAX SAT problem in the Boolean variables 1, ..., 2, is composed of a collection
C of clauses C with nonnegative weights w¢ associated to them. Each clause C' is of the form
21 V...V 2 where each z; is either a variable z; or its negation Z; (called a literal); k is its length and
C is satisfied if at least one of the literals zi,..., 2 is assigned value 1 (if a variable z; is assigned
value 1 then its negation Z; is assigned value 0 and vice versa). The MAX SAT problem consists of
finding an assignment of 0/1 values to the variables z1,...,z, so that the total weight of the satisfied
clauses is maximized. Given an integer k > 1, the MAX kSAT problem is the special instance of MAX
SAT where each clause has length at most k¥ and MAX EESAT is the instance where all clauses have
length exactly k; an instance of MAX SAT is said to be satisfiable if there is an assignment of the x;’s
satisfying all its clauses.

The MAX SAT and MAX kSAT problems are NP-hard. Moreover, Hastad [89] proved that, for
any € > 0, there is no (% + €)-approximation algorithm for MAX SAT, unless P=NP; his result also
holds when restricted to satisfiable instances of MAX E3SAT.

A %-approximation algorithm for MAX SAT. The first approximation algorithm for MAX SAT
is the following %—approximation algorithm due to Johnson [98]. Given p; € [0,1] (i = 1,...,n), set

independently and randomly each variable x; to 1 with probability p;. Then the probability that a
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clause C := vielgwi V vielgji is satisfied is equal to 1 — Hie%(l — i) Hiel5 p;. If we set all p;’s to %,

then the total expected weight Wi of satisfied clauses satisfies:

“ 1 1
lezwc(l—zTc)Zész
cec cec

where kg is the length of clause C'. Therefore, this gives a randomized %—approximation algorithm
for MAX SAT or a (1 — 2 *)-approximation algorithm for instances of MAX SAT where all clauses
have length > k (thus with performance ratio % for MAX E2SAT and % for MAX E3SAT); it can be
derandomized using the method of conditional probabilities.

Goemans and Wiliamson [76] give an improved %—approxima‘cion algorithm using linear program-
ming. Consider the integer programming problem:

max . ccc W20

st. 2o < Zie% Yi + Ziel& (1-vy;) (CeC)
0<zc<1(CeC)
y; € {0,1} (i =1,...,n)

(103)

and let Z7 p denote the optimum value of its linear programming relaxation obtained by relaxing the
condition y; € {0,1} by 0 < y; < 1. If (y, 2) is an optimum solution to (103), letting x; = 1 if and
only if y; = 1, then clause C is satisfied precisely when zo = 1; hence (103) solves the MAX SAT
problem. The GW approximation algorithm goes as follows. First solve the LP relaxation of (103) and
let (y,z) be an optimum solution to it. Then apply the Johnson’s algorithm using the probabilities

k
pi = y;; that is, set z; to 1 with probability y;. Setting [ := 1 — (1 — %) and using the fact that
1—Tl;e P (1—w) [ic 1z Yi > Bro2c, we find that the expected weight W, of satisfied clauses satisfies:

Wo=Y wo |1- [[@=w) [ wvi| =D wezcBhe

cec 13 iely Cec

As By is decreasing with k, this gives a randomized [j-approximation algorithm for instances of MAX

SAT where all clauses hav$ at most k literals; thus a (1 — %)—approximation algorithm for MAX SAT,
ye =1

In order to obtain theepromised % performance ratio, it suffices to combine the above two algo-
rithms. For this, note that %(1 — 2% + Bk) > % for all k > 1. Therefore, %(Wl + Wg) > %ZEP. Hence
the following is a %—approximation algorithm for MAX SAT: with probability %, use the probabilities
p; = % for determining the variables z; and, with probability %, use instead the probabilities p; := ;.

Better approximation algorithms can be obtained using semidefinite relaxations instead of linear

ones combined with adequate rounding techniques, as we now see.

since limg (1 — %

The Goemans-Williamson qp-approximation algorithm for MAX 2SAT and their 0.7554-
approximation algorithm for MAX SAT. Using a semidefinite relaxation for MAX SAT instead
of a linear one and the hyperplane rounding technique, one can show a better approximation algorithm.
It is convenient to introduce the new Boolean variables x,,+; = Z; for ¢ = 1,...,n. Then a clause C can
be expressed as a disjunction C' = V., z;, of the variables x1,...,zo,, with Ic C {1,...,2n}. It is
also convenient to work with +1 variables v; (instead of y; € {0,1}) and to introduce an additional +1
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variable vg, the convention being to set x; to 1 if v; = —vp and to 0 if v; = vg. Hence the formulation
(103) of MAX SAT can be rewritten as

max Zoecwc’zc

st 20 < Ve, XY (CE€C)
0<zz<1 (CeC) (104)
Vi Upypi=—1 (i=1,...,n)
V0,V1,...,U2p € {:l:l}.

For each clause C = x; V z; of length 2, one can add the constraint:

(105)

ZC§1—<1+UO'%> (1+UO'UJ'> _ 3 —w0-vi —vo-vj — ViV

2 2 4

Co o . s
which, in fact, implies the constraint zo < e ”20 %

Let (SDP) denote the semidefinite relaxation of the program (104) augmented with the constraints
(105) for all clauses of length 2, which is obtained by introducing a matrix variable X = (X;;)?"_y = 0
and replacing each product v; - v; by X;;. In other words, this amounts to replacing the constraint
Vo, - - - ,V2n € {£1} by the constraint vp, ..., vz, € S, S" being the unit sphere in R**! (the product
v; - v; meaning then the inner product v} v;).

Goemans and Williamson [77] show that their basic agp-approximation algorithm for max-cut ex-
tends to MAX 2SAT. Namely, solve the relaxation (SDP) and let vy,...,v, be the optimum unit
vectors solving it; select a random unit vector » and let H, be the hyperplane with normal vector
r; set x; to 1 if the hyperplane H, separates vp and v; and to 0 otherwise. Let 60;; denote the angle
(vi,v;). Then the probability prob(uvg,v;) that the clause z; is satisfied is equal to the probability that

H, separates vg and v; and thus

O
prob(vg, v;) = ﬂ;
T

the probability prob(vg,v;,v;) that the clause x; V x; is satisfied is equal to the probability that a
random hyperplane separates vg from at least one of v; and v; which can be verified to be equal to

1
prob(vo, vi,vj) = %(901' + 6o; + 0i5)
using the inclusion/exclusion principle. Therefore, for a clause C = z; V x;, we have

prob(vo, v, v;)

> g Bo; + 00]' + ei]’
Vs

> ao,
3 — cos fg; — cos ty; — cos 0;;

zC

where o >~ 0.87856 is the Goemans-Williamson ratio from (77). The above relation also holds when
i = j, i.e., when C is a clause of length 1, in which case one lets prob(vg,v;,vj) = prob(vo,v;). Hence
the expected total weight of satisfied clauses is greater than or equal to ag times the optimum value
of the relaxation (SDP); this gives therefore an ap-approximation algorithm for MAX 2SAT.

This improved MAX 2SAT algorithm leads to a slightly improved 0.7554-approximation algorithm
for general MAX SAT. For this, one considers the following three algorithms: (1) set x; to 1 indepen-
dently with probability p; := %; (2) set z; to 1 independently with probability p; := 1—23“7%; (3) select
a random hyperplane H, and set z; to 1 if H, separates vy and v; (the v;’s being the optimum vectors
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to the relaxation (SDP)). One chooses algorithm (i) with probability ¢; where ¢ = g2 = 0.4785 and
q3 =1 —q1 — g2 = 0.0430. Then the expected weight of the satisfied clauses is at least

Z cho(§q1+Q3-ao>+ Z wCzC'Q1(1_2_k+1_(1_E>>
C‘kC§2 C‘kcz3

which can be verified to be at least 0.7554 -}~ wczc.

The improved Feige-Goemans 0.931-approximation algorithm for MAX 2SAT. Feige and
Goemans [63] show an improved performance ratio of about 0.931 for MAX 2SAT. For this, they
strengthen the semidefinite relaxation (SDP) by adding to it the triangle inequalities:

Xoi + Xoj + Xij > =1, Xo;i — Xoj — Xij > —1, —Xoi — Xoj + Xij > —1 (106)
forall 4,5 € {1,...,2n}. Moreover, they replace the vectors vy, v1,..., v, (obtained from the optimum
solution to the strengthened semidefinite program) by a new set of vectors vy, ..., v, obtained by

applying some rotation to the v;’s. Then the assignment for the Boolean variables x; are generated
from the v} using as before the hyperplane rounding technique.

Let us explain how the vectors v, are generated from the v;’s. Let f : [0, 7] — [0, 7] be a continuous
function such that f(0) = 0 and f(m —6) = m — f(#). As before, 6;; denotes the angle (v;,v;). The
vector v; is rotated in the plane spanned by vg and v; until it forms an angle of f(fy;) with vg; the
resulting vector is v;. If v; = vp then v = v;. Moreover, let v;,; = —v; fori = 1,...,n. Let §;; be the
angle (v}, v;) Then 6; = f(6o;) and Feige and Goemans [63] show the following equation permitting
to express 6;; in terms of 6;;:

cos 0;; — cos 0y; cos by,
cos f;; = cos b, cos b, + 4 ) ¢

in 0, sin ;.. 107
Sineoi Sineoj SHLPo; St 0j ( )

The probability that the clause x; V x; is satisfied is now equal to

O + Oh; + 0l

b o) =
prob(vg, v;, v5) 5

(2]
while the contribution of this clause to the objective function of the semidefinite relaxation is

3 — cos Bp; — cos Bp; — cos b;;
1 .

2C >

The performance ratio of the approximation algorithm using a rotation function f is, therefore, at

least ) ) /
B(f) = min 2 . 001 + b2 + 012

T 3 — cosfy; — cosbyy — cos b

where the minimum is taken over all 6y1, 6p2, 012 € [0, 7] for which cos b1, cosbpz, cosbi2 satisty the
triangle inequalities (106). Recall that 6f; = f(fo;) and relation (107) permits to express 6/, in terms
of 901, 902 and 912.

Feige and Goemans [63] used a rotation function of the form

A0) = (1 A)9+Ag(1 — cosf) (108)
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and, for the choice A = 0.806765, they claim the lower bound 0.93109 for 5(f). Proving a correct
evaluation of B(f) is a non trivial task, since the minimization program defining 3(f) is too complicated
to be handled analytically. Zwick [203] makes a detailed and rigorous analysis enabling him to prove
a performance ratio of 0.931091 for MAX 2SAT.

The Matuura-Matsui 0.935-approximation algorithm for MAX 2SAT. Matuura and Matsui
[141] design an approximation algorithm for MAX 2SAT with performance ratio 0.935. As in the
Feige-Goemans algorithm, their starting point is to use the semidefinite relaxation (SDP’) of MAX
2SAT obtained from (104) by adding the constraints (105) for the clauses of length 2 and the triangle
inequalities (106); they fix vg to be equal to (1,0,...,0)T. Let vy,...,v, be the unit vectors obtained
from an optimum solution to the program (SDP’). No rotation is applied to the vectors v; as in
the Feige-Goemans algorithm. The new ingredient in the algorithm of Matuura-Matsui consists of
selecting the random hyperplane using a distribution function f on the sphere which is skewed towards
vg and uniform in any direction orthogonal to vg, instead of a uniform distribution.

Let F,, denote the set of functions f : S™ — Ry satisfying [¢n f(v)dv =1, f(v) = f(—v) for all
v € 8" and f(u) = f(v) for all u,v € S™ such that u’vg = vTvg. Let f € F, and let the random
unit vector r be now chosen according to the distribution function f. Then, prob(v;,v; | f) denotes
the probability that the clause x; V x; is satisfied, i.e., as before, the probability that sign(rTvg) #
sign(r?v;) or sign(rTvg) # sign(r?v;). Let P denote the linear subspace spanned by vp, v;,v; and let
f denote the distribution on $2 obtained by projecting onto P; that is, f(v') := fT(v,) f(v)dv, where
T'(v") is the set of all v € S™ whose projection on P is parallel to v'. Then the new approximation
ratio of the algorithm is equal to

prob (vi, v; | f)
1/4(3 = vfv; — vlvj — vlvj)

o ; = min
f

where the minimum is taken over all v;,v; € S 2 which together with vg = (1,0,0)7 have their pairwise
inner products satisfying the triangle inequalities (106).

The difficulty consists of constructing a distribution function f € F,, for which « i is large. Matuura
and Matsui [141] show the following. The function

g(v) == cos¥/13(9) for all v € §? with |vl'v| = cos, (109)

is a distribution function on S? belonging to Fo; it satisfies oy > 0.935 (this is proved numerically);
and there exists f € F,, for which f = g.

The Karloff-Zwick %—approximation algorithm for MAX 3SAT. Karloff and Zwick [102]
present an approximation algorithm for MAX 3SAT whose performance ratio they conjecture to
be equal to 7/8 = 0.875, thus the best possible since Hastad [89] proved the non existence of an
approximation algorithm with performance ratio > 7/8 unless P=NP. Previous algorithms were using
a reduction to the case of MAX 2SAT; for instance, Trevisan et al. [190] give a 0.801-approximation
algorithm for MAX 3SAT using the Feige-Goemans 0.931 result for MAX 2SAT. Karloff and Zwick do
not make such a reduction but consider instead the following direct semidefinite relaxation for MAX
3SAT:
max Y ;ke(l,...2n} WijkZijk
st 2 < relax(vo, vi, vy, vg)
Vi Upyi=—1 (i=1,...,n)
Vo, ---,V2n € Sn, Zijk € R,
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where z;j, is a scalar attached to the clause z; V z; V z} and

(vo + vi) " (vi + v;)
4

(vo + v;) T (v; + )
4

(vo + vi)” (v; + vk)
4

11— 11— 1)

relax(vp, v;, v, v) := min(1 —
Note indeed that when the v;’s are +1 scalars, then relax(vg,v;,v;,vx) is equal to 0 precisely when
vg = v; = vj = v, which corresponds to setting all variables x;,z;,z) to 0 and thus to the clause
x; V x; V x, not being satisfied.

Denote again by prob(vg, vs, vj, vg) the probability that ; V z; V x, is satisfied and set

ob Vs
ratio(vo, vi, vj, Vg) = prob(vo, vi, vj, vk)

relax(vo, vi, vj, vk)

For a clause of length 1 or 2 (obtained by letting j = k = 0 or k = 0), it follows from the analysis of
the GW algorithm that ratio(vg, vi, vj,vg) > ag > %. For clauses of length 3, the analysis is technically
much more involved and requires the computation of the volume of spherical tetrahedra as we now
see.

Clearly, prob(vg,vi,vj,vk) is equal to the probability that the random hyperplane H, separates v
from at least one of v;,v;,v; and thus to

1 —2-prob(rTv, > 0 VYh = 0,1, ], k).

We may assume without loss of generality that vg, v;, vj, vi lie in R* and, since we are only interested in
the inner products 77 v, we can replace r by its normalized projection on R* which is then uniformely
distributed on the sphere S3. Define

T (vo, vi,vj,v) = {r € S3 | rTop, >0 Vh = 0,1,4,k}.

Then, prob(vg, v, vj,v,) = 1 — 2+ W, where vol(.) denotes the 3-dimensional spherical

volume. As vol(S®) = 272, we find that

vol(T (vo, s, vj, vk))
. .

prob(vg, vi, v, v5) =1 —2- -
When the vectors vg, v;,vj, v are linearly independent, T'(vg,v;,v;,vx) is a spherical tetrahedron,
whose vertices are the vectors vj, v}, v}, v}, € S3 satisfying v}fv), > 0 for all h and v,{lvfw = 0 for all
distinct A1, ho. That is,

T(vo,vi,vj,vk) ={ D> onvh|an >0, > ap=1}
h=0,1,j,k I

Therefore, evaluating the quantity ratio(vo,v;, vj, vx) and thus the performance ratio of the algorithm
relies on proving certain inequalities about volumes of spherical tetrahedra.

Karloff and Zwick [102] show that prob(vo,v;, v;,vx) > % whenever relax(vo, v;, vj,v;) = 1, which
shows a performance ratio % for satisfiable instances of MAX 3SAT. Their proof is computer assisted
as it involves one computation carried out with Mathematica. Zwick [204] can prove the performance
ratio % for general MAX 3SAT. Although his proof is again computer assisted, it can however be
considered as a rigorous proof since it is carried out using a new system called RealSearch, written
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by Zwick, which involves only interval arithmetic (instead of floating point arithmetic). We refer to
Zwick’s paper for an interesting presentation and discussion.

Further extensions. Karloff and Zwick [102] describe a procedure for constructing strong semidef-
inite relaxations for general constraint satisfaction problems and thus for MAX ESAT. Halperin and
Zwick [87] study approximation algorithms for MAX 4SAT using the semidefinite relaxation provided
by the Karloff-Zwick recipe. The analysis of the classic hyperplane rounding technique necessitates
now the evaluation of the probability prob(vy,...,vs) that a random hyperplane separates vy from at
least one of vy, . ..,v4. Luckily, using the inclusion/exclusion formula, this probability can be expressed
in terms of the probabilities prob(v;,v;) and prob(v;,v;,vg,v,) that were considered above. In this
way, Halperin and Zwick can show a performance ratio of 0.845173 for MAX 4SAT, thus below the
target ratio of %. They study in detail a variety of other possible rounding strategies which enables
them to obtain some improved performance ratio, like 0.8721.

6.7 Approximating the maximum directed cut problem

Given a directed graph G = (V, A) and weights w € Qﬁ associated to its arcs, the mazimum directed
cut problem asks for a directed cut 67(5) of maximum weight where, for S C V, the directed cut (or
dicut) 61(S) is the set of arcs ij with ¢ € S and j ¢ S. This problem is NP-hard, since the max-
cut problem in a undirected graph H reduces to the maximum dicut problem in the directed graph
obtained by replacing each edge of H by two opposite arcs. Moreover, no approximation algorithm
for the maximum dicut problem exists having a performance ratio > % unless P=NP [89].

The simple random partition algorithm (which assigns each node to S independently with proba-
bility %) has a performance ratio %. Goemans and Williamson [77] show that their basic approximation
algorithm for max-cut can be extended to the maximum dicut problem with performance ratio 0.79607.
Feige and Goemans [63] prove an improved performance ratio of 0.859. These algorithms use the same
ideas as the algorithms for MAX 2SAT presented in the same papers. Before presenting them, we
mention a simple %—approximation algorithm of Halperin and Zwick [88] using a linear relaxation of
the problem; this algorithm can in fact be turned into a purely combinatorial algorithm.

A %—approximation algorithm by Halperin and Zwick. Consider the following linear program:

max ZijeA wijzij

s.t. Zij < x4 (l] S A)
Zijgl—.’lﬁj (l]EA)
0<zi<1 (ieV).

(110)

If we replace the linear constraint 0 < x < 1 by the integer constraint = € {0,1}" then we obtain a
formulation for the maximum dicut problem; the dicut 6 (S) with S = {i | ; = 1} being an optimum
dicut. Halperin and Zwick [88] show that the program (110) has a half-integer optimum solution. To
see it, note first that (110) is equivalent to the program:

max ;e a WijZij
st. zij+ 2z < 1 (Z] €A, jke A) (111)
0<2; <1 (Z]EA)
Indeed, if (z,z) is feasible for (110), then z is feasible for (111); conversely, if z is feasible for (111)

then (z,z) is feasible for (110), where x; := max;jea 2;; if 67(7) # 0 and z; := 0 otherwise. Now, the
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constraints in (111) define in fact the fractional stable set polytope of the line graph of G' (whose nodes
are the arcs, with two arcs being adjacent if they form a path in G). Since the vertices of the fractional
stable set polytope are half-integral, it follows that (111) and thus (110) has a half-integral optimum
solution (z, z). Then one construct a directed cut 67 (S) by putting node i € V in S with probability
z;. The expected weight of §7(S) is at least %sz. Therefore, this gives a %—approximation algorithm.
Moreover, this algorithm can be made purely combinatorial since a half-integral solution can be found
using a bipartite matching algorithm (see [88]).

The Goemans-Williamson 0.796-approximation algorithm. One can alternatively model the
maximum dicut problem in the following way. Given vy, v1,...,v, € {£1} and S :={i € {1,...,n} |
v; = vo}, the quantity

1 1
Z(l—l—vo-vi)(l—vo-vj) = Z(l—i—vo-vi—vo-vj —’Ui-’Uj)
is equal to 1 if 45 € 67 (S) and to 0 otherwise. Therefore, the following program solves the maximum
dicut problem:
max ZijeAwiji(l +vg-v; — Vg - Vj — V5 Uj)
st. v, v1,...,0, € {£1}

Let (SDP) denote the relaxation of (112) obtained by replacing the condition v, v1,...,v, € {£1}

(112)

by the condition vg,v1,...,v, € S™ and let z44, denote its optimum value. Goemans and Williamson
propose the following analogue of their max-cut algorithm for solving the maximum dicut problem:
Solve (SDP) and let vy, ...,v, be an optimum solution to it; select a random unit vector r and let

S:={ie{l,...,n}|sign(vy-r) =sign(v; - 7)}. Let ;; denote the angle (v;,v;). Then the expected
weight E(S) of the dicut §1(S) is equal to
1
E(S) = Z wij%(_em‘ + 0o + 655).
ijeA
In order to bound E(—f), one has to find lower bounds for the quantity
sdp
z —0p; + 90j + 91']'
714 cosBy; — cosbp; — cosbi;

Goemans and Williamson show the lower bound

- 2 2m—30
P cpeal s 7T 1 Bcos 070007

for it. Therefore, the above algorithm has performance ratio 8 > 0.79607.

The Feige-Goemans approximation algorithm. Feige and Goemans [63] propose an improved
approximation algorithm for the maximum dicut problem analogue to their improved approximation
algorithm for MAX 2SAT. Namely, strengthen the semidefinite program (SDP) by adding to it the
triangle inequalities (106); replace the vectors vy, .. ., v, obtained as optimum solution of the strength-
ened SDP program by a new set of vectors vy, . .., v, obtained by applying some rotation function to the
v;’s; generate from the v!’s the directed cut 67 (S) where S := {i € {1,...,n} | sign(v)-r) = sign(v}-r)}.
Thus one should now find lower bounds for the quantity

2 — G + O + 0,
71+ cosbp; — cosby; — cosb;;
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Using the rotation function fy from (108) with A = %, Feige and Goemans claim a preformance ratio
of 0.857. Zwick [203] makes a detailed analysis of their algorithm enabling him to show a performance
ratio of 0.859643 (using an adequate rotation function).

The Matuura-Matsui 0.863-approximation algorithm. Matuura and Matsui [140] propose
an approximation algorithm for the maximum directed cut problem with performance ratio 0.863.
Analagously to their algorithm for MAX 2SAT presented in the previous subsection, it relies on solv-
ing the semidefinite relaxation strengthened by the triangle inequalities (106) and applying the random
hyperplane rounding phase using a distribution on the sphere which is skewed towards vg and uniform
in any direction orthogonal to vg. As concrete choice, they propose to use the distribution function
on §?

g(v) = cos'/8(6) for all v € S? with v v| = cos 6 (113)

which can be realised as projection of a distribution on S™ and permits to show an approximation
ratio of 0.863. (Compare (113) with the function g from (109) used for MAX 2SAT.)
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7 Further Topics

7.1 Approximating polynomial programming using semidefinite programming

We come back in this section to the problem of approximating polynomial programs using semidefinite
programming, which was already considered in Section 3.7. We present here the main ideas underlying
this approach. They use results about representations of positive polynomials as sums of squares and
moment sequences. Sums of squares will again be used in the next subsection for approximating the
copositive cone. We then mention briefly some extensions to the general problem of testing whether
a semi-algebraic set is empty.

Polynomial programs, sums of squares of polynomials, and moment sequences. Consider
the following polynomial programming problem:

min g(z) subject to ge(z) >0 ({=1,...,m) (114)

where g, g¢ are polynomials in = (z1,...,2,). This is a very general problem which contains linear
programming (when all polynomials have degree one) and 0/1 linear programming (since the integrality
condition z; € {0,1} can be expressed as the polynomial equation: x? — x; = 0). We mentioned in
Section 3.7 that, under some technical assumption, the problem (114) can be approximated (getting
arbitrarily close to its optimum) by the sequence of semidefinite programs (51). This result, due
to Lasserre [115], relies on the fact that certain positive polynomials can be represented as sums
of squares of polynomials. This idea of using sums of squares of polynomials for approximating
polynomial programs has been introduced by Shor [183, 184, 185] and used by several other authors
including Nesterov [151] and Parrilo [155, 156]; it seems to yield a more powerful method than other
existing algebraic methods (see [157] for a comparison).

We would like to explain briefly here the main ideas underlying this approach. For simplicity,

consider first the unconstrained problem:
p* := ming(z) subject to z € R" (115)

where g(z) = 3 ,cg,, 9ar® is a polynomial of even degree 2d; here Sy denotes the set of sequences
a € ZI with |af := Y77~ o; < k for any integer k. One can assume w.l.o.g. that g(0) = go = 0. In what
follows the polynomial g(z) is identified with its sequence of coefficients g = (ga)acs,,- Obviously,
(115) can be rewritten as

p* = max\ subject to g(z) — A >0 Vz e R". (116)

Testing whether a polynomial is nonnegative is a hard problem, since it contains the problem of testing
whether a matrix is copositive (see the next subsection). Lower bounds for p* can be obtained by
considering sufficient conditions for the polynomial g(z) — A to be nonnegative on R™. An obvious
such sufficient condition being that g(z) — A be a sum of squares of polynomials. Therefore,

p* > max A subject to g(z) — A is a sum of squares. (117)

Testing whether a polynomial p(x) is a a sum of squares amounts to testing feasibility of a semidefinite
program (cf., e.g., [L66]). Indeed, say p(x) has degree 2d, and let z := (2%)4cs, be the vector consisting
of all monomials of degree < d. Then one can easily verify that p(x) is a sum of squares if and only if
p(z) = 27 Xz (identical polynomials) for some positive semidefinite matrix X. For v € Sag, set

B, = > E.p,
a,B€84|la+B=y
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where E, g is the elementary matrix with all zero entries except entries 1 at positions («, 5) and (8, «).

Proposition 25. A polynomial p(z) of degree 2d is a sum of squares if and only if the following
semidefinite program:
X =0, (By,X) =py (v € Sa2) (118)

is feasible, where X is of order (";d) and with (";rdzd) equations.

PrROOF. As z/'Xz = 20,85, Xa,gxa+5 = DS, &) (ZafgeSd Xa,ﬁ) = Y8,y (By, X), p(z) =
a+B=y

2T Xz for some X > 0 (which is equivalent to p(z) being a sum of squares) if and only if the system
(118) is feasible. |

Note that the program (118) has a polynomial size for fixed n or d. Based on the result from Propo-
sition 25, one can reformulate the lower bound for p* from (117) as

p* > max A = max —(Bp,X) (119)
s.t.  g(z) — X\ is a sum of squares st.  (By,X) =gy (v € S2q\ {0}).
One can alternatively proceed in the following way for finding lower bounds for p*. Obviously,
p=min [ g@)du(z) (120)

where the minimum is taken over all probability measures o on R"™. Define a sequence y = (Ya)acS,y
to be a moment sequence if yo = [ x®du(x) (o € Saq) for some nonnegative measure p on R”. Hence,
(120) can be rewritten as

p* = minZgaya s.t. ¥ is a moment sequence and yg = 1. (121)

«

Lower bounds for p* can be obtained by replacing the condition that y be a moment sequence by a
necessary condition for it. An obvious such necessary condition is that the moment matrix MZ%(y) =
(Ya+8)a,pes, (recall (49)) be positive semidefinite. Thus we find the following lower bound for p*:

p* > mingly subject to MZ(y) > 0 and yo = 1. (122)

Note that the constraint in (122) is precisely condition (51) (when there are no constraints ge(z) > 0).
Since M%(y) = Boyo + Z By, the semidefinite programs in (122) and in (119) are in fact dual

v€S24\{0}
of each other, which reflects the duality existing between the theories of nonnegative polynomials and

of moment sequences.

*

The lower bound from (119) is equal to p* if g(x) — p* is a sum of squares; this holds for n = 1
but not in general if n > 2. In general one can estimate p* asymptotically by a sequence of SDP’s
analogue to (119) if one assumes that an upper bound R is known a priori on the norm of a global
minimizer x of g(z), in which case

n

p* = min g(z) subject to g1(z) :== R — sz

)
=1
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Indeed, one can then use a result of Putinar [167] (quoted in Theorem 26 below) and conclude that, for
any € > 0, the polynomial g(x) —p*+ € is positive on F := {x | g1(x) > 0} and thus can be decomposed
as p(z) + p1(x)g1(x) for some polynomials p(x) and p;(x) that are sums of squares. Testing for the
existence of such decomposition can be expressed as a SDP program analogue to (119). Its dual
(analogue to (122)) reads:

p; :=min gTy subject to My(y) >0, M;_1(g1 *y) = 0, yo = 1.
Putinar’s result permits to show the asymptotic convergence of p; to p* when ¢t goes to infinity.

Theorem 26. [167] Let g1,. .., gm be polynomials and set F := {x € R" | g1(x) > 0,...,gm(z) > 0}.
Assume that F' is compact and that there exists a polynomial u satisfying (i) the set {x € R” | u(z) > 0}

is compact and (1i) u can be decomposed as ug + Y j=; ugge for some polynomials uo,...,um that
are sums of squares. Then every polynomial p(x) which is positive on F can be decomposed as
D =Dpo+ Y peq Pege for some polynomials py, . ..,pm that are sums of squares.

The above reasoning extends to the general program (114) if the assumption of Theorem 26 holds.
This is the case, e.g., if the set {z | g;(z) > 0} is compact for one of the polynomials defining F'. Then,
Putinar’s result permits to claim that, for any € > 0, the polynomial g(x) — p* + € can be decomposed
as p(z) + Y721 pe(z)ge(z) for some polynomials p(x), pe(z) that are sums of squares. Based on this,
on can derive the asymptotic convergence to p* of the minimum of g7y taken over all y satisfying (51)
when t goes to co. In the 0/1 case, when the constraints 22 —z; = 0 (i = 1,...,n) are part of the
system defining F, there is in fact finite convergence in n steps [116] (see Section 3).

Semidefinite programming and the Positivstellensatz. Consider the following system:

filx)>0(=1,...,s)
ge(@) £ 0 (k=1,....1) (123)
he(z) =0 ({=1,...,u)

where all f;, gi, hy are polynomials in the real variable = (z1,...,2,). The complexity of the

problem of testing feasibility of this system has been the object of intensive research. Tarski [1951]
showed that this problem is decidable and since then a number of other algorithms have been proposed,
in particular, by Renegar [173] and Basu et al. [28].

We saw in Proposition 25 that testing whether a polynomial is a sum of squares can be formulated
as a semidefinite program. Parrilo [155] showed that the general problem of testing infeasibility of
the system (123) can also be formulated as a semidefinite programming problem (of very large size).
This is based on the following result of real algebraic geometry, known as the ‘Positivstellensatz’. The
Positivstellensatz asserts that for a system of polynomial (in)equalities, either there is a solution in R",
or there is a polynomial identity giving a certificate that no real solution exists. This gives therefore
a common generalization of Hilbert’s ‘Nullstellensatz’ (in the complex case) and Farkas’ lemma (for
linear systems).

Theorem 27. ([187], [33]) The system (123) is infeasible if and only if there exist polynomials f,g,h
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of the form

f(z)= Z s (H f]> where all pg are sums of squares

SC{1,...,s} JES
g9(z) = H gr where K C {1,...,t}
keK
u
h(z) = Z qehe where all gp are polynomials
=1
satisfying the equality f + g?> 4+ h = 0.

Bounds are known a priori for the degrees of the polynomials in the Positivstellensatz which make
it possible to test infeasibility of the system (123) via semidefinite programming. However, these
bounds are very large (triply exponential in n). Practically, one can use semidefinite programming for
searching for infeasibility certificates of bounded degree.

7.2 Approximating combinatorial problems using copositive programming

We have seen throughout this chapter how semidefinite programming can be used for approximating
combinatorial optimization problems. The idea of using the copositive cone and its dual, the cone
of completely positive matrices, instead of the positive semidefinite cone has also been considered;
cf., e.g., [35], [168]. We present below some results of de Klerk and Pasechnik [110] showing how the
stability number of a graph can be computed using copositive relaxations. Extensions to standard
quadratic optimization problems are given by Bomze and de Klerk [36].

Let us first recall some definitions. A symmetric matrix M of order n is copositive if 7 Max > 0 for
all z € R} and M is completely positive if M = Z?:l uluZT for some nonegative vectors u1,...,ug. Let
Cr, denote the set of symmetric copositive matrices of order n; its dual cone C;; is the set of completely
positive matrices. Hence,

C;, C PSD,, = PSD;, C C,.
Testing whether a matrix M is copositive is a co-NP-complete problem [147].
Let G = (V,E) (V ={1,...,n}) be a graph and consider its theta number J(G), defined by
Y(G) =max (J,X)st. X;5;=0(j € E), Tr(X)=1, X =0 (124)

(same as definition (53)). Then, ¥(G) is an upper bound for the stability number of G, since for any
stable set S in G, the matrix Xg := Fl‘xs (x®)T is feasible for the semidefinite program (124). Note
that Xg is in fact completely positive. Therefore, one can define a tighter upper bound for a(G) by
replacing in (124) the condition X > 0 by the condition X € C;. Letting A denote the adjacency
matrix of G, we obtain:

a(G) < max (J,X) < min A
st. TrX=1 st. AM4+yA-JelC, (125)
XijZO(ijEE) AyeR
XecC,

where the right most program is obtained from the left most one using cone-LP duality. Using the
following formulation for a(G) due to Motzkin and Straus [146]:
1

n
—— =min 27 (A4 Iz subject to z >0 and sz =1,
a(G) i=1
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one finds that the matrix o(G)(I + A) — J is copositive. This implies that the optimum value of the
right most program in (125) is at most «(G). Therefore, equality holds throughout in (125). This
shows again that copositive programming is not tractable.

Parrilo [155] proposes to approximate the copositive cone using sums of squares of polynomials.
For this, note that a matrix M is copositive if and only if the polynomial

n
gM(LB) = Z me?x?
i,j=1

is nonnegative on R™. Therefore, an obvious sufficient condition for M to be copositive is that gas(z)

n T
be a sum of squares or, more generally, that the polynomial gy (z) <Z x?) be a sum of squares

i=1
for some integer r > 0. A theorem of Polya asserts that, conversely, if M is strictly copositive (i.e.,

n T
z"Mz > 0 for all z € R? \ {0}), then gpr(x) (Z :vf) is a sum of squares for some r. Powers and
i=1

Reznick [165] give some upper bound for this int;ger r (depending only on M).

n

r
Let K, denote the set of symmetric matrices M of order n for which gps(x) (Z wf) is a sum of
i=1
squares. Thus
PSD, C K% C...C K" CC,.

We saw in the preceding subsection that testing whether a polynomial is a sum of squares can be
solved via the semidefinite program (118). Therefore one can test membership in K] via semidefinite
programming. For instance, Parrilo [155] shows that

M e K® <= M = P+ N for some P >0, N > 0.
Moreover, M € KL if and only if the following system:

M—-X® =0 (i=1,...,n)
Xz(zl) = (i=1,...,n)
xP +2xl) =0 (i#£j=1,...,n)
xP+xP+x 20 (1<i<j<k<n)
has a solution, where X1, ..., X(*) are symmetric n x n matrices ([155] and [36]).

Replacing in (125) the condition AI + yA — J € C,, by the condition A + yA — J € K], one can
define the parameter
Y"(G) := min A subject to \[+yA—JeK,.

Using the bound of Powers and Reznick [165], de Klerk and Pasechnik [110] show that
a(G) = |97(@)] if r > a*(G).
The same conclusion holds if we replace K] by the cone C, consisting of the matrices M for which

n T
gm () <Z x?) has only nonnegative coefficients. Bomze and de Klerk [36] characterized the cone
i=1

Cr as the set of matrices M satisfying: 27 Mz — 27 diag(M) > 0 for all z € Z7 with Y1 z; = + 2.
It is also shown in [110] that ¥°(G) = ¥'(G), the Schrijver parameter from (60); 9!(G) = a(G) if G
is an odd circuit, an odd wheel or their complement, or if (G) = 2. It is conjectured in [110] that

94 1(G) = a(G).
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8 Semidefinite Programming and the Quadratic Assignment Prob-
lem

Quadratic problems in binary variables are the prime source for semidefinite models in combinatorial
optimization. The simplest form, unconstrained quadratic programming in binary variables, corre-
sponds to Max-Cut, and was described in detail in Section 5.

Assuming that the binary variables are the elements of a permutation matrix leads to the Quadratic
Assignment Problem (QAP). Formally, QAP consists in minimizing

Tr(AXB +C)X 7T (126)

over all permutation matrices X. One usually assumes that A and B are symmetric matrices of order
n, while the linear term C' is an arbitrary matrix of order n. There are many applications of this model
problem, for instance in location theory. We refer to the recent monograph [40] for a description of
published applications of QAP in Operations Research and combinatorial optimization.

The cost function (126) is quadratic in the matrix variable X. To rewrite this we use the vec-
operator and (9). This leads to

TrAXBXT = (vec(X),vec(AXB)) = 27 (B ® A)z, (127)
because B is assumed to be symmetric. We can therefore express QAP equivalently as
min{z? (B ® A)z + ¢’z : 2 = vee(X), X permutation matrix}.

Here, ¢ = vec(C). To derive semidefinite relaxations of QAP we follow the generic pattern and linearize
by introducing a new matrix variable for zz”, leading to the study of

P = conv{zz! : z = vee(X), X permutation matrix}.

In section 3, we observed that any Y € P must satisfy the semidefiniteness condition (20), which in
our present notation amounts to

7Y % )so a Y) =
=\, y |20 diag = z.

The first question is to identify the smallest subcone of semidefinite matrices that contains P.
We use the following parametrization of matrices having row and column sums equal to e, the
vector of all ones, see [84].

Lemma 28. [84] Let V be ann x (n — 1) matriz with Ve = 0 and rank(V) =n — 1. Then
1
E={XeR™: Xe=XTe=¢} = {—ee’ + VMVT: M e R"="Dx(r=1)} _. g/,
n
PROOF. Let Z = %eeT +VMVT € &. Then Ze = ZTe = e, because VTe = 0, hence Z € . To see

the other inclusion, let V = QR be the QR-decomposition of V, i.e. QTQ =1,QQT =1 — %eeT and
rank(R) =n — 1. Let X € £ and set M := R'QTXQ(R™)". Then tee” + VMVT =X €& |
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We use this parametrization and define

1
W = <E€®€,V®V>.

V can be any basis of e*, as in the previous lemma. We can now describe the smallest subcone
containing P.

Lemma 29. Let Y € P. Then there exists a symmetric matriz R of order (n — 1)2 + 1, indexed from

0 to (n — 1)%, such that
R>0, rqo=1, Y =WRW?.

PROOF. (See also [201].) We first look at the extreme points of P, so let X be a permutation matrix.
Thus we can write X as X = Lee” + VMV, for some matrix M. Let m = vec(M). Then, using (9),

1
z=vec(X)=—-e®e+ (VOV)mn=Wz,

n
. 1 .
with z = m | Now zaz! = Wzz"WT = WRW?, with 790 = 1, R > 0. The same holds for convex
conbinations formed from several permutation matrices. |

To see that the set
S T . 1 2T
P :={Y : 3R such that Y = WRW"*, z = diag(Y), .y =0} (128)

is indeed the smallest subcone of positive semidefinite matrices containing P, it is sufficient to provide
a positive definite matrix R, such that WRW?T € P. In [201] it is shown that

. 1 0
- ( 0 m(njn—l - En—l) ® (nIn—l - En—l) > =0

gives
~ 1
WRWT = ~ > (aa”),
Xell
the barycenter of P. Here V = < IZ;l > has to be used in the definition of W.
-1

Eliminating Y leaves the matrix variable R and n? 4 1 equality constraints, fixing the first row
equal to the main diagonal, and setting the first element equal to 1.
Thus we arrive at the following basic SDP relaxation of QAP:

(QAPg;) minTr(B ® A + Diag(c))Y such that Y = WRWT € P, rg = 1. (129)
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It is instructive to look at WRW? for small values of n. For n = 3 we get

2 0 0|0 1 1]0 1 1
0 20/10 1|10 1

00 2/1 10110

A |01 1[2 000 11
WRWT==1 0 1/0 2 0/1 0 1
611 1 0o o0 2/11 0

01 1/011[2 00

10 1|10 1[0 2 0

1 10[/110[/00 2

The zero pattern in this matrix is not incidental. In fact, any X € P will have entries equal 0 at
positions corresponding to ;;x;, and xj;xy, for j # k. This corresponds to the off-diagonal elements of
the main diagonal blocks, and the main-diagonal elements of the off diagonal blocks. To express these
constraints, we introduce some more notation, and index the elements of matrices in P alternatively
by P = (p(i,j) k) for i,J,k,1 between 1 and n.

Hence we can strengthen the above relaxation by asking that

Yrs =0 for r = (7’7.7)7 s = (lak)a orr = (Jaz)a s = (kvj)v ]#k

We collect all these equations in the constraint G(Y') = 0. Adding it to (129) results in a stronger
relaxation. In [201] this model is called the 'Gangster model’. Aside from n? + 1 equality constraints
from the basic model, we have O(n?®) equations in this extended model. This amounts to serious
computational work, but results in a very strong lower bound for QAP.

(QAPgy) minTr(B ® A+ Diag(c))Y such that Y = WRWT € P, rgo =1, G(Y) =0.  (130)
Finally, one can include the constraints 4,5 > 0 for all r, s, leading to
(QAPg3) minTr(B®A+Diag(c))Y such that Y = WI'RWT € P, rgo =1, G(Y) =0, Y > 0. (131)

The resulting SDP has O(n*) constraints and can not be solved in a straightforward way by interior
point methods for problems of interesting size (n > 15).

The Anstreicher-Brixius bound. Anstreicher et al. [12, 13] have recently achieved a break-
through in solving several instances of QAP which could not be solved by previous methods. The size
of these instances ranges from n = 20 to n = 36. The key to this breakthrough lies in the use of a
bound for QAP that is both ‘fast’ to compute, and gives ‘good’ approximations to the exact value of
QAP. This bounding procedure combines orthogonal, semidefinite and convex quadratic relaxations
in a nontrivial way, starting from the Hoffman-Wielandt inequality, Theorem 5.

A simple way to derive this bound goes as follows. We use the parametrization

1
X = el +vYVT (132)
n

from Lemma 28, and assume in addition that V7'V = I,,_;. Substituting this into the cost of function
of QAP results in

TH(AXB + O)XT = TrAY BY” + Tr(C + 2V Ace” BV)YT + — s(A)s(B) + ~s(C),  (133)
n

1
n? n
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where A = VTAV,B = VIBV,C = VICV and s(M) := e’ Me = ¥_;; m;;. The condition VIV = I
implies that X in (132) is orthogonal if and only if Y is. Hadley et al. [84] use this to bound the
quadratic term in Y by the minimal scalar product of the eigenvalues of A and é, see Theorem 5.
Anstreicher and Brixius [12] use this observation as a starting point and observe that for any symmetric
matrix S , and any orthogonal Y, one has

0=TeSI-YYT)=TrS - TeSYIYT = TxS — Tr(I @ 5) (yy").
This results in the following identity, true for any orthogonal Y and any symmetric S , T
TrAYBYT = Tr(S+T)+ Tr(BRA-I® S5 — T ® I)(yyT). (134)

Weuse Q=BRA-I®S-T®I,D=C+ 2y T Aee” BV and substitute this into (133) to get
A s A 1 1
Tr(AXB+C)XT =Te(S+T) + 3y Qy +d'y + —35(4)s(B) + —s(C), (135)

This relation is true for any orthogonal X and Y related by (132) and symmetric S,T. It is useful
to express the parts in (135) containing Y by the original matrix X. To do this we use the following
identity:

0=TeSUT - VIV)=TeS(I - VIXXTV) = TeS — Te(VSVH)XIXT = TvS — Tr(I @ VSVT) (z2T).
Hence, for any orthogonal X, and any symmetric S , T we also have
Tr(AXB+ C)XT =Tr(8 +T) + 27 Qz + Tz (136)

Here Q=B® A—1® (VSVT) — (VIV") ® I. Comparing (135) and (136) we note that
3 1 1
y'Qy+d"y+ —s(4)s(B) + —s(C) =a" Qu + ¢,

It should be observed that @ and Q above depend on the specific choice of S ,T. Anstreicher and
Brixius use the optimal solution S,T from Theorem 6 and observe that dual feasibility yields @ > 0.

Therefore the above problem is a convex quadratic programming problem. We denote its optimal
solution as the Anstreicher-Brixius bound ABB(A,B,C).

ABB(A,B,C) := Te(S + T) + min{z"Qz + ¢"'z : 2 = vec(X), X doubly stochastic}.

The interesting observation here is that S , T are obtained as a by-product of the Hoffman-Wielandt
inequality, and that the resulting matrix ) is positive semidefinite over the set of doubly stochastic
matrices (as a consequence of Theorem 6). These facts imply that the Anstreicher-Brixius bound is
tractable.

To give a flavour of the quality of these bounds, we provide the following computational results on
standard test sets from Nugent et al. [153]. These data sets have the following characteristics. The
linear term C'is equal to 0. The matrix B represents the rectilinear cell distance of a rectangular array
of cells, hence there is some symmetry in these data. In case of n = 12, the resulting rectangular cell
array has the following form:

11 2| 3| 4
6| 7| 8
9110|1112
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We observe that the distance matrix B would not change, if the following cell array would have been
used:

41 3| 2|1
8| 7| 6 .
1211|1019

Mathematically speaking, there exist several permutation matrices X, such that B = XBXT. Ex-
ploiting all these symmetries, it is sufficient to consider only the subproblems where the cells 1,2,5,6
are assigned to some fixed location, say 1. All other permutations can be obtained by exploiting the
automorphisms inherent in B.

We denote these subproblems by nugl2.1, nugl2.2, nugl2.5, nugl2.6 in Table 1. The instance n =
15 has a distance matrix B corresponding to a 5 X 3 rectangular grid, leading to subproblems nugl5.1,
nuglh.2, nuglh.3, nuglh.6, nuglh.7, nugl5.8. The optimal values for these instances are contained in
the column labeled ’exact’. These values can be computed routinely for n ~ 15. The biggest instance
n = 30 was only recently solved to optimality, see [13]. The computational results for Q APgs are from
the forthcoming dissertation [186]. It is computationally infeasible to solve this relaxation by interior
points. Sotirov [186] uses the bundle method to get approximate solutions of QAPgrs. Hence the
values are only lower estimates of the true bound. The values of QA Pry were obtained by Sotirov and
Wolkowicz 2 by making use of the NEOS distributed computing system. The bounds are obtained
using interior point methods. The computational effort to get these values is prohibitively big. A
more practical approach consists in using bundle methods to bargain computational efficiency against
a slight decrease in the quality of the bound. Finally, the values of the Anstreicher-Brixius bound
ABB are from [12].

These results indicate that the SDP models in combination with bundle methods may open the
way to improved Branch and Bound approaches to solve larger QAP instances.

9 Epilogue: Semidefinite Programming and Algebraic Connectivity

An implicit message of all the preceeding sections is that semidefinite programming relaxations have
a high potential to significantly improve on purely polyhedral relaxations. This may give the wrong
impression that semidefinite programming is a universal remedy to improve upon linear relaxations.
This is in principle true, if we assume that some sort of semidefiniteness constraint is added to the
polyhedral model.

If a model based on semidefinite programming is used instead of a linear model, it need not be
true that the semidefinite model dominates the linear one. We conclude with an illustration of this
perhaps not quite intuitive statement.

We consider the Traveling Salesman Problem (TSP), i.e. the problem of finding a shortest Hamil-
tonian cycle in an edge weighted graph. This problem is well known to be NP-hard, and has stimulated
research since the late 1950’s.

We need to recall some notation from graph theory. For an edge weighted graph, given by its
weighted adjacency matrix X, with X > 0, diag(X) = 0 (setting to 0 the entries corresponding to
nonedges), we consider vertex partitions (S, V \ S) of its vertex set V' and define

X(S,V\8):= Z Tij
i€Sj¢S

personal communication, 2001
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problem | exact | QAPRro | QAPRrs | ABB
nugl?2 578 529.3 552.1 482
nugl2.1 586 550.7 573.6 -
nugl2.2 586 550.6 571.3 -
nugl2.5 578 551.8 572.2 -
nugl2.6 600 555.8 578.8 -
nuglh 1150 | 1070.5 | 1106.1 996
nuglh.1 1150 | 1103.4 | 1131.6 -
nugls.2 1168 | 1116.3 | 1147.8 -
nuglh.3 | 1164 | 1120.9 | 11484 -
nugl5.6 1166 | 1113.6 | 1144.9 -
nuglh.7 | 1182 | 1130.3 | 1161.9 -
nuglH.8 1184 | 1134.1 1162.2 -
nug20 2570 | 2385.6 | 2441.9 | 2254
nug30 6124 | 5695.4 | 5803.2 | 5365

Table 1: Semidefinite relaxations and optimal value for some instances from the Nugent collection of
test data. The column labeled QApgrs gives lower estimates of the bound computed by the bundle
method.

to be the weight of the cut, given by S. The edge connectivity ;1(X) of X is defined as
u(X) = min{X(S,V\ §): SCV, 1< |8 < V| - 1}.

The polyhedral approach to TSP is based on approximating the convex hull of all Hamiltonian
cycles by considering all two-edge connected graphs. Formally, this amounts to optimizing over the
following set:

{X:0<2;; <1, diag(X) =0, Xe=2e, pu(X) =2} (137)

Even though there are O(2") linear constraints defining this (polyhedral) set, it is possible to optimize
over it in polynomial time, by using the ellipsoid method (because the separation problem amounts to
a minimum capacity cut problem, which can thus be solved in polynomial time). It is also interesting
to note that no combinatorial algorithm of provably polynomial running time exists for optimizing a
linear function over this set.

Recently, Cvetcovic et al. [51] have proposed a model where 2-edge connectivity is replaced by the
algebraic connectivity, leading to an SDP relaxation.

Fiedler [68] introduces the algebraic connectivity of a graph, given by its weighted adjacency
matrix X > 0,diag(X) = 0, as follows. Let L(X) := D — X be the Laplacian matrix corresponding
to X, where D := Diag(Xe), the diagonal matrix having the row sums of X on its main diagonal.
Since De = Xe, it is clear that 0 is an eigenvalue of L(X) corresponding to the eigenvector e.
Moreover X > 0 implies by the Gersgorin disk theorem, that all eigenvalues of L(X) are nonnegative,
i.e., L(X) is positive semidefinite in this case. Fiedler observed that the second smallest eigenvalue
A2(L(X)) = minjy |1 4Te—0 uT'L(X)u is equal to 0 if and only if X is the adjacency matrix of a
disconnected graph, otherwise A2(L(X)) > 0. Note also that A\2(L(X)) is concave in X. Fiedler
therefore denotes a(X) := A2(L(X)) as the algebraic connectivity of the graph, given by the adjacency
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matrix X. It is not difficult to calculate «(C,), the algebraic connectivity of a cycle on n nodes,
27
a(Cp) = 2(1 — cos(—)) =: hy,
n
The concavity of a(X) therefore implies that
a(X) > hy

for any convex combination X of Hamiltonian cycles. We also note that the Taylor expansion of cos(z)
gives h, < 4;—22. Cvetcovic et al. [51] propose to replace the polyhedral constraints pu(X) > 2 by the
nonlinear condition «a(X) > h,, which can easily be shown to be equivalent to the semidefiniteness

constraint
L(X)+eel —h,I>0

on X. Replacing edge connectivity by algebraic connectivity in (137) leads to optimizing over
{X:0<z; <1, diag(X) =0, Xe=2e, L(X)+ee” —h,I =0} (138)

This looks like a reasonable bargain, as we replace O(2") linear constraints by a single semidefiniteness
constraint. The crucial question of course is whether we can say anything about the relative strength
of the two relaxations. Since L(X) 4 ee” > 0 it is clear that

Amin(L(X) + €€T — h,nI) > _h/n > ——.

Therefore the semidefiniteness constraint in (138) is nearly satisfied for any X > 0 as the dimension
increases. We can say even more. Any matrix X feasible for (137) satisfies a(X) > hy,, see [67] and
the handbook [194], chapter 12 for further details. In other words, the simple semidefinite relaxation
given by (138) is dominated by the polyhedral edge connectivity model (137).
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