
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

A toolbox for the lifting scheme on quincunx grids (LISQ)

P.M. de Zeeuw

REPORT PNA-R0224 DECEMBER 31, 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

A Toolbox for the Lifting Scheme on Quincunx Grids (LISQ)

P.M. de Zeeuw
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Paul.de.Zeeuw@cwi.nl

ABSTRACT

A collection of functions written in MATLAB r© is presented. The functions include second generation wavelet

decomposition and reconstruction tools for images as well as functions for the computation of moments. The

wavelet schemes rely on the lifting scheme of Sweldens and use the splitting of rectangular grids into quincunx

grids, also known as red-black ordering. The prediction filters include the Neville filters as well as a nonlinear

maxmin filter. Custom-made filters can be used too. The various functions are described and examples are

given. The toolbox is provided with appliances for the visualization of data on quincunx grids. The software

can be downloaded from a website and is publicly available.

2000 Mathematics Subject Classification: 62H35, 65T60, 65Y15, 94A08

1998 ACM Computing Classification System: G.1.0, G.4

Keywords and Phrases: Discrete wavelets, lifting scheme, MATLAB r©, moments, quincunx, red-black ordering,

second generation wavelets, software, toolbox, wavelets.

Note: This work was carried out under project PNA4.2 ”Image Representation and Analysis”.

1. Introduction

The toolbox LISQ is built on the lifting scheme and uses quincunx downsampling of rectangular
two-dimensional grids. An early example of quincunx downsampling and upsampling (in multigrid
context) can be found in [2]. Early examples of quincunx downsampling in connection with 2-channel
multidimensional filter banks can be found in [13, 14]. The lifting scheme has been invented by
Sweldens [10, 11]. In [6, 15, 16, 17] the lifting scheme is used with quincunx downsampling to develop
non-separable wavelets on a rectangular grid. An educational and introductory approach to the lifting
scheme (in 1D) can be found in [5].

LISQ can do the following for you. This toolbox performs the wavelet decomposition of a 2D-
signal (image) and corresponding reconstruction. The dimensions of the grid on which the image is
defined need not be dyadic. Prediction (and update) filters can be chosen from predefined sets, but
custom-made filters are possible too. Additionally, means for the computation of moments (on both
rectangular and quincunx grids) are present. Visualization of data on quincunx grids is provided for.
The toolbox does not require any other toolbox.

Please note that for convenience the option of inplace computations (as made possible by the
lifting scheme) is not (always) used. Still, the toolbox is efficient with cpu-time because of persistent
vectorization of computations. Applications can be in the region of denoising, image fusion and image
retrieval. The toolbox may be especially helpful for research purposes. The contents are readily
available and can be downloaded from the web (see Section 5).

2. Background

In this section we sketch the background of the toolbox and its components. Firstly, we recapitulate
on quincunx grids and the lifting scheme. We proceed from a simple red-black version of the lifting

2

scheme to ones involving Neville filters and nonlinear filters. Secondly, we discuss the (numerical)
computation of moments on both rectangular and quincunx grids.

2.1 Quincunx Grids & The Lifting Scheme
Quincunx grids Let us consider an image as a two-dimensional signal. We subdivide the lattice
on which the signal has been defined into two sets on quincunx grids as indicated in Figure 1. This

� � � �

� � � �

� � � �

� � �

� � �

� � �

� � �

� � �

� � � �

� � � �

Figure 1: A rectangular grid composed of two quincunx grids.

division is also called ”checkerboard” or ”red-black” division. An early example of this division can
be found in [2], where a quincunx grid is called ”intermediate checkered grid”. There, in multigrid
context, it serves the purpose of a nonstandard coarsening (downsampling) of discrete differential
operators. Also in multigrid context, the ordering is used in the so-called red-black relaxation because
of its decoupling properties in the case of standard five-point discretization.

The lifting scheme As extensive literature exists on this topic, (e.g. [1, 5, 6, 10, 11, 12, 15, 16, 17])
we confine ourselves to a basic recapitulation. We consider a n-dimensional signal sj ∈ S(Sj) as
a function sj : Sj → R where S ⊂ Zn, n ∈ N. We transform sj−1 into a coarser, approximating,
signal sj−1 and a detail signal dj−1 such that Sj−1 � Sj (downsampling) and Sj = Sj−1 ∪ Dj−1,
Sj−1 ∩Dj−1 = ∅ (splitting). The lifting scheme can be described by the following algorithm:
Decomposition

sj−1 := sj ↓Sj−1 ; (2.1a)
dj−1 := sj ↓Dj−1 ; (2.1b)
dj−1 := dj−1 − P (sj−1); (substract prediction) (2.1c)
sj−1 := sj−1 + U(dj−1); (update) (2.1d)

where

P : S(Sj−1) → S(Dj−1) (2.2a)
U : S(Dj−1) → S(Sj−1) (2.2b)

and ↓Sj−1 denotes downsampling S(Sj)→ S(Sj−1). The computations can be done in-place [12]. The
inverse scheme reads:
Reconstruction

sj−1 := sj−1 − U(dj−1); (2.3a)
dj−1 := dj−1 + P (sj−1); (2.3b)

sj := sj−1 ↑Sj +dj−1 ↑Sj ; (2.3c)

where ↑Sj denotes upsampling S(Sj−1)→ S(Sj).

2. Background 3

order N V1 V2 V3 V4 V5 V6 V7

2 1/4 0 0 0 0 0 0
4 10/32 −1/32 0 0 0 0 0
6 87/28 −27/29 2−8 3/29 0 0 0
8 5825/214 −2235/215 625/216 425/215 −75/216 9/216 −5/212

Table 1: Quincunx Neville filter coefficients

The red-black transform A first example of the lifting scheme involving quincunx grids is the red-
black wavelet transform by Uytterhoeven and Bultheel [15, 16, 17]. A rectangular grid is split into
two quincunx grids as in Figure 1. The pixels on the red spots (◦) are used to predict the samples on
the black spots (•), while updating of the red spots is performed by using the detailed data on the
black spots. The second order prediction and update filters are given by

(Px)(i, j) = [x(i− 1, j) + x(i, j − 1) + x(i + 1, j) + x(i, j + 1)]/4, i mod 2
= j mod 2, (2.4a)
(Ux)(i, j) = [x(i− 1, j) + x(i, j − 1) + x(i + 1, j) + x(i, j + 1)]/8, i mod 2 = j mod 2. (2.4b)

Neville filters and the lifting scheme In general a prediction filter P for the quincunx grid can be
written as

(Px)(i, j) =
∑

(n,m)∈SÑ

aÑ (n, m) x(i + n, j + m), i mod 2
= j mod 2, (2.5)

with SÑ a subset of {(n, m) ∈ Z2 | (n + m) mod 2 = 1} and aÑ (s), s ∈ SÑ , a set of coefficients in R.
In this case a general formula for U reads

(Ux)(i, j) =
∑

(n,m)∈SN

aN (n, m) x(i + n, j + m)/2, i mod 2 = j mod 2, (2.6)

with SN depending on the number of required primal vanishing moments N . For several elements in
SN the coefficients aN (s) attain the same values. Therefore we take these elements together in subsets
of SN , i.e.,

V1 = {(+1, 0), (0, +1), (−1, 0), (0,−1)},
V2 = {(+1, +2), (−1, +2), (−2, +1), (−2,−1), (−1,−2), (+1,−2), (+2,−1), (+2, +1)},
V3 = {(+3, 0), (0, +3), (−3, 0), (0,−3)},
V4 = {(+2, +3), (−2, +3), (−3, +2), (−3,−2), (−2,−3), (+2,−3), (+3,−2), (+3, +2)}, (2.7)
V5 = {(+1, +4), (−1, +4), (−4, +1), (−4,−1), (−1,−4), (+1,−4), (+4,−1), (+4, +1)},
V6 = {(+5, 0), (0, +5), (−5, 0), (0,−5)},
V7 = {(+3, +4), (−3, +4), (−4, +3), (−4,−3), (−3,−4), (+3,−4), (+4,−3), (+4, +3)}.

Table 1 indicates the values of all aN (s), s ∈ Vk, for different values of N (2 through 8) when using
quincunx Neville filters, see [6], which are the filters we use in our approach. The case N = 2 reduces
to the red-black transform described before. The case N = 8 implies that S8 = V1 + · · ·+ V7 and so
44 taps filters are used as prediction/update filters. For an illustration of the Neville filter of order 4
see Figure 2. Here the numbers 1, 2 correspond to the values of the filter coefficients as given in V1

and V2 respectively at that position. The left-hand filter can be used to transform a signal defined
on a quincunx grid into a signal defined on a rectangular grid, the right-hand filter is the 45 degrees
rotated version of the left-hand filter and can be used to transform a signal from a rectangular grid
towards a quincunx grid. We observe that the quincunx lattice yields a non separable 2D-wavelet
transform, symmetric in both horizontal and vertical direction.

4

�

1

1

1 1

2 2

2

22

2

2 2

�

1 1

1 1

2 2

2 2

2 2

2 2

Figure 2: Neville filter of order 4: rectangular (left) and quincunx (right)

Maxmin: a nonlinear transform The above described prediction and update filters are all linear ones.
The toolbox includes a scheme which is nonlinear. It is very like the red-black transform, but for the
prediction and update filters. When the scheme proceeds from a rectangular grid towards a quincunx
grid, the prediction filter is defined by assigning the maximum value at the neighbouring gridpoints,
instead of computing the average as done in (2.4). When the scheme proceeds from a quincunx grid
towards a rectangular grid the prediction filter is defined by assigning the minimum value at the
neighbouring gridpoints. The update filters are similarly defined. The resulting nonlinear scheme is
better in preserving in edges and local maxima and minima than the linear schemes which tends to
blur the approximate images at coarser grids. For a more detailed description of the various operators
involved we refer to [3] and to the annotated contents of the MATLAB r© procedure QLiftDec2MaxMin.

Computational aspects Though a geometrical interpretation (see Figure 1) of a quincunx grid is
straightforward, its computational representation looks awkward. However, the four-colour division,
illustrated by Figure 3, shows that each of the quincunx grids can be seen as the union of two colours
(compare Figures 3 and 1) each of which corresponds to ordinary rectangular grids. This proves to

� � � �

� � � �

� � � �

� � �

� � �

� � �

� � �

� � �

� � � �

� � � �

00 ← •
11 ← �

01 ← ◦
10 ← �

Figure 3: Four-colour division of a grid.

be an elegant and efficient approach for dealing with quincunx grids.

2.2 Moments & Invariants
We use invariants based on moments of the coefficients up to third order. Traditionally, these features
have been widely used in pattern recognition applications to recognize the geometrical shapes of
different objects. For the construction we follow Hu [4]. We take a density distribution function f .
The (p + q)th order central moment µpq(f) of f is given by

µpq(f) =
∫

R

∫

R

(x− xc)p(y − yc)qf(x, y) d(x− xc) d(y − yc), (2.8)

2. Background 5

with the center of mass

xc =

∫
R

∫
R

xf(x, y) dx dy

∫
R

∫
R

f(x, y) dx dy
and yc =

∫
R

∫
R

yf(x, y) dx dy

∫
R

∫
R

f(x, y) dx dy
. (2.9)

Computing the centers of mass x′
c and y′

c of g(x, y) = f(x− a, y− b) yields x′
c = xc− a, y′

c = yc− b.
Combining this with (2.8) shows that µpq(f) = µpq(g), i.e., the central moments are translation
invariant. We elaborate on some numerical aspects with respect to quincunx grids and the numerical
computation of moments.

Numerical computation of moments We elaborate briefly on the numerical computation of moments.
Figures 4 and 5 elucidate the computation of moments on a rectangular and quincunx grid respectively.

� � � �

� � � �

� � � �

� � �

� � �

� � �

� � �

� � �

� � � �

� � � �

�

�

1

� �h

Figure 4: Supports at rectangular grid.

� � � �

� � � �

� � � �

� � �

� � �

�
�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

��
�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�

�

�

1

�
�

���
�

��h

Figure 5: Supports at quincunx grid.

To each point • a value has been associated: this can be a grayvalue at a pixel, a wavelet coef-
ficient, etc. Using these values we construct an interpolating function based on piecewise constant

6

approximation. For the rectangular grid the piecewise constant basisfunctions have their support on
the squares, for the quincunx grid the piecewise constant basisfunctions have their support on the di-
amonds (rotated squares). A practical assumption is that the shortest side of the rectangular domain
has size 1. As the supports are square, the dimension of the longest side of the domain also follows at
once. Though the above interpolating function is not in the Schwartz class S(R2), it has compact sup-
port, is measurable and can be integrated. Hereby we can now perform the integration in (2.8)– (2.9)
numerically and thereby compute the moments. We note the following. When a function f ∈ S(R2)
is approximated piecewise constantly with an increasing number of gridpoints (pixels) then, roughly
speaking, the moments remain invariant.

The homogeneity condition The following orthogonal (and translational) invariants (the last one
skew, distinguishes mirror images) have been derived by Hu [4]

I1 = µ20 + µ02, (2.10a)
I2 = (µ20 − µ02)2 + 4µ2

11, (2.10b)
I3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2, (2.10c)
I4 = (µ30 + µ12)2 + (µ21 + µ03)2, (2.10d)
I5 = (µ30 − 3µ12)(µ30 + µ12)((µ30 + µ12)2 − 3(µ21 + µ03)2) +

(3µ21 − µ03)(µ21 + µ03)(3(µ30 + µ12)2 − (µ21 + µ03)2), (2.10e)
I6 = (µ20 − µ02)((µ30 + µ12)2 − (µ21 + µ03)2) + 4µ11(µ30 + µ12)(µ21 + µ03), (2.10f)
I7 = (3µ21 − µ03)(µ30 + µ12)((µ30 + µ12)2 − 3(µ21 + µ03)2)−

(µ30 − 3µ12)(µ21 + µ03)(3(µ30 + µ12)2 − (µ21 + µ03)2). (2.10g)

Naively, we might compose the following feature vector I ∈ R7:

I ≡ (I1 I2 I3 I4 I5 I6 I7)T . (2.11)

Without scaling of the elements the computation of the Euclidean norm of the difference between
such feature vectors leads to arbitrary results. Moreover, the various elements appear to operate in
different orders of magnitude. We therefore proceed as follows. Firstly, we observe that

µpq(λf) = λµpq(f), for all λ
= 0. (2.12)

The homogeneity condition means that we demand a homogeneous change in the elements of a feature
vector if the density distribution f is multiplied by the said scalar λ. Obviously, this condition is not
satisfied by (2.10)–(2.11). We introduce the following operator:

Rp(u) = sign(u)|u|1/p, for p ∈ N and u ∈ R. (2.13)

When applied to an invariant Ik it produces again an invariant. It can easily be verified that the
feature vector

Ĩ = (I1 R2(I2) R2(I3) R2(I4) R4(I5) R3(I6) R4(I7))T , (2.14)

does satisfy the homogeneity condition.

3. Manual

The manual includes high-level procedures, the ones that are likely to be called by a user. With
respect to the computation of moments we list: mupq, Q0011mupq, momentsupto3. With respect to
the algorithm of the quincunx lifting scheme we list: printshop, QLiftDec2, QLiftRec2, QLmaxlev,
retrieveQ1001, retrieveR, rota1001fill, whatcoef2QL. The (many) subsidiary procedures are not
listed. The function and description of the subsidiary procedures can be found by using the help
command in MATLAB r©. By the above procedures one can understand the involved example of
Section 4.

3. Manual 7

momentsupto3
Purpose Computes the mass, all central moments upto third order and normalized Hu’s

invariants of a two-dimensional signal (image, matrix) on a rectangular grid.

Syntax [mass, mus, orthos] = momentsupto3(F)

Description momentsupto3 is a utility for the computation of moments and invariants.

Input F is a two-dimensional signal (image, matrix).

Output mass of type double is the mass of gridfunction F.

Output mus: a vector of length 7 containing all 2nd & 3rd order central moments
(see (2.8)):

(µ20 µ11 µ02 µ30 µ21 µ12 µ03)
T

Output orthos: a vector of length 7 containing (weighted) orthogonal invariants
based on above central moments, see (2.14).

Algorithm The weighing of the elements of the vectors is performed by application of the
so-called ”homogeneity condition” [9, §5.2], see Section 2.2.

See Also HUinvariants, Q0011momentsupto3, Q1001momentsupto3.

Example

load zenithgray; Orig = zenithgray; clear zenithgray;
%
[mass, mus, orthos] = momentsupto3(Orig)

mass =

369.4901

mus =

36.4342 0.1725 108.4892 -0.4755 0.6690 0.2279 3.0241

orthos =

144.9234 72.0559 1.5422 3.7014 2.4960 9.9251 -2.8705

8

mupq
Purpose Computes the central moments with prescribed order of a two-dimensional signal

(image, matrix) on a rectangular grid.

Syntax val = mupq(F, p, q)

val = mupq(F, p, q, Center)

Description mupq is a utility for the computation of moments and invariants. It computes the
central moments µpq of order p in the x-direction and of order q in the y-direction
and the signal F seen as a density distribution defined on a rectangular grid. Note
that by the values (p, q) = (1, 0) or (p, q) = (0, 1) the central moment has to vanish.

p must be an integer, it is the order p in the x-direction.

q must be an integer, it is the order q in the y-direction.

Center is an optional argument, it is an array of 2 doubles that is supposed to be
the center of mass. Without this argument the center of mass is computed for by
this procedure. See also Hu [4].

Output val is the value of the central moment as computed.
Algorithm See Section 2.2.

See Also m00, m10, m01, xcpowp, ycpowp, masscenter, Q1001mupq.

Example

load zenithgray; Orig = zenithgray; clear zenithgray;
%
%---COMPUTE MASS------------------------
mu00 = mupq(Orig, 0, 0)

mu00 =

369.4901

%---NICE CHECK: OUTCOME SHOULD VANISH---
mu10 = mupq(Orig, 1, 0)

mu10 =

-1.5131e-14

%---NICE CHECK: OUTCOME SHOULD VANISH---
mu01 = mupq(Orig, 0, 1)

mu01 =

-9.1327e-14

Compare to the result of the example with procedure Q0011mupq.

3. Manual 9

printshop
Purpose printshop shows and files two-dimensional images.

Syntax printshop(figthis, figtxt, f, dops, dotiff, mask, fmin, fmax)

printshop(figthis, figtxt, f, dops, dotiff, mask)

Description printshop is a utility for showing (and filing) two-dimensional images.

figthis must be a string of characters and is the name of the picture to be.

figtxt must be a string of characters and is the title of the picture to be.

f must be a two-dimensional array of doubles, it represents the image that has to
be shown.

dops must be an integer, it steers the postscript imaging (and filing) of f. The
possible values read:
0: perform no action whatsoever.
1: show the .epsc (colour) imagefile in Matlabs window.
2: as 1 but also file imagefile.
3: show the .eps (b & w) imagefile in Matlabs window.
4: as 3 but also file imagefile.

dotiff must be an integer, it steers the filing in .tif format of f. The possible
values read:
0: perform no action whatsoever.
1: file the imagefile (.tif format) in current directory.
2: file the imagefile (.tif format) in the directory /hosts/homepage/$USER/tmp/.
Obviously, one should adapt this to one’s own environment.

mask must be a two-dimensional array of integers with values either 0 or 1, or
it is an empty matrix. Its purpose is to mask f before imaging. If not empty,
the dimensions of mask must be identical to the dimensions of f. The value 1
within the mask indicates to retain the original value of f in the image at the
corresponding pixel, the value 0 indicates to replace the original value by a value
greater then or equal to the maximum value of f (depending on the imaging this
may then turn up as a white-coloured pixel). If the mask is empty, no masking is
performed. The masking can be used as a tool to produce a desired background
for a rotated image of a signal on a quincunx grid.

fmin, fmax are optional arguments. This way a minimum and a maximum of f
(implying scaling) are enforced before imaging.

See Also image, imagesc, imshow.

Example

load zenithgray; Orig = zenithgray; clear zenithgray;
printshop("original","Nice watch", Orig, 3, 0, []);

See also the more involved example with rota1001fill.

10

QLiftDec2
Purpose Multi-level 2D composition by the lifting scheme involving quincunx grids.

Syntax [C, S] = QLiftDec2(X, N, filtername)

Description QLiftDec2 performs the N-level decomposition of a two-dimensional signal (matrix,
image) X by the lifting scheme using prediction and update filters that are indicated
by filtername.

Outputs are the decomposition vector C and the corresponding bookkeeping ma-
trix S. At odd levels of the decomposition the coefficients reside on quincunx-
shaped grids, at even levels of the decomposition the coefficients reside on rectan-
gular grids. The decomposition vector C includes all detail coefficients (at levels
< N) and the coefficients of the approximation (at level = N).

X must be a two-dimensional array, the dimensions need NOT be dyadic.

N must be a strictly positive and even integer (see QLmaxlev).

filtername must be a string from the set { Neville2, Neville4, Neville6,
Neville8, MaxMin }. For a custom-made decomposition see QLiftDec2Custom.

Algorithm See Section 2.1.

See Also QLiftRec2, QLmaxlev.

Example

%---PARAMETERS---
% How to execute, set parameters
N = 6; % maximum level (even number) in lifting scheme
filtername = ’Neville4’;
%
%---INSERT YOUR IMAGE HERE---
if exist(’imread’,’file’) == 2
Orig = double(imread(’zenithgray.TIF’,’tiff’));

else
load zenithgray; Orig = zenithgray; clear zenithgray;

end
%
sizeOrig = size(Orig)

sizeOrig =

593 307

%
%---DECOMPOSITION---
[C,S] = QLiftDec2(Orig,N,filtername);
sizeC = size(C)

sizeC =

3. Manual 11

182051 1

sizeS = size(S)

sizeS =

10 6

S

S =

1 4 1 296 154 45585
1 3 1 297 153 91026
2 0 1 296 153 136314
3 4 1 148 77 147710
3 3 1 149 77 159183
4 0 1 148 77 170579
5 4 1 74 39 173465
5 3 1 75 38 176315
6 0 1 74 38 179127
6 0 0 75 39 182052

12

QLiftRec2
Purpose Multi-level 2D reconstruction by inverting the lifting scheme involving quincunx

grids.
Syntax X = QLiftRec2(C, S, filtername)

Description QLiftRec2 performs the reconstruction of a two-dimensional signal (matrix, im-
age) X by inverting the lifting scheme using prediction and update filters that are
indicated by filtername. The reconstruction involves the vector of coefficients C
and the bookkeeping matrix S. The structure and dimensions of C and S are sup-
posed to be consistent with how they are produced by QLiftDec2. QLiftRec2 is
the inverse function of QLiftDec2. filtername is supposed to be the same string
as chosen for QLiftDec2.

Output X is a two-dimensional signal (image).

Algorithm See Section 2.1.

See Also QLiftDec2, QLmaxlev.

Example

%---PARAMETERS---
% How to execute, set parameters
N = 6; % maximum level (even number) in lifting scheme
filtername = ’Neville4’;
%
%---INSERT YOUR IMAGE HERE---
if exist(’imread’,’file’) == 2
Orig = double(imread(’zenithgray.TIF’,’tiff’));

else
load zenithgray; Orig = zenithgray; clear zenithgray;

end
%
sizeOrig = size(Orig)

sizeOrig =

593 307

%---DECOMPOSITION---
[C,S] = QLiftDec2(Orig,N,filtername);
%
%---RECONSTRUCTION--
X = QLiftRec2(C,S,filtername);
%
%---THE 2-NORM OF THE DIFFERENCE BETWEEN THE ORIGINAL AND ITS RECONSTRUCTION--
diff = X - Orig;
twonormdiff = sum(sum(diff.*diff))^(1/2)

twonormdiff =

2.5431e-12

3. Manual 13

QLmaxlev
Purpose Determines the maximum level to be used in the lifting scheme decomposition

given the dimensions of a two-dimensional signal (image, matrix).

Syntax lev = QLmaxlev(sizeX, filtername)

Description QLmaxlev is a utility for the lifting scheme decomposition. It helps one to avoid
silly values for the maximum level in the lifting scheme decomposition.

lev is the integer outcome.

sizeX is an integer row vector of dimension 2. Usually it will be the size of an
image.

filtername must be a string from the set { Neville2, Neville4, Neville6,
Neville8, MaxMin }.

Algorithm Basically, the algorithm determines how many times the grid can be coarsened
until the size of the filter indicated by filtername exceeds the dimensions of the
approximation.

See Also QLiftDec2.

Example

%---PARAMETERS---
% How to execute, set parameters
N = 20; % maximum level (even number) in lifting scheme
filtername = ’Neville4’;
%
%---INSERT YOUR IMAGE HERE---
load zenithgray; Orig = zenithgray; clear zenithgray;
%
%---AVOID SILLY VALUES FOR THE NUMBER OF LEVELS-------------------------------
disp([’ Number of scales asked for is ’ num2str(N)]);
Number of scales asked for is 20
sizeOrig = size(Orig);
M = QLmaxlev(sizeOrig, filtername);
disp([’ Maximum number of scales is ’ num2str(M)]);
Maximum number of scales is 12
N = min(N,M);
disp([’ Number of scales is set to ’ num2str(N)]);
Number of scales is set to 12
%
%---DECOMPOSITION---
[C,S] = QLiftDec2(Orig,N,filtername);

14

retrieveQ1001
Purpose retrieveQ1001 retrieves detail or approximation coefficients, defined on a quin-

cunx grid (odd slots), from the decomposition according to the lifting scheme.

Syntax [F10, F01] = retrieveQ1001(level, o, C, S)

Description retrieveQ1001 is a utility for the lifting scheme reconstruction. It retrieves detail
or approximation coefficients, defined on a quincunx grid (odd slots), from the
decomposition vector C as created by QLiftDec2. The structure and dimensions of
decomposition vector C and the bookkeeping matrix S are supposed to be consistent
with how they are produced by QLiftDec2.

level must be an integer, it indicates the level of F. With a decomposition created
by QLiftDec2 an even number for level always produces an empty result.

o is a character and should be either ’a’ or ’d’, describing the type of F: ’a’ relates
to approximation (coefficients) and ’d’ relates to detail (coefficients).

Both outputs F10 and F01 are two-dimensional signals of either detail or approxi-
mation coefficients. F10 corresponds to gridpoints of colour 10, F01 corresponds to
gridpoints of colour 01, see Figure 3. Together, F10 and F01 constitute a quincunx
grid of odd slots.

See Also retrieveR, retrieveQ0110, retrieveQ.

Example

%---PARAMETERS---
% How to execute, set parameters
N = 6; % maximum level (even number) in lifting scheme
filtername = ’Neville4’;
%
%---INSERT YOUR IMAGE HERE---
load zenithgray; Orig = zenithgray; clear zenithgray;
%
%---DECOMPOSITION--
[C,S] = QLiftDec2(Orig,N,filtername);
%
%---RETRIEVE DETAIL AT ODD LEVEL---
[F10, F01] = retrieveQ1001(N-1, ’d’, C, S);
sizeF10 = size(F10)
sizeF01 = size(F01)

sizeF10 =

74 39

sizeF01 =

75 38

3. Manual 15

retrieveR
Purpose retrieveR retrieves detail or approximation coefficients, defined on a rectangular

grid, from the decomposition according to the lifting scheme.
Syntax F = retrieveR(level, o, C, S)

Description retrieveR is a utility for the lifting scheme reconstruction. It retrieves detail or
approximation coefficients, defined on a rectangular grid, from the decomposition
vector C as created by QLiftDec2. The structure and dimensions of decomposition
vector C and the bookkeeping matrix S are supposed to be consistent with how
they are produced by QLiftDec2.

level must be an integer, it indicates the level of F. With a decomposition created
by QLiftDec2 an odd number for level always produces an empty result.

o is a character and should be either ’a’ or ’d’, describing the type of F: ’a’ relates
to approximation (coefficients) and ’d’ relates to detail (coefficients).

Output F is a two-dimensional signal of detail or approximation coefficients.
See Also retrieveQ1001.

Example

%---PARAMETERS---
% How to execute, set parameters
N = 6; % maximum level (even number) in lifting scheme
filtername = ’Neville4’;
%
%---INSERT YOUR IMAGE HERE---
load zenithgray; Orig = zenithgray; clear zenithgray;
%
%---DECOMPOSITION--
[C,S] = QLiftDec2(Orig,N,filtername);
%
%---RETRIEVE APPROXIMATION---
A = retrieveR(N, ’a’, C, S);
sizeA = size(A)
%
%---RETRIEVE DETAIL AT EVEN LEVEL--
D = retrieveR(N-2, ’d’, C, S);
sizeD = size(D)

sizeA =

75 39

sizeD =

148 77

See Section 4 for a more involved example.

16

rota1001fill
Purpose rota1001fill rotates and maps the quincunx grid onto a square grid together

with the corresponding values. The excess area is filled by padding.
Syntax Q = rota1001fill(F10, F01, bgval)

Q = rota1001fill(F10, F01)

Description rota1001fill is a utility for mapping two-dimensional signals from a quincunx
grid (odd slots) onto a rectangular grid. It facilitates imaging.

Both inputs F10 and F01 are two-dimensional signals on a rectangular grid. F10
corresponds to gridpoints of colour 10, F01 corresponds to gridpoints of colour 01,
see Figure 3. Together, F10 and F01 constitute a quincunx grid of odd slots.

bgval is an optional argument. The excess area in Q is filled by padding with this
value. If the argument is not used then the very first value of F10 is used instead.
Note that the latter choice doesn’t change neither the minimum nor maximum of
the union of the input gridfunctions.

See Also printshop, rota0011fill.

Example See also Figure 6.

%---PARAMETERS---
N=2;
filtername=’maxmin’;
%
% Manage output, set preferences: see printshop
dops =3;
dotiff =0;
%---INSERT YOUR IMAGE HERE---
load zenithgray; Orig = zenithgray; clear zenithgray;
%--
% Some preliminaries
disp([’ Filter type is ’ filtername]);
disp([’ Number of scales asked for is ’ num2str(N)]);
%
% Show original image
printshop(’figOriginal’, ’ Original ’, Orig, dops, dotiff, []);
%
% Decomposition
[C,S] = QLiftDec2(Orig,N,filtername);
%
% Show the details (at level 1) on the rotated quincunx grid
[Detail10, Detail01] = retrieveQ1001(1, ’d’, C, S);
background=max(max(max(Detail10)), max(max(Detail01)));
RotaDet=rota1001fill(Detail10, Detail01, background);
printshop(’figDetail’, ’Detail’, RotaDet, dops, dotiff, []);
%
Approx = retrieveR(N, ’a’, C, S);
printshop(’figApprox’, ’Approximation’, Approx, dops, dotiff, []);

3. Manual 17

Figure 6: Original, detail and approximation images.

18

Q0011mupq
Purpose Computes the central moments with prescribed order of a two-dimensional signal

(image, matrix) on a quincunx grid (even slots).

Syntax val = Q0011mupq(F00, F11, p, q)

val = Q0011mupq(F00, F11, p, q, Center)

Description Q0011mupq is a utility for the computation of moments and invariants. It computes
the central moments µpq of order p in the x-direction and of order q in the y-
direction and the signal F00 ∪ F11 seen as a density distribution defined on a
quincunx grid (even slots). Note that by the values (p, q) = (1, 0) or (p, q) = (0, 1)
the central moment has to vanish.

p must be an integer, it is the order p in the x-direction.

q must be an integer, it is the order q in the y-direction.

Center is an optional argument, it is an array of 2 doubles that is supposed to be
the center of mass. Without this argument the center of mass is computed for by
this procedure. See also Hu [4].

Output val is the value of the central moment as computed.
Algorithm See Section 2.2.

See Also mupq, Q1001masscenter, Q1001gridfdims, Q1001xcpowp, Q1001ycpowp,
Q1001mupq.

Example

load zenithgray; Orig = zenithgray; clear zenithgray;
%
%---EXTRACT A QUINCUNX GRIDFUNCTION-----
F00 = getcolor00(Orig);
F11 = getcolor11(Orig);
%
%---COMPUTE MASS------------------------
mu00 = Q0011mupq(F00, F11, 0, 0);
%---NICE CHECK: OUTCOME SHOULD VANISH---
mu10 = Q0011mupq(F00, F11, 1, 0);
%---NICE CHECK: OUTCOME SHOULD VANISH---
mu01 = Q0011mupq(F00, F11, 0, 1);
%
[mu00 mu10 mu01]

ans =

369.4633 -0.0000 0.0000

Compare to the result of the example with procedure mupq.

3. Manual 19

whatcoef2QL
Purpose Finds out how a two-dimensional signal (image, matrix) has been stored in the

one-dimensional storage vector of coefficients.
Syntax [first, last] = whatcoef2QL(level, colorF, o, S);

Description whatcoef2QL is a utility for the lifting scheme reconstruction. It finds out from
where (first) to where (last) a two-dimensional signal (image, matrix) has
been stored in the one-dimensional storage vector of coefficients. The said two-
dimensional signal is determined by its level level, type o and in case of a quincunx
grid also by its colour colorF.

level must be an integer, it is the level of the two-dimensional signal.

colorF must be a string of characters. Its value is needed only for odd level,
in that case the two-dimensional signal is defined as one of the two signals on
rectangular grids that together constitute the quincunx grid. The possible values
read (see Figure 3):
00 corresponds to gridpoints of colour 00,
11 corresponds to gridpoints of colour 11,
01 corresponds to gridpoints of colour 01,
10 corresponds to gridpoints of colour 10,
’none’ colour is irrelevant.

o is a character and should be either ’a’ or ’d’, describing the type of the two-
dimensional signal: ’a’ relates to approximation (coefficients) and ’d’ relates to
detail (coefficients).

S must be a two-dimensional array of integers, its structure should be in accordance
with the outcome of QLiftDec2.

first and last are the integer outcomes.
See Also QLiftDec2, QLiftRec2.

Example

%---PARAMETERS---
% How to execute, set parameters
N = 6; % maximum level (even number) in lifting scheme
filtername = ’Neville4’;
%
%---INSERT YOUR IMAGE HERE---
load zenithgray; Orig = zenithgray; clear zenithgray;
%
%---DECOMPOSITION--
[C,S] = QLiftDec2(Orig,N,filtername);
%
%---FIND OUT HOW DETAIL WITH COLOUR 10 AT ODD LEVEL HAS BEEN STORED------------
[first, last] = whatcoef2QL(N-1, ’10’, ’d’, S);

20

4. Example with image fusion

We present an example of an application of the toolbox to image fusion. Two similar though different
images are fused into one image that is meant to unify the information included in both originals.
The example follows Li et al. [7], it is not claimed to represent the present state of the art in image
fusion. See also Figure 7 for the outcome of the example.

%---PARAMETERS---
% How to execute, set parameters
%
N=20;
%
%filtername=’maxmin’;
%filtername=’Neville2’;
filtername=’Neville4’;
%filtername=’Neville6’;
%filtername=’Neville8’;
%
% Manage output, set preferences: see printshop
dops =3;
dotiff =0;
%
%---INSERT YOUR IMAGES HERE--
%
% Convert file with .tif format into matrix of grayvalues
A = double(imread(’hoed_A.tif’,’tiff’));
B = double(imread(’hoed_B.tif’,’tiff’));
%--
% Some preliminaries
disp([’ Filter type is ’ filtername]);
disp([’ Number of scales asked for is ’ num2str(N)]);
%
M = QLmaxlev(size(A), filtername);
disp([’ Maximum number of scales is ’ num2str(M)]);
N = min(N,M);
disp([’ Number of scales is set to ’ num2str(N)]);
%
% Show images that have to be fused
txt = [’ Original A’];
printshop(’figOriginalA’, txt, A, dops, dotiff, []);
txt = [’ Original B’];
printshop(’figOriginalB’, txt, B, dops, dotiff, []);
%
% A and B should have identical dimensions
if ~all(size(B) == size(A))
error(’ Dimensions of A and B not consistent ’);

end
%
% Decompositions
%
[CA,SA] = QLiftDec2(A,N,filtername);
[CB,SB] = QLiftDec2(B,N,filtername);

4. Example with image fusion 21

%
% Create C from CA and CB (only the details)
%
C = CA; S = SA;
for level = 1:N

rectgrids = mod(level, 2)+1;
if rectgrids == 2
[F1A, F2A] = retrieveQ1001(level, ’d’, CA, SA);
[F1B, F2B] = retrieveQ1001(level, ’d’, CB, SB);

else
F1A = retrieveR(level, ’d’, CA, SA);
F1B = retrieveR(level, ’d’, CB, SB);

end
for no = 1:rectgrids

if no == 1
fca = F1A; fcb = F1B;

else
fca = F2A; fcb = F2B;

end
%
% A very simple, pixel-based fusion rule

D = (abs(fca)>abs(fcb));
fcab = D.*fca + (~D).*fcb;

%
if rectgrids == 2
if no == 1

[first, last] = whatcoef2QL(level, ’10’, ’d’, S);
else

[first, last] = whatcoef2QL(level, ’01’, ’d’, S);
end

else
[first, last] = whatcoef2QL(level, ’none’, ’d’, S);

end
C(first:last) = fcab;

end
end
%
% Update C from CA and CB (only the approximation)
%
fca = retrieveR(level, ’a’, CA, SA);
fcb = retrieveR(level, ’a’, CB, SB);
fcab = (fca + fcb) * 0.5;
%
[first, last] = whatcoef2QL(level, ’none’, ’a’, S);
C(first:last) = fcab;
%
% Reconstruction
%
ABfused = QLiftRec2(C,S,filtername);
%
% Show result of fusion

22 References

txt = [’ Fusion of A and B ’];
printshop(’figABfused’, txt, ABfused, dops, dotiff, [], 0, 255);

Figure 7: Top: input images; below: result of image fusion.

5. Concluding Remarks

The toolbox can be downloaded from the following URL:
http://www.cwi.nl/ftp/pauldz/Codes/LISQ/

Any result obtained by this code or part of it, and published in any publication whatsoever, electron-
ically or otherwise, has to make reference to the report you are now reading.

References

1. I. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, J. Fourier
Anal. Appl., 4(3), 345–267, 1998.

References 23

2. H. Foerster, K. Stüben and U. Trottenberg, Nonstandard multigrid techniques using
checkered relaxations and intermediate grids, in Elliptic Problem Solvers, M. Schultz (ed.), Aca-
demic Press, New York, 1981, 285-300.

3. H.J.A.M. Heijmans and J. Goutsias, Multiresolution signal decomposition schemes. Part 2:
Morphological wavelets, CWI Report PNA-R9905, Centrum voor Wiskunde en Informatica, Am-
sterdam, 1999.
www.cwi.nl/ftp/CWIreports/PNA/PNA-R9905.pdf

4. M. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inf. Th., IT-8, 179–187,
1962.

5. A. Jensen and A. la Cour-Harbo, Ripples in Mathematics: the Discrete Wavelet Transform,
Springer-Verlag Berlin Heidelberg 2001.

6. J. Kovacevic and W. Sweldens, Wavelet families of increasing order in arbitrary dimensions,
IEEE Trans. Imag. Proc., 9(3), 480–496, 2000.

7. H. Li and B.S. Manjunath and S.K. Mitra, Multisensor image fusion using the wavelet
transform, Graphical Models and Image Processing 57 (3): 235–245 (1995).

8. M. Misiti, Y. Misiti, G. Oppenheim, J.-M. Poggi, Wavelet Toolbox User’s Guide (For Use
with Matlab) The MathWorks Inc., 1996.

9. P.J. Oonincx and P.M. de Zeeuw, An Image Retrieval System Based on Adaptive Wavelet
Lifting, CWI Report PNA-R0208, Centrum voor Wiskunde en Informatica, Amsterdam, 2002.
www.cwi.nl/ftp/CWIreports/PNA/PNA-R0208.pdf

10. W. Sweldens, The lifting scheme: A Custom Design Construction of Biorthogonal Wavelets,
Appl. Comput. Harmon. Anal. Vol. 3 No.2 1998.

11. W. Sweldens, The lifting scheme: A construction of second generation wavelets, SIAM J. Math.
Anal., 29(2), 511–546, 1997.

12. W. Sweldens and Peter Schröder, Building your own wavelets at home, Wavelets in Com-
puter Graphics, ACM SIGGRAPH Course notes, 15–87, 1996.
http://cm.bell-labs.com/who/wim/papers/athome.pdf

13. D.B.H. Tay and N.G. Kingbury, Flexible design of Multidimensional Perfect Reconstruction
FIR two-band filters using Transformation of Variables, IEEE Trans. Image Processing, Vol 2,
No. 4. October 1993.

14. D.B.H. Tay and N.G. Kingbury, Design of Two-dimensional Perfect Reconstruction Filter
Banks using Transformation of Variables : IIR case, IEEE Trans. Circuits and Systems Part II.
Vol 43, No. 3. March 1996.

15. G. Uytterhoeven and A. Bultheel, The red-black wavelet transform, TW Report 271, Dept.
Comp. Sc., Katholieke Universiteit Leuven, Leuven, 1997.
www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW271.ps.gz

16. G. Uytterhoeven and A. Bultheel, The red-black wavelet transform, Proceedings of IEEE
Benelux Signal Processing Symposium, March 1998 (pp. 191–194).

17. G. Uytterhoeven and A. Bultheel, The red-black wavelet transform and the lifting scheme,
TW Report 318, Dept. Comp. Sc., Katholieke Universiteit Leuven, Leuven, 2000.
www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW318.ps.gz

