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With M(t) := sups∈[0,t] A(s) − s denoting the running maximum of a fractional Brownian motion A(·)
with negative drift, this paper studies the rate of convergence of P(M(t) > x) to P(M > x). We define
two metrics that measure the distance between the (complementary) distribution functions P(M(t) > · )
and P(M > · ). Our main result states that both metrics roughly decay as exp(−ϑt2−2H), where ϑ is the
decay rate corresponding to the tail distribution of the busy period in an fBm-driven queue, which was
computed recently [16]. The proofs extensively rely on application of the well-known large deviations
theorem for Gaussian processes. We also show that the identified relation between the decay of the
convergence metrics and busy-period asymptotics holds in other settings as well, most notably when
Gärtner-Ellis-type conditions are fulfilled.
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1 Introduction

Let (A(s))s∈R be a centered fractional Brownian motion (fBm), that is, a stochastic process, such that for all
s ∈ R, A(s) obeys a Normal distribution with mean 0 and variance |s|2H , for H ∈ (0, 1). fBm has recently
become one of the key models in the applied probability literature, because of a number of interesting
features. For H ∈ ( 1

2 , 1), correlations decay so slowly that the process qualifies as long-range dependent;
choosing H ∈ ( 1

2 , 1) leads to positive correlations, whereas H ∈ (0, 1 1
2 ) results in negative correlations.

Also, fBm exhibits selfsimilar behavior, in that A(αs) has the same distribution as αHA(s). Its use has been
advocated in several practical settings; see e.g. [14, 21] for networking applications.
Motivated by these applications, substantial attention was paid to the analysis of regulated fBm, or fractional
Brownian storage [20]. With the storage process defined through

Q(t) := sup
s≤t

A(t)−A(s)− (t− s),

distributional properties of the steady-state storage level Q := limt→∞Q(t) can be used to describe the
performance of a network element. The stationary storage level Q being distributed as M := sups>0 A(s)−
s, see for instance [15, Sections 5.1-5.2], a considerable amount of work [9, 12, 18, 19] has been devoted to
the characterization of the distribution of M , that is, the supremum attained by an fBm with negative drift.
The results obtained are predominantly asymptotic in nature; most notably, an explicit function ϕ(·) was
identified [12] such that

P (M > x) /ϕ(x) → 1

as x →∞. Clearly, ϕ(x) can serve as an approximation of P(M > x) for large x; we lack, however, accurate
approximations or bounds for small or moderate values of x.

As mentioned above, asymptotic results are available that describe P(M > x) for x large, but considerably
less is known about the convergence of the running supremum

M(t) := sup
s∈[0,t]

A(s)− s

to its limiting distribution M . The primary goal of the present paper is to determine the speed of this
convergence. It is noticed that knowledge of this speed of convergence is useful in several contexts. It
gives, for instance, guidelines as to how long one should simulate A(s)−s in order to be able to accurately
estimate P(M > x) (and hence also P(Q > x)).
A first observation is that the rate of convergence of P(M(t) > x) to P(M > x) depends on the value of x.
Obviously, one could use several distance measures, each incorporating the dependence on x in a specific
way. First notice that

P(M > x)− P(M(t) > x) = P(M > x,M(t) ≤ x) =: γ(x, t) > 0,

as the event {M(t) > x} implies {M > x}. Two possible distances are: (i) the Kolmogorov-Smirnov distance
(which is known to be a genuine distance)

D1(t) := sup
x>0

γ(x, t),
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that measures the maximum distance between the distribution functions, and the integral distance (which
can trivially be shown to be a proper distance, too)

D2(t) :=
∫

x>0

γ(x, t)dx,

that considers the total distance between the distribution functions. Note that D2(t) can be interpreted as
EM − EM(t). The goal of the paper is to find the asymptotics of the Di(t) for t large, i = 1, 2.
The main result of this paper is that, remarkably enough, the decay rates of both distance measures co-
incide, and are equal to asymptotics of the busy-period distribution in an fBm-driven queue, which were
recently identified in [16].

The structure of this paper is as follows. In Section 2 we recapitulate a series of results on the large
deviations of fBm, most notably (the generalized version of) Schilder’s theorem. We also recall the main
results on busy-period asymptotics [16], which enable us to state the main results of our paper. Section 3
presents a number of auxiliary results, that are used in Section 4 (in order to determine the asymptotics
of the Kolmogorov-Smirnov distance) and Section 5 (in order to determine the asymptotics of the integral
distance). In Section 6 we consider the situation of short-range dependent input (or, more precisely, the
situation in which socalled Gärtner-Ellis-type conditions are met), to show that also in this regime the
asymptotics of the Di(t) are equal to those of the busy-period distribution. Section 7 concludes.

2 Preliminaries and main results

In this section we recall a number of useful results from the literature. Emphasis is on busy period asymp-
totics recently identified in [16]. We then state our main results.

2.1 Generalized Schilder

Informally, the generalized version of Schilder’s theorem provides us with a ‘rate functional’ I(·) such that

pn[S ] := P
(

A(·)√
n
∈ S

)
≈ exp

(
−n inf

f∈S
I(f)

)
.

In other words: in this large-deviations setting, the probability of interest decays exponentially in n. The
‘≈’ in the above statement should be interpreted as follows: under mild conditions on the set S (more
concretely, if S is an I-continuity set), the decay rate of pn[S ] is given by

lim
n→∞

1
n

log pn[S ] = − inf
f∈S

I(f).

Apart from the Brownian case H = 1
2 , the ‘rate functional’ I(·) cannot be given explicitly. It is defined

through

I(f) :=

{
1
2 ||f ||

2 if f ∈ R;
∞ otherwise,

where R is the reproducing kernel Hilbert space related to the process A(·) — see for details e.g. [2, 6]. Here
||f || :=

√
〈f, f〉, where 〈f, g〉 is a suitably defined inner product between f, g ∈ R. It is noted that I(f)
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can be interpreted as a measure for the ‘likelihood’ of a path f ; the path f ≡ 0 is the sole path that gives
I(f) = 0, while for other paths f the rate I(f) is strictly positive. The path f? := arg inff∈S I(f) is usually
called the most likely path in large deviations literature, and it has the interpretation that, conditional on
the fBm being in the set S , with overwhelming probability it will be close to f?, cf. [7].
Later in this paper we repeatedly use the following property. Suppose f ∈ R, and g is defined by g(r) =
αf(βr), for α, β > 0. Then

||g|| = αβH ||f ||. (1)

For the purposes of the present paper, more background on ‘generalized Schilder’ is not required; see for
a complete account [2, 6, 16].

2.2 Busy period asymptotics

In [16], and its predecessor [22], the focus was on computing the asymptotics, for large values of t, of
P(K > t), where

K := inf{t ≥ 0 : Q(t) = 0} − sup{t ≤ 0 : Q(t) = 0}.

is the ongoing busy period at time 0. In [22] it was shown that P(K > t) decays roughly in a Weibul-
lian way, that is, as exp(−ϑt2−2H) for some positive constant ϑ. More precisely, it obeys the following
logarithmic asymptotics:

lim
t→∞

1
t2−2H

log P(K > t) = −ϑ, where ϑ := inf
f∈B

I(f). (2)

Here B is the set of paths that remain above the diagonal on the interval [0, 1]:

B := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r}.

Note that the set B can be regarded as the set of feasible paths that correspond to an intersection of events
(reflected by the ∀-quantor). Where unions are usually easy to deal with, finding the minimizing path in
an intersection is typically hard (although often rather precise bounds can be found; see for instance [17]).
In [16] we succeeded in determining the right-hand side of (2), as well as the corresponding minimizing
path f? ∈ B.
In this particular setting, the most likely paths turn out to have a remarkable shape: for H > 1

2 , the most
likely path is at the diagonal in some interval [0, s?], and also at time 1, but strictly above the diagonal
in between; for H < 1

2 , the corresponding path departs immediately after time 0 from the diagonal, but
returns to it strictly before time 1 and continues along it for the rest of the interval — see Fig. 1. The
corresponding decay rate is given in [16, Thm. 24].

2.3 Main results

We now present the main results of this paper. They entail that both D1(t) and D2(t) decay as the proba-
bility P(K > t) of the busy period exceeding t.
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Figure 1: Most likely path in B; left picture H > 1
2 ; right picture H < 1

2 .

Theorem 2.1 (i) For the Kolomogorov-Smirnov distance we have

lim
t→∞

1
t2−2H

log D1(t) = − inf
f∈B

I(f) = −ϑ.

(ii) For the integral distance we have

lim
t→∞

1
t2−2H

log D2(t) = − inf
f∈B

I(f) = −ϑ.

Part (i) and (ii) of this theorem will be proven in Sections 4 and 5, respectively, whereas Section 3 develops
a number of useful tools.

3 Auxiliary results

In this section we derive a number of results that are needed to prove Thm. 2.1. The following alternative
expression for γ(x, t) turns out to be useful.

Lemma 3.1 For any x > 0, t ≥ 0,

γ(x, t) = P(∀r ∈ [0, t] : A(r) ≤ x + r; ∃s > t : A(s) > x + s)

= P
(
∀r ∈ [0, 1] :

A(r)
t1−H

≤ x

t
+ r; ∃s > 1 :

A(s)
t1−H

>
x

t
+ s

)
.

Proof. The first equality is a matter of rewriting {M > x, M(t) ≤ x} in terms of the process A(·). The
second equality follows from the self-similarity. �

In the sequel we extensively use the following sequence of probabilities:

pn(δ) := P
(
∀r ∈ [0, 1] :

A(r)√
n

≤ δ + r; ∃s > 1 :
A(s)√

n
> δ + s

)
,

for δ > 0. We also define their exponential decay rates by

J(δ) := lim
n→∞

1
n

log pn(δ),
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again for δ > 0; here J(0) denotes the limit of J(δ) for δ ↓ 0.

Define Aδ as the paths f in the set

Aδ := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ δ + r; ∃s > 1 : f(s) > δ + s}; (3)

also A := A0. The proof of the following result is an immediate consequence of (the generalized version
of) Schilder’s theorem [2, 6].

Lemma 3.2 For any δ ≥ 0,

J(δ) = − inf
f∈Aδ

I(f). (4)

Define

Ā := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ r; f(1) = 1};

B := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r}.

The following result concerns a translation of J(0) in terms of our previous result on busy periods, as
mentioned in Section 2.2.

Proposition 3.3

inf
f∈A

I(f) = inf
f∈Ā

I(f) = inf
f∈B

I(f).

Proof. Due to continuity arguments (cf. the proofs in Section 4 of [22]) the decay rate corresponding to the
most likely path in A is the same as that of the most likely path in

{f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ r; ∃s ≥ 1 : f(s) ≥ s}.

Let s? be the smallest s ≥ 1 such that f(s) ≥ s. Define the path f̄ through f̄(r) := f(rs?)/s?. Then f̄(1) = 1
and, due to (1),

||f̄ ||2 = (s?)2H−2||f ||2 ≤ ||f ||2.

This implies the first equality.
A time shift argument trivially gives that inff∈Ā I(f) is equal to inff∈Ā− I(f), with

Ā− := {f ∈ R | ∀r ∈ [−1, 0] : f(r) ≤ r; f(−1) = −1}.

Now reverse time, and we obtain that this infimum is also equal to inff∈B̄ I(f), with

B̄ := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r; f(1) = 1}.

The analysis of [16] implies that the infima over B and B̄ coincide. �
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Lemma 3.4 (i) With, for δ > 0,

Dδ := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r; f(1) = 1 + δ}, (5)

inff∈Dδ
||f ||2 increases in δ, for δ ∈ [0,H−1 − 1].

(ii) With, for 0 < ε < 1 and δ > 0,

Dδ,ε := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r − ε; f(1) = 1 + δ − ε},

inff∈Dδ,ε
||f ||2 increases in δ, for δ ∈ [0,H−1 − 1].

Proof. In order to settle claim (i), first observe that the probability

qn(δ) := P
(
∀r ∈ [0, 1] :

A(r)√
n

≥ r; ∃s ≥ 1 :
A(s)√

n
≥ δ + s

)
,

decreases in δ, so consequently also

lim
n→∞

1
n

log qn(δ) = −1
2

inf
f∈D̄δ

||f ||2 (6)

decreases in δ; the equality is due to (the generalized version of) Schilder’s theorem, and

D̄δ := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r; ∃s ≥ 1 : f(s) ≥ δ + s}.

Pick an arbitrary path f in this set, and let s? be the smallest s ≥ 1 such that f(s) ≥ s + δ. Then consider
the path f̄ , defined by

f̄(r) :=
(

1 + δ

s? + δ

)
f(rs?).

Note that f̄(1) = 1 + δ, and, because f lies in the set D̄δ , for all r ∈ [0, 1],

f̄(r) ≥
(

1 + δ

s? + δ

)
rs?;

it is easily verified that the right-hand side of the previous display is at least r. We conclude that f̄ is in Dδ

as well. Moreover, as before, any path in D̄δ can be replaced by a path in Dδ with a smaller norm: due to
(1),

||f̄ ||2 =
(

1 + δ

s? + δ

)2

(s?)2H ||f ||2 ≤ ||f ||2;

here it is used that for δ ∈ [0,H−1 − 1] and s ≥ 1 it holds that (1 + δ)sH ≤ s + δ. In other words: for these
δ we can replace the set D̄δ in (6) by Dδ . Hence

−1
2

inf
f∈Dδ

||f ||2

decreases in δ as well, which implies claim (i).
The proof of claim (ii) is similar. The probability

qn(δ, ε) := P
(
∀r ∈ [0, 1] :

A(r)√
n

≥ r − ε; ∃s ≥ 1 :
A(s)√

n
≥ δ + s− ε

)
,
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decreases in δ. Again, for any f in

D̄δ,ε := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r − ε; ∃s ≥ 1 : f(s) ≥ δ + s− ε},

and s? as defined before, we can define

f̄(r) :=
(

1 + δ − ε

s? + δ − ε

)
f(rs?),

which has a smaller norm than f for any δ ∈ [0,H−1 − 1], and which lies in Dδ,ε; the latter statement
follows from f̄(1) = 1 + δ − ε, in combination with, for r ∈ [0, 1],

f̄(r) ≥
(

1 + δ − ε

s? + δ − ε

)
(rs? − ε) ≥ r − ε,

where the first inequality is due to f ∈ D̄δ,ε, and the second inequality due to the fact that, obviously,
(s? − 1)(δr + ε(1− r)) ≥ 0 (realize that 1 + δ− ε > 0 because ε < 1). We have now established claim (ii). �

We now establish a useful lemma on the behavior of J(δ), i.e., the decay rate of pn(δ), as a function of δ.

Lemma 3.5 (i) J(δ) decreases for δ ∈ (0,H−1 − 1].
(ii) J(δ) < J(0) for δ > H−1 − 1.

Proof. First consider part (i). Due to continuity arguments, and ‘generalized Schilder’, the decay rate J(δ)
equals the decay rate corresponding to the most likely path in

{f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ r + δ; ∃s ≥ 1 : f(s) ≥ s + δ}. (7)

With arguments identical to those used in the proof of Lemma 3.4, we can show that for δ ∈ [0,H−1 − 1]
we can replace the set (7) by

{f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ r + δ; f(1) = 1 + δ}. (8)

Reversing time, we observe that the decay rate corresponding with the most likely path in (8) equals the
one corresponding to the set Dδ , as defined through (5). Observe that the event corresponding to the latter
set becomes increasingly rare when δ grows; Lemma 3.4.(i) now implies claim (i).
Now consider the second claim. Clearly

J(δ) ≤ lim
n→∞

1
n

log P
(
∃s > 1 :

A(s)√
n

> δ + s

)
.

The decay rate in the right-hand side equals, see for instance [15, Exercise 6.1.3],

− inf
s≥1

(s + δ)2

2s2H
,

which reduces, for δ > H−1 − 1, to

−1
2

(
δ

1−H

)2−2H ( 1
H

)2H

; (9)
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this is a decreasing function, with value − 1
2H−2 for δ = H−1 − 1. Conclude that, for δ > H−1 − 1,

J(δ) ≤ − 1
2H−2. It is left to prove that J(0) > − 1

2H−2. To this end, we use that in [22] it was shown that

−1
2
· ϕ(H) ≤ J(0) ≤ −1

2
; ϕ(H) :=

1
H(2H − 1)(2− 2H)

·
Γ( 3

2 −H)
Γ(H − 1

2 )Γ(2− 2H)
.

As seen from Fig. 4.1 in [22], we need to check ϕ(H) < H−2 for H in the neighborhood of 1. Observe that
both functions have value 1 for H = 1. As ϕ(·) is concave in this neighborhood, and H−2 convex, we need
to verify whether ϕ′(1) > −2. Tedious calculations yield that, with γEM the Euler-Mascheroni constant
0.5772,

ϕ′(1) = −3− 2 ·
Γ′( 1

2 )
Γ( 1

2 )
− 2γEM ≈ −0.22 > −2.

This proves claim (ii). �

Lemma 3.5 is already a first indication that Thm. 2.1.(i) indeed holds, as seen as follows. Observe that
(provided that the limits exist), using Lemma 3.1, with α defined as (2− 2H)−1,

lim
t→∞

1
t2−2H

log D1(t) = lim
t→∞

1
t2−2H

log sup
x>0

γ(x, t)

= lim
n→∞

1
n

log sup
x>0

P
(
∀r ∈ [0, 1] :

A(r)√
n

≤ x

nα
+ r; ∃s > 1 :

A(s)√
n

>
x

nα
+ s

)
= lim

n→∞

1
n

log sup
x>0

P
(
∀r ∈ [0, 1] :

A(r)√
n

≤ x + r; ∃s > 1 :
A(s)√

n
> x + s

)
= lim

n→∞

1
n

log sup
x>0

pn(x). (10)

In other words: if one can interchange the limit and supremum, then

lim
t→∞

1
t2−2H

log D1(t) = sup
x>0

J(x),

which equals J(0) due to Lemma 3.5; applying Lemma 3.2 and Prop. 3.3, conclude that this would also
mean that Thm. 2.1.(i) holds. The goal of Section 4 is to prove that the limit and supremum indeed com-
mute.
In light of the fact that, in a large-deviations setting, the decay rate of an integral is, under rather general
conditions, determined by the decay rate of the maximum of the integrand, it is now also expected that
indeed Thm. 2.1.(ii) holds; Section 5 is devoted to substantiating this claim.

4 Proof for Kolmogorov-Smirnov distance

Proof of Thm. 2.1.(i). As seen above in (10),

lim
t→∞

1
t2−2H

log D1(t) = lim
n→∞

1
n

log sup
x>0

pn(x),

implying that the lower bound is trivial, as for all ε > 0,

lim
t→∞

1
t2−2H

log D1(t) ≥ J(ε);

now let ε ↓ 0, and apply Lemma 3.2 and Prop. 3.3. The upper bound is proven in the following steps.
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(i) First observe that, taking for convenience M as a multiple of ε > 0,

sup
x>0

pn(x) ≤

M/ε∑
k=1

pε
n(k)

+ sup
x>M

pn(x), with pε
n(k) := sup

x∈((k−1)ε,kε]

pn(x). (11)

(ii) Trivially,

sup
x>M

pn(x) ≤ sup
x>M

P
(
∃s > 1 :

A(s)√
n

> x + s

)
= P

(
∃s > 1 :

A(s)√
n

> M + s

)
.

Also, as seen in (9), for M > H−1 − 1,

lim
n→∞

1
n

log P
(
∃s > 1 :

A(s)√
n

> M + s

)
= −1

2

(
M

1−H

)2−2H ( 1
H

)2H

.

We saw in the proof of Lemma 3.5 that, for M ≥ H−1 − 1, this expression is majorized by J(0), and
hence

lim
n→∞

1
n

log sup
x>M

pn(x) ≤ J(0). (12)

From now on we pick M := H−1 − 1.

(iii) Also,

pε
n(k) ≤ P

(
∀r ∈ [0, 1] :

A(r)√
n

≤ kε + r; ∃s > 1 :
A(s)√

n
> (k − 1)ε + s

)
;

because of ‘generalized Schilder’, we thus obtain

lim
n→∞

1
n

log pε
n(k) ≤ − inf

f∈Akε,ε

I(f),

where

Ax,ε := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ x + r; ∃s > 1 : f(s) > x− ε + s}.

Applying Lemma A.1 in the Appendix to the right-hand side of (11), and using (12), we obtain

lim
n→∞

1
n

log sup
x>0

pn(x) ≤ max
{

max
x=ε,2ε,...,M

(
− inf

f∈Ax,ε

I(f)
)

, J(0)
}

. (13)

(iv) We now show that, for x = ε, 2ε, . . . ,M ,

− inf
f∈Ax,ε

I(f) ≤ − inf
f∈A0,ε

I(f). (14)

This is done as in Lemma 3.5.(i). First, using the arguments of the proof of Lemma 3.4, we can restrict
ourselves for x ∈ {ε, 2ε, . . . ,M} to the paths that attain the value 1 + x− ε at time 1, i.e., paths in

{f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ x + r; f(1) = 1 + x− ε}.

Reversing time yields that this is equivalent to finding the most likely path in

{f ∈ R | ∀r ∈ [0, 1] : f(r) ≥ r − ε; f(1) = 1 + x− ε}.

We now observe that the event corresponding to this set is increasingly rare for growing x, as made
precise by Lemma 3.4.(ii) (where we have chosen ε < 1). Hence, for x = ε, 2ε, . . . ,M , claim (14) now
follows.

10



(v) Hence the right-hand side of (13) is bounded from above by

max
{
− inf

f∈A0,ε

I(f), J(0)
}

. (15)

By letting ε ↓ 0,

Jε(0) :=
(
− inf

f∈A0,ε

I(f)
)
↓
(
− inf

f∈A0
I(f)

)
= J(0).

Now the stated follows from letting ε ↓ 0 in (15), and application of Lemma 3.2 and Prop. 3.3. �

5 Proof for integral distance

Proof of Thm. 2.1.(ii). We start by establishing the lower bound. Evidently, for ε > 0 arbitrarily chosen,
and, as before, α := (2− 2H)−1,∫

x>0

γ(x, t)dx ≥
∫

x∈[εnα,2εnα]

γ(x, t)dx ≥ εnα

(
inf

x∈[εnα,2εnα]
γ(x, t)

)
.

Hence, for ε > 0 arbitrarily small, using n−1 · log n → 0,

lim inf
t→∞

1
t2−2H

log D2(t) ≥ lim inf
t→∞

1
n

log
(

inf
x∈[εnα,2εnα]

γ(x, nα)
)

= lim inf
n→∞

1
n

log
(

inf
x∈[ε,2ε]

pn(x)
)

.

It is straightforward that

inf
x∈[ε,2ε]

pn(x) ≥ P
(
∀r ∈ [0, 1] :

A(r)√
n

≤ ε + r; ∃s > 1 :
A(s)√

n
> 2ε + s

)
.

The lower bound now follows from letting ε ↓ 0, together with the usual continuity arguments and time-
reversal.
We now turn to the upper bound. Obviously, for any ε > 0,∫

x>0

γ(x, nα)dx ≤ nα+ε

(
sup

x∈(0,nα+ε]

γ(x, nα)

)
+

∞∑
k=bnα+εc

(
sup

k∈[k,k+1)

γ(x, nα)

)
.

We consider the decay rates (in n) of both terms. First focus on the first term; because of, again, n−1·log n →
0, and Thm. 2.1.(i),

lim sup
n→∞

1
n

log

(
nα+ε

(
sup

x∈(0,nα+ε]

γ(x, nα)

))

≤ lim sup
n→∞

1
n

log

(
sup

x∈(0,∞)

γ(x, nα)

)
= − inf

f∈B
I(f). (16)
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Also, applying part (i) of Lemma A.2 in the Appendix, there are positive constants κ, λ such that

lim sup
n→∞

1
n

log

 ∞∑
k=bnα+εc

(
sup

x∈[k,k+1)

γ(x, nα)

)
≤ lim sup

n→∞

1
n

log

 ∞∑
k=bnα+εc

(
sup

x∈[k,k+1)

P(M > x)

)
≤ lim sup

n→∞

1
n

log

 ∞∑
k=bnα+εc

(
sup

x∈[k,k+1)

κ exp
(
−λx2−2H

))
≤ lim sup

n→∞

1
n

log

 ∞∑
k=bnα+εc

κ exp
(
−λk2−2H

) . (17)

Now part (ii) of Lemma A.2 can be applied: there exist positive constants κ̄, λ̄ such that (17) is bounded
above by

lim sup
n→∞

1
n

log
(
κ̄ exp

(
−λ̄(nα+ε)2−2H

))
= −∞,

where the last equality follows by recalling that α = (2 − 2H)−1. Combining this with (16) and using
Lemma A.1 completes the upper bound. �

6 Analogous results for short-range dependent input

The analysis for fBm shows that the logarithmic asymptotics of both distances coincide with those of long
busy periods. One may wonder whether such a property is valid under more general circumstances. One
could pursue to extend the class of models for which this result holds to Gaussian processes with regularly
varying variance functions, cf. [5, 7]. In this section we focus on non-Gaussian processes, viz. short-range
dependence processes that obey Gärtner-Ellis-type conditions; see e.g. [13].
To this end, with A(t), as before, the traffic generated by a process with stationary increments in a window
of length t (which we can assume to have zero mean, without loss of generality), consider for x > 0

K(x) := lim
t→∞

1
t

log P (∀r ∈ [0, t] : A(r) ≤ xt + r; ∃s > t : A(s) ≥ xt + s) .

It is trivial to rewrite this decay rate to

lim
t→∞

1
t

log P
(
∀r ∈ [0, 1] : t−1 ·A(rt) ≤ x + r; ∃s > 1 : t−1 ·A(st) ≥ x + s

)
.

First define the (asymptotic) cumulant function

Λ(s) := lim
t→∞

1
t

log EesA(t),

which we assume to exist; this essentially means that the input traffic is short-range dependent. Then one
can define the large deviations rate function by its Legendre transform:

I(a) := sup
s

(sa− Λ(s)).
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It is readily verified that, under mild conditions, the decay rate in the previous display is bounded from
above by

lim
t→∞

1
t

log P
(
∃s > 1 : t−1 ·A(st) ≥ x + s

)
= − inf

s≥1
sI

(
x + s

s

)
; (18)

these mild conditions in particular relate to the behavior of the input process between grid points, as
formalized in [9, Hypothesis 2.3].
We now study under which conditions this upper bound is actually tight. First observe that for any T > 1,

K(x) ≥ lim
t→∞

1
t

log P
(
∀r ∈ [0, 1] : t−1 ·A(rt) ≤ x + r; ∃s ∈ (1, T ] : t−1 ·A(st) ≥ x + s

)
;

below we specify how T should be chosen. Let the infimum in the right-hand side of (18) be attained in
s? ≥ 1. Suppose t−1 · A(· t) satisfies a sample-path large deviations principle (sp-LDP) on [0, T ] of the
Mogulskii-type, with rate function Ī(·) and supremum-norm, then

K(x) ≥ −Ī(f),

for any feasible path f , that is, all f in Ax, as defined by (3); here Ī(f) :=
∫ T

0
I(f ′(t))dt. Now verify that

the path given by f?(s) = s · ((x + s?)/s? for s ∈ [0, s?], and f(s) = x + s? for s > s?, is indeed feasible;
also

Ī(f?) = s?I

(
x + s?

s?

)
,

so that we can conclude that indeed

K(x) = − inf
s≥1

sI

(
x + s

s

)
.

Now that we have an expression for K(x), we wonder whether we can prove the decay of the Di(t) is
similar to that of the tail distribution of the busy-period. To this end, first note that K(x) is a decreasing
function of x. It is relatively straightforward to check that this fact entails that, for i = 1, 2,

lim
t→∞

1
t

log Di(t) = K(0) = −I(1).

This argumentation indicates that the decay rate of Di(t) indeed coincides with the busy-period asymp-
totics −I(1), like in the fBm case, as long as an sp-LDP is available; for a broad class of discrete-time
processes satisfying a Gärtner-Ellis condition (covering discrete-time Markov modulated processes), such
an sp-LDP was proved by Chang [3], whereas for Lévy processes see e.g. [4]. It is clear that, to make the
above argumentation work, it is sufficient that T is chosen larger than s?.

7 Discussion and concluding remarks

Decay of the correlation function. In Section 6 we showed for short-range dependent input that, under
specific regularity conditions, Di(t) (i = 1, 2) decay essentially exponentially in t, and this decay roughly
coincides with that of the tail of the busy-period distribution. Let us now consider the asymptotics of the
covariance Cov(Q(0), Q(t)), with, as before,

Q(t) := sup
s≤t

A(t)−A(s)− (t− s),

13



assuming that the queue is in equilibrium at time 0. In [11] it was shown for short-range dependent Lévy
input (with no negative jumps), that also Cov(Q(0), Q(t)) has the same asymptotic behavior as the tail of
the busy-period distribution: for i = 1, 2,

lim
t→∞

1
t

log Cov(Q(0), Q(t)) = lim
t→∞

1
t

log Di(t) = −I(1),

with I(1) as defined in Section 6.
Our main result states that also in the fBm case, we saw that the busy-period asymptotics and those of
Di(t) (i = 1, 2) match. In light of the above findings for short-range dependent Lévy input, this suggests
that also in the fBm case

lim
t→∞

1
t2−2H

log Cov(Q(0), Q(t)) = −ϑ.

Based on the recent results in [10], however, we expect that this is not true. Instead, we anticipate that the
asymptotics of Cov(Q(0), Q(t)) are roughly polynomially, or, more precisely, decaying as t2H−2, which is
equally fast as the asymptotics of Cov(A(0, 1), A(t, t + 1)). A formal proof of this property is still lacking,
though.

Use of convergence estimates in simulation. If one aims at estimating the probability P(M > x) through
simulation, one needs to truncate the infinite time horizon to some finite value, say t. This evidently
always implies an underestimation. Obviously, one needs to choose t sufficiently large such that the
error made is negligible. Let Tx be defined as the smallest s such that A(s) − s = x; then it holds that
P(M > x) = P(Tx < ∞). Then one could, for instance, require for small ε > 0 (for instance 5%) that t be
chosen large enough that

P(t < Tx < ∞)
P(Tx < ∞)

< ε.

The numerator equals γ(x, t), whereas the denominator can be bounded from below by [20]

exp

(
−1

2

(
x

1−H

)2−2H ( 1
H

)2H
)

.

In other words, if one has a upper bound on γ(x, t), one could find a minimal t needed to achieve the
above criterion. A procedure in a discrete-time setting is sketched in [8].

A Appendix: useful bounds

Lemma A.1 Let, for i in some finite index set I , a
(i)
n be sequences such that

lim sup
n→∞

1
n

log a(i)
n ≤ ωi. (19)

Then

lim sup
n→∞

1
n

log

(∑
i∈I

a(i)
n

)
≤ ω? := max

i∈I
ωi.
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Proof. Although we believe the proof is rather standard, we present it here. Choose an arbitrary ε > 0.
Then (19) entails that there is an ni such that for all n > ni we have that a

(i)
n ≤ exp(n(ωi + ε)). Hence, for

n > maxi ni,

a(i)
n ≤ exp(n(ω? + ε)).

Then

lim sup
n→∞

1
n

log

(∑
i∈I

a(i)
n

)
≤ lim sup

n→∞

1
n

log
(
{#I} × en(ω?+ε)

)
= ω? + ε.

The stated follows after sending ε ↓ 0. �

Lemma A.2 (i) There exist positive constants κ and λ such that

P(M > x) ≤ κ exp
(
−λx2−2H

)
.

(ii) There exists positive constants κ̄ and λ̄ such that

∞∑
k=K

exp
(
−k2−2H

)
≤ κ̄ exp

(
−λ̄K2−2H

)
.

Proof. Part (i) follows immediately from Duffield and O’Connell [9, Section 3.2]; part (ii) is due to Dieker
and Mandjes [8, Lemma 2.1 and 2.2]. �
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