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ABSTRACT

Segregation of desirable and undesirable components in a signal given by measurements is a broad subject

with many applications of huge importance. We focus on the problem that the signal to be detected is

superposed by polluting signals which are characterized by a large amplitude and a few dominant directions.

Such problems occur for instance in the analysis of seismic signals. We devise numerical algorithms which

combine rotation of the given data with one-dimensional and two-dimensional discrete wavelet decomposition

techniques respectively. The numerical algorithms are tested on both real and synthetic datasets and are

compared with more classical techniques based on Fourier transforms.
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1. Introduction
We can think of many examples where signals are distorted: be it sound, visual images, or measure-
ments by instruments. If put in this way, the problem of getting rid of the distortion is a very general
one. The thing to do is to transform the signal such that the distortion becomes explicit. It follows
that the "right" transform should be adapted to the kind of distortion. Finding the "right" transform
is equivalent to pinpointing the distortion.
A transform is �nding a new basis of representation. It is an art and science to transform a signal

step by step in such a manner that the coeÆcients with respect to the new basis can be divided
into a set corresponding to the desirable components and another set corresponding to the undesir-
able components. If successful, we then can simply mute the coeÆcients going with the undesirable
components.
In this paper we predominantly consider the �eld of seismic applications. Nevertheless, our methods

may prove valuable in other �elds as well. For obvious reasons geophysicist are after geometric
information on the strati�cation of impedance beneath the earth's surface. Acquisition of data is
done by exciting a signal at the surface. Waves are re
ected at interfaces (i.e. where the impedances
changes rapidly). Seismometers at the surface record the groundmotion as the re
ecting waves arrive.
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As the de
ections are measured in time and for an array of seismometers, we can represent the recorded
signals as a two-dimensional gridfunction (i.e. a rectangular uniform grid where each gridpoint has been
assigned a real number). The information of interest is then constituted by hyperbolic shaped events.
Unfortunately, these events are overshadowed by ground-roll and surface waves directly stemming
from the excitative source. Indeed, these waves often have dominant amplitude and completely blur
the picture (compare: a concert of a violin and a drill). This is where our problem di�ers from
denoising-problems in other �elds of application. It is a major challenge to �lter out the surface
waves from the above seismic data. In this paper we investigate the potential of new methods to do
so. We merely consider problems where seismic data are superposed by polluting signals which are
characterized by a large amplitude and a few dominant directions. We try to explore cautiously the
merits of new approaches, we do not claim to solve impressive practical problems at this point.
The methods we discuss can be characterized by the following template with seven subsequent steps:

Directional denoising template (DD-template):

step 1 Flatten data.

step 2 Rotate data.

step 3 Transform data.

step 4 Adapt (mute, limit) appropriate coeÆcients, i.e. �ltering.

step 5 Apply backtransform.

step 6 Derotate data.

step 7 De
atten data.

Apart from step 2 (and its counterpart step 6) this is quite a conventional framework. Most or all
present methods �t in this framework where often `fast Fourier' is used as transform (step 3). Step 1
(and its counterpart step 7) is a common method to compensate for the exponential decay in time of
the signal. Step 2 (and its counterpart step 6) is unusual, and a main topic in this paper. For reasons
to be explained later, we rotate the data such that they more or less align with either horizontal
or vertical gridlines. The actual �ltering takes place at step 4, its success depends on whether the
transform succeeds in isolating the polluting signals. In a way, the combination of steps 1{3 can be
seen as one big transform with the aim of making the undesirable components explicit.
Another main topic in this paper is the choice of the transform. We investigate the applicability

of wavelet transforms as an alternative to the Fourier transform. Results of earlier research in this
respect are reported in [1, 2, 3, 4, 5]. In [20] a preliminary sketch of our method can be found.
What's new in our method is determined by two elements: rotation/interpolation and the transform

(of wavelet-type). We organize the paper as follows. Section 2 contains a description and analysis
of the rotation/interpolation. Section 3 discusses application of the one-dimensional wavelet X-ray
transform and the two-dimensional discrete wavelet transform respectively. We make a comparison
with the fast Fourier transform. Associated with these respective transforms we use simple �ltering
techniques (step 4). In Section 4 some numerical results are reported for a small but realistic dataset.
In the last section, Section 5, we end up with a few concluding remarks.

2. Rotation/Interpolation
2.1 Introduction
Why rotate the data? As with every transform in the context of seismic data processing the aim is to
make a better separation between the unwanted components and the events of interest. For the two-
dimensional wavelet-decomposition J.C. Cohen et al. [1] showed that if the angle between ground-roll
and the gridlines is within well-de�ned bounds a bias exists for distribution of the energy towards
either horizontal detail or vertical detail wavelet coeÆcients. These �ndings supported our research
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to investigate the e�ects of rotation. Figure 1 shows how a simple synthetic dataset on a uniform
300� 300-grid (left-hand picture) is rotated / interpolated onto a uniform 600� 600-grid (right-hand
picture). The dataset consists of low-amplitude hyperbolic events on which a high-amplitude function
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Figure 1: Idealized testproblem (frequency= 4)

g has been superimposed. The function g impersonates the ground-roll. After rotation, the function
g needs to be (merely) approximately aligned with the grid. Figure 2 illustrates the improvement
of separating capabilities by rotation for this example set. Horizontally we vary the frequency of
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Figure 2: Energy distribution

the superimposed distortion (Figure 1 shows frequency 4). Vertically the energy is depicted of the
horizontal, vertical and diagonal detailcomponents as found by a 2D-wavelet transform (biorthogonal,
energy accumulated over all scales). We observe that rotation indeed improves the separation between
horizontal and vertical details. This holds for both low and several (but not all) high frequencies
(there appears to be a break-even point). The end of the horizontal scale corresponds to the Nyquist-
frequency.
Here, the \right" angle of rotation is chosen visually throughout. However, with the ground-roll

characterized as a low frequency and high amplitude event, ways exist to determine the \right" angle
numerically. Demands to accuracy in this respect are low. In the results to come, the quality of the
corrections proved not too sensitive with respect to the angle and some deviation is tolerable (up to,
say, 10 degrees).
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We have the following matters of concern:

1. Accuracy.

2. Costs (complexity).

We have got an original rectangular domain R with origin o, unit vectors e1, e2 along the sides and
cornerpoints o, o+ ae1, o+ be2, o+ ae1 + be2 where a, b > 0 are the dimensions. With each rotation
of angle � there exists a rectangle R0 with origin o0 and unit vectors e01, e

0
2 that envelopes rectangle

R eÆciently (see Figure 3, \(e1; e
0
1) = �). The original grid 
h with meshsize h = (h1; h2) 2 R

2
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Figure 3: Rotated domain enveloping original domain eÆciently.

de�ned as:


h �
n
j1h1e1 + j2h2e2 j j 2 Z

2
o
\R: (2.1)

The rotated grid 
h0 is de�ned by:


h0 �
n
j1h

0
1e
0
1 + j2h

0
2e
0
2 j j 2 Z

2
o
\R0: (2.2)

A mapping gh : 
h ! R is called a gridfunction on 
h. For any given gridfunction gh on 
h we can
de�ne an interpolating function egh : R! R with

egh � X
i2I(
h)

gi'
h
i ; gi 2 R ; egh 2 L2(R 2

); (2.3)
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where

I(
h) �
n
j 2 Z

2 j j1h1e1 + j2h2e2 2 
h

o
and 'hi are standard nodal basisfunctions 2 L2(R

2
). These basisfunctions can be e.g. piecewise

constant functions. In the upcoming section we employ the spaces fBh and gBh0 generated by the
piecewise bilinear hatfunctions on the grids 
h and 
h0 respectively.

2.2 Accuracy
Let 
h denote the original grid and 
h0 denote the rotated grid with meshsizes h and h0 respectively,
see Figure 3 (in practice it suÆces that both 
h and 
h0 are curvilinear grids). Figure 4 shows a
detail of both 
h and 
h0 intersecting at an angle �. Let V (
h), denote the space of gridfunctions

-
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Figure 4: Rotation of gridfunction.

(vectors) on 
h:

V (
h) �
�
gh j gh : 
h ! R

	
: (2.4)

Likewise V (
h0) is de�ned as the space of gridfunctions on 
h0 . We require that the rotation

Ph0h : V (
h)! V (
h0) (2.5)

is a linear transform. Similarly, we require that the backrotation

Phh0 : V (
h0)! V (
h) (2.6)

is a linear transform. (We have omitted � from the notation.) Let Ih be the identity operator on
V (
h) and de�ne:

Sh : V (
h)! V (
h); (2.7a)

Sh(h
0) = Phh0Ph0h (2.7b)

i.e. rotation followed by backrotation. (This operator applies to data that are not adapted by step 4
in the template.) Ideally, Sh(h

0) should be identical to Ih but this is not feasible.
The template o�ers a way of countering the expected smoothing e�ect of Sh(h

0) as we do not need
to rotate and derotate the full set of seismic data. Instead, we only need to derotate the correction
obtained at step 5 and to add this to the original data.
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Adjoint interpolation Suppose that Ph0h has already been de�ned. Then we can de�ne the adjoint

P
(a)
hh0 of Ph0h:

P
(a)
hh0 : V (
h0)! V (
h)

in the sense that it satis�es:Z
R

^(Ph0hgh)ffh0d
 =

Z
R

egh ^�P (a)
hh0fh

�
d
: (2.8)

If 'hi , i 2 I(
h) and '
h0

j , j 2 I(
h0) are piecewise bilinear hatfunctions on 
h and 
h0 respectively
then this adjoint exists and the construction follows from:Z

R

^

�
Ph0h'hi

� f'h0

j d
 =

Z
R

f'Hi ^�P (a)
hh0'h

0

j

�
d
 (2.9)

for all i 2 I(
h) and j 2 I(
h0).

Bilinear interpolation For convenience, we may perform the rotation by simple interpolation method:

Ph0h = Pbi
h0h (2.10)

bilinear interpolation between the values at the gridpoints of 
h. An appropriate choice for the
backrotation would be the above (scaled) adjoint of Ph0h. Instead, for reasons of simplicity, we may
take again bilinear interpolation (with respect to 
h0)

Phh0 = Pbi
hh0 : (2.11)

The de�nitions (2.10) and (2.11) make Sh(h
0) = Sh(h

0)bi an operator which yields an undesirable
smoothing e�ect. Nevertheless, we can get Sh(h

0) arbitrarily close to Ih when h0 # 0. In fact,

kIh � Sh(h
0)bik1 = O(h0): (2.12)

That is, rotation followed by backrotation, both performed by bilinear interpolation, yields �rst order

accuracy with respect to the meshsize of the rotated grid. This can be seen as follows: let ffh be
the (continuous!) piecewise bilinear interpolating function of a gridfunction fh. At the points of 
h0 ,

fh0 = Pbi
h0hfh �nds the exact values of ffh at these points (injection). Because ffh has no continuous

�rst partial derivatives, Phh0fh0 � fh is merely �rst order accurate with respect to h0. Moreover, �rst
order accuracy can only be observed if h0 < h, which is also intuitively clear if we put the natural
demand that the rotated gridfunction should not lose information with respect to the original.

Interpolation by �nite elements The above bilinear interpolation has the advantage of simplicity but
is rather crude. An alternative method is to use the �nite element method. For given gridfunction gh
we search for a gridfunction fh0 that satis�es ffh0 = egh, ffh0 2gBh0 , egh 2 fBh. That isX

j2I(

h0 )

fj '
h0

j =
X

i2I(
h)

gi'
h
i ; '

h0

j 2gBh0 ; 'hi 2 fBh (2.13)

where 'h
0

j and 'hi are piecewise bilinear hatfunctions on 
h0 and 
h respectively. Generally, this
requirement is impossible to satisfy and we therefore approximate as follows. We introduce the
bilinear form:

a : L2(R
2
)� L2(R

2
)! R ; (2.14a)

a('; f) �
Z
R0

'fd
: (2.14b)
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We state our approximation: �nd fh0 2gBh0 such that

a('h
0

k ;
ffh0) =

Z
R0

'h
0

k eghd
 (2.15)

for the set of piecewise bilinear hatfunctions 'h
0

k that span gBh0 . That is:X
j2I(


h0 )

fj

Z
R

'h
0

j '
h0

k d
 =
X

i2I(
h)

gi

Z
R

'hi '
h0

k d
 (2.16)

for all k 2 I(
h0). Indeed, (2.13) implies (2.16) but not vice versa. Because 'h
0

j and 'hi are piecewise
bilinear hatfunctions on 
h0 and 
h respectively, (2.16) results into a linear system of equations where
the corresponding matrix Mh0 (on the left-hand side) is of special type. In the inner area of 
h0 a row
of the matrix Mh0 can be written in two-dimensional stencil notation as:264

1
36

1
9

1
36

1
9

4
9

1
9

1
36

1
9

1
36

375 : (2.17)

This stencil shows the non-zero values of the result of the action of Mh0 on a gridfunction which
equals 1 at one point (given by j) and 0 elsewhere. Note that both the upper and lower part of the
stencil are multiples of the middle part. The particular system (2.16) is solvable and, moreover, in
a direct manner so eÆcient that it takes a number of operations linearly proportional to the number
of unknowns fj (see [16, x 14.3]). However, automation of the computation of the right-hand side
of (2.16) is a nontrivial task.
We denote the error in the approximation as:

eh
0 � ffh0 � egh: (2.18)

We remark that eh
0 2 L2(R 2

) but (generally) eh
0

=2gBh0 . It can be proven that:

1. a('h
0

k ; e
h0

) = 0 for all 'h
0

k 2 gBh0 (i.e. the error in the approximation is perpendicular to the
bilinear hatfunctions),

2. a(eh
0

; eh
0

) � a(fbh0 � egh;fbh0 � egh) for all fbh0 2 gBh0 (i.e. in gBh0 there is no better approximation

to egh than ffh0).

The proof is analogous to the one in Hughes [6, Ch. 4]. Because of statement 2 we say that ffh0 is the
least squares approximation of egh.
Let us consider this �nite-element type interpolation in terms of linear algebra, that is (2.16) yields:

Mh0fh0 = Ch0hgh (2.19)

withMh0 , Ch0h matrices. We recall thatMh0 is symmetric and can be inverted (true with the piecewise
bilinear hatfunctions, see also (2.17)). From (2.19) it follows that

fh0 = Ph0hgh

with Ph0h de�ned as

Ph0h �M�1
h0 Ch0h: (2.20)

This leads to the de�nition of a possible backrotation via the transpose of Ph0h:

PTh0h = CTh0hM
�1
h0 : (2.21)

Alternatively, the backrotation could again be de�ned via a least squares approximation.
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2.3 Costs
After rotation we obtain a rectangle that envelopes our original domain. Consider a n�m domain of
gridpoints. We need to maintain the original resolution after rotation over an angle �. This implies
that the number of gridpoints on the rotated grid is � times as large as on the original grid with

�(�) = 1 +
1

2

� n
m

+
m

n

�
sin(2�): (2.22)

Though it makes a subsequent fast wavelet transform (FWT) � times as expensive, the rotation does
not a�ect the order of complexity. The additional work and storage capacity induced by rotation is
linearly proportional to the number of gridpoints. Moreover, on the rotated grid many of the wavelet
coeÆcients will be zero on the �ne-grained scales, this may be taken advantage of, depending on the
datastructure chosen.

3. Transforming and Filtering
3.1 Introduction
After a transform, be it Fourier, wavelet or other, the gridfunction remains the same but is expressed
with respect to a di�erent basis. The use of a transform is to �nd an alternative presentation by which
the unwanted components are represented by much fewer coeÆcients and/or by coeÆcients which are
more easy to identify (that is, clearly separated from coeÆcients of the wanted components). By the
way, with this point of view rotation is just part of an overall transform. Three of such transforms are
discussed below as candidates for Step 3 in the DD-template, namely the 1D-wavelet X-ray transform,
the 2D discrete wavelet transform and the (classical) fast Fourier transform (Sections 3.2{3.6).
Step 4 of the DD-template means that the transform is followed by �ltering techniques, i.e. ways

of adapting the coeÆcients c resulting from the transform. By numerical experiments our ways of
adapting naturally evolved from A to C:
A c := max(min(c; upperbound); lowerbound);

B if c satis�es mute-criterion then c := 0 (mute c);

C if c satis�es mute-criterion then replace c by interpolation between nearby coeÆcients that do
not satisfy the mute-criterion.

The values `lowerbound' and `upperbound' are de�ned in a problem-dependent way. Often A turns
out to be too crude: the ground-roll remains too large. This is improved by B which is more radical
by muting coeÆcients completely. The mute-criterion in B, C still needs to be �lled in. It can be
simple like:

mute-criterion = (c > upperbound or c < lowerbound)

be it that the values `lowerbound' and `upperbound' still need to be determined. For a more subtle
mute-criterion see Section 3.3. It shows that such a criterion can be sophisticated and complicated.
However, all our mute-criterions used so far, rely heavily on the rationale that coeÆcients of the un-
wanted components are substantially larger than of the wanted components. An important di�erence
of C with both A and B is that the coeÆcients which need to be adapted are replaced by interpolation
between remaining nearby coeÆcients that (are supposed to) correspond to the wanted components.
Section 3.5 contains more details. Finally, note that with Fourier transform we create only one set of
coeÆcients that need to be �ltered. In contrast, with wavelet transform we usually create many sets
of coeÆcients. Fourier transform together with B works satisfactory if we are well able to isolate the
coeÆcients of the unwanted components.
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3.2 1D-wavelet X-ray transform
Consider a function f on a bounded and closed domain 
 � R

n
. We assume that f = 0 outside 
. An

arbitrary line L in R
n
can be parametrized as x+ t�, with origin x 2 R

n
, � ? x a vector 2 R

n
with

length 1 designating direction and parameter t 2 R . Suppose that L intersects 
. The well-known
X-ray transform [10]

Pf(�; x) =

Z
R
f(x+ t�) dt (3.1)

integrates f along the line L. For an illustration see Figure 5. Often f represents a density in some
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Figure 5: X-ray intersecting 
.

medium. The transform is extensively used in tomography where it describes how radiation emitted
in the direction � is absorbed by living tissue. In this paper, f would correspond to seismic data, that
is amplitude as function of time and space.
If, as an extension of (3.1), the function f is weighted by a wavelet function  , this gives rise to the

so-called wavelet X-ray transform [7, 12, 18, 19, 20] given by

P f(�; x; b; a) =

Z
R
f(x+ t�)

1p
a
 

�
t� b

a

�
dt (3.2)

The translation, dilation parameter pair (b; a) is taken from the open upper half plane

H = f(x; y) 2 R
2 j y > 0g; (3.3)

just as for the ordinary continuous 1-D wavelet transform. The wavelet  satis�es additional conditions
so that the function f can be reconstructed from its wavelet X-ray coeÆcients P f(�; x; b; a). The
transform has been applied to detect events in radar images [13].
The analogue of the discrete 1-D wavelet transform is the discrete X-ray wavelet transform. There-

fore H is replaced by a countable subset K � H . We opt for the usual choice

K = f(a; b) j a = 2j ; b = 2jk; (j; k) 2 Z
2g: (3.4)

These dyadic scales and positions make the analysis far more eÆcient but without much loss of
accuracy. Zuidwijk [17] gives a theoretical justi�cation of the discrete X-ray wavelet transform together
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with suÆcient conditions for a meaningful (convergent) reconstruction. The transforms make use of
wavelet orthonormal bases or, more generally, of biorthogonal systems of wavelet Riesz bases.
Our given seismic data are discrete, that is, discrete data recorded in discrete time and discrete

space. This implies that we need a discretization of (3.2) with respect to f , for f is not given as
a continuous function. (We have to beware that the nomenclature concerning "discrete" can lead
to confusion.) A �rst approach to handle this is the following. The underlying grid of the data is
rectangular. We construct a piecewise bilinear function g that is the interpolating function of the
seismic data. Figure 6 shows the squares where g is locally determined by the given values at the
four cornerpoints Æ. Obviously, at the gridlines g is continuous but not di�erentiable. If we assume
f to be this particular function (f = g) then de�nition (3.2) is applicable with respect to both the
continuous (3.3) and discrete case (3.4). Note that gjL (g restricted to L) is a piecewise parabolic
function. Note further that if we would use the Haar-wavelet for  in the wavelet X-ray transform (3.2)
we can easily compute the integration exactly, without the need to use some approximation rule for
numerical integration.
The discretization of the wavelet X-ray transform (3.2) implies the use of gridpoints at the X-ray

L as well, see Figure 6. The gridpoints of the ray do not coincide with the ones of the seismic data.

-
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At this point we may consider the fast wavelet X-ray transform, the analogue of the fast wavelet
transform [8]. The complexity of this transform is O(l) with l the number of gridpoints at the ray L
(the amount of work is linearly proportional to the number of gridpoints l). If we would aim for an
X-ray wavelet decomposition that is capable of a complete reconstruction of a n�m dataset, we would
need rays through all nm points of the dataset leading to a complexity of O(mnl). This is far too
high for practical purposes (e.g. consider the case m = n = l).
A di�erent approach for the implementation of the wavelet X-ray transform is to rotate the data

beforehand as explained in Sections 1{2. This approach �ts in the DD-template (Section 1) and it is
one of which numerical results are reported on in this paper. The angle of rotation is chosen such that
L aligns with either a horizontal of vertical gridline of the rotated grid. We then apply fast wavelet
X-ray transform on all of the gridlines k L.
For the purpose of denoising (removal of the ground-roll) we choose L such that it lies approximately

along respectively across the undesirable component (see the wake of g in Figure 1). Suppose L is
along the ground-roll and the waveletdecomposition is performed for each gridline k L of the rotated
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gridfunction. The ground-roll is then predominantly presented at the coarse-grained scales. Suppose
L is across the ground-roll and the waveletdecomposition is performed for each gridline k L of the
rotated gridfunction. The ground-roll is now predominantly presented at the �ne-grained scales. This
yields two di�erent approaches for removing the ground-roll. In this way, we employ (3.2) as a tool to
investigate given seismic data, and do so literally from di�erent angles. It is also possible to combine
the approaches. We give numerical examples further on in this paper.

Orthogonalization of corrections Given a correction to the data, we devise here a means to improve
this correction. If more than one correction is available, this device is generalized.
We obtained a correction c on the original dataset forig which results in the gridfunction

fnew = forig � c:

We may consider instead

fopt = forig � �c;

� 2 R ; where � is chosen such that the 2-norm of fopt is minimized which is equivalent to demanding
fopt ? c, from which it follows that

� � (forig; c)

(c; c)
: (3.5)

With the 2D wavelet approach to come, orthogonality of the corrections c ? fnew is immediate with
�ltering of type B (above) by de�nition of the wavelets used. The corrections obtained by the X-ray
approach prove often not orthogonal to the original gridfunction. Indeed, in practice we observe that
usually j�j > 1, values of 2{4 are common.
Likewise, in case we have two linear independent corrections c1 and c2 available, we may consider

fopt = forig � �1c1 � �2c2;

with �1, �2 2 R chosen such that again the 2-norm of the resulting gridfunction is minimized, which
is equivalent to fopt ? ck for k = 1; 2. The latter leads to the following system of equations:�

(c1; c1) (c2; c1)
(c1; c2) (c2; c2)

��
�1
�2

�
=

�
(f; c1)
(f; c2)

�
: (3.6)

The generalization to more than two corrections is straightforward.

Numerical example of the Wavelet X-ray transform Figure 8 is the result when an original dataset
shown by Figure 7 has been �ltered by the X-ray transform across and along. The DD-template has
been used (including rotation) and the correction has been orthogonalized.

3.3 2D discrete wavelet transform
In this section we describe a transform and �ltering technique that di�ers drastically from the previous
section: instead of two separate one-dimensional waveletdecompositions (horizontal and vertical) we
now consider the two-dimensional wavelet decomposition. Within this class we con�ne ourselves to
separable wavelets. We propose the following algorithm:

1. Choose a separable wavelet.

2. Choose the number of levels L.

3. Apply the fast wavelet transform to the gridfunction and store:
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Figure 7: Original dataset. Figure 8: Filtered with the X-ray transform.

� the horizontal detail coeÆcients Hl, l = 1; � � � ; L;
� the vertical detail coeÆcients Vl, l = 1; � � � ; L;
� the diagonal detail coeÆcients Dl, l = 1; � � � ; L;
� the approximation coeÆcients AL.

4. Apply a �lter of type C (see above) to Hl; Vl; Dl, l = 1; � � � ; L and AL.

The construction of the wavelet coeÆcients is done by the well-known procedure of Mallat [8]. In 2D
the number of detail coeÆcients decreases with a factor 4 for each subsequent scale l.
We do not know beforehand on which scale l the ground-roll is reproduced best. Therefore, in step 2

it is wise to take the maximum level allowed (the rule is the last level for which at least one coeÆcient
is correct, see [9]). This maximum depends on the type of wavelet chosen in step 1. Some wavelets �t
better with the data then others, e.g. the Haar-wavelet produces somewhat erratic results.
The algorithm entails that we have to adapt 3L + 1 sets of wavelet coeÆcients, see Section 3.1.

Obviously, for a substantial L it becomes prohibitive to do this by hand. We need mute-criterions
that can be checked numerically and with as few parameters as possible. We experimented with a
procedure to prescribe lower and upper bounds for the sets of detail coeÆcients that is clari�ed by
Figure 9. It relates to the 2D wavelet decomposition, at a certain level l < L, of the rotated dataset
of Figure 1. The vertical axis depicts the amplitude of the wavelet coeÆcients. The coeÆcients are
sorted with respect to amplitude, so that we obtain monotonically increasing functions g : N ! R

(on a �nite domain). We observe that many of the horizontal wavelet coeÆcients dominate as a
consequence of rotating the data before application of the discrete wavelet transform. The sudden
increases / decreases in the graph indicate which of the coeÆcients can be supposed to belong to the
ground-roll. These locations are used to de�ne the lower and upper bound beyond which coeÆcients
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Figure 9: Sorted wavelet coeÆcients

are muted (B, or adapted according C). We call this mute-criterion the derivative-jump criterion. The
implementation is a procedure which requires no user interference. It looks for strong curvature, that
is, it establishes whether the standard deviation of the derivative of g is exceeded with a large factor.
The bounds are indicated as dashed lines in Figure 9 (in this example they do not take e�ect for the
diagonal and vertical detail coeÆcients). At the coarsest scale (l = L) we may prescribe the bounds
also to the approximation coeÆcients AL but as we take L as large as possible, we choose not do so.
Consider (again) the simple synthetic dataset of the idealized testproblem shown by Figure 1,

where weak hyperbolic events (wanted) are superimposed by a high-amplitude function g (unwanted).
We apply the above 2D-wavelet based algorithm to the rotated dataset. We choose a compactly
supported biorthogonal spline wavelet (to be precise "bior2.2", see [9]) and L = 6. Figure 9 applies
to level (l = 4) of the decomposition. We apply the mute-criterion sketched above and the �lter of
type C. Intermediate results are demonstrated in Figure 10. From the �nest-grained scale (level 1)
towards the coarsest-grained scale (level 6) the rotated gridfunction is depicted with accumulated
corrections. In this manner we can observe how the correction interferes (hopefully little) with the
wanted components. Yet, it should be noted that the ranking order of the scales (levels) has no
in
uence on the end result (the ranking order follows from the algorithm of the fast wavelet transform.)
The end result is depicted by Figure 11, it shows the numerical segregation of the wanted and unwanted
components, after derotation. We observe that the proposed algorithm handles the idealized problem
rather well: the ground-roll has been removed and the (weak) hyperbolic events remain (almost)
coherent.
We remark that we can run the algorithm also without rotation. But then the dis-balance between

the energy in the horizontal and vertical details diminishes and the algorithm produces a segregation
that is not as crisp.
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Figure 10: Rotated dataset with accumulated corrections, from level 1 towards level 6.
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Figure 11: Numerical separation of wanted and unwanted components.

3.4 Wavelet packets
The 2D wavelet packets transform [14] provides an analysis much richer than the standard 2D discrete
wavelet analysis. Figure 12 illustrates the di�erence (for a three-level wavelet decomposition). At one
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Figure 12: Structured domains of wavelet coeÆcients.

level of re�nement in the wavelet decomposition procedure the subdomains of the wavelet coeÆcients
are geometrically ordered as"

a h

v d

#
;

where a stands for approximation, h for horizontal detail, v for vertical detail and d for diagonal detail
coeÆcients. The left-hand part of Figure 12 corresponds to the standard discrete wavelet transform
(in 2D). At each level only the approximation coeÆcients (a) are analysed further.
The middle part of Figure 12 shows the subdomains that arise if at each level of re�nement all the

four kinds (a, h, v, d) of wavelet coeÆcients are analysed further (yielding the complete quadtree).
The right-hand part of Figure 12 shows the subdomains that arise if at each level of re�nement both

the approximation and the horizontal detail coeÆcients (a, h) are analysed further. For the application
in this paper, it appears the most suitable choice. The shaded areas indicate the coeÆcients that will
be adapted at step 4 of the DD-template (see Section 4).
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3.5 Interpolation of wavelet coeÆcients
We use wavelet coeÆcients de�ned at rectangular and equidistant grids. Hence, the real-valued sets of
wavelet coeÆcients can be looked at as gridfunctions. Mere muting (see Section 3.1) annihilates part(s)
of the gridfunction. Instead, we demand that bivariate polynomials of degree p � 0 are interpolated
exactly (between neighbouring gridpoints). That is, we assume a smooth behaviour (in the above
sense) of the wavelet coeÆcients of a signal from which the ground-roll has been removed. Therefore,
we �rst reject the wavelet coeÆcients indicated by a certain criterion (e.g. the one of Section 3.3)
and then we replace the rejected coeÆcients by values obtained by interpolation between coeÆcients
that were not rejected. See Figure 13 for an illustrated example. In the shaded regions wavelet
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Figure 13: Interpolation of wavelet coeÆcients.

coeÆcients are not rejected (accepted). At the point with the cross (with a rejected coeÆcient) we
�rst consider the square with the gridpoints Æ. As this initial square contains no gridpoints with
accepted coeÆcients, we widen the square until it does: see the square with the gridpoints �. We
then interpolate by using the values at the gridpoints �. More formally, we could determine ui by
interpolation as follows:

ui =

P
q2Q ai+sqwqui+sqP

q2Q ai+sqwq

; (3.7a)

with

s 2 N ; (3.7b)

i;q 2 N
2
; (3.7c)

Q � f(�1; 1); (0; 1); (1; 1); (�1; 0); (1; 0); (�1;�1); (0;�1); (1;�1)g � N
2
; (3.7d)

wq = jjq1j � jq2jj+ 1; (3.7e)

aj =

(
1 if uj is accepted

0 if uj is rejected
(3.7f)

Obviously, at least one aj needs to be 1. If not, we increase s by steps until it does.
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3.6 Fast Fourier transform with rotation
The classical approach of Fourier transform can take bene�t from the rotation as well. We assume
that ground-roll is characterized by components of low frequency along its propagation in time-space
and by components of arbitrary (including high) frequency across this propagation. As before, we
rotate such that the ground-roll gets (approximately) aligned with the horizontal gridlines. We apply
the Fourier transform towards the (!1; !2) plane of harmonics. We proceed by limiting the coeÆcients
along a narrow strip along the !2-axis as follows. The strip is de�ned by j!1j < b, !2 arbitrary, for
some (small) positive value of parameter b (to be tuned). Because of the rotation this is where the
ground-roll is expected to be represented now. The coeÆcients within the strip could be put to zero
(muting), instead we replace such coeÆcients by the value at the nearest gridpoint on the boundary
of the strip (a simple interpolation approach). For a numerical example see the next section.

4. More Numerical Results
Already some numerical results were presented in the previous sections. Here we present additional
results. As testproblem we consider a small but rather realistic dataset: hyperbolic events heavily
polluted with ground-roll. Figure 14 shows the original dataset, We try to remove the ground-roll

Figure 14: Original dataset.

components by several of the respective means described before (Section 3):

FFT The fast Fourier transform (see Section 3.6, including interpolation): We apply the DD-template
of Section 1 two subsequent times: �rstly with an angle of rotation �1 = �49:6Æ, secondly with
an angle of rotation �2 = �38Æ. Figure 15 and Figure 16 show the subsequent results.

DWT We apply the DD-template with the (standard) 2D discrete wavelet transform (Section 3.3).
As wavelet we choose the Daubechies-8 (db8) wavelet, number of scales is 5, angle of rotation
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� = �49:6Æ. The shaded area in the left-hand part of Figure 12) indicates which detail coeÆcients
are adapted. We adapt the detail coeÆcients according to C (Section 3.1) with the derivative-
jump criterion (Section 3.3). Figure 17 shows the result.

WP We apply the DD-template with the transform by wavelet packets (Section 3.4). As wavelet we
choose the Daubechies-8 (db8) wavelet, number of levels is 5, angle of rotation � = �49:6Æ. The
shaded area in the middle or right-hand part of Figure 12) indicates which detail coeÆcients
are adapted. We adapt the detail coeÆcients according to C with the derivative-jump criterion.
Figure 18 shows the result.

The problem proved not suitable for the 1D-wavelet X-ray transform (Section 3.2).

Figure 15: Filtered with FFT, �1. Figure 16: Filtered with FFT, �1 & �2.

5. Concluding Remarks
We have shown that by means of rotating seismic data �rst, we can more easily identify undesirable
components after discrete 1D and 2D wavelet transform or Fourier transform. Some numerical data
and background material can be viewed at [11, 15].
The wavelettransform is competing with the Fourier transform with respect to �ltering results but

so far o�ers no real improvement. An alternative approach could be the use of directional wavelets,
this we have not investigated. Future research should aim at the design of wavelets with shapes that
�t better with the distortion (ground-roll).
Theoretically, the wavelet transform combined with rotation has a computational complexity which

is directly proportional to the number of gridpoints.
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Figure 17: Filtered with DWT. Figure 18: Filtered with WP.
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