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Abstract 

This paper discusses Minkowski decomposition of convex polygons into their symmetric and totally asymmetric parts. 
Two different types of symmetries are considered: finite-order rotations and line reflections. The approach is based on the 
representation of convex polygons through their perimetric measure. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this paper, the following problem will be ad
dressed: given a compact, convex set P s;;; ~ 2 , find a 
decomposition of the form 

P = Ps e P, , ( 1 ) 

where Ps is symmetric in a sense to be specified, 
and where P, is totally asymmetric (i.e., P, does not 
contain any symmetric parts). Here e denotes 
Minkowski addition. Matheron and Serra (1988), who 
considered this problem for the case of central sym
metry, used a perimetric representation to obtain 
such decompositions. In the work of Jourlin and 
Laget (1988) and Schneider (1989) one can find 

• Corresponding author. 

related material concerning the Minkowski decom
position of convex sets. 

In this paper we show how the approach by 
Matheron and Serra ( 1988) can also be used to deal 
with rotation as well as {line) reflection symmetry. It 
turns out, however, that these two cases are essen
tially different. In the rotation-symmetric case, the 
perimetric measure of the symmetric part equals the 
minimum of the corresponding rotations of the peri
metric measure of the original shape. In the reflec
tion-symmetric case, such a result does not hold, but 
we are able to present an algorithm which finds the 
symmetric part with largest area. Although our argu
ments apply to arbitrary compact, convex sets, we 
shall restrict ourselves to convex polygons in order 
to obtain efficient algorithms. 

Minkowski addition is one of the basic operations 
in mathematical morphology (e.g. (Heijmans, 1994; 
Serra, 1982)), where it is used to define dilation. 
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Mathematical morphology is a powerful toolbox for 
(nonlinear) image processing with a solid mathemati
cal foundation. In most cases, specific hardware for 
morphological image processing allows only neigh
borhood operations. Therefore, the problem of de
composing shapes (structuring elements) into smaller 
parts is relevant with respect to the efficient imple
mentation of morphological routines. 

Several authors have been concerned with the 
problem of decomposing (convex) shapes into sim
pler ones, both in the continuous (Ghosh, 1990, 
1993; Grlinbaum, 1963; Kanungo and Haralick, 
1992) and the discrete case (Ghosh, 1996; Xu, 1991; 
Zhuang and Haralick, 1986). Note in particular that 
every convex polygon in ~ 2 can be decomposed into 
a Minkowski sum of segments and triangles (Yaglom 
and Boltyansky, 1951 ). 

The paper is organized as follows. Basic notations 
and definitions are given in Section 2. In Sections 3 
and 4 we present algorithms for polygon decomposi
tions: in Section 3 for rotation symmetry, and in 
Section 4 for reflection symmetry. Finally, in Section 
5 we illustrate our theoretical findings with some 
concrete examples and we end with some concluding 
remarks. 

2. Preliminaries 

In this section we present some basic notation and 
terminology which we use in the sequel of the paper. 
.9'(~ 2 ), or .9' for short, denotes the family of convex 
polygons in ~ 2 • As in this paper the exact location 
of a polygon is irrelevant, we define an equivalence 
relation " = " on .9': two polygons P and Q are 
said to be equivalent, P = Q, if they differ only by 
translation. 

A convex polygon P ~ ~ 2 can be represented 
uniquely by specifying the position of one of its 
vertices and the lengths and directions of all its 
edges. By P; we denote the length of edge i and by 
u; the vector orthogonal to this edge: see Fig. 1. The 
angle between the positive x-axis and u; is denoted 
by Lu;. Since the location of P is not important, it 
is sufficient to give the set {(u 1,p 1),(u2 ,p2),. • ., 

(un,pn)}, where n = flp is the number of vertices of 
P. This set, denoted by M, is called the perimetric 
representation of P. In Fig. I we give an illustra
tion. 

P, 

U1 

Fig. I. Perimetric representation of a convex polygon. 

A closely related representation of a convex poly
gon is the so-called perimetric measure M( P, · ) (see 
e.g. (Matheron and Serra, 1988)): 

M(P,u)={Po; ifu=u;, 
otherwise. 

We point out that the perimetric measure is a special 
case of the concept of area measure (see (Schneider, 
1993)). It is easy to see that, for every convex 
polygon P, the identity 

LM(P,u)u=O (2) 

holds; here the sum is taken over all u for which 
M(P,u) =F 0. Moreover, this equality is sufficient for 
every discrete positive function defined on the unit 
circle to be the perimetric measure of a convex 
polygon. In fact, this relation expresses that the 
contour of P is closed. 

The operation which plays a major role in this 
paper is Minkowski addition '' E9 '' given by 

AE9B={a+b I aEA,bEB}, 

for two arbitrary sets A, B ~ ~ 2• It is a well-known 
fact that the set of convex polygons .9 is closed with 
respect to Minkowski addition (see Chapter I of 
(Hadwiger, 1957)), and, moreover, that the 
Minkowski sum of two convex polygons can be 
computed by merging their perimetric representa
tions; see e.g. (Ghosh, 1993; Grlinbaum, 1967). 
Mathematically, this amounts to the following rela
tion: 

M(P e Q,u) = M( P,u) + M( Q,u), 

for P ,Q E.9 and u E S1• 

Here S1 denotes the unit circle in 1R 2 • 

(3) 

By G we shall denote the group of linear trans
formations on ~2 • Two important subsets of G are 
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R, the rotations around the origin (which forms a 
subgroup), and l, the reflections with respect to 
lines through the origin. This latter collection is not a 
subgroup. Denote by r0 the rotation around the 
origin over angle e. If e = 2 'IT/ m then we speak of a 
rotation of order m. Denote by la the reflection with 
respect to the line through the origin which makes an 
angle a with the positive x-axis. We denote this line 
of reflection by la. Finally, we denote by I~ G the 
collection of isometries consisting of all rotations as 
well as all line reflections. 

Definition 1. A transformation e in G is called a 
symmetl)' of a polygon P if e(P) = P; we also say 
that P is e-symmetric. 

A polygon P ~ ~ 2 is called rotation-symmetric 
of order m if P is r2 -rr 1 m-symmetric. If m = 2, then 
we say that P is central symmetric. Central symme
try has been investigated in detail by Grlinbaum 
(1963) and Matheron and Serra (1988). A polygon P 
is called reflection-symmetric with respect to axis 
la if P is /,,-symmetric. 

Definition 2. (a) A transformation e is called a 
cyclic transformation of order m if 

e"' ( x) = x, for every x E ~ 2 • (4) 

(b) A transformation e is called a strongly cyclic 
transformation of order nz if it has the property 

x+e(x) + · ·· +e'"- 1(x) =0, 

for every x E ~ 2 . (5) 

It is easy to see that every strongly cyclic trans
formation of order m is also cyclic. The converse is 
not true, however. Finite-order rotations are strongly 
cyclic, whereas line reflections are cyclic (of order 
2), but not strong. Note, furthermore, that g- 1 eg is 
(strongly) cyclic if e is (strongly) cyclic and g E G. 

3. Rotation decomposition 

Recall that M( P, · ) is the perimetric measure of 
P. If P E.9' and g EI (i.e., g is a rotation or a 
reflection), then 

M(g(P),u) =M(P,g- 1(u)). (6) 

Definition 3. Let e E I be given. A convex polygon 
P is said to be totally e-asynzmetric if there does not 
exist a nontrivial e-symmetric polygon Q and a 
polygon R such that P = Q E9 R. 

Proposition 1. Let e be a cyclic transformation of 
order m. If 

min M(P,ek(u))=O, 
k=O.I ..... m-1 

for every u E S 1, (7) 

then the polygon P is totally e-asymmetric. 

Proof. Assume that e is cyclic and that Eq. (7) 
holds. Suppose that P = Q EB R, where Q is e-sym
metric. Since M(P,u) = M(Q,u) + M(R,u), we get 
that 

M( P,ek(u));;;. M(Q,ek( u)) = M( Q,u). 

But this contradicts Eq. (7); we conclude that P is 
totally e-asymmetric. D 

Assume now that e is a strongly cyclic transfor
mation of order m, and that P is a convex polygon 
which is not totally e-asymmetric. Define 

M(u) := min M(P,ek(u)), 
k=O.l .... ,m-1 

foreveryuES 1• (8) 

Let u be such that M( u) * 0; as P is not totally 
e-asymmetric, such a u does exist. Now M(ek(u)) = 

M(u), and 
m-1 m-1 

L M(ek(u))ek(u) =M(u) L ek(u) =O, 
k=O k=O 

since e is strongly cyclic. This yields that 

L M(u)u = 0, 
uES 1 

thus M is the perimetric measure of an e-symmetric 
polygon P,e. It is obvious that M(P,u)- M(u);;;. 0, 
with equality everywhere iff P = P,e. Suppose M( ·) 
* M( P, - ); we get that M( P, - ) - M( ·) is the peri
metric measure of a convex polygon, which we 
denote by Q. Now, for every u E S1, 

min M(Q,ek( u)) 
k=O,l, .... m-1 

min [M(P,ek(u))-M(ek(u))] 
k=O.l, ... ,m-1 

= min M(P,ek(u))-M(u)=O. 
k=O,l, ...• m-1 
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This yields that Q is totally e-asymmetric. We write 
P0' := Q. Observe that P,' = P if P is totally e
asymmetric. The following result has been estab
lished. 

Proposition 2. If e is a strongly cyclic transfonna
tion of order m and if P is an arbitrary convex 
polygon, then P can be decomposed as 

P = P/ E9 P,', (9) 

where P;' is e-symmetric and P,' is totally e-asym
metric. The perimetric measures of Ps' and P,' are 
respectir:ely giuen by 

M(P/,u) = min M(P,e"(u)), 
k-0.1, .... rn-1 

M(P,',u)=M(P,u)-M(P/,11). (10) 

The polygon P is totally e-asymmetric (i.e., P0' = P) 
if and only if Eq. (7) holds. Note that in the latter 
case P,' = {O}. 

See Fig. 7 for an illustration. 
The decomposition in Eq. (9) is a generalization 

of a result by Matheron and Serra (1988) where they 
consider the central symmetric case. 

4. Reflection decomposition 

When we consider line reflections, the decompo
sition problem is more difficult. Namely, in this 

case, the function M given by Eq. (8) is not the 
perimetric measure of a convex polygon, in general, 
since Eq. (2) is not satisfied. Here we shall describe 
an algorithm which, for a given line reflection e = l,,, 
yields a unique decomposition 

( 11) 

such that P/ is /"-symmetric and has the largest 
possible area. The basic idea is captured by Fig. 2. 
The line l;; which is orthogonal to la separates the 
plane in a left part H;; and a right part H,7; see Fig. 
2(a). Furthermore, we put H~ = l,~. We are inter
ested in all directions 11 E 5 1 in the support of 
M(P, ·)for which l"(u) = u' lies in the support as 
well. In Fig. 2(b) we have drawn all these vectors. 
The vectors u+, and u'+, = l"'(u+) (i = 1,2, ... ,k) 
lie in H;, and the vectors u_; and u'_, = l"(u_,) 
(i = 1,2, ... ,!) lie in H;;. If there exist vectors in H~ 
with the given properties, they will be denoted by u0 

and u'0 . The vector 11+ 1 is the vector in H,7 which 
makes the largest angle with the line lo:. Further
more, it is possible that L u +k = Lu'+ k = a and that 
Lu_ 1 =Lu'_ 1 =a+1T. 

Let us suppose that the set comprising u+,• u'+•' 
u0 , u~. u_ 1 , u'_i, with i= 1, ... ,k and j= 1, ... ,1, 
contains at least three different vectors and k,l > 0. 
Then the decomposition in Eq. (11) has a solution 
which can be found by the following algorithm (see 
Proposition 3). The basic idea is to choose pairs 

Fig. 2. L,, is the line of reflection. The line L;; separates vectors u in the perimetric representation for which also u' = l,.(11) is present, into 
two subclasses: u +i ,u'+; at the right and u -J,u'_ 1 at the left. More details can be found in the text. 
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U+;·u'+; and lengths P+;=P'+; as well as pairs 
u_;,u'_; and lengths P-; = p'_; such that 

LP+;(u+; + u'+;) = - LP-;(u_; + u'_;). (12) 

Notice that u +; + u'+; is directed along La in the 
positive direction, whereas u_; + u'_; is directed 
along L,, in the negative direction. Eq. (12) ex
presses that the collection consisting of the pairs 
(u+i•P+), (u'+;•P+), (u_1,p_), (u'_1,p_), along 
with ( u0 , p0 ), (u~,p0 ) (if present), defines a perimet
ric measure. In general, there will be more than one 
solution to Eq. (12). We have to find the solution for 
which the area of the resulting polygon P; is maxi
mal. 

We define q +;, I ~ i ~ k, as follows: 

-{ min{M(P,u+;).M(P,u'+;)} ifu+;=Fu'+;• 
q+;- I 

2M( p ,U+; ), if U+; = u'+; 

( 13) 

Observe that U+; = u'+; implies i = k. The values 
q_;, I~ i.;;:;!, are defined similarly, and q0 = 
min{M(P,u0 ),M(P,u'0 )}, if u0 does occur. Further
more, we define 

k 

S+= L q+; · llu+; + u'+;ll and 
i= I 

I 

S_= L q_; · llu_; + u'-;ll. 
i=I 

As we noted earlier, to construct the perimetric 
measure of a reflection-symmetric polygon, we have 
to satisfy Eq. (12). 

There are three possibilities: 
S+= S_: put P-; = q_; and P+; = q+;; now the 
two vectors in Eq. (12), both directed along L,,, 
have the same length and therefore Eq. ( 12) holds; 
S+> S_: we take P-; = q_; and choose P+;.;;:; 
q+; such that Eq. (12) holds and the area of P; is 
maximal; 
S+<S_: analogous (p+;=q+). 
We present our algorithm for the case S+> S_; 

the case S + < S _ is analogous. Since 

llu+; + u'+;ll < llu+(i+ t) + u'+u+ t)ll 

for every i (the same holds for u _; ), the algorithm 
starts with the smallest indices in order to obtain a 
maximal area for P;. 

Define the set M to contain the pairs (u_;,p_), 
(u'_;,p_), where P-;=q_;. This set corresponds 

with the left part of a convex polygon (see Fig. 3). 
The idea is to "complete" this polygon to the right 
by adding vectors with direction u +;, u'+; and length 
P+; ~ q+i until Eq. (12) is satisfied. 

Algorithm 1. (Case that S+> S_.) 
M := {(u _; ,p _;),(u'_ ;,p _) I i = 1,2,. .. ,!}; 

add (u 0 ,p0 ), (u~,p0 ) to M if present; 
S:=O; 
i := 1; 

P+1 := q+1; 
6.S:=p+I ·llu+I +u'+1ll; 
while (S + 6.S < S_) { 

} 

M :=MU {(u+;•P+),(u'+;•P+)}; 
S:=S+6.S; 
i := i + I; 
P+; == q+;; 
6.S := P+; · llu+; + u'+;ll; 

p := (S_ - S)/cos(Lu+; - a); 
(compute the remainder) 

M :=MU {(u+ 1 ,p),(u'+;•p)} 

It has been explained that the equality S _ = S + must 
hold to have a perimetric measure corresponding 
with a reflection-symmetric polygon. This explains 
our stopping criterion S + 6.S < S_. Now the last 
two lines in the algorithm are necessary to obtain 
S+= S_. 

The perimetric measure M associated with the 
resulting perimetric set M represents an la-symmet
ric convex polygon P;, and the difference M( P,- ) 
- M( ·) represents the asymmetric part P;. 

It remains to be shown that Algorithm I yields the 
unique decomposition with P; having maximal area. 
This is demonstrated by the following two observa
tions. First we explain that, starting with a perimetric 
set M (first line of Algorithm 1) the algorithm yields 
the polygon with maximal area whose perimetric set 
contains M. The set M yields a left part of an 
la-symmetric polygon. Our algorithm extends this 
polygon rightwards in a symmetric fashion, but it 
does so by choosing a path from point A on Lj; (see 
Fig. 3) to the line L,, which has smallest descent, 
thus maximizing the area. This means that our algo
rithm is optimal if we can show that the initial 
choice for M is optimal; see Fig. 3. 

However, any other choice for M in combination 
with our algorithm leads to a perimetric measure M' 
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I 
-4>----·~-

Fig. 3. Construction of reflection-symmetric pan with maximal 
area. 

which is smaller than the perimetric measure M 
obtained from Algorithm l: M'(u) ~ M(u) for every 
u E S 1• This implies, however, that the area of the 
corresponding polygon is smaller, too. 

Thus we have shown that Algorithm I yields the 
decomposition in Eq. (I I) where P/ has maximal 
area. Sec Fig. 7 for an illustration. 

Proposition 3. Given a line reflection e = l" and a 
corwex polygon P, there exists a solution of Eq. (11) 
such that P/ is !"-symmetric and has largest possi
ble area, (l and only if k ~ I, I ~ I, and the set S 
comprising u+;' u'+,• u0 , u~, u_ 1, u'_ 1, with i = 

I, .. .,k and j = I, ... ,!, contains at least three dif 
ferent cectors, and in this case Algorithm I yields a 
solution. 

Observe that, when the assumptions above are not 
satisfied, then the algorithm yields an M which is 
empty or M = {(u0 ,p0 ),(u~,p0 )} depending on 
whether the vectors u0 , u~ exist or not. In the first 
case, there does not exist a decomposition, in the 
second case we find that P/ is a line segment, which 
has zero area. 

For most angles a the condition in Proposition 3 
will not be satisfied. To find an upper estimate for 
the number of angles which have to be checked if P 
contains n = np vertices, we have to consider the 
angles a;.,=±(Lu;+Lu)mod1T, with l~j~i 
~ n. Namely, u1 is the reflection of u; with respect 
to the line that makes an angle ai.J with the positive 
x-axis. An angle a is a candidate solution if there 
exists at least two pairs i 1,j1 and i 2 ,j2 such that 

a;,.;,= a;,.h =a. Furthermore, it is not allowed that 
both i 1 = j 1 and i 2 = j 2• An upper bound for the 
number of candidates is t L.;1_ 1 i = ±n(n + I), where 
n = np. 

5. Examples and concluding remarks 

In this final section we present some concrete 
examples to illustrate our results. 

Let us consider first an example which illustrates 
the decomposition according to Algorithm 1. Con
sider the polygon P depicted in Fig. 4(a). Suppose 
that the reflection line coincides with the OX axis. 
The perimetric representations of original and re
flected polygons are given in Fig. 4(b) and (c), 
respectively. The minimum of these perimctric repre
sentations computed according to Eq. (13) is pre
sented in Fig. 4(d). Since this set contains 5 vectors, 
Proposition 3 says that there exists a Minkowski 
decomposition of the original polygon. 

The resulting vectors S + and S _ computed for 
the right and left half-planes H+ and H- are shown 
in Fig. 5(a). The sum of S + and S _ does not equal 
0 and therefore the set shown in Fig. 4(d) is not a 

(a) (b) 

············*· 
(c) (d) 

Fig. 4. (a) Polygon P; (b) perimetric representation of P; (c) 
perimetric representation of the polygon 10 ( P ); (d) resulting set of 
vectors. 
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... L' 

"> ,. 

(a) (b) 

1.' 
J:I' H., 

* 
(c} (d} 

Fig. 5. Demonstration of Algorithm I. (a) Vectors S and S · 
(b) initial step of the algorithm; (c) first step of the alg:rithm; c<l) 
second step of the algorithm. 

perimetric representation. To extract the perimetric 
representation from this set we apply Algorithm I. 

Since vector S _ is shorter than S +, the initial set 
M contains only vectors from the left half-plane; see 
Fig. 5(b). 

At the first step of the algorithm we add two 
vectors from the right half-plane (see Fig. 5(c)). 

At the second and last step we add a part of the 
third vector from the right half-plane. The resulting 
perimetric measure is shown in Fig. 5(d). This peri
metric measure defines a reflection-symmetric poly
gon (Fig. 6) which is the solution of the decomposi-

Fig. 6. Reflection-symmetric polygon which is the solution of the 
decomposition problem. 

oD 
Fig. 7. From left to right and top to bottom: the original polygon 
P and its decomposition with respect to rotation over 180', 
rotation over 120°, and reflection in the venical axis. 

tion problem with respect to the fixed reflection 
plane. 

In Fig. 7 we depict a convex polygon and three 
decompositions associated with three different sym
metries: rotation over 180° (central symmetry), rota
tion over 120°, and reflection with respect to the 
vertical axis. 

At first glance, one might expect that the triangle 
which represents the symmetric part with respect to 
rotation over 120°, should be contained in the sym
metric part with respect to the line reflection. How
ever, as we explained, our algorithm corresponding 
with line reflections yields the decomposition in 
which the symmetric part has maximal area: as a 
result, not the entire triangle is included in the 
symmetrical part but only part of it. 

Having achieved a decomposition like in Eq. (9) 
or Eq. ( 11 ), we can define a functional µ.,: go x E.....,, 
[0,1] by 

V( Ps') 
µ(P,e) = V(P) , (14) 

where V( P) denotes the area of P, and where E 
consists of all finite-order rotations (in Eq. (9)) or 
line reflections (in Eq. ( 11 )). Heijmans and Tuzikov 
(_1996) have shown that µ., has the following proper
ties for P E.9, e E £: 
1. µ.,( P, e) = µ.,( P', e) if P = P'; 
2. µ.,( P,e) = µ.,(ek(P),e), k ~ l; 
3. µ.,( P, e) = 1 iff P is e-symmetric; 
4. µ.,(P,e)=µ.,(h(P),heh- 1), hE/. 



254 A. Tuzikov. H.J.A.M. Heijmans /Pattern Rewgnition Letters 19 ( 1998) 247-254 

We call functionals f.L which satisfy these proper
ties and which, in addition, are continuous in the first 
variable with respect to the Hausdorff metric, /-in
variant £-symmetry measures (Heijmans and 
Tuzikov, 1996). Note, however, that µ. defined in 
Eq. (14) is not continuous. We present a systematic 
treatment of symmetry measures for convex sets 
based on Minkowski addition and the Brunn
Minkowski inequality (Heijmans and Tuzikov, 1996). 
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