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Asymptotically optimal parallel resource assignment
with interference

ABSTRACT
Motivated by scheduling in multi-cell wireless networks and resource allocation in computer
systems, we study a service facility with two types of users (or jobs) having heterogeneous size
distributions. Our model may be viewed as a parallel two-server model, where either both job
types can be served in parallel, each by a dedicated server, or both servers are simultaneously
allocated to one type only (also known as "cycle stealing"). A special instance of the model is
the coupled-processors model. In this paper, the aggregate service capacity is assumed to be
largest when both job types are served in parallel, but giving preferential treatment to one of the
job classes may be advantageous when aiming at minimization of the number of jobs, or when
job types have different economic values, for example. The model finds applications in third
generation wireless networks and in resource allocation of computer systems. For practical
reasons, these application areas do not allow for centralized control. Still, knowledge of the
theoretical achievable (centralized) optimum is extremely valuable to estimate the scope for
improvement of the implemented decentralized control. We therefore set out to determine the
optimal server allocation policies that in some appropriate sense minimize the total number of
users in the system. At any given moment, the optimal resource allocation depends on the
numbers of users present in each class. For some particular cases we can determine the
optimal policy exactly, but in general this is not analytically feasible. Therefore, we study
asymptotically optimal policies in the fluid limit which prove to be close to optimal. These
policies can be characterized by either linear or exponential switching curves. We compare our
results with existing approximations based on optimization in the heavy traffic regime, where
threshold-based strategies and so-called Max-Weight policies are known to be asymptotically
optimal. By simulations we show that our simple computable switching-curve strategies based
on the fluid analysis in general perform well and that significant gains can be achieved
compared to (i) the strategy that maximizes the aggregate service capacity at all times, (ii) the
strategy that maximizes the job departure rate at all times, (iii) the threshold-based policies, and
(iv) the Max-Weight policies.
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Abstract

Motivated by scheduling in multi-cell wireless networks and resource allocation in com-
puter systems, we study a service facility with two types of users (or jobs) having hetero-
geneous size distributions. Our model may be viewed as a parallel two-server model, where
either both job types can be served in parallel, each by a dedicated server, or both servers are
simultaneously allocated to one type only (also known as ”cycle stealing”). A special instance
of the model is the coupled-processors model. In this paper, the aggregate service capacity
is assumed to be largest when both job types are served in parallel, but giving preferential
treatment to one of the job classes may be advantageous when aiming at minimization of
the number of jobs, or when job types have different economic values, for example.

The model finds applications in third generation wireless networks and in resource allo-
cation of computer systems. For practical reasons, these application areas do not allow for
centralized control. Still, knowledge of the theoretical achievable (centralized) optimum is
extremely valuable to estimate the scope for improvement of the implemented decentralized
control. We therefore set out to determine the optimal server allocation policies that in some
appropriate sense minimize the total number of users in the system. At any given moment,
the optimal resource allocation depends on the numbers of users present in each class. For
some particular cases we can determine the optimal policy exactly, but in general this is not
analytically feasible. Therefore, we study asymptotically optimal policies in the fluid limit
which prove to be close to optimal. These policies can be characterized by either linear or
exponential switching curves. We compare our results with existing approximations based on
optimization in the heavy traffic regime, where threshold-based strategies and so-called Max-
Weight policies are known to be asymptotically optimal. By simulations we show that our
simple computable switching-curve strategies based on the fluid analysis in general perform
well and that significant gains can be achieved compared to (i) the strategy that maximizes
the aggregate service capacity at all times, (ii) the strategy that maximizes the job departure
rate at all times, (iii) the threshold-based policies, and (iv) the Max-Weight policies.

1 Introduction

In many practical applications where resources must be allocated among several contending users
or tasks, the resource capacity itself may be affected by the scheduling strategy deployed. Our
work is motivated by two specific application areas. In third generation wireless networks, neigh-
boring base stations may interfere with each other when transmitting simultaneously. When one
base station is not active, other base stations can work at higher rates, see for example [7]. For
data applications, base stations may coordinate transmissions (i.e., transmit simultaneously or
alternatingly) so as to optimize the use of the shared spectrum. A second motivating application
is the scheduling of resources in computer systems (or Web servers) where jobs must be routed
to one of several servers, see for example [22, 23]. There, the capacity depends on the allocation
when servers are specialized for certain tasks.
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Scheduling of resources with state-dependent capacities has attracted much attention in recent
years. Most of the results concern stochastic stability properties of such systems. Due to
the state-dependence of the resource capacity, even this most basic performance measure is a
non-trivial task to determine. In [10] bounds for stability in a general class of systems with
state-dependent capacity have been determined. In the specific context of wireless networking,
stability of utility-based allocation strategies was shown to be intimately related with the shape
of the feasible rate region [9], i.e., the set of simultaneously achievable rates by all users. With
a convex rate region, the system is stabilized by any such allocation strategy, but this is not
the case for non-convex rate regions. These results were later generalized to non-convex and
time-varying rate regions in [18], showing the precise conditions for stability of utility-based
strategies under quite general assumptions on the time-variations.
As may be expected from the complexity of determining stability, results on the flow level perfor-
mance in terms of system delay or system occupancy are scarce. In particular, for parallel-server
models where job types can be served in parallel, all by a dedicated server, or where several
servers can be simultaneously allocated to one type only, most results in this direction concen-
trate on performance of a specific class of allocation strategies. For example, besides determin-
ing the stability conditions, [23] investigate the performance for threshold-based strategies. One
main observation there is that finding reasonable values for the thresholds is not trivial since
performance as well as stability can be quite sensitive to the threshold values. Approximations
for mean response times are given in [22]. A general class of threshold-based priority policies
for multi-class parallel-server networks is also proposed in [26]. For these strategies, the authors
derive approximate formulas for the queue lengths and illustrate how these can be used to obtain
reasonable threshold values. In [7] a parallel two-server model is analyzed under the policy that
maximizes the aggregate service capacity at all times, and a diffusion approximation for the
queue lengths is found for a specific heavy traffic setting.
Our goals here are to study the structural properties of optimal resource allocation strategies in a
parallel-server model, and to determine computable approximations that are close to optimality.
Our objective is to minimize (in some appropriate sense) the total number of users. A crucial
observation when addressing optimality is that, in general, users will have class-specific sizes,
so that few users of one class can typically add up to the same amount of work as many of
another class. On one hand, it seems reasonable to maximize the departure rate of users/tasks,
by serving the small users first. In the short run, this will keep the number of users/tasks in the
system at a low level, thus shortening overall delays. On the other hand, it is also desirable to
deploy the highest possible service capacity. That will minimize the volume of back-logged work
and drain the system at maximum rate, thus ensuring maximum stability. In general, there can
be a trade-off between these two objectives. The main challenge is then to weigh the trade-off
of the two intrinsically different objectives and to find the optimal allocation policy.
Determining the exact optimal policy in a parallel-server model has so far proven analytically
infeasible in literature. Most research on this area has focused on a heavily loaded systems
under a (complete) resource pooling condition for which asymptotically optimal strategies are
determined [1, 5, 6, 15, 16, 20, 25]. In [1, 15, 16] several kinds of discrete-review policies are
proposed (at discrete points in time the system is reviewed, and decisions are based on the queue
lengths at that moment) and are proved to be asymptotically optimal. In [20, 25] a generalized
cµ-rule (the Max-Weight policy is a special of this rule) is proposed which myopically maximizes
the rate of decrease of certain instantaneous holding costs. This policy is robust in the sense that
it only depends on the service rates and the cost function, and it is proved that in heavy traffic
this policy asymptotically minimizes the cumulative costs over any finite interval. However, the
cost function can not be chosen to represent the total number of users present in the system. In
[5, 6], the authors prove that threshold-based strategies asymptotically minimize the scaled total
number of users in a heavy-traffic setting. In general, the order of magnitude of the optimal
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thresholds as functions of the traffic load can be determined, but this does not give a recipe to
choose good threshold values in under-loaded regime. In [26], the authors propose values for the
threshold, which can be found by solving a minimization problem.
We consider a parallel two-server model with two traffic classes that can be served either in
parallel or alternatingly. The highest service capacity is achieved when serving both classes in
parallel, but with asymmetric job sizes the departure rate may be larger when serving one class
only. This model is identical or similar to several of the aforementioned papers. Determining
the mean number of jobs in closed form is not feasible: A special case of the model (known as
the coupled-processors model in queueing literature) has been shown to be notoriously hard to
analyze, requiring the solution of a Riemann-Hilbert boundary value problem [12]. For some
special cases we can determine the optimal policy exactly, but this is not possible in general. In
a similar setting, [4] state that switching-curve strategies are optimal (a proof will be included
in a forthcoming paper by the authors of [4]). Numerical experiments included for illustration in
the present paper indeed support this optimality. In order to find computable approximations
for the optimal policies we then study the model in a fluid-limit regime for which we show
that the optimal strategy is characterized by a linear switching curve. The optimal switching
curves in the fluid regime can be used to determine asymptotically fluid optimal strategies for
the stochastic model. These policies are characterized by either linear or exponential switching
curves. Our analysis is inspired by that in [13, 14] where a multi-class tandem-network is studied.
By simulations we compare these asymptotically fluid optimal switching-curve strategies with
threshold-based policies [5, 6] and Max-Weight policies [20, 25] which are known to be optimal in
heavy traffic. We show that the fluid based strategies give good performance in general and can
achieve significant improvements over Max-Weight policies. Optimal threshold-based policies
are equally competitive, while the choice of good parameters in practical settings is less involved
for the fluid-based strategies.
It is worth noting that the optimal strategies studied in this paper require centralized control.
Our aim here is to provide theoretical optimality bounds against which decentralized schemes,
implemented in practice, can be compared. In the application area of bandwidth-sharing net-
works, it was found that certain distributed schemes may actually be close to the theoreti-
cal (centralized) optimum [27, 28, 29]. While computationally more involved, threshold-based
strategies can be implemented in a distributed manner.
The paper is organized as follows. In Section 2 we describe the model and state some preliminary
results. Section 3 contains our optimality results for the stochastic model. We first consider
the case when a stochastic optimal strategy exists. Otherwise we resort to optimality in terms
of mean numbers of users. The fluid analysis and the asymptotically fluid optimal policies are
presented in Section 4. For comparison we briefly discuss the optimal strategies in heavy traffic
using the results of [5, 6] and [20, 25] in Section 5. Numerical experiments and concluding
remarks can be found in Sections 6 and 7.

2 Model description

We consider the following model. Class-i users, i = 1, 2, arrive according to independent Poisson
processes with rate λi and have exponentially distributed service requirements with mean 1/µi,
i = 1, 2. We assume throughout the paper that µ1 ≥ µ2, that is the class-1 users are relatively
small. Denote by ρi = λi

µi
. At any time, the server can serve one class only (either class 1 or

class 2) with service rate 1, or serve classes 1 and 2 in parallel with service rates c1 and c2

respectively, ci ≤ 1, or take any convex combination of these three (in a time-sharing fashion).
For a given policy π, denote by sπ

i (t) the capacity given to class i at time t. The vector
sπ(t) = (sπ

1 (t), sπ
2 (t)) lies in the convex hull of the set {(0, 0), (1, 0), (0, 1), (c1, c2)}, see Figure 1.

Note that if c1 + c2 > 1, the total service rate is largest when both classes are served in
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Figure 1: Rate region.

c1

c2

1 − c1

1 − c2

class 1

class 2

server 1

server 2

Figure 2: Parallel two-server model.

parallel. For application in wireless networks, this represents the joint capacity when both
stations transmit in parallel, and in computer scheduling it corresponds to dedicated specialized
servers.
With resource allocation in computer systems in mind, it is more natural to view the model as
an equivalent parallel server model with two servers and two queues, as depicted in Figure 2.
Server 1 can serve class 1 at rate c1 or class 2 at rate 1 − c2. Similarly, server 2 can serve class
2 at rate c2 or class 1 at rate 1 − c1. When the two servers are dedicated to their own classes,
classes 1 and 2 are served in parallel at rates c1 and c2 respectively. When both servers serve
class i, class i is served at rate 1. (In our setting, both servers can work together on one single
task, thus achieving a service capacity of 1, even when there’s only one task in the system.) Note
that, although uncommon in this setting, it is no restriction to require that the service capacity
obtained by combining the two servers equals 1 irrespective of the queue being served. In fact,
this can be achieved for any parallel server model by normalizing the service requirements. 1

In the remainder of the paper we will frequently use the terminology corresponding with the
wireless network application and we will not specifically distinguish between two servers.
Let Sπ

i (t) :=
∫ t
0 sπ

i (u)du denote the cumulative amount of capacity obtained by class i in the
time interval (0, t). Let Ai(u, t) be the amount of class-i work that arrived in the time interval
(u, t). Then, the workload in class i at time t can be written as

W π
i (t) := Wi(0) + Ai(0, t) − Sπ

i (t). (1)

Denote by Nπ
i (t) the number of class-i users at time t, and let Nπ(t) = (Nπ

1 (t), Nπ
2 (t)). We

further define Nπ
i and Nπ as random variables with the corresponding steady-state distributions

(when they exist).
At all times, one needs to decide how the service capacity should be allocated between the
two classes. The objective of the paper is to identify service allocation policies that in some
appropriate sense minimize the total number of users in the system. We only consider non-
anticipating policies, i.e., policies that have no knowledge available of the remaining service
requirements. Since we have exponentially distributed service requirements, the way the capacity
is allocated within a class does not affect the stochastic behavior of the process. From now we
therefore assume that within a class the First Come First Served discipline is applied. The
set of non-anticipating policies is denoted by Π. We call a policy π̃ average optimal when
π̃ = argminπ∈ΠE(Nπ

1 + Nπ
2 ). A policy π̃ is stochastically optimal when N π̃

1 (t) + N π̃
2 (t) ≤st

Nπ
1 (t) + Nπ

2 (t), for all t ≥ 0, π ∈ Π, whenever N π̃(0) = Nπ(0). By definition, X ≤st Y when
P(X > s) ≤ P(Y > s) for all s ≥ 0.

1One may think of µi to be the job completion rate of class i when served exclusively (with normalized service
capacity 1). Then c1 and c2 may be adjusted so that µici equals the job completion rate of class i when the two
classes are served simultaneously.
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Note that, if c1+c2 ≤ 1, then serving either class 1 or class 2 exclusively will maximize the rate at
which the total workload in the system decreases and since µi ≥ c1µ1 + c2µ2 it is readily proved
that the optimal policy never serves both classes in parallel. The model becomes a multi-class
server for which it is well known that when class-i users have exponentially distributed service
requirements with mean 1/µi, the µ-rule, i.e. the policy that gives preemptive priority to the
class with the highest departure rate µi, is stochastically optimal [24]. The rationale behind this
rule is that it maximizes the departure rate at all times. These arguments imply the following
lemma. (In fact, the result holds for any shape of the rate region where the points (1, 0) and
(0, 1) are not dominated by any other point in the rate region.)

Lemma 2.1 If c1 + c2 ≤ 1, then the policy that gives preemptive priority to the class with the
highest departure rate µi is stochastically optimal.

In the remainder of the paper we will focus on the case c1 + c2 > 1.

2.1 Stability

The stability condition depends on the policy being used. Maximum stability is obtained by
the policy that serves classes 1 and 2 combined whenever possible, since this policy minimizes
the total workload in the system at every moment in time (c1 + c2 > 1). Under this policy, the
model becomes a coupled processors model for which the stability conditions are

min(
ρ1

c1
,
ρ2

c2
) < 1 and (2)

if
ρi

ci
< 1 then ρj +

ρi

ci
(1 − cj) < 1, i 6= j, (3)

as proved in [12]. Obviously, for the policy that serves classes 1 and 2 in parallel whenever
possible, condition (2) is needed for stability, since otherwise the backlog in both classes will
grow indefinitely. If ρi

ci
< 1, then class i will eventually be drained to zero. If the positive backlog

of class j (j 6= i) persists for a long time (so that class i gets capacity ci when present), class i
will on average be non-empty for a fraction ρi

ci
of the time, so that class j obtains (on average)

a capacity of ρi

ci
· cj + (1 − ρi

ci
) · 1. This being strictly larger than the offered load of class j, ρj

(because of condition (3)), the class j must ultimately also empty.
Conditions (2) and (3) are necessary conditions to make the system stable for any policy. How-
ever, they do not guarantee stability and the exact (sufficient and necessary) stability conditions
depend strongly on the used scheduling policy.

3 Optimality results

Motivated by the µ-rule, see the previous section, one might expect that such a rule is optimal
in our model as well. Note that the departure rate corresponding to a certain allocation s(t) is
equal to µ1s1(t) + µ2s2(t), hence the µ-rule would amount to choosing that s(t) that maximizes
this term. However, the total service capacity, s1(t)+ s2(t), depends on the chosen allocation as
well. For example serving class i only, decreases the total amount of work at rate 1, while serving
classes 1 and 2 in parallel implies a decrease of the workload at rate c1 + c2 > 1. In conclusion,
the objective to maximize the departure rate may be conflictive with that of maximizing the
total service capacity. The latter will minimize the total time needed to empty the system,
which is optimal in the long run, while the former is better for the short run.
Recall that µ1 ≥ µ2. If in addition µ1 ≤ µ1c1+µ2c2, then there is no trade-off and it is intuitively
clear that the policy that always serves class 1 and 2 in parallel is optimal since this maximizes
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both the speed at which the system works and the departure rate. In Section 3.1 we show that
the above described policy is in fact stochastically optimal.
When µ1 ≥ µ1c1 +µ2c2, we obtain the highest departure rate when we serve class 1 individually.
So it may be better to sometimes serve class 1 individually even if that does not maximize the
rate at which the total work in the system decreases. Hence as the number of users varies,
the system will dynamically switch between different allocations. This setting is discussed in
Section 3.2.

3.1 Stochastic optimality when µ1 ≤ µ1c1 + µ2c2

In this section we will show that when (µ2 ≤)µ1 ≤ µ1c1 + µ2c2, the policy that always serves
both classes in parallel is stochastically optimal. This result can be proved using dynamic
programming techniques. We choose a framework which is broader than strictly needed to
prove the required stochastic optimality of the number of jobs (we only need a particular choice
of the function C(·) below). It will be convenient to focus on the uniformized Markov chain.
That is, transition epochs (possibly ’dummy’ transitions that do not alter the system state) are
generated by a Poisson process of uniform rate ν = λ1 + λ2 + (1 + c1)µ1 + (1 + c2)µ2. Since
ν is finite, we may assume ν = 1 without loss of generality. We consider here the embedded
discrete-time Markov chain and, for transparency of notation, again denote the state after k
steps by Ni(k), i = 1, 2. Let x = (x1, x2) where the variable xi represents the number of class-i
users. We define the functions Vk(·, ·), k = 0, 1, . . ., as follows:

V0(x) = C(x)

Vk+1(x) = λ1Vk(x1 + 1, x2) + λ2Vk(x1, x2 + 1)

+ min
(

µ1Vk((x1 − 1)+, x2) + (µ2 + µ1c1 + µ2c2)Vk(x),

µ2Vk(x1, (x2 − 1)+) + (µ1 + µ1c1 + µ2c2)Vk(x),

µ1c1Vk((x1 − 1)+, x2) + µ2c2Vk(x1, (x2 − 1)+) + (µ1 + µ2)Vk(x)
)

(4)

for x1, x2 ≥ 0, k = 0, 1, . . . , with C(·, ·) a cost function. The term Vk+1(x) represents the
minimum achievable expected costs after k + 1 steps, when the system starts in state x. If we
choose as cost function C(x) = 1(x1+x2>s), then these costs are equal to Vk+1(x) = P(N1(k + 1)+
N2(k + 1) > s|N(0) = x). Hence, if for this cost function we show that for every s and k we
obtain the same minimizing action in (4) (the optimal action may depend on the state x),
then the corresponding policy is stochastically optimal. In the next two lemmas we establish
convenient properties of Vk, under certain conditions on the function C(x).

Lemma 3.1 If C(x) is non-decreasing in x1 and x2, then Vk(x) is non-decreasing in x1 and x2

for all k.

Proof: The statement follows directly from the definition of Vk. ¤

Under certain conditions on C(x), the minimizing action will be to always serve classes 1 and
2 in parallel, whenever possible. This is stated in Lemma 3.2 and the proof may be found in
Appendix A.

Lemma 3.2 If c1 + c2 ≥ 1 and W (x) = C(x) is non-decreasing in x1 and x2 and satisfies

(µ1 + µ2)W (x) + µ1c1W (x1 − 1, x2) + µ2c2W (x1, x2 − 1)

≤ min(µ1W (x1 − 1, x2) + (µ2 + µ1c1 + µ2c2)W (x),

µ2W (x1, x2 − 1) + (µ1 + µ1c1 + µ2c2)W (x)), (5)

for x1, x2 > 0, then W = Vk, k ≥ 0, satisfies (5) as well.
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We can now find the stochastically optimal policy when max(µ1, µ2) ≤ µ1c1 + µ2c2.

Proposition 3.3 Assume c1 + c2 ≥ 1. If max(µ1, µ2) ≤ µ1c1 + µ2c2, then it is stochastically
optimal to serve both classes in parallel whenever possible.

Proof: If max(µ1, µ2) ≤ µ1c1 + µ2c2, then the cost function C(x1, x2) = 1(x1+x2>s), s ≥ 0,
satisfies the conditions as given in Lemma 3.2. Hence, from Lemma 3.2 we obtain that serving
both classes in parallel whenever possible is always the minimizing action in (4) and hence the
corresponding policy is stochastically optimal. ¤

3.2 Characterization of the average-optimal policy when µ1 > µ1c1 + µ2c2

Now assume that µ1 > µ1c1 + µ2c2. A tradeoff must be made when users of both classes are
present. On one hand serving only class 1 maximizes the departure rate since µ1 > µ1c1 + µ2c2.
However, serving class 1 and 2 simultaneously maximizes the speed at which the total workload
in the system decreases. Since a stochastically optimal policy may in general not exist, we focus
on the average-optimal policy, i.e., the policy that minimizes E(Nπ

1 +Nπ
2 ) over all policies π ∈ Π.

From c1 + c2 > 1 and µ1 > µ1c1 + µ2c2 together we obtain µ1 > µ2. Hence maximizing the
departure rate would imply that an optimal policy will never serve class 2 individually when
class 1 is also present. At the same time, serving class 2 individually does not give the high
service rate either. Therefore, this action will not be chosen by an optimal policy. This fact is
proved in Proposition 3.5. First we will state a lemma that in fact holds for generally distributed
service requirements and will be used later in the proof of Proposition 3.5. The proof may be
found in Appendix B.

Lemma 3.4 Assume we have generally distributed service requirements. Let π̃ be a policy that
sometimes does serve class 2 individually while there are class-1 users present. Define policy π
to be the policy that uses the same allocation as π̃ when possible, except when policy π̃ serves
class 2 individually. In that case policy π serves classes 1 and 2 in parallel (if possible). Then
the following sample-path inequalities hold:

Sπ
1 (t) ≥ Sπ̃

1 (t) (6)

Sπ
1 (t) + Sπ

2 (t) ≥ Sπ̃
1 (t) + Sπ̃

2 (t) (7)

(1 − c2)S
π
1 (t) + c1S

π
2 (t) ≥ (1 − c2)S

π̃
1 (t) + c1S

π̃
2 (t), (8)

for all t ≥ 0.

Proposition 3.5 Assume µ1 ≥ µ2 and c1 + c2 > 1. Then for any policy π̃ that serves class 2
individually when there is work of class 1 present, there exists a modified policy π that never
serves class 2 individually and does not worse than π̃, i.e., E(Nπ

1 (t)+Nπ
2 (t)) ≤ E(N π̃

1 (t)+N π̃
2 (t)),

for all t ≥ 0.

Proof : Let π̃ be a policy that sometimes does serve class 2 individually while there are class-1
users present. Define policy π as in Lemma 3.4 and hence the sample-path inequalities (6)
and (7) hold. Multiplying (6) by µ1 − µ2 ≥ 0 and (7) by µ2 and adding the two inequalities
gives that µ1S

π
1 (t) + µ2S

π
2 (t) ≥ µ1S

π̃
1 (t) + µ2S

π̃
2 (t) and hence by (1) we obtain

µ1W
π
1 (t) + µ2W

π
2 (t) ≤ µ1W

π̃
1 (t) + µ2W

π̃
2 (t) (9)

for all t. Since we have exponentially distributed service requirements and we consider only
non-anticipating policies, we have E(W π

i (t)) = 1
µi

E(Nπ
i (t)). By taking expectations on both
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sides in (9), we obtain E(Nπ
1 (t) + Nπ

2 (t)) ≤ E(N π̃
1 (t) + N π̃

2 (t)). Hence policy π is not worse than
π̃ and policy π never serves class 2 individually when there is work of class 1 present. ¤

When seeking for an average-optimal policy, by Proposition 3.5 we only need to consider policies
that never serve class-2 users individually when there are also class-1 users present. The decision
between whether to serve class 1 individually or classes 1 and 2 in parallel depends on the number
of class-1 and class-2 users present in the system. Intuitively, we expect that the optimal policy
can be characterized by a switching curve, i.e. there exists a function h such that if N2 ≥ h(N1),
then it is optimal to serve classes 1 and 2 in parallel, and otherwise it is optimal to serve only
class 1. The authors in [4] state that for a model with slightly different behavior near the
boundaries, the existence of such a switching curve can be proved using dynamic programming
techniques. We expect that for our model, the existence of a switching curve can be proved using
the same technique (see also [27] where this was done for a different model). However, dynamic
programming techniques will not provide us with any information concerning the shape of the
curve. Therefore, in the remainder of the paper we search for policies that are close to optimal
by investigating two limiting regimes. In Section 4 this is done for a fluid scaled system and
(asymptotically) optimal switching curve policies are found. In Section 5 a heavy traffic regime
is considered.

4 Fluid analysis and asymptotic optimality

In this section we will consider the stochastic process under a fluid scaling and investigate close
to optimal policies. In order to do so, it will be convenient to first study the related deterministic
fluid control model. This will be done in Section 4.1 and for this relatively simple model we
derive the optimal switching curve and the optimal trajectory. In Section 4.2 we then show
that under certain switching curve policies in the stochastic process, the fluid scaled stochastic
processes converge to the optimal trajectory as found for the deterministic fluid control model.
This tells that these switching curve policies are asymptotically fluid optimal in the stochastic
model.

4.1 Optimal policies for the fluid control model

In this section we consider the deterministic fluid control model, which arises from the original
stochastic model by only taking into account the mean drifts of the stochastic model. Denote
by ni(t) the amount of class-i fluid in the system at time t and let n(t) = (n1(t), n2(t)). The
fluid processes ni(t) are described by the following differential equations:

dni(t)

dt
= λi − ui(t)µi − uc(t)µici, i = 1, 2, (10)

ni(t) ≥ 0, i = 1, 2, (11)

u1(t) + u2(t) + uc(t) ≤ 1 (12)

uj(t) ≥ 0, j = 1, 2, c, (13)

and
n(0) = n. (14)

Note that when (2) and (3) are satisfied, the system can be drained in finite time and can be
kept empty from that moment on.

8



A policy π for the fluid control model is described by the control functions uπ
1 (t), uπ

2 (t) and uπ
c (t).

We are interested in the optimal fluid policy, which is defined as the policy that minimizes

∫ D

0
(nπ

1 (t) + nπ
2 (t))dt, with nπ(t) satisfying (10)–(13), (15)

for every initial point n(0) = n. In this section we focus on finding the optimal policy for
D = ∞. For D = ∞ we denote the optimal trajectory by n∗(t) and the optimal control by
u∗

j (t), j = 1, 2, c.
Before proceeding to find n∗ and u∗

j , we will first state a lemma that will be useful later on. It
states that n∗(t), the optimal trajectory for the infinite horizon problem, is also optimal for the
finite horizon problem when the horizon is large enough. The proof may be found in Appendix C.

Lemma 4.1 There exists a function D : R → R such that,

min
n(t) s.t. (10)−(14)

∫ D̃

0
(n1(t) + n2(t))dt =

∫ D̃

0
(n∗

1(t) + n∗
2(t))dt,

for all D̃ ≥ D(|n|) and with n∗(t) the optimal solution of (15) for D = ∞ and initial state n.

For the stochastic model we know that it is never optimal to serve class 2 exclusively when also
work of class 1 is present. In the fluid control model, it can be checked that this is true as well:

Observation 4.2 If n1 > 0, then u∗
2(t) = 0.

The following lemma describes the existence of a switching curve in the fluid control model.

Lemma 4.3 Assume µ1 > c1µ1 + c2µ2 and c1 + c2 > 1. Let ñ ∈ {n : n1 > 0, n2 ≥ 0} and
n̂ ∈ {n : n1 ≥ 0, n2 ≥ 0} and assume there exists a trajectory between these two points that does
not coincide with the n1 = 0 axis. Then among all trajectories that move from ñ to n̂ without
coinciding with the n1 = 0 axis, the path that first serves class 1 and at some point switches to
serving both classes 1 and 2 simultaneously, minimizes the costs to go from ñ to n̂.

Proof: Since n1 > 0 on the whole trajectory, we know that no time is spent on serving class 2
individually. Denote by T1 (Tc) the cumulative amount of time spend on serving class 1 (classes
1 and 2 simultaneously). The net change in the amount of fluid in the two classes can be written
as

n̂1 − ñ1 = (λ1 − µ1)T1 + (λ1 − c1µ1)Tc

n̂2 − ñ2 = λ2T1 + (λ2 − c2µ2)Tc.

Under the necessary stability conditions (2) and (3) this has a unique solution for T1 and Tc.
Hence, all trajectories spend the same cumulative amount of time on serving both classes in
parallel and serving class 1 individually.
The rate at which the total amount of fluid decreases when n1(t) > 0 is given by d(n1(t)+n2(t))

dt =
λ1 +λ2 −u1(t)µ1 −uc(t)(µ1c1 +µ2c2). Since µ1 > µ1c1 +µ2c2, first serving only class 1 initially
maximizes the rate at which the total amount of fluid decreases, and hence minimizes the costs.
¤

For the fluid control model we can now determine the optimal switching curve. To do that, we
will distinguish between whether ρ1 < c1 or ρ1 ≥ c1.
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µ1 − λ1µ1 − λ1

λ2λ2

µ1c1 − λ1

µ1c1 − λ1

λ2 − µ2c2

µ2c2 − λ2

n1n1

n2n2

uc = 1uc = 1

u1 = 1u1 = 1

Figure 3: Drift vectors for ρ1 < c1 and ρ2 > c2 (left), and ρ1 < c1 and ρ2 < c2 (right),
respectively.

4.1.1 Case ρ1 < c1

When ρ1 < c1, a necessary condition for stability is ρ2 < 1 − ρ1

c1
(1 − c2) (see (2) and (3)).

Depending on ρ2 and c2, the drifts are as in Figure 3.
In Proposition 4.4 we describe the optimal fluid policy which is characterized by a linear switch-
ing curve. In Figure 4 the optimal trajectory is shown. To state the proposition it is convenient
to define

α := max
(

0,
c2 − ρ2

c1 − ρ1
+

c1

c1 + c2 − 1
×

1 − ρ2 −
ρ1

c1
(1 − c2)

c1 − ρ1
×

µ1 − c1µ1 − c2µ2

µ2

)

.

Note that α > c2−ρ2

c1−ρ1
.

Proposition 4.4 Let µ1 > µ1c1+µ2c2 and c1+c2 > 1. Assume ρ1 < c1 and ρ2 < 1− ρ1

c1
(1−c2).

The optimal policy in the fluid control model is

• u∗
1 = 1, if n2 < αµ2

µ1
n1.

• u∗
c = 1, if n2 ≥ αµ2

µ1
n1 and n1 > 0.

• u∗
c = ρ1

c1
and u∗

2 = 1 − ρ1

c1
, if n1 = 0.

Proof: We first determine the optimal allocation for points with n1 = 0. From the fluid
dynamics (10)-(13), Observation 4.2 and noting that ρ1 < c1, we see that when n1(t) = 0,

then dn1(t)
dt = λ1 − u∗

1(t)µ1 − u∗
c(t)µ1c1 ≤ 0, hence class 1 remains empty. So dn1(t)

dt = 0, i.e.,
ρ1−u∗

1(t)−u∗
c(t)c1 = 0. The optimal fluid policy will now maximize the departure rate of class 2.

So maximize u2(t)µ2 + uc(t)µ2c2 given that ρ1 − u1(t) − uc(t)c1 = 0, u1(t) + u2(t) + uc(t) = 1
and uj(t) ≥ 0. Solving this we obtain

u∗
c =

ρ1

c1
, u∗

1 = 0 and u∗
2 = 1 −

ρ1

c1
, when n1 = 0.

Now assume we start at time t = 0 in n(0) = n ≡ (n1, n2) with n1 > 0 and n2 ≥ 0. At some point
the optimal trajectory will hit the n1=0 axis for the first time. This point will be denoted by
d = (d1, d2), see Figure 4. By Lemma 4.3, the trajectory until d is known. Namely, first class 1 is
served, and at some point the policy switches to serving both classes simultaneously. The point
where this switch occurs, is denoted by b = (b1, b2), the turning point, see Figure 4. We can
calculate the costs corresponding to a certain turning point b. Let T (x, y) be the time it takes to
go from point x to y in the (n1, n2)-plane. We have T (n, b) = n1−b1

µ1−λ1
, T (b, d) = b1

µ1c1−λ1
, T (d, 0)
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= d2
u2µ2+ucµ2c2−λ2

= d2

µ2−µ2
ρ1
c1

(1−c2)−λ2
, with b2 = n2 + T (n, b)λ2 and d2 = b2 + T (b, d)(λ2 −µ2c2).

Let Kn(b1) =
∫ ∞
0 (n1(t) + n2(t))dt be the costs of the fluid trajectory going from n to the origin

when the turning point is b. We have

Kn(b1) = T (n, b)
(n1 + b1

2
+

n2 + b2

2

)

+ T (b, d)
(b1

2
+

b2 + d2

2

)

+ T (d, 0)
d2

2
. (16)

It can be checked that the function Kn(b1) is a quadratic function in b1 and when minimizing
the costs in (16), the optimal turning point b lies on the line b2 = αµ2

µ1
b1. Hence, if n2 < αµ2

µ1
n1,

then u∗
1 = 1, and if n2 ≥ αµ2

µ1
n1 and n1 > 0, then u∗

c = 1. ¤

u∗

c
= ρ1

c1

u∗

2
= 1 − u∗

c

n2

n1

d

b

(optimal path)

0

u∗

c
= 1

u∗

1
= 1

n2 = αµ2

µ1

n1 (switching curve)

Figure 4: Optimal trajectory of the fluid control model when ρ1 < c1.

4.1.2 Case ρ1 ≥ c1

When ρ1 ≥ c1, the necessary stability condition is ρ2 < c2 and ρ1 < 1− ρ2

c2
(1−c1) (see (2) and (3)).

Hence ρ2

1−ρ1
≤ c2−ρ2

ρ1−c1
and the drifts are as in the left picture in Figure 5. When ρ1 ≥ 1− ρ2

c2
(1−c1),

the system is unstable which corresponds to the right picture in Figure 5. The optimal fluid
policy is described in the next proposition, and in Figure 6 the optimal trajectory is shown.

λ1 − µ1
λ1 − µ1

λ2

λ2

n2n2

n1n1

Stable Unstable

uc = 1
uc = 1

u1 = 1u1 = 1

λ1 − µ1c1 λ1 − µ1c1

µ2c2 − λ2

µ2c2 − λ2

Figure 5: Vectors for ρ1 ≥ c1 and ρ2 < c2. Left figure: ρ1 < 1 − ρ2

c2
(1 − c1) and hence there are

policies that give a stable system. Right figure: ρ1 > 1 − ρ2

c2
(1 − c1) and hence unstable.

11



Proposition 4.5 Let µ1 > µ1c1 + µ2c2 and c1 + c2 > 1. Assume ρ1 ≥ c1, ρ2 < c2 and
ρ1 < 1 − ρ2

c2
(1 − c1). The optimal policy in the fluid control model is to give priority to class 1,

i.e.,

• u∗
1 = 1 if n1 > 0.

• u∗
c = 1−ρ1

1−c1
and u∗

1 = ρ1−c1
1−c1

if n1 = 0.

Proof: By similar arguments as in the proof of Proposition 4.4, it can be shown that any turning
point b with b1 > 0 does worse than the policy that gives priority to class 1 until n1 = 0. Hence
u∗

1(t) = 1 when n1(t) > 0.
Once n1(t) = 0, we can conclude from the above that class 1 will remain empty since ρ1 < 1.
Hence we have u∗

1(t) + u∗
c(t)c1 = ρ1 when n1(t) = 0. Now choose the allocations u∗

j (t) such that
the departure rate for class 2, u2(t)µ2 + uc(t)µ2c2, is maximized subject to u1(t) + uc(t)c1 = ρ1,
u1(t) + u2(t) + uc(t) = 1 and uj(t) ≥ 0. The solution to this is u∗

2(t) = 0, u∗
1(t) = ρ1−c1

1−c1
and

u∗
c(t) = 1−ρ1

1−c1
when n1(t) = 0. ¤

u∗

c
= 1−ρ1

1−c1

u∗

1
= 1 − u∗

c

n2

n1

(optimal path)

0

u∗

1
= 1

Figure 6: Optimal trajectory of the fluid control model when ρ1 ≥ c1.

4.2 Asymptotic optimality

In this section we discuss the theoretical foundations that justify the use of the optimal policies
from the fluid model as proxies of the optimal policies in the stochastic model. In particular, we
prove that the stochastic processes of fluid scaled number of users under certain switching curve
policies converge to the optimal fluid trajectories n∗(t) as determined in Section 4.1. Using
the latter we then show that these switching curve policies are asymptotically fluid optimal
in the stochastic model. The analysis and terminology used in this section is motivated by
[2, 13, 19, 21].
We consider a sequence of systems indexed by a superscript r. Let N r

i (t) be the number of class-i
users at time t in the r-th system. The initial queue lenghts depend on r such that N r(0) = nr

with limr→∞
nr

i

r = ni, i = 1, 2. For the r-th system, during the time interval (0, t), T r
0 (t) is the

cumulative amount of time that both queues are empty, T r
i (t) is the cumulative amount of time

that was spent on serving class i only, i = 1, 2, and T r
c (t) the cumulative amount of time that

was spent on serving classes 1 and 2 in parallel. Then T r
0 (t) + T r

1 (t) + T r
2 (t) + T r

c (t) = t, and

N r
i (t) = N r

i (0) + Ei(t) − Fi(T
r
i (t)) − Fc,i(T

r
c (t)), i = 1, 2, (17)
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with Ei(t) a Poisson process with rate λi, Fi(·) a Poisson process with rate µi and Fc,i(·) a
Poisson process with rate ciµi.
We will be interested in the processes under the fluid scaling, i.e., both time and space are scaled
linearly:

N
r
i (t) :=

N r
i (rt)

r
and T

r
j(t) :=

T r
j (rt)

r
.

Limit points for N
r
i (t) and T

r
j(t) are described in the next lemma.

Lemma 4.6 If limr→∞
nr

i

r = ni, i = 1, 2, then for almost all sample paths ω there exists a
subsequence rk such that

lim
rk→∞

T
rk

j (t) = T j(t), j = 1, 2, c, u.o.c.

lim
rk→∞

N
rk

i (t) = N i(t) = ni + λit − µiT i(t) − µiciT c(t), u.o.c. (18)

where N i(t) ≥ 0, T j(0) = 0, T 1(t) + T 2(t) + T c(t) + T 0(t) = t and T j(t) are non-decreasing and
Lipschitz continuous functions.

The notation u.o.c. stands for uniform convergence on compact sets. The processes T j(t), j =
1, 2, c, and N i(t), i = 1, 2, as obtained in Lemma 4.6 are by definition fluid limits for initial fluid
level n. Note that the functions T j(t), j = 1, 2, c, depend on the chosen policy in the stochastic
model.

Proof of Lemma 4.6: Making use of (17) and the fact that T
r
j(t), j = 1, 2, c, is Lipschitz

continuous with a constant less than or equal to 1, the proof follows similar to the proof in [11,
Theorem 4.1], see also [5, Lemma 9.2]. ¤

As costs in the stochastic model we take E
π
n

∫ D
0 (N1(t)+N2(t))dt, with E

π
n the expectation when

starting in N(0) = n and using policy π. For the sequence of processes we consider, the costs

E
π
nr

∫ D
0 (N r

1 (t) + N r
2 (t))dt will tend to infinity. In order to obtain a non-trivial limit we divide

the costs by r2 and consider a horizon that grows linearly in r. So we are interested in

E
π
nr

∫ r·D

0

N r
1 (t) + N r

2 (t)

r2
dt = E

π
nr

∫ D

0

N r
1 (rt) + N r

2 (rt)

r
dt = E

π
nr

∫ D

0
(N

r
1(t) + N

r
2(t))dt. (19)

Our goal is to find policies that minimize the costs (19) as r → ∞. We have the following lower
bound.

Lemma 4.7 If limr→∞
nr

i

r = ni, i = 1, 2, then for any π we have

lim inf
r→∞

E
π
nr

(

∫ D

0
(N

r
1(t) + N

r
2(t))dt

)

≥

∫ ∞

0
(n∗

1(t) + n∗
2(t))dt, with D > D(|n|)

and n∗(t) the optimal solution of (15) for initial state n.

Proof: By applying Fatou’s lemma twice, we obtain

lim inf
r→∞

E
π
nr

(

∫ D

0
(N

r
1(t) + N

r
2(t))dt

)

≥ E
π
(

∫ D

0
lim inf
r→∞

(N
r
1(t) + N

r
2(t)) dt

)

.

For almost all ω, we have that lim infr→∞ N
r
1(t) + N

r
2(t), is a fluid limit for initial fluid level

13



n (apply Lemma 4.6 to a subsequence that reaches the liminf), and is therefore an admissible
trajectory for the fluid control problem (15).
When we choose D ≥ D(|n|), we know from Lemma 4.1 that n∗ solves the minimization problem
(15), and hence

E
π
(

∫ D

0
lim inf
r→∞

(N
r
1(t) + N

r
2(t)) dt

)

≥

∫ ∞

0
(n∗

1(t) + n∗
2(t))dt.

This proves the lemma. ¤

We say that a policy is asymptotically fluid optimal when the lower bound is obtained, i.e.,
when the scaled costs under the policy converge to the costs of the optimal trajectory in the
fluid model. In the remainder of this section we will characterize these asymptotically fluid
optimal policies.

Definition 4.8 A stationary policy π∗ is called asymptotically fluid optimal if for any sequence
nr such that limr→∞

nr
i

r = ni, i = 1, 2, we have

lim
r→∞

E
π∗

nr

(

∫ D

0
(N

r
1(t) + N

r
2(t))dt

)

=

∫ ∞

0
(n∗

1(t) + n∗
2(t))dt, with D ≥ D(n)

where n∗(t) is the optimal solution of (15) for initial state n.

4.2.1 Case ρ1 < c1

In this section we consider the case ρ1 < c1. In Proposition 4.4 we found that the optimal
switching curve for the fluid control problem was given by h(n1) = αµ2

µ1
n1. In the next propo-

sition it is stated that the same switching curve provides a policy that is asymptotically fluid
optimal for the original stochastic model.

Proposition 4.9 Let µ1 > µ1c1 +µ2c2 and c1 + c2 > 1. If ρ1 < c1 and ρ2 < 1− ρ1

c1
(1− c2), then

the stationary policy π∗ with switching curve h(N1) = αµ2

µ1
N1 is asymptotically fluid optimal.

Proof: Any fluid limit of policy π∗ satisfies the following. The functions T j(t) are absolutely
continuous (follows from Lipschitz continuity), hence are differentiable almost everywhere. It
can be proved (see Appendix D) that for each regular point t the derivatives satisfy:

dT 1(t)

dt
= 1, if N2(t) < α

µ2

µ1
N1(t), (20)

dT c(t)

dt
= 1, if N2(t) ≥ α

µ2

µ1
N1(t) and N1(t) > 0, (21)

dT c(t)

dt
=

ρ1

c1
and

dT 2(t)

dt
= 1 −

ρ1

c1
, if N1(t) = 0 and N2(t) > 0. (22)

and dT 1(t)
dt + dT 2(t)

dt + dT c(t)
dt + dT 0(t)

dt = 1.

Taking uj(t) =
dT j(t)

dt , and from (20)–(22), we see that

N(t) = n∗(t), (23)

with n∗ as defined in Proposition 4.4. From this it then follows that under policy π∗ we have
lim supr→∞ E

π∗

nr (
∫ D
0 (N

r
1(t) + N

r
2(t))dt) ≤

∫ ∞
0 (n∗

1(t) + n∗
2(t))dt (see Appendix D). Together with

Lemma 4.7 we then obtain that the fluid scaled cost function under policy π∗ converges to the
costs of an optimal trajectory in the fluid model, and hence that π∗ is asymptotically optimal.
¤
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4.2.2 Case ρ1 > c1

In this section we consider the case ρ1 > c1. In Proposition 4.5 we found that for the fluid control
problem it is then optimal to give class 1 priority when n1 > 0. A straight-forward translation of
this policy to the original stochastic model would be to give preemptive priority to class-1 users.
However, the stability conditions under this policy are ρ1 + ρ2 < 1, which are more strict than
the maximum stability conditions as given in (2) and (3). Hence, a more precise interpretation
of the fluid optimal policy is needed to avoid an unstable system.
Note that the optimal policy in the fluid control model does keep the system stable under (2) and
(3) since on the vertical axis the fluid model partly serves class 1 individually and partly serves
both classes in parallel. This suggest that for the stochastic model we should also sometimes
serve classes 1 and 2 in parallel, especially when we come too close to the vertical axis. This
implies that the switching curve for the original model lies close to the N1 = 0 axis and is in fact
non-observable in the fluid limit. In the next proposition we state that a policy with a switching
curve of the shape h(N1) = eN1/γ is an asymptotically fluid optimal policy.

Proposition 4.10 Let µ1 > µ1c1 + µ2c2 and c1 + c2 > 1. Assume ρ1 > c1, ρ2 < c2 and
ρ1 < 1− ρ2

c2
(1−c1). The stationary policy π∗ with switching curve h(N1) = eN1/γ is asymptotically

fluid optimal for γ > 0 large enough.

Sketch of proof: Any fluid limit of policy π∗ satisfies the following. The functions T j(t) are
absolutely continuous and using the same techniques as in [13, Section 7] it follows that for each
regular point t the derivatives satisfy:

dT 1(t)

dt
= 1, if N1 > 0, (24)

dT 1(t)

dt
=

ρ1 − c1

1 − c1
and

dT c(t)

dt
=

1 − ρ1

1 − c1
, if N1 = 0, (25)

for γ large enough. Note that dT 2(t)
dt = 0, which implies that the process does not stay long on

the N1=0 axis and therefore any capacity lost, when serving class 2 only, is negligible under
fluid scaling.

Taking uj(t) =
dT j(t)

dt , and from (18), (24) and (25), we see that N(t) = n∗(t), with n∗ as defined
in Proposition 4.5. The remainder of the proof is similar to the proof of Proposition 4.9. ¤

4.3 Asymptotically optimal strategies with an exponential switching curve

When the asymptotically fluid optimal strategies have a linear switching curve, the slope of
the curve has been exactly determined. For exponentially shaped optimal switching curves, the
parameter γ in the exponent is yet unknown. In fact Proposition 4.10 proves that an exponential
switching curve h(N1) = eN1/γ is asymptotically fluid optimal for any γ that is large enough.
Therefore, it does not provide us with a good choice for γ. An asymptotically optimal policy
satisfies E

π
nr(

∫ r·D
0 (N r

1 (t)+N r
2 (t))dt) = r2 ·Eπ

nr(
∫ D
0 (N

r
1(t)+N

r
2(t))dt) = r2

∫ ∞
0 (n∗

1(t)+n∗
2(t))dt+

o(r2). Hence, a way to determine a good value for γ is by choosing the γ that minimizes the
next order term. For the discrete time version of our model it is possible to find an estimate of
this term under exponential switching curves, using the techniques of [14].
Consider a discrete-time system with Bernoulli arrivals. In an interval of length ∆, a class-i
user arrives with probability λi∆, and it leaves the system with probability (µisi + µicisc)∆,
s1 + s2 + sc ≤ 1. When ∆ → 0, this approximates the continuous-time system with Poisson
arrivals and exponential distributed service requirements. (The failure rate in the discrete model
is µisi + µicisc which is equal to the failure rate in the stochastic model.) For transparency of
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notation, again denote the state at time k by Ni(k), i = 1, 2, as we did previously in the
continuous-time case.
Following the reasoning in [14] we consider a sequence of systems indexed by a superscript r.
In the r-th system, we take as initial point nr = (γ ln[rn2], [rn2]) and as time horizon r · D for
some fixed D with n2 > D. Write E

π
nr(

∑r·D
k=0 N r

1 (k) + N r
2 (k)) =

∑4
k=1 V π

k (nr) with

V π
1 (nr) =

r·D
∑

k=0

E
π
nr(N r

1 (k)),

V π
2 (nr) =

r·D
∑

k=0

(nr
2 + k(λ2 −

1 − ρ1

1 − c1
µ2c2)),

V π
3 (nr) =

r·D
∑

k=0

µ2c2

µ1(1 − c1)
(nr

1 − E
π
nr(N r

1 (k))),

V π
4 (nr) =

r·D
∑

k=0

µ2
c1 + c2 − 1

1 − c1
E

π
nr(vr

k),

where vr
k =

∑k−1
m=0 1(Nr

1 (m)=0) is the number of times the process serves class 2 individually, and

π is a policy with switching curve h(N1) = eN1/γ . Since c1 < ρ1 < 1 and ρ1 < 1− ρ2

c2
(1− c1), we

can use the large deviation results in [14] to show that

V π
1 (nr) = Dγr ln(r) + O(r),

V π
2 (nr) = r2

∫ ∞

0
(n∗

1(t) + n∗
2(t))dt + O(r),

V π
3 (nr) = O(r)

V π
4 (nr) = µ2

c1 + c2 − 1

1 − c1
· r2−β(∆)γ+o(1),

as r → ∞, with β(∆) = ln(ρ1

c1
1−µ1c1∆
1−λ1∆ ). As explained in [14], setting the value of γ larger

than 1/β(∆) gives good second order asymptotics, and the second-order term is then given by
Dγr ln r.
Now letting ∆ → 0, we have lim∆→0 β(∆) = ln(ρ1

c1
). This suggest that in the continuous-time

system we should choose a γ such that γ > 1
ln(

ρ1
c1

)
. The condition that γ should be large enough

is natural. Setting the value of γ near 0 would almost everywhere give priority to class 1, a
strategy that we know can be unstable.

5 Heavy traffic regime

Recall that our model may be viewed as a parallel two-server model. As mentioned in the
introduction, policies that are in some sense asymptotically optimal in a heavy traffic setting
with complete resource pooling have been investigated in among others [5, 6, 20, 25]. In fact,
the results in the latter papers hold for even more general networks than the two-server model.
In this section we will collect existing results in the literature that are specific for the parallel
two-server model.
We know the system can be kept stable when (2) and (3) are satisfied. Equivalently, we may say
that the system can be kept stable when the vector (λ1, λ2) lies in the interior of the stability set
as depicted in Figure 7. The system is said to be in heavy traffic when the vector (λ1, λ2) lies
on the northeast boundary of the stability set in Figure 7. In addition, the complete resource
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pooling condition is satisfied if the outer normal, η, to the stability set at that λ is unique up to
scaling and all its coordinates are strictly positive. Hence, complete resource pooling is satisfied
when (λ1, λ2) is such that λi > 0 for i = 1, 2 and (λ1, λ2) 6= (µ1c1, µ2c2). This corresponds to
one of the following two regions (see also Figure 7):

• Region A: ρ2 = 1 − ρ1

c1
(1 − c2) and ρ2 > c2, c1 > ρ1. The outer normal vector to a point

in this region is η = (µ2(1 − c2), µ1c1).

• Region B: ρ1 = 1 − ρ2

c2
(1 − c1) and ρ1 > c1, c2 > ρ2. The outer normal vector to a point

in this region is η = (µ2c2, µ1(1 − c1)).

(µ1c1, µ2c2)

A

B

(0, µ2)

(µ1, 0)

λ

λ

η

η

Figure 7: Stability set.

In Section 5.1 we briefly state the results from Bell and Williams [5, 6]. They prove that
threshold-based policies asymptotically minimize the (scaled) total number of users in heavy
traffic. In Section 5.2 we recall the definition of Max-Weight policies (or Gcµ-rule) and describe
the results concerning their behavior in heavy traffic as obtained by Stolyar and Mandelbaum
[20, 25].

5.1 Asymptotic optimality of threshold policies

Bell and Williams [5, 6] have investigated the parallel server model (with an arbitrary number
of servers and classes) with i.i.d. interarrival times and service requirements. Their model is in
fact a slight variation to the model we consider in this paper. First, in their model, once a server
starts serving a user, this user has to obtain its full service from this server (non-preemption).
Secondly, their model has slightly different behavior near the boundaries: when Ni = 1, their
model works at rate µici on class i, since a user cannot be split into two. In the model we
consider, we can have a departure rate of µi. In heavy traffic, these states will be rarely visited,
hence the heavy traffic results obtained by Bell and Williams continue to hold for the stochastic
model we consider.
Bell and Williams [5, 6] consider a sequence of parameters indexed by r, µr

i and λr
i (denote

ρr
i =

λr
i

µr
i
), with λr

i → λi, µ
r
i → µi such that ρ1 = λ1/µ1 and ρ2 = λ2/µ2 correspond either to

Region A or Region B. An additional condition involves the rate at which the system converges:

lim
r→∞

rµr
1(ρ

r
1 − ρ1) = θ1, lim

r→∞
rµr

2(ρ
r
2 − ρ2) = θ2.

Let N r
i (t) be the number of class-i users in the r-th system, and let N̂ r

i (t) =
Nr

i (rt)√
r

be the diffusion

scaled number of class-i users in the r-th system. Define Ĵr(π) = E
π(

∫ ∞
0 e−ξt(N̂ r

1 (t)+ N̂ r
2 (t))dt)

where ξ > 0 is a constant. A sequence of policies π̃r is called asymptotically optimal when
limr→∞ Ĵr(π̃r) ≤ lim infr→∞ Ĵr(πr) for any sequence of policies πr. For µ1 ≤ c1µ1 + c2µ2 the
optimal policy is to serve both classes in parallel whenever possible, which remains valid in
heavy traffic. For µ1 > c1µ1 + c2µ2 the following result holds:
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Proposition 5.1 ([6]) Assume µ1 > c1µ1 + c2µ2, c1 + c2 > 1 and i.i.d. inter-arrival times and
service requirements. Consider a heavy traffic setting with complete resource pooling.

• If (ρ1, ρ2) corresponds to Region A, then the policy that serves classes 1 and 2 in parallel
whenever possible, is an asymptotically optimal policy (in heavy traffic).

• If (ρ1, ρ2) corresponds to Region B, then the sequence of threshold policies that gives priority
to class 1 when N1 > T r

1 = c log(r) (with c large enough), and that otherwise serves classes
1 and 2 in parallel is asymptotically optimal (in heavy traffic).

In Section 6.2 we will evaluate the performance of threshold-based policies in the under-loaded
case.

5.2 Max-Weight policies

In this section we will briefly state the results on Max-Weight policies cf. [20, 25]. For a parallel
server system with K classes and L servers, the Gcµ-rule (Max-Weight policy is a special case
of this) is defined as follows. Server l serves class i that maximizes µilC

′
i(Ni) among all classes.

Here µil is the service rate of class-i users when served by server l, and the function Ci(Ni) can
be interpreted as the costs of having Ni users in class i. The function Ci(Ni) needs to satisfy
some conditions (as specified in [20]), in particular that the second derivative is strictly positive
and continuous in (0,∞). Hence this excludes the function Ci(Ni) = Ni, which would be needed

to minimize the queue lengths. We will focus on functions of the type Ci(Ni) = γiN
β+1
i with

β > 0, which corresponds to the Max-Weight policies. An important property of the Max-
Weight policies is that they maintain a stable system under the necessary stability conditions
[25].
Stolyar and Mandelbaum [20] consider i.i.d. inter-arrival times and service requirements. They
take a sequence of systems indexed by r where the parameters λr

i may vary and where λr → λ
with λ such that the system is in heavy traffic and the complete resource pooling condition is
satisfied. In addition, limr→∞ r(η · λr − η · λ) → θ, with η the corresponding outer normal.
It is then proved that in this heavy traffic setting with complete resource pooling, the Max-
Weight policy minimizes (under diffusion scaling) both the queueing costs,

∑

i γiN
β+1
i (t), and

the “virtual” workload,
∑

i ηiNi(t), at all times. In addition, under the diffusion scaling, the
vector (γ1N1(t)

β , . . . , γKNK(t)β) is proportional to (η1, . . . , ηK), hence the dimension of the
queue-length processes decreases to one (state space collapse).
Note that the queueing costs cannot represent the total number of users at time t since β > 0.
The Max-Weight policy does minimize the (diffusion-scaled) virtual workload

∑

i ηiNi(t). Hence,
when trying to minimize the total number of users among the max-weight policies, it is best
to set the parameters (γi’s and β) such that Nk(t) is as large as possible, where k is such that
ηk ≥ ηi for all i 6= k. For this reason, in [20] it is suggested that in heavy traffic a good choice
for the parameters is γi = 1, i 6= k and γk = ǫk, with ǫk > 0 small, since the state space collapse
result implies that then Nk(t) will become relatively large compared to Ni(t), i 6= k.
For a two-class parallel server as we consider in this paper, the parameters µil are as follows:
µ11 = µ1c1, µ21 = µ2(1 − c2), µ12 = µ1(1 − c1) and µ22 = µ2c2, see also Figure 2. Assume
c1 + c2 ≥ 1 and ci ≤ 1. Then the corresponding Max-Weight policy for the two-parallel server
model is described as follows:

• Serve class 1 if Nβ
2 < γ1(1−c1)µ1

γ2c2µ2
Nβ

1 .

• Serve classes 1 and 2 in parallel if γ1(1−c1)µ1

γ2c2µ2
Nβ

1 ≤ Nβ
2 < γ1c1µ1

γ2(1−c2)µ2
Nβ

1 .

• Serve class 2 if γ1c1µ1

γ2(1−c2)µ2
Nβ

1 ≤ Nβ
2 .
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N1

N2
(1−c1)µ1γ1

c2µ2γ2
N1 = N2

c1µ1γ1

(1−c2)µ2γ2
N1 = N2

class 1

class 2

combined

Figure 8: The Max-Weight policy.

Hence the Max-Weight policy has two linear switching curves. In Figure 8 these switching curves
are plotted for β = 1. From now on we fix β = 1. Note that in heavy traffic, the state space
collapses to the line N2 = c1µ1γ1

(1−c2)µ2γ2
N1 if we are in Region A and to the line N2 = (1−c1)µ1γ1

c2µ2γ2
N1

if we are in Region B.
In Section 6.3 we will compare the performance of the Max-Weight policies with the optimal
policy found numerically, and with the asymptotically fluid optimal policies as we proposed in
this paper.

6 Numerical results

The average-optimal policy for the original stochastic model can be computed numerically by
value iteration. Figure 9 illustrates for various scenarios that the optimal strategy is char-
acterized by a switching curve. We note that finding these optimal curves numerically was
extremely time-consuming. Figures 9 a) and b) consider the setting ρ1 < c1. We see that the
switching curve is linear and coincides exactly with the asymptotically optimal switching curve
h(N1) = αµ2

µ1
N1 from Proposition 4.9. Figure 9 c) corresponds to a scenario with ρ1 > c1 and

illustrates that then the optimal strategy resembles an exponentially shaped curve, which coin-
cides with Proposition 4.10. In the remainder of this section we will assess the gains that can
be achieved by choosing the best switching-curve strategy.

6.1 Linear switching strategies for ρ1 < c1

We first focus on the case ρ1 < c1. In Figure 10 we plot the mean total number of users under
policies with a linear switching curve h(N1) = dN1. On the horizontal axis we vary the value of
d. Note that d = 0 corresponds to always serving both classes in parallel. When the slope grows
large (d → ∞) the policy gives higher priority to serving class 1 exclusively (whenever present).
Note that strict priority for class 1 leads to instability if ρ1+ρ2 > 1, which can be the case even if
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Figure 9: Optimal switching curve when a) ρ1 < c1, ρ2 < c2, b) ρ1 < c1 and ρ2 > c2 and c)
ρ1 > c1 and ρ2 < c2.

the stability conditions (2) and (3) are met. The two graphs on the left in Figure 10 correspond
to a medium-loaded system. There we also plot the optimal policy found numerically by value
iteration. We observe that when the parameter d is chosen well, the linear switching curve
policy coincides with the optimal policy. The two graphs on the right in Figure 10 represent
a heavily-loaded system. We did not simulate the optimal policy for this parameter setting,
since this is extremely time-consuming. Choosing d very large implies that the mean number of
users will be large (since ρ1 + ρ2 > 1). It seems that a good choice for heavily-loaded systems
is d = 0, i.e., always serve both classes in parallel. In a heavy-traffic setting with ρ1 < c1 (and
necessarily ρ2 > c2 while ρ2 + ρ1

c1
(1 − c2) → 1) we see that the policy that always serves both

classes in parallel is also the asymptotically optimal policy as found by both the fluid analysis
(since then the slope is equal to 0) and the heavy traffic analysis. In Figure 11 we repeated the
experiment for different parameter choices to illustrate that the relative differences between the
optimal linear policy and the strategy that maximizes the service capacity at all times (slope
d = 0) can be quite significant.
An important observation in Figure 10 and Figure 11 is that the asymptotically fluid optimal
policy as found by the fluid analysis in Section 4 (denoted in the figures by “optimal slope fluid”)
is always close to optimal and performs very well.

Remark 6.1 If d tends to ∞, then the system behaves as a priority queue where class 1 is given
preemptive priority. When ρ1 + ρ2 < 1, this policy is stable, and we indeed observe in the two
graphs on the left in Figure 10 that the mean number of users will then converge to a constant.
However, when ρ1 +ρ2 > 1, this policy is not stable, and E(N1 +N2) will grow infinitely large as
d → ∞. The two graphs on the right in Figure 10 suggest that the mean number of users grows
linearly in d as d → ∞. This can be intuitively understood as follows.
Consider the policy with a linear switching curve h(N1) = dN1. Then, conditioned on jd ≤
N2 < (j + 1)d, class 1 has as departure rate µ1c1 if N1 ≤ j, and µ1 otherwise. The equilibrium
distribution for such a process is πi(j) = π0(j)

(ρ1

c1
)i if i ≤ j and πi(j) = π0(j)

(ρ1

c1
)jρi−j

1 if
i > j. If d is large, we assume that class 1 reaches equilibrium during the time that jd ≤ N2 <
(j + 1)d. Then the mean departure rate for class 2 is µ2(j) := µ2π0(j) + µ2c2

∑j
i=1 πi(j) when

jd ≤ N2 < (j + 1)d. It can be checked that this is increasing in j, hence there exists a j∗ such
that µ2(j

∗ − 1) < λ2 ≤ µ2(j
∗) (for convenience we define µ2(−1) = 0). Note that j∗ > 0, unless

ρ1 + ρ2 < 1. Hence, if jd ≤ N2 < (j +1)d with j < j∗, then the mean drift in class 2 is positive,
and the probability that the increase in N2 is O(d) tends to 1 as d → ∞. If jd ≤ N2 < (j + 1)d
with j ≥ j∗, then the mean drift in class 2 is negative. Hence, the probability that the decrement
of N2 is of order O(d) tends to 1 as d → ∞. It is therefore plausible that the process N2/d will
most of the time be around the level j∗.
If the region (j∗ + 1)d ≤ N2 is not reached (which is not a strong assumption, since this region
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Figure 10: Mean total number of users for policies with a linear switching curve. The marker in-
dicates the optimal slope for the fluid approximation. The two graphs on the top row correspond
to cases with ρ1 < c1 and ρ2 < c2. The lower graphs have ρ1 < c1 and ρ2 > c2.

will be rarely visited as d → ∞), then the number of class-1 users can be upper bounded by the
number of class-1 users in a system with departure rates µ1c1 if N1 ≤ j∗ and µ1 otherwise. Since
j∗ does not depend on d, the upper bound for the number of class-1 users does not scale with d.
For the parameters used in the graph on the top right in Figure 10, the j∗ is equal to 2. We
observe in the figure that E(N2)/d indeed converges to j∗ = 2 and that E(N1) does not scale with
d. For the parameters that belong to the graph on the bottom right in Figure 10, the j∗ is equal
to 1. Then as well, we observe in the figure that E(N2)/d indeed converges to j∗ = 1 and that
E(N1) does not scale with d.

6.2 Exponentially shaped switching strategies for ρ1 > c1

In Figure 12 we consider several parameter settings with ρ1 > c1, and plot the total mean number
of users under policies with switching curves of the shape h(N1) = eN1/γ . On the horizontal
axis we vary the value of γ. Note that when γ grows large, this converges to the policy that
always serves both classes in parallel. We observe that the best choice for the parameter γ,
delivers the same performance as the optimal policy. As shown in Proposition 4.10, exponential
switching curves are asymptotically optimal. The large deviation analysis further suggests that
γ > 1

ln(ρ1/c1) is a good choice, see Section 4.3. For the choices of parameters in the pictures of
Figure 12, γ should be larger than 8.5. From Figure 12 we observe that in fact the better choices
for the parameter γ are smaller than 8.5. Still, the large deviations result gives a safe estimate
(the policy is stable) with better performance than the capacity-maximizing strategy (serving
both classes in parallel when possible).
In a heavy traffic regime with ρ1 > c1, a threshold policy is asymptotically optimal. That
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Figure 11: Mean total number of users for policies with a linear switching curve.

is, both classes should be served in parallel whenever the number of class-1 users is below the
threshold. When the threshold grows large, this coincides with the policy that always serves
both classes in parallel. In Figure 12 we vary the value of this threshold and plot the mean total
number of users. For certain small values of the threshold, this policy performs rather well.
However, when the threshold is chosen too small, the performance of the system can degrade
considerably. For a system with large loads (ρ1 + ρ2 > 1), this policy is in fact unstable. In
Figure 12 c) we already see that the total number of users doubles when the threshold is set
equal to 1. In [26] the authors propose estimates for the value of the threshold.
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Figure 12: Mean total number of users when ρ1 > c1 and ρ2 < c2 for policies with exponential
switching curves and for threshold policies for different values of ρ2.

6.3 Comparison with Max-Weight policies for moderate loads

As stated in Section 5.2, the Max-Weight policies will be close to optimal in a heavy-traffic
setting. In this section we investigate the performance of the Max-Weight policies in a mildly
loaded system and compare this to the performance of the asymptotically fluid optimal policies
as found in this paper. We need to distinguish between whether µ1c1+µ2c2 ≥ µ1 or µ1c1+µ2c2 <
µ1. We will see that in both cases the fluid optimal policies can outperform the Max-Weight
policies. In addition, we will see that it is not clear which choice of the parameters for the
Max-Weight policies gives a good performance for a normally-loaded system.
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Case µ1c1 + µ2c2 ≥ µ1

Assume µ1 > µ2 and µ1c1 +µ2c2 ≥ µ1. Hence also µ1c1 +µ2c2 ≥ µ2. From Section 3.1 we know
that the policy which serves classes 1 and 2 in parallel, stochastically minimizes the total number
of users present in the system. The Max-Weight policy does not do this: in certain states it
still serves class-2 users individually, see Figure 8. According to the reasoning in Section 5.2,
in a heavy traffic setting, the parameters of the Max-Weight policy, γ1 and γ2, should be set
depending on whether the arrival rate vector is closer to Region A or Region B, as depicted
in Figure 7. In Region A, the outer normal vector is given by η = (µ2(1 − c2), µ1c1), so that
η1 < η2. Hence, choose γ1 = 1 and γ2 = ǫ2, with ǫ2 small. In Region B the outer normal vector
is given by η = (µ2c2, µ1(1 − c1)), so η1 > η2. Hence, choose γ1 = ǫ1 and γ2 = 1, with ǫ1 small.
In Figures 13 and 14 the mean number of users under the Max-Weight policy are plotted for
γi = 1 and γj = ǫj , i 6= j. The ǫj is varied on the horizontal axis. The optimal policy which
serves both classes in parallel is plotted as well. We observe that when ǫj ↓ 0, the performance
significantly degrades. This comes from the fact that when ǫj tends to zero, both switching
curves collapse to the same axis, which implies that one class is almost always given full priority,
which is far from optimal. A better choice for the parameters seems to be γ1 = γ2 = 1. In
Figure 13 this gives the same performance as the optimal policy. This comes from the fact that
for these parameters the Max-Weight policy will take the optimal action, i.e., serve classes 1
and 2 parallel, whenever N1

9 ≤ N2 < 9N1, which will be the case most of the time. Figure 14
shows that γ1 = γ2 = 1 is not always a good choice, since then the optimal action is only taken
in states with 4N1

5 ≤ N2 < 6N1
5 . Hence, often either class 1 or class 2 is served individually,

which causes the Max-Weight policy with γ1 = γ2 = 1 to be approximately 15% worse than the
optimal policy.
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Figure 13: Mean total number of users under the Max-Weight policy, with µ1c1 + µ2c2 > µ1.

Case µ1c1 + µ2c2 < µ1

When µ1 > µ2 and µ1c1 + µ2c2 < µ1, the asymptotically fluid optimal policy we proposed in
this paper is described by a switching curve h(N1) (either linear or exponential), where class 1
is served in states below the switching curve, and classes 1 and 2 are served in parallel in states
above the switching curve. When µ1 > µ2 and µ1c1 + µ2c2 < µ1, we have η1 < η2, both in
Region A and in B of Figure 7. Hence, we consider Max-Weight policies with β = 1, γ1 = 1 and
γ2 = ǫ2.
In Figures 15 and 16, we compare the performance of Max-Weight policies with the minimum
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Figure 14: Mean total number of users under the Max-Weight policy, with µ1c1 + µ2c2 > µ1

and a) γ1 = ǫ1, γ2 = 1, and b) γ1 = 1, γ2 = ǫ2.

total mean number of users we found numerically under the best linear or exponential switching
curve.
For the parameters as in Figure 15 a), the fluid approximation suggests that if N2 ≤ 1.8N1, then
serve class 1, and otherwise serve both classes in parallel. The Max-Weight policy will serve
class 1 most of the time, since that is the prescribed action in states such that N2 ≤ 6 2

3ǫ2
N1.

From the figure, we see that this is only 5% worse than the optimal policy.
For the parameters as in Figure 15 b), the fluid approximation serves always classes 1 and 2 in
parallel. The Max-Weight policy however, serves class 1 individually as soon as N2 ≤ 12

10ǫ2
N1.

These states will be visited more often when ǫ2 ↓ 0. In the figure, the performance degrades
from 15% worse (ǫ2 = 1), to 30% worse (ǫ2 ↓ 0), compared to the optimal linear policy.
In Figure 16, the parameters are such that an exponential switching curve is fluid asymptotically
optimal. When µ1 = 10, the Max-Weight policy is about 15% worse. When µ1 = 2, it is close
to optimal when ǫ2 = 1, but the performance degrades when ǫ2 ↓ 0.
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Figure 15: Mean total number of users under the Max-Weight policy and under the optimal
linear switching curve, with µ1c1 + µ2c2 < µ1 and ρ1 < c1.
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Figure 16: Mean total number of users under the Max-Weight policy and under the optimal
exponential switching curve, with µ1c1 + µ2c2 < µ1 and ρ1 > c1.

7 Conclusion and future work

We have studied optimal policies for systems that have capacity gains when serving users in
parallel. Fluid limit analysis shows that the asymptotically optimal strategies are characterized
by either linear or exponentially shaped switching curves. The results yield directly usable
estimates for good strategies in the stochastic setting, comparing favorably to generally more
involved parameter choices in under-loaded regimes for threshold-based strategies and Max-
Weight policies (that are asymptotically optimal under heavy-traffic conditions). Note that in
[26] the authors provide a method to calculate values for the threshold-based policy.
Several extensions to this work are of interest. For example, it is interesting to investigate
how our results change if the capacity is also favorably affected by the numbers of users within
each class. For example, in wireless networks the aggregate transmission rate increases with the
number of users, due to opportunistic scheduling that deploys multiuser diversity [17].
An intermediate step that is of interest in its own would be to consider our current model with
several possible service rate vectors when serving classes in parallel. For example, if in addition
to the service rates c1 and c2 we can choose d1 and d2 which are not in the convex hull depicted
in Figure 1.
A third direction of interest is to study our model with more than two classes. This could also
serve as an intermediate step towards the first extension mentioned above, which is presumably
more difficult to handle. These issues will be addressed in on-going and future research.
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Appendix A: Proof of Lemma 3.2

The proof is by induction on the time index k. For k = 0 the statement holds. Assume it holds
for W = Vk. We show that it holds for W = Vk+1 as well.
When x1, x2 > 1, by induction the optimal action in the minimization terms in the functions
Vk+1(x1, x2), Vk+1(x1 − 1, x2) and Vk+1(x1, x2 − 1) is to serve classes 1 and 2 in parallel. Using
this fact, the proof follows easily.
We are left with the cases x1 = 1 or x2 = 1. First assume x1 > 0 and x2 = 1. We will show that
(µ1 + µ2)Vk+1(x1, 1) + µ1c1Vk+1(x1 − 1, 1) + µ2c2Vk+1(x1, 0) ≤ µ1Vk+1(x1, 1) + µ2Vk+1(x1, 0) +
(µ1c1 + µ2c2)Vk+1(x1, 1) is indeed satisfied.
We can write

µ2Vk+1(x1, 1) + µ1c1Vk+1(x1 − 1, 1) + µ2c2Vk+1(x1, 0)

≤ µ2[λ1Vk(x1 + 1, 1) + λ2Vk(x1, 2) + µ1Vk(x1, 1) + µ2Vk(x1, 0) + (µ1c1 + µ2c2)Vk(x1, 1)]

+ µ1c1[λ1Vk(x1, 1) + λ2Vk(x1 − 1, 2) + µ1Vk(x1 − 1, 1) + µ2Vk(x1 − 1, 0)

+ (µ1c1 + µ2c2)Vk(x1 − 1, 1)]

+ µ2c2[λ1Vk(x1 + 1, 0) + λ2Vk(x1, 1) + µ1Vk(x1 − 1, 0) + µ2Vk(x1, 0) + (µ1c1 + µ2c2)Vk(x1, 0)]

= λ1[µ2Vk(x1 + 1, 1) + µ1c1Vk(x1, 1) + µ2c2Vk(x1 + 1, 0)]

+ λ2[µ2Vk(x1, 2) + µ1c1Vk(x1 − 1, 2) + µ2c2Vk(x1, 1)]

+ µ1[µ2Vk(x1, 1) + µ1c1Vk(x1 − 1, 1) + µ2c2Vk(x1, 0)]

+ (µ1c1 + µ2c2)[µ2Vk(x1, 1) + µ1c1Vk(x1 − 1, 1) + µ2c2Vk(x1, 0)]

+ µ2[µ2Vk(x1, 0) + µ2c2Vk(x1, 0)]

+ µ1µ2[(c1 + c2)Vk(x1 − 1, 0) − c2Vk(x1, 0)]

≤ λ1[µ2Vk(x1 + 1, 0) + (µ1c1 + µ2c2)Vk(x1 + 1, 1)]

+ λ2[µ2Vk(x1, 1) + (µ1c1 + µ2c2)Vk(x1, 2)]

+ µ1[µ2Vk(x1, 0) + (µ1c1 + µ2c2)Vk(x1, 1)]

+ (µ1c1 + µ2c2)[µ2Vk(x1, 1) + µ1c1Vk(x1 − 1, 1) + µ2c2Vk(x1, 0)]

+ µ2[µ2Vk(x1, 0) + µ2c2Vk(x1, 0)]

+ µ1µ2[(c1 − 1)Vk(x1, 0) + Vk(x1 − 1, 0)]

= µ2[λ1Vk(x1 + 1, 0) + λ2Vk(x1, 1) + µ1Vk(x1 − 1, 0) + (µ2 + µ1c1 + µ2c2)Vk(x1, 0)]

+ (µ1c1 + µ2c2)[λ1Vk(x1 + 1, 1) + λ2Vk(x1, 2) + (µ1 + µ2)Vk(x1, 1)

+ µ1c1Vk(x1 − 1, 1) + µ2c2Vk(x1, 0)]

= µ2Vk+1(x1, 0) + (µ1c1 + µ2c2)Vk+1(x1, 1),

which was to be proved. In the second inequality we used that Vk is increasing in x1, c1 + c2 > 1
and that (5) holds by induction for Vk.
The remaining cases can be checked in a similar fashion. ¤

Appendix B: Proof of Lemma 3.4:

Relation (6) can be easily shown. Assume at time t we have Sπ
1 (t) = Sπ̃

1 (t). By (1) and since
Wi(0) and Ai(0, t) are independent of the policy, we have W π

1 (t) = W π̃
1 (t). By construction of

policy π we obtain that sπ
1 (t+) ≥ sπ̃

1 (t+). Hence (6) holds for all t ≥ 0.
Let time t be the first time instant that either (7) or (8) holds with equality and is violated at
time t+.

First assume equation (7) is the first equation that fails to hold, i.e., Sπ
1 (t)+Sπ

2 (t) = Sπ̃
1 (t)+Sπ̃

2 (t),
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sπ
1 (t+) + sπ

2 (t+) < sπ̃
1 (t+) + sπ̃

2 (t+) and by (1) also W π
1 (t) + W π

2 (t) = W π̃
1 (t) + W π̃

2 (t). We will
show that

W π
1 (t) + W π

2 (t) = W π̃
1 (t) + W π̃

2 (t) implies that W π
i (t) = W π̃

i (t), i = 1, 2, (26)

and hence Nπ(t) = N π̃(t). By construction of policy π this means that sπ
1 (t+) + sπ

2 (t+) ≥
sπ̃
1 (t+) + sπ̃

2 (t+) and hence we reach a contradiction.
So let us prove (26). Without loss of generality we assume that W π

1 (t)+W π
2 (t) = W π̃

1 (t)+W π̃
2 (t)

and W π
1 (t−)+W π

2 (t−) < W π̃
1 (t−)+W π̃

2 (t−). This implies that there is an interval [u, t] in which
policy π̃ has more work in the system compared to policy π, but at time t it has made up for
the lost capacity in one of the following ways:

(i) In the interval [u, t] policy π̃ serves both classes combined, while policy π serves class 2
with service rate 1. Hence W π

1 (v) = 0 and W π
2 (v) > 0, for all v ∈ [u, t].

(ii) In the interval [u, t] policy π̃ serves both classes combined, while policy π serves class 1
with service rate 1. Hence W π

2 (v) = 0 and W π
1 (v) > 0, for all v ∈ [u, t].

(iii) In the interval [u, t] policy π̃ serves either class 1, class 2 or both classes simultaneously,
while policy π has an empty system in the time interval.

In case (i) the total amount of additional capacity that policy π̃ gets compared with policy π in
the interval [u, t] is equal to the difference in the total workload at time u, so M(u, t)(c1+c2−1) =
W π̃

1 (u) + W π̃
2 (u) − W π

2 (u), with M(u, t) the cumulative amount of time that both classes are
served combined under policy π̃ in the time interval [u, t]. Together with (1) and (8), we obtain
that W π̃

1 (u) ≤ c1
c1+c2−1(W π̃

1 (u) + W π̃
2 (u) − W π

2 (u)) = c1M(u, t). Also Sπ̃
1 (t) − Sπ̃

1 (u) ≥ c1M(u, t)
and A1(u, t) = 0 (since π serves class 2 and W π

1 (v) = 0 for all v ∈ [u, t]). Together this gives
W π̃

1 (t) = W π̃
1 (u)+A1(u, t)− (Sπ̃

1 (t)−Sπ̃
1 (u)) ≤ 0. Hence W π̃

1 (t) = 0, but we also had W π
1 (t) = 0.

It now immediately follows that W π̃
2 (t) = W π

2 (t).
In case (ii) we have that W π

1 (t) = W π̃
1 (t) + W π̃

2 (t). By (1) and (6) we have W π
1 (t) ≤ W π̃

1 (t).
Hence W π̃

2 (t) = 0 (= W π
2 (t)) and W π̃

1 (t) = W π
1 (t), i = 1, 2.

In case (iii) we have that W π
i (t) = 0 for i = 1, 2. Since at time t also W π

1 (t) + W π
2 (t) =

W π̃
1 (t) + W π̃

2 (t), we obtain that W π̃
i (t) = 0, i = 1, 2, as well.

Hence we have shown that (26) holds for (i), (ii) and (iii).

Now assume (8) is the first equation that fails to hold, i.e., (1 − c2)S
π
1 (t) + c1S

π
2 (t) = (1 −

c2)S
π̃
1 (t) + c1S

π̃
2 (t), (1 − c2)s

π
1 (t+) + c1s

π
2 (t+) < (1 − c2)s

π̃
1 (t+) + c1s

π̃
2 (t+) and by (1) also (1 −

c2)W
π
1 (t) + c1W

π
2 (t) = (1 − c2)W

π̃
1 (t) + c1W

π̃
2 (t). We have the following three possibilities:

• When sπ
1 (t+) = 0, i.e. π serves class 2 individually, or both classes in parallel at time t+,

we have (1−c2)s
π
1 (t+)+c1s

π
2 (t+) = c1. Since c1+c2 > 1 we have that c1 ≥ (1−c2)s

π̃
1 (t+)+

c1s
π̃
2 (t+), and hence we obtain a contradiction.

• When sπ
1 (t+) > 0, i.e. π serves class 1 individually at time t+, then W π

1 (t) > 0. By
definition sπ

1 (t+) ≥ sπ̃
1 (t+). In order for (1−c2)s

π
1 (t+)+c1s

π
2 (t+) < (1−c2)s

π̃
1 (t+)+c1s

π̃
2 (t+),

that is (1−c2)(s
π
1 (t+)−sπ̃

1 (t+)) < c1(s
π̃
2 (t+)−sπ

2 (t+)), we then need sπ̃
2 (t+) > sπ

2 (t+). Hence
W π̃

2 (t) > 0. But from W π
1 (t) ≤ W π̃

1 (t) and (1 − c2)W
π
1 (t) + c1W

π
2 (t) = (1 − c2)W

π̃
1 (t) +

c1W
π̃
2 (t), it follows that W π

2 (t) ≥ W π̃
2 (t). So under policy π there is work of both classes

present. Since policy π̃ serves class 2, policy π serves by definition classes 1 and 2 in
parallel. We again have a contradiction.

• When π has an empty system at time t+, then 0 = (1 − c2)W
π̃
1 (t) + c1W

π̃
2 (t). Hence also

π̃ has an empty system and (1 − c2)c2s
π
1 (t+) + c1s

π
2 (t+) = (1 − c2)s

π̃
1 (t+) + c1s

π̃
2 (t+) = 0.

In all three cases we reach a contradiction and this concludes the proof. ¤
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Appendix C: Proof of Lemma 4.1

Denote by nD(t) the minimizing trajectory of minn(t) s.t. (10)−(14)

∫ D
0 (n1(t) + n2(t))dt. First

assume that there exists a function D(·) such that

|nD(t)| = 0, for all t ≥ D(|n|). (27)

Then we have that minn(t) s.t. (10)−(14)

∫ D
0 (n1(t)+n2(t))dt =

∫ D
0 (nD

1 (t)+nD
2 (t))dt =

∫ ∞
0 (nD

1 (t)+

nD
2 (t))dt for all D ≥ D(|n|). In addition minn(t) s.t. (10)−(14)

∫ ∞
0 (n1(t) + n2(t))dt =

∫ ∞
0 (n∗

1(t) +

n∗
2(t))dt ≥

∫ D
0 (n∗

1(t) + n∗
2(t))dt. Together this proves the result.

In the remainder of the proof we will show that there exists a D(|n|) such that (27) holds. The
proof uses the arguments from [19, Proposition 6.1].
Denote by πp the policy that always serves classes 1 and 2 in parallel whenever possible. Let
np(t) be the trajectory that corresponds to policy πp. Under the stability conditions we know
that np(t) hits zero after a finite time and then remains empty. Denote by T p(n, 0) the time it
takes for the system to become empty when starting in state n. Note that the depletion time
scales as follows: T p(ζm−1 · n, 0) = ζm−1 · T p(n, 0). For the case ρ1 < c1, this can be easily
seen from the expressions in the proof of Proposition 4.4 (take b = n). For ρ1 ≥ c1 this can be
checked similarly.
Now consider as initial point n(0) = n(m−1) such that |n(m−1)| = |n| · ζm−1, with 0 < ζ < 1.
Then we have for all D:

∫ D

0
(nD

1 (t) + nD
2 (t))dt = min

n(t) s.t. (10)−(13)

n(0)=n(m−1)

∫ D

0
(n1(t) + n2(t))dt

≤

∫ D

0
(np

1(t) + np
2(t))dt

≤ |n| · ζm−1 · T p(n(m−1), 0)

≤ |n| · ζ2(m−1) · sup
l:|l|=|n|

T p(l, 0).

Hence, for all D ≥ ζm−1 supl:|l|=|n| T p(l,0)

ζ it holds that

min
t≤D

{nD
1 (t) + nD

2 (t)|nD(0) = n(m−1)} ≤
|n| · ζ2(m−1) · supl:|l|=|n| T

p(l, 0)

D

≤ |n| · ζm. (28)

Define

τm = min{t > 0 : nD
1 (t) + nD

2 (t) < |n| · ζm, nD
1 (0) + nD

2 (0) = |n| · ζm−1}, m = 1, 2, . . .

From (28) it follows that τm ≤ ζm−1 ·
supl:|l|=|n| T p(l,0)

ζ . Hence,

∞
∑

m=1

τm ≤
supl:|l|=|n| T

p(l, 0)

ζ(1 − ζ)
=: D(|n|)

and D(|n|) < ∞. Continuity now gives that |nD(
∑∞

m=1 τm)| = 0. Further note that the optimal
trajectory will remain empty from then on. Hence, given initial state n, |nD(t)| = 0 for all
t ≥ D(|n|), i.e., (27) holds. ¤
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Appendix D: Proposition 4.9

We will first prove equations (20)–(22).

Proof of (20)–(22):

Fix a sample path ω such that there is a subsequence rk with limrk→∞ N
rk

i (t) = N i(t) u.o.c. and
limrk→∞ T

rk

j (t)) = T j(t) u.o.c.. Here N i(t) is given by (18). Further, let t > 0 be a regular

point for T j(t) for all j = 1, 2, c.
First assume N2(t) < αµ2

µ1
N1(t). Then there is an ǫ > 0 such that N2(s) < αµ2

µ1
N1(s) for

s ∈ [t − ǫ, t + ǫ]. By the uniform convergence of N
rk

i (t) to N i(t), i = 1, 2, for rk large enough
we have N2(rks) < αµ1

µ2
N1(rks) for s ∈ [t − ǫ, t + ǫ]. Hence, under policy π∗, in the interval

[rk(t− ǫ), rk(t + ǫ)] class 1 is served and we obtain T
rk

1 (t + ǫ)− T
rk

1 (t− ǫ) = 2ǫ. Letting ǫ ↓ 0 we

obtain dT 1(t)
dt = 1.

Now assume N2(t) > αµ2

µ1
N1(t) and N1(t) > 0. Then there is an ǫ such that N2(rks) >

αµ2

µ1
N1(rks) and N1(rks) > 0 for s ∈ [t − ǫ, t + ǫ] and rk large enough. Under policy π∗, in this

interval both classes are served in parallel, hence dT c(t)
dt = 1.

Assume N2(t) = αµ2

µ1
N1(t) and N1(t) > 0. There is an ǫ such that N1(rks) > 0 for s ∈ (t−ǫ, t+ǫ)

and rk large enough. In this interval, class 1 is always served, so dT 1(s)
ds + dT c(s)

ds = 1, for any
regular point s ∈ (t − ǫ, t + ǫ). Together with (18), ρ1 < c1, α ≥ 0 and α > c2−ρ2

c1−ρ1
we obtain

αµ2

µ1

dN1(s)
ds − dN2(s)

ds = µ2(α(ρ1 −
dT 1(s)

ds − c1
dT c(s)

ds ) − (ρ2 − c2
dT c(s)

ds )) < 0, for s a regular point,

s ∈ (t− ǫ, t+ ǫ). This means that if N lies below the switching curve, then it moves towards the
switching curve and when N lies on or above the switching curve, it will move upwards, away
from the switching curve. Since we are in a state on the switching curve, there is an ǫ > 0 such
that N2(s) < αµ2

µ1
N1(s) for s ∈ (t − ǫ, t) and N2(s) > αµ2

µ1
N1(s) for s ∈ (t, t + ǫ). Hence, the

derivative from the left is dT 1(t−)
dt = 1, and the derivative from the right is dT c(t+)

dt = 1. Hence,
the point t itself is not a regular point.
Finally assume N1(t) = 0 and N2(t) > 0. Then there is an ǫ > 0 such that N2(s) > αµ1

µ2
N1(s)

for s ∈ [t − ǫ, t + ǫ] and hence N2(rks) > αµ1

µ2
N1(rks) for s ∈ [t − ǫ, t + ǫ] and rk large enough.

Recall that t is a regular point, so dT 1(t)
dt = 0 and from (18) we then have

dN1(t)

dt
= λ1 − µ1c1

dT c(t)

dt
. (29)

Note that if N1(t
+) > 0, then dT c(t+)

dt = 1. Since ρ1 < c1, we obtain from (29) that dN1(t)
dt = 0.

Hence dT c(t)
dt = ρ1

c1
.

Therefore, (20)–(22) are satisfied for each fluid limit T (t). ¤

Proof of Proposition 4.9:

For any sequence nr such that limr→∞ nr

r = n, we have

lim sup
r→∞

E
π
nr(

∫ D

0
N

r
1(t) + N

r
2(t)dt) = lim sup

r→∞

∫ D

0
E

π
nr(N

r
1(t) + N

r
2(t))dt

≤

∫ D

0
lim sup

r→∞
E

π
nr(N

r
1(t) + N

r
2(t))dt. (30)

The inequality follows from Fatou’s lemma, which applies since E
π
nr(N

r
1(t)+N

r
2(t)) ≤ (λ1 +λ2)t.

In Section 4.1 we determined the optimal trajectory for the fluid control model, n∗(t). It remains
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to show that under the stationary policy π∗ with switching curve h(N1) = αµ2

µ1
N1 we have that

limsupr→∞E
π∗

nr (N
r
1(t) + N

r
2(t)) = n∗

1(t) + n∗
2(t).

Fix the sample path ω. For a t > 0, let the subsequence rk be such that limsupr→∞N
r
i (t) =

limk→∞ N
rk

i (t). From Lemma 4.6 it follows that almost surely there exists a subsequence rkl

of rk such that liml→∞ N
rkl (t) = N(t). Since every fluid limit N(t) must coincide with the

optimal fluid control solution n∗(t) (see (23)) we obtain lim supr→∞ N
r
i (t) = n∗

i (t) pointwise
almost surely. The same holds for the lim inf, and hence we obtain that limr→∞ N

r
i (t) = n∗

i (t)
pointwise almost surely.
We also know that the function N

r
1(t)+N

r
2(t) is uniform integrable. This follows from the same

argument as in the proof of [11, Lemma 4.5]. Here we state it briefly. Note that N
r
1(t)+N

r
2(t) ≤

nr
1+nr

2
r + E1(rt)+E2(rt)

r , with Ei(·) a Poisson process with rate λi. Since limr→∞
E1(rt)+E2(rt)

r =

(λ1 + λ2)t almost surely (see Lemma 4.6) and E(E1(rt)+E2(rt)
r ) = (λ1 + λ2)t, we obtain from [8,

Theorem 3.6] that E1(rt)+E2(rt)
r is uniform integrable. Hence by definition of uniform integrability

it is immediate that also the function N
r
1(t) + N

r
2(t) is uniform integrable.

Since the function N
r
1(t)+N

r
2(t) is uniform integrable and converges point-wise to n∗

1(t)+n∗
2(t)

a.s., we can interchange the limit and the expectation (see [8, Theorem 3.5]). We obtain

∫ D

0
lim sup

r→∞
E

π∗

nr (N
r
1(t) + N

r
2(t))dt =

∫ D

0
E

π∗
(

lim
r→∞

N
r
1(t) + N

r
2(t)

)

dt

=

∫ ∞

0
(n∗

1(t) + n∗
2(t))dt.

Together with (30) we obtain lim supr→∞ E
π
nr(

∫ D
0 (N

r
1(t) + N

r
2(t))dt) ≤

∫ ∞
0 (n∗

1(t) + n∗
2(t))dt. ¤
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