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Adaptive Lifting Schemes with Perfect Reconstruction
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ABSTRACT

In this paper, we propose a framework for constructing adaptive wavelet decompositions using the lifting

scheme. A major requirement is that perfect reconstruction is possible without any overhead cost. In this

paper we restrict ourselves to the update lifting stage. It is assumed that the update �lter utilises local gradient

information to adapt itself to the signal in the sense that smaller gradients `evoke' stronger update �lters.

As a result, sharp transitions in a signal will not be smoothed to the same extent as regions which are more

homogeneous. The approach taken in this paper di�ers from other adaptive schemes found in the literature

in the sense that that no bookkeeping is required in order to have perfect reconstruction.
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1. Introduction

Today, multiresolution decompositions are widely used in signal and image processing appli-
cations such as speech processing, image denoising, and image and video compression. The
success of multiresolution techniques is largely due to the fact that signals often contain phys-
ically relevant features at many di�erent scales or resolutions. Analysing such signals with
transforms that try to unravel their multiscale structure may lead to a better understand-
ing and give rise to more powerful processing techniques. Another major reason for taking
recourse to multiresolution approaches is that the resulting algorithms may be more e�cient.
A family of multiresolution decompositions which are invertible and non-redundant, i.e.,

the size of the input equals the size of the output, are discrete wavelet transforms, or perfect
reconstruction �lter banks as they are mostly called in the engineering literature. As such,
the wavelet transform di�ers from various other multiresolution decompositions such as pyra-
mids and frame decompositions, which are redundant, and scale-spaces and PDE-approaches,
which are non-invertible in general. Both aforementioned properties of the wavelet transform,
i.e., invertibility and non-redundancy, turn it into a highly e�cient and applicable representa-
tion for a broad range of signal and image processing tasks such as denoising and, particularly,
compression.
Originally, wavelet transforms were linear, and their construction was based on classical

tools from functional and harmonic analysis such as the Fourier transform. The introduction
of the lifting scheme by Sweldens [17{19] (but see also [1] for a related scheme, known as a
\ladder network") opened the way to the design of nonlinear wavelet transforms [6,9,10,12,13].
Heijmans and Goutsias [14], for example, used the lifting scheme to build a class of nonlinear
perfect reconstruction �lter banks, which they called morphological wavelets.
In all these approaches, the exibility and freedom o�ered by the lifting scheme was merely

used to replace linear �lters by nonlinear ones, such as those deriving from mathematical
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morphology. A severe limitation is that the �lter structure is �xed, and thus cannot cope
with the sudden changes in the input signal. In many applications, however, it is desirable
to have a �lter bank that somehow determines how to shape itself according to the data that
it analyses. This can be achieved by allowing the lifting scheme to adapt its update and
prediction �lters to the local properties of the signal, thus giving rise to so-called adaptive

wavelets.
The idea of adapting the wavelets to the local characteristics of the data is discussed in

greater detail in Section 3, after we have given a brief reminder on the original lifting scheme
in Section 2. In Section 4, we present a general framework for adaptive lifting schemes.
In this paper, we concentrate ourselves on the update lifting step, and we assume that the
update parameters depend point-wise on local gradient information. The update �lters, as
well as the necessary conditions for perfect reconstruction, are discussed in more detail in
Section 5 and Section 6. In Section 7, we study the general scheme where we may have a
continuous family of update operators depending on the l1-norm of the gradient. In Section 8,
we consider the binary case where the system switches between two update �lters, depending
on a threshold criterion for the gradient. Section 9 presents some experiment results to
illustrate the performance and the potential of the adaptive schemes proposed here. Finally,
Section 10 contains some concluding remarks and plans for future work.

2. The Lifting scheme

In this section we present a short reminder on the original lifting scheme as it was introduced
by Sweldens [17{19]. An illustration of this scheme can be found in Fig. 1.

// x //

��

/.-,()*+� // x0 // /.-,()*+	
��

// x

��
x0 // WT P

��

U

OO

U

OO

P

��

(WT )�1 // x0

// y //76540123~	 //

OO

y0 //

OO 76540123~� // y

OO

Figure 1: General lifting scheme. The original signal x0 is split into the approximation signal

x and the detail signal y by a given wavelet transform WT . The prediction map P acting on

x is used to modify y, resulting in a new detail signal y0. Subsequently, the update map U

acting on y0 is used to modify x, yielding a new approximation signal x0. At synthesis, the

original signal x0 is reconstructed by reversing the lifting steps and applying the inverse of

WT .

The lifting scheme is a very general and highly exible tool for building new wavelet
decompositions from existing ones. It can be applied with various goals in mind. A �rst
objective might be to `improve' a given wavelet decomposition, e.g., by increasing the number
of vanishing moments it possesses. But from a completely di�erent point of view, the lifting
scheme can be exploited as a tool for building wavelets on irregular grids, e.g., a triangulation
of some odd-shaped geometrical surface. Furthermore, it o�ers the possibility to replace
linear �lters by nonlinear ones [6, 9, 10, 12, 13], such as rank-order �lters or morphological
operators [14]. This paper is concerned with yet another application of the lifting scheme,
viz. the design of adaptive wavelet decompositions.
A general lifting scheme comprises three main steps:

1. Splitting: The original signal x0 is splitted into two parts, the approximation signal
x 2 X , and the detail signal y 2 Y. In general, this partition is the outcome of a
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particular wavelet transform. The most simple case is the one where the domain of
the signal is subdivided into two disjoint subsets. In the one-dimensional case, this
subdivision often comprises the even and odd samples, e.g., x(n) = x0(2n), y(n) =
x0(2n + 1). This latter decomposition is sometimes referred to as the lazy wavelet

transform.

2. Prediction lifting: The detail signal y is predicted using information contained in the
approximation signal x and is replaced by the prediction error

y0 = y ~	 P (x) ;

where P : X ! Ran(P ) represents the prediction operator, and ~	 is a binary di�erence
operator mapping Y � Ran(P ) into Y 0. The prediction error y0 2 Y 0 becomes the new
detail signal. To guarantee invertibility of the lifted wavelet transform, the di�erence
operator needs to be invertible, i.e., there exists an addition operator ~� such that

y = (y ~	 p) ~� p ;

for all y 2 Y and p 2 Ran(P ). We refer to this condition as the reversibility condition.

3. Update lifting: The approximation signal x is updated using information contained
in the detail signal y0:

x0 = x� U(y0) :

Here U : Y ! Ran(U) represents the update operator and � is a binary addition
operator mapping X � Ran(U) into X 0. In this case the reversibility condition is said
to hold if there exist a binary subtraction operator 	 so that

x = (x� u)	 u ; (2.1)

for all x 2 X and u 2 Ran(U).

A general lifting scheme may comprise any sequence of update and prediction lifting steps.
In practice, these lifting steps are chosen in such a way that the resulting decomposition is an
`improvement' of the original one. Here, the word `improvement' can have various meanings.
For example, the lifted wavelet may have more vanishing moments than the original one, or
it may be better able to decorrelate the signals within a given class, etc.
In case that the reversibility conditions hold for all the addition and subtraction operators

in the chain of lifting steps, then the resulting wavelet transform is invertible. One simply
needs to reverse the order of the operations, use 	, ~� instead of �, ~	, and replace the initial
splitting by a merging step.
Daubechies and Sweldens [5] have shown that all classical wavelet decompositions can be

implemented using the lifting scheme. Furthermore, as we observed before, lifting does by
no means require that the prediction and update operators are linear and/or �xed, nor that
the underlying sampling grid is regular. With the lifting scheme, it becomes possible to build
`any wavelet you like' on `every geometrical structure you are interested in'. In this paper,
we will exploit this fact by adapting the update operator to the local properties of the signal.

3. Adaptive wavelets

The previous section shows clearly that there is an unlimited choice of wavelet transforms. An
important reason for the success of wavelets is their intrinsic ability to approximate smooth
signals e�ciently; thus, by selecting the appropriate wavelet basis, one can approximate such
signals with very high accuracy using only a limited number of coe�cients. It is precisely this
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capacity of wavelets that makes them so useful for compression. Unfortunately, most signals
that one encounters in the real world, including audio signals as well as imagery and video,
are not as smooth as these approaches request. Classical wavelet transforms cannot get along
very well with discontinuities encountered in real-world signals. Such singularities tend to
give rise to large coe�cients in their proximity, which is very undesirable in compression. To
overcome such problems, one may take recourse to schemes which, in decomposing the signal,
take into account its local properties, such as the local variance or gradient. In this case one
often speaks about adaptive approaches. There are various ways to build adaptivity into the
decomposition.
As observed, in many applications, the most interesting parts of a signal are its singularities.

A useful idea, therefore, is to look for wavelets that are capable of `tracking' the shape of the
discontinuities. This had led to construction of functions whose support has a shape that
can be adapted to the regularity of the signal being analysed. Donoho [7] studies the optimal
approximations of particular classes of indicator functions with an overcomplete collection
of atoms called wedgelets. His construction is based on a multiscale organisation of the
edge data. Another construction due to Donoho [8] are the ridgelets. These are elongated
wavelets especially suited for object discontinuities across straight lines. Recently, bandelets
have been proposed by Le Pennec and Mallat [15]. They constructed orthonormal bases of
wavelets which take advantage of the `regularity of edges' in images. Singularities are �rst
detected with so-called foveal wavelets, and then chained together to form edge curves. The
foveal coe�cients are then decomposed with standard wavelets bases. The resulting wavelets
have their support in a band surrounding the edge curve, hence the name bandelet.
A second possibility is to choose a basis depending on the signal. The best basis algo-

rithm [16] for example, selects a wavelet basis by minimising a concave cost function such
as the entropy or an lp-norm. In such an approach, the �lter coe�cients are �xed for an
entire block of data as the optimisation criterion is a global one. Here we are interested in
decompositions where the �lter coe�cients may vary locally, taking into account local varia-
tions of the signal. An interesting approach has been taken by Chan and Zhou [2]. Instead
of changing the �lter coe�cients, they choose to change the input signal in the proximity of
discontinuities through an extrapolation procedure. By recording these changes, the original
signal can be recovered at synthesis.
Trappe and Liu [20] build adaptivity into the prediction step of the lifting scheme. Their

aim is to design a data-dependent prediction �lter to minimise the predicted detail signal.
They distinguish two di�erent approaches. Their �rst approach is global in the sense that
the l2-norm of the entire detail signal is minimised using Wiener �lter theory. Their second
approach uses a local optimisation criterion and, in this case, the coe�cients of the prediction
�lter vary over time. Here the �lter coe�cients at a give time n are updated using the
approximation signal x and the predicted detail y0 at time n � 1. In this scheme, perfect
reconstruction is automatic. A very similar approach is used by Gerek and C�etin [11].
Claypoole et al. [3,4] propose an adaptive lifting scheme, which they call the space-adaptive

transform, which lowers the order of the approximation near jumps to avoid predicting across
discontinuities. This approach does not �t within the classical lifting scheme as the prediction
step does require input from both channels. To guarantee perfect reconstruction at synthesis,
one has to keep track of the �lter choices made at each point. As a consequence, the resulting
decomposition is no longer non-redundant in general.
Our approach resembles the approach by Claypoole et al. in the sense that it does not �t

in the classical lifting scheme either. However, we try to develop our scheme in such a way
that no bookkeeping is required. At the synthesis step we will still be able to recover the
decision, i.e., the choice of the �lter, made at the analysis step.
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4. A general framework for adaptive lifting systems

In this section, we describe the adaptive lifting scheme in its upmost generality. Although in
our terminology, we will speak about `update lifting', the same framework can be applied to
prediction lifting.
The basic idea underlying adaptive lifting is that the choice of the update operator U (but

the same is true for prediction) depends on the information locally available within both the
approximation signal x and the detail signal y. Recall that in the original lifting scheme, as
discussed in Section 2, the update operator U : Y ! Ran(U) is �xed, and that the output
approximation signal equals

x0 = x� U(y) ;

where � is a given addition operator mapping X � Ran(U) into X 0. In the adaptive case
we assume that the choice of both the update operator U and the addition may be location-
dependent. In fact, this choice is triggered by a so-called decision map D : X � Y ! DZ,
where D is the decision set. In Fig. 2 we give a schematic representation of our lifting scheme.
Thus, for every possible decision d 2 D we have

x //

��

?>=<89:;�d
// x0 //

��

?>=<89:;	d
// x

D //

>>}}}}}
Ud

OO

D0 //

=={{{{{
Ud

OO

y //

OO OO

y //

OO OO

y

Figure 2: Adaptive update lifting scheme.

1. an update operator Ud which maps Y into a set Ran(Ud), the range of Ud;

2. a binary addition operator �d which maps X �Ran(Ud) into X
0.

In this framework, the analysis step of the adaptive update lifting scheme looks as follows:

x0(n) = x(n)�dn Udn(y)(n) ; 8n 2 Z ; (4.1)

where dn = D(x; y)(n) is the decision at location n.
It is evident that we also need to assume that the reversibility assumption in Section 2

holds for every possible decision d 2 D. Thus, for every d 2 D there exists a binary operation
	d : X

0 �Ran(Ud)! X such that�
x�d Ud(y)

�
	d Ud(y) = x ;

for (x; y) 2 X �Y. In the non-adaptive case, where U and � are �xed, the analysis step can
be inverted by (2.1), that is,

x(n) = x0(n)	 U(y)(n) :

In the adaptive case, however, we need to know dn at every n to get perfect reconstruction.
But dn = D(x; y)(n), and to compute it, it seems that we need to know the original signal
x. In most cases, this is impossible, and hence perfect reconstruction is out of reach. But, as
we will show later, there exist a number of situations in which it is still possible to recover
dn from a posteriori decision map D0 which uses x0 and y as input. Obviously, D0 needs to
satisfy

D0(x0; y) = D(x; y) ; (4.2)
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for (x; y) 2 X � Y, and with x0 given by (4.1). We refer to this property as the decision
conservation condition. It is obvious that this condition is satis�ed if the decision map
depends only on y, since then we can choose D0 = D. For that reason, we reckon the case
where D depends only on y among the non-adaptive lifting schemes. In the sequel we shall
only consider schemes which are truly adaptive.
We start with a simple example.

4.1. Example. Let X = Y = IRZ. Consider the three-valued decision map

D(x; y)(n) =

8><
>:
�1 if jx(n)� y(n� 1)j < jx(n)� y(n)j

+1 if jx(n)� y(n� 1)j > jx(n)� y(n)j

0 if jx(n)� y(n� 1)j = jx(n)� y(n)j :

Thus, in this case, D = f�1; 0;+1g. Let Ud; d 2 D, be given by

Ud(y)(n) =

8><
>:
y(n� 1) if d = �1
1
2
(y(n� 1) + y(n)) if d = 0

y(n) if d = +1 :

Let � be independent of n, namely

(x� y)(n) =
1

2
(x(n) + y(n)); x; y 2 IRZ :

This scheme has the following simple interpretation. The updated sample x0(n) is obtained by
averaging the original sample x(n) with its neighbour which is closest in value. If both neigh-
bours y(n� 1); y(n) are equally close, we average x(n) with the average of both neighbours.
If we de�ne D0 = D, then (4.2) holds as we will demonstrate below.

If dn = �1, then

jx0(n)� y(n� 1)j =
1

2
jx(n)� y(n� 1)j

and
jx0(n)� y(n)j = j1

2
(x(n) + y(n� 1)) � y(n)j

= jx(n)� y(n) + 1

2
(y(n� 1)� x(n))j

� jx(n)� y(n)j � 1
2
jy(n� 1)� x(n)j

> 1
2
jx(n)� y(n� 1)j = jx0(n)� y(n� 1)j ;

which results in D0(x0; y) = �1. If dn = +1, a similar reasoning yields jx0(n) � y(n)j <
jx0(n)� y(n� 1)j, and thus D0(x0; y) = +1 . If dn = 0, there are two possibilities:

(i) y(n) = y(n�1): it is obvious that jx0(n)�y(n�1)j = jx0(n)�y(n)j, hence D0(x0; y) = 0.

(ii) x(n)� y(n) = y(n� 1)� x(n): then x0(n) = x(n), and therefore D0(x0; y)(n) = 0.

Thus (4.2) holds and we get perfect reconstruction. To illustrate the performance of our
adaptive system, we compare it to the non-adaptive scheme where D equals 0 for all n, that
is, U(y)(n) = 1

2
(y(n � 1) + y(n)) for all n. In both cases, the update step is followed by a

non-adaptive prediction step. The prediction �lter used is P (z) = 1
2
+ 1

2
z, or equivalently,

y0(n) = y(n) � 1
2
(x(n) + x(n + 1)). The original as well as the decomposition signals are

depicted in Fig. 3. The original test signal is shown on the top left, and the approximation
and detail signals below. The middle row shows the decomposition results from the non-
adaptive scheme, while the last row depicts the results from the adaptive scheme.



5. The update �lters 7

50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3: The top image shows the original test signal. The second and third rows depict the

decomposition signals when applying respectively the non-adaptive and the adaptive schemes

discussed in Example 4.1. The images at the left represent the approximation signal, while

the images at the right represent the detail signal.

In the previous example, the decision D(x; y)(n) at n depends on the sign of the expression
jx(n) � y(n � 1)j � jx(n) � y(n)j, which can be �1; 0; +1. Thus the decision depends on
the value of the function S given by S(x; y)(n) = jx(n) � y(n � 1)j � jx(n) � y(n)j, namely
D(x; y)(n) = signS(x; y)(n).
In the remainder of this paper we restrict ourselves to the case where the decision dn =

D(x; y)(n) depends on the gradient at the point n, and more particularly on the l1-norm. In
Section 7 we investigate the case where dn equals the l1-norm of the gradient, and hence may
assume any nonnegative value. In this case we have a continuous family of update operators.
In Section 8, dn can only assume the values 0 and 1, governed by a simple threshold criterion.
In this case, we choose between two di�erent update operators U0 and U1.

5. The update filters

Throughout the remainder of this paper we assume that the update operator Ud is a 2-tap
�lter of the form

Ud(y)(n) = �dy(n� 1) + �dy(n) ; (5.1)
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where �d; �d are the �lter coe�cients. We also assume that the addition �d is of the simple
form

(x�d u)(n) = �d
�
x(n) + u(n)

�
:

At this point, we only require that �d 6= 0 in order to guarantee that the reversibility
assumption stated in Section 2 holds. It is obvious that

(x	d u)(n) =
1

�d
x(n)� u(n) :

Now the analysis step in (4.1) gives that

x0(n) = �dn
�
x(n) + �dny(n� 1) + �dny(n)

�
;

where dn is the decision at location n. Writing

�d = �d�d and d = �d�d ;

we can rewrite the previous expression as

x0(n) = �dnx(n) + �dny(n� 1) + dny(n) : (5.2)

The synthesis step (presumed that dn is known) is given by

x(n) =
1

�dn

�
x0(n)� �dny(n� 1)� dny(n)

�
: (5.3)

De�ne, for future reference,
�d = �d + �d + d :

From now on, we will restrict ourselves to decision maps which are based on the gradient
vector

(v(n); w(n)) = (x(n)� y(n� 1); y(n)� x(n)) :

More speci�cally, we assume that

D(x; y)(n) = d(v(n); w(n)) ; (5.4)

where d : IR� IR! D. Observe that

v(n) + w(n) = y(n)� y(n� 1)

does not depend on x. Therefore, if d(v; w) depends only on v+w, we are in the non-adaptive
situation. We can prove the following auxiliary result.

5.1. Lemma. Consider a gradient-based decision map. In order to have perfect reconstruc-

tion it is necessary that �d is constant on every subset D(c) � D given by D(c) = fd(v; w) j
v +w = cg, where c 2 IR is a constant.

Proof. Assume that, for some c 2 IR, we have d1; d2 2 D(c) such that �d1 6= �d2 . Assume that
(vj ; wj) is such that d(vj ; wj) = dj for j = 1; 2. Let the signals xj ; yj be such that

yj(n� 1) = q ; xj(n) = q + vj ; yj(n) = q + vj + wj = q + c :

From (5.2) we get that

x0j(n) = �dj (q + vj) + �djq + dj (q + c)

= �dj (q + vj)� (�dj + dj )(q + vj) + �djq + dj (q + c)

= �djq + �djvj � �djvj + djwj :
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If we choose q in such a way that

�d1q + �d1v1 � �d1v1 + d1w1 = �d2q + �d2v2 � �d2v2 + d2w2 ;

which is possible since �d1 6= �d2 , then we get that x01(n) = x02(n). Since y1(n � 1) = y2(n � 1) and

y1(n) = y2(n), this implies that perfect reconstruction is not possible.

Taking into account all the previous assumptions, it becomes possible to simplify the
notation substantially by working with vectors rather than with signals. The key observation
is that for updating the value x(n) we only need to know its two neighbouring samples y(n�1)
and y(n) along with x(n) itself. Thus, we may represent the update operator as a mapping
from IR2 to IR. Instead of (5.1) we shall write

Ud(y; z) = �dy + �dz :

Here (y; z) replaces the vector (y(n� 1); y(n)) in (5.1). Instead of (5.2) we get

x0 = �dx+ �dy + dz ; (5.5)

and using the previous assumptions we �nd that the decision d in (5.5) is obtained from

d = d(v; w) = d(x� y; z � x) ; (5.6)

where
v = x� y and w = z � x :

The synthesis step in (5.3) can now be written as

x =
1

�d

�
x0 � �dy � dz

�
: (5.7)

Putting
v0 = x0 � y and w0 = z � x0 ;

we derive from (5.5) that

v0 = (�d + d)v + dw + (�d � 1)y (5.8)

w0 = �dv + (�d + �d)w � (�d � 1)z : (5.9)

Note that
v + w = v0 + w0 = z � y :

6. Perfect reconstruction condition

With the assumptions speci�ed in the previous section we arrive at the following problem.

Problem statement. Assume that we have a decision function d : IR � IR ! D, and �lter

coe�cients �d; �d; d 2 IR for every d 2 D. Is the mapping

(x; y; z) 7! (x0; y; z) ;

where x0 and d are given by (5.5) and (5.6) respectively, invertible?

We assume henceforth that the decision is given by the l1-norm of the gradient:

d(v; w) = jvj+ jwj : (6.1)

In Lemma 5.1 we have seen that a necessary requirement for perfect reconstruction is that
�d = �d + �d + d is constant on every subset D(c). It is obvious that for the decision map
in (6.1) we have D(0) = IR+. Thus we arrive at the following result.
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6.1. Lemma. Assume that the decision is given by (6.1). In order to have perfect recon-
struction it is necessary that �d is constant for all d 2 D.

Henceforth we assume that �d = 1, i.e.,

�d + �d + d = 1 ; for all d 2 D :

In this case (5.8)-(5.9) can be rewritten as

v0 = (1� �d)v + dw (6.2)

w0 = �dv + (1� d)w ; (6.3)

which in matrix notation looks as follows:�
v0

w0

�
=

�
1� �d d
�d 1� d

��
v

w

�
: (6.4)

The determinant of the matrix in (6.4) equals 1� d � �d = �d. Assuming that

�d 6= 0 for all d 2 D ;

we can invert the equations in (6.2)-(6.3), and we get

v =
1

�d

�
(1� d)v

0 � dw
0

�
w =

1

�d

�
��dv

0 + (1� �d)w
0

�
:

However, in order to carry out this inversion we need to know the coe�cients �d; �d; d which
all depend on d = d(jvj+ jwj). This gives rise to an equation for the unknown decision d. In
order to have perfect reconstruction, this equation needs to have a unique solution for every
gradient vector (v; w) 2 IR2.
In this paper we will consider two di�erent cases. In the following section we consider

the general case, i.e., the decision d equals the l1-norm of the gradient, corresponding with
a possibly in�nite collection of update �lters. In Section 8, we specialise to the case where
there exists only two possible decisions d = 0 and d = 1, hence two update �lters U0 and U1,
depending on a threshold criterion for the gradient.

7. The general case

In this section we assume that the decision d equals the l1-norm of the gradient. In the �rst
proposition below we will give su�cient conditions for the �lter coe�cients �d; �d; d which
guarantee that we have perfect reconstruction.

7.1. Proposition. Perfect reconstruction is possible in each of the following two cases:

(a) �d > 0 for all d � 0, and �d, d are non-increasing with respect to d.

(b) �d < 0 for all d � 0, and �d, d are non-decreasing with respect to d.

Proof. We show that x1 6= x2 implies that x01 6= x02 in both cases. Without lost of generality we may
assume z � y and that x2 > x1. A straightforward computation shows

x02 � x01 = (�1 � �2)� + �1(w1 � w2) + (�1 � �2)w2 (7.1)

= (2 � 1)� + �2(v2 � v1) + (�2 � �1)v1 ; (7.2)

where � = z � y. We distinguish three di�erent cases.
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(i) z > x2 > x1 > y: In this case d1 = d2 = �, which means that the �lter coe�cients are the same
for both inputs. Thus, the �rst and last term of (7.1) are zero, and x02 � x01 = ��(w1 � w2) > 0:

(ii) x2 > x1 > z or x2 > z > x1 > y: Observe that in both cases d2 > d1, w2 < 0, and w1 � w2 > 0.
If �d > 0, and �d; d are non-increasing, then (�1��2)� > 0, �1(w1�w2) > 0, and (�1��2)w2 > 0.
Hence, we get from (7.1) that x02 � x01 > 0. If �d < 0, and �d; d are non-decreasing, then all terms
in (7.1) are negative, and we get x02 � x01 < 0.

(iii) x2 > z > y > x1: In this situation we distinguish between the case where d2 � d1 and the case
where d2 < d1. If d2 � d1, then w2 < 0 and w1 � w2 > 0; we can use the same argument as in case
(ii). If d2 < d1, we use the identity in (7.2). Note that v1 < 0 and v2 � v1 > 0. Consequently, if
�d > 0, and �d; d are non-increasing, all terms in (7.2) are positive and we get x02 � x01 > 0. On
the other hand, if �d < 0, and �d; d are non-decreasing, all terms in (7.2) are negative, and we get
x02 � x01 < 0.

So far, we have only derived conditions which guarantee that perfect reconstruction is possible,
but we have not yet given the correspondent algorithm. The lemma below will help us
to construct such an algorithm. In this lemma we shall only deal with the �rst case in
Proposition 7.1, i.e., we assume that �d > 0 for all d � 0, and �d, d are non-increasing
with respect to d. Assume as before that we have the input and output triples (x; y; z) and
(x0; y; z), respectively, and that z � y. Put

� = z � y and d = jx� yj+ jz � xj ;

that is, d is the l1-norm of the gradient with respect to input triple (x; y; z). It is evident
that

� � d :

Furthermore, it is easy to show that

y + d� � y + �� � z � ��� � z � �d� :

We prove the following lemma.

7.2. Lemma. Assume that z � y and let � = z� y and d = jx� yj+ jz�xj. The following
relations hold:

x < y () x0 < y + d�

y � x � z () y + �� � x0 � z � ���

x > z () x0 > z � �d� :

Proof. Under the given assumptions we have � � d. We can easily establish the following identities:

x0 = x+ dw � �dv (7.3)

= z � �dw � �d� (7.4)

= y + �dv + d� : (7.5)

From we get immediately that i� �dv < 0, i.e., v = x � y < 0, then x0 < y + d�. This proves the
�rst relation. Similarly, (7.4) yields that x0 > z � �d� i� �dw < 0, that is, w = z � x < 0.

Now, if y � x � z, then d = �, v; w � 0, and (7.4)-(7.5) yield that y + �� � x0 � z � ���:

Conversely, assume that y+ �� � x0 � z � ���, and suppose that x < y (the case x > z is treated

analogously). We have seen above that this implies that x0 < y + d�, which yields a contradiction.

Hence y � x � z. This concludes the proof.
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Similar results can be obtained for case (b) of Proposition 7.1 as well as for the case that
z < y.
The previous lemma is essential in the construction of an algorithm which performs the

inversion step. Again, we restrict ourselves to the case y � z. Observe �rst that

x 2 [y; z] () x0 2 [y + ��; z � ���] :

Thus, if x0 2 [y + ��; z � ���], then

d = � = z � y ;

and reconstruction becomes straightforward. If, however, x0 62 [y + ��; z � ���], then

d = jy + z � 2xj = jy + z �
2

�d
(x0 � �dy � dz)j ;

where we have used (5.7). This can be rewritten as

d � �d = jy + z � 2x0 + (�d � d)(y � z)j :

This latter equation has a unique solution d, and having found this, reconstruction becomes
straightforward. The other cases (Proposition 7.1(b) and/or z < y) can be treated similarly,
and we arrive at the following algorithm.

7.3. Algorithm.

1. Compute � = jz � yj.

2. Compute coe�cients ��; ��; �.

3. Compute the lower and upper limits, Y and Z, as

Y = min(y + �(z � y); z � ��(z � y)) Z = max(y + �(z � y); z � ��(z � y)) :

4. If x0 2 [Y;Z] put

 = � and � = ��

else

(4a) compute d by solving

d � �d = jy + z � 2x0 + (�d � d)(y � z)j

(4b) put
 = d and � = �d :

5. Compute x from

x =
x0 � �y � z

1� � � 
:
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7.4. Example. Consider the case where

d = �d =
0

�d+ 1
; (7.6)

where 0 � 0 <
1
2
and � > 0. It follows immediately that the conditions in Proposition 7.1(a)

are satis�ed. Steps (1) to (3) of Algorithm 1 are straightforward, and they yield the coe�-
cients

� = �� =
0

��+ 1
=

0

�jz � yj+ 1
:

After computing the boundaries Y and Z, we have to check whether x0 belongs to the interval
[Y;Z]. If it does, we know that d = �, and that  = � = �. Now we can retrieve x following
step (5). Otherwise, we must solve the equation given in step (4a) with �d = 1� 2d:

d � (1 � 2d) = jy + z � 2x0j :

Expressing d as a function of d, and denoting r = jy + z � 2x0j, we arrive at the quadratic
equation

�d2 + (1� 20 � r�)d� r = 0 :

This equation has a unique positive solution:

d =
�(1� 20 � r�) +

p
(1� 20 � r�)2 + 4r�

2�
:

From this d we can compute the �lter coe�cients  = � := d, and retrieve x using step (5).

8. Binary decisions based on a threshold criterion

In this section, we investigate a simple class of adaptive update lifting schemes where the
decision map is based on a simple threshold criterion. To be precise, we assume that D =
f0; 1g, and that the function d in (5.4) has the form

d(v; w) =

(
1; if jvj+ jwj > T

0; if jvj+ jwj � T ;
(8.1)

where T is the threshold. Instead of (8.1) we sometimes use the shorthand notation

d(v; w) = [ jvj + jwj > T ]; (8.2)

where [P ] returns 1 if the predicate P is true, and 0 if it is false.
This binary scheme can be regarded as a particular instance of the case presented in the

previous section, with coe�cients given by

�d =

(
�0 if d � T

�1 if d > T
d =

(
0 if d � T

1 if d > T

Assuming �d + �d + d = 1 for d = f0; 1g, Proposition 7.1 yields the following results.

8.1. Proposition. Perfect reconstruction is guaranteed in each of the following two cases:

(a) �0 > 0 ; �0 � �1 ; 0 � 1.
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(b) �1 < 0 ; �0 � �1 ; 0 � 1.

In the previous section it was necessary to recover d = jvj+ jwj at the synthesis step. Here,
it su�ces to check if either d was smaller or equal than the threshold T , or if d was larger
than T . In fact, we are interested in �nding a, possibly di�erent, threshold value T 0 which
can be used to retrieve d at synthesis:

d = [ jv0j+ jw0j > T 0 ] : (8.3)

Recall from (6.4) that �
v0

w0

�
=

�
1� �d d
�d 1� d

��
v

w

�
; (8.4)

which can be written in vector notation as v0 = Adv. Let us henceforth denote by kvk the
l1-norm of v, that is, kvk = jvj+ jwj if v = (v; w). With this notation the threshold criterion
in (8.3) can be reformulated as follows: given T > 0, there exists a T 0 > 0 such that

(i) if kvk � T , then kA0vk � T 0,

(ii) if kvk > T , then kA1vk > T 0.

We can prove the following result.

8.2. Lemma. The threshold criterion holds if and only if

kA�1
1 k�1 � kA0k : (8.5)

Proof. First we prove the `if'-statement. We show that (i) and (ii) are satis�ed if we put T 0 = kA0kT .
First, if kvk � T then kA0vk � kA0k � kvk � kA0kT = T 0, which proves (i). To prove (ii) we use
that

kvk = kA�1

1 A1vk � kA�1

1 k � kA1vk ;v 2 IR2 :

From this we derive that
kA1vk � kA�1

1 k�1kvk � kA0k � kvk :

Thus, if kvk > T , then kA1vk > kA0kT = T 0, and this proves the result.
To establish the `only if' part, assume that (i)-(ii) hold. Choosing T = 1 we get from (i) that

kA0k � T 0. Now (ii) reads as: \if kvk > 1, then kA1vk > T 0". We estimate kA�1

1 k. Choose
w 2 IR2 n f0g and put v = (1 + �)A�1

1 w=kA�1

1 wk, where � > 0. Obviously, kvk = 1 + � > 1 and (ii)
yields that kA1vk > T 0, that is, (1 + �)kwk=kA�1

1 wk > T 0. This can be rewritten as

kA�1

1 wk <
(1 + �)

T 0
kwk �

(1 + �)

kA0k
� kwk :

Thus, we conclude that kA�1

1 k � (1+�)kA0k
�1, for every � > 0. Therefore, kA�1

1 k � kA0k
�1 whence

(8.5) follows immediately.

The l1-norm of the matrix Ad in (8.4) is given by

kAdk = max
�
j�dj+ j1� �dj; jdj+ j1� dj

�
;

and the norm of its inverse equals

kA�1

d
k =

1

j�dj
max

�
jdj+ j1� �dj; j�dj+ j1� dj

�
:
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Therefore, the condition kA�1
1 k�1 � kA0k can be written as

j�1j
�
max

�
j1j+ j1� �1j; j�1j+ j1� 1j

���1
� max

�
j�0j+ j1� �0j; j0j+ j1� 0j

�
: (8.6)

Putting

m1 = max
�
j1j+ j1� �1j; j�1j+ j1� 1j

�
and m0 = max

�
j�0j+ j1� �0j; j0j+ j1� 0j

�
;

we can rewrite (8.6) as
m0m1 � j�1j :

It is easy to show that m0 � 1 and that m1 � j�1j. Therefore, the only way to satisfy (8.6)
is to choose m0 = 1 and m1 = j�1j. The �rst equality yields

�0; 0 2 [0; 1] ;

and the second equality gives

either �1; 1 � 0 or �1; 1 � 1 :

To establish this latter result we have used that �1 = 1� �1 � 1. We summarise our results
in the following proposition.

8.3. Proposition. Assume that the decision map is given by the threshold criterion in (8.2).
At synthesis, the decision can be recomputed from the threshold criterion in (8.3) with T 0 = T

i� the following holds:

(i) 0 � �0; 0 � 1;

(ii) either �1; 1 � 0 or �1; 1 � 1.

9. Simulation results

In this section, we present some preliminary results for the adaptive schemes presented in
Section 7 and Section 8. In our future work we will present more elaborate experiments and
make comparisons with other approaches found in the literature; see Section 3. To illustrate
the performance of our adaptive schemes, we compare these schemes with their non-adaptive
counterparts. In all cases, the update step is followed by a �xed prediction step of the form

y0(n) = y(n)� (
x0(n) + x0(n+ 1)

2
) :

The test signal (see top left of Fig. 4) is obtained by adding normally distributed noise to
the undisturbed signal in Fig. 3.
First, we consider the threshold-based adaptive scheme described in Section 8. We choose

�0 = 0 =
1
3
, and �1 = 1 = 0. Thus, the resulting low-pass �lters are the average �lter for

d = 0, and the trivial �lter (or the identity map) for d = 1. The approximation and detail
signals, x0 and y0, are depicted in the second row of Fig. 4; here we have taken a threshold
T = 0:2. The corresponding decision map is shown at the top right. This map shows that
we make decision 1 at �ve positions (note that at these positions the gradient exceeds our
threshold T ). Anywhere else, the decision equals 0, meaning that the average update �lter is
used there. The decomposition signals obtained for both non-adaptive cases corresponding
with d = 0 and d = 1 are shown respectively in the third and fourth rows of Fig. 4.
In this particular example, the adaptive scheme performs as the �xed scheme with d = 0

most of the time except for those �ve locations where the gradient exceeds the threshold T ;
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Figure 4: The top left image shows the original test signal. The top right depicts the decision

map for T = 0:2. The second row shows the corresponding approximation (left) and detail
(right) signals. The third and fourth row correspond with the non-adaptive decompositions

for d = 0 and d = 1, respectively.

the scheme `decides' that these locations correspond with sharp transitions in the signal and it
does not apply any smoothing. Therefore, the adaptive scheme is capable of `recognizing' the
edges and preserving them, while simultaneously smoothing the more homogeneous regions.
As a consequence, the detail signal remains small except near discontinuities. There, the
detail signal takes the same value as in the non-adaptive case corresponding with d = 1 and,
as a result, it avoids the double-peaked detail that one encounters in the non-adaptive case
d = 0.
By varying the threshold T , the resulting system can be tuned to the one or the other
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behaviour. If T is very small, the adaptive system will behave more or less as the non-
adaptive scheme with d = 1. If T is increased, the decomposition map will attain the value 0
more often, meaning that it behaves increasingly as the non-adaptive scheme corresponding
to d = 0.
To get a �rst impression of the amount of compression that can possibly be achieved by

the application of the adaptive scheme, we compute the entropies of the three detail signals
in Fig. 4 and found an entropy of 4.51 for the adaptive scheme, 5.06 for the �xed scheme
with d = 0, and 5.15 for the �xed scheme with d = 1. Note that a lower entropy may
eventually lead to a higher compression ratio. However, we emphasise that these results are
very preliminary and that a more thorough study needs to be carried out before we can reach
any �nal conclusions.

Next, we present some results for the general scheme of Section 7. In particular, we consider
the case where the coe�cients are given by (7.6) in Example 7.4, with 0 = 1

3
and � = 5.

That is,

d = �d =
1
3

5d+ 1
=

1

15d + 3
:

Note that for small values of d, the resulting low-pass �lter approximates the average �lter
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Figure 5: First row: decision map d (left) and coe�cients d Right). Second row: approxi-

mation (left) and detail (right) signal.

(� = � =  = 1
3
), while for large values it behaves more like the trivial �lter (� = 1; � =  =

0). Thus, again we can consider these two extreme cases to be the non-adaptive counterparts
of the proposed scheme. We use the same input as in Fig. 4. The two bottom rows of
Fig. 4 correspond with the two aforementioned extreme cases. The approximation and detail
signals resulting from our scheme are depicted at the bottom row of Fig. 5. The corresponding
decision map, which in this case equals the l1-norm gradient, is shown at the top left. On the
right, the corresponding coe�cients d = �d have been depicted. These �gures show clearly
that sharp transitions are smoothed to a much lesser degree than more homogeneous parts
of the signal.
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For this adaptive scheme, the entropy of the detail signal is 4.82, which is higher than the
entropy we get in the threshold-based scheme (4.51), but lower than those obtained in the
non-adaptive cases (5.06 and 5.15, respectively). A preliminary conclusion therefore is that
wavelet decompositions using adaptive update lifting yield detail signals with lower entropies
than in the non-adaptive case.

10. Conclusion

We have introduced a new framework for adaptive lifting. The basic idea underlying this
scheme is to choose the lifting �lters according to some decision criterion which may depend
on local characteristics of the signal, such as (the norm of) the gradient. Our scheme dis-
tinguishes itself from other schemes like the one by Claypoole et al. [3, 4] in the sense that
it does not require any bookkeeping. Although we have restricted ourselves to the update
lifting step, the same framework can be applied for the prediction stage.
Preliminary experiments seem to indicate that these adaptive decompositions yield detail

signals with lower entropies than in the non-adaptive case. This, together with the fact that
bookkeeping is not needed, suggest that our adaptive schemes may be useful for compression.
We intend to investigate this more thoroughly in the future.
In the literature there exist several wavelet decomposition schemes which, in various ways,

try to take into account discontinuities (e.g., singularities in signals, edges in images) [2{
4, 7, 8, 15]. We have briey discussed some of these schemes in Section 3. We intend to
investigate and understand the similarities and di�erences between these techniques and
our own adaptive scheme. Other work in progress concerns the extension of our results to
other decision criteria, to �lters with more taps, and to the two-dimensional case. Finally,
we want to examine cases where the linear update (and prediction) �lters are replaced by
morphological ones [14].
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