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ABSTRACT

There exist several methods to extend binary morphology to grey-scale images. One of these methods is

based on fuzzy logic and fuzzy set theory. Another approach starts from the complete lattice framework for

morphology and the theory of adjunctions. In this paper, both approaches are combined. The basic idea

is to use (fuzzy) conjunctions and implications which are adjoint in the de�nition of dilations and erosions,

respectively. This gives rise to a large class of morphological operators for grey-scale images. It turns out that

this class includes the often used grey-scale Minkowski addition and subtraction.

2000 Mathematics Subject Classi�cation: 03B52, 03E72, 68U10

Keywords and Phrases: Mathematical morphology, image processing, fuzzy logic, complete lattice, adjunction,

conjunction, implication, dilation, erosion, negation.

Note: This work was carried out during a one-year visit of the �rst author to CWI. He gratefully acknowledges

�nancial support of the Netherlands Organization for International Cooperation in Higher Education (NUFFIC).

Furthermore, he wants to thank CWI for its hospitality. The work of the second author was carried out under

project PNA4.2 \Wavelets and Morphology".

1. Introduction

Mathematical morphology was invented in the early sixties by Matheron [12] and Serra [17] as
a novel geometry-based technique for image processing and analysis. Originally, mathematical
morphology was developed for binary images and used simple concepts from set theory and
geometry such as set inclusion, intersection, union, complementation, and translation. This
resulted in a collection of tools, called morphological operators, which are eminently suited
for the analysis of shape and structure in binary images [21]. The most well-known of these
operators are erosion and dilation.
Soon thereafter, mathematical morphology was extended to grey-scale images. Such an

extension requires rules for the `combination' of di�erent grey-values. In the binary case, the
set paradigm leads in a natural way to `combinations' based on concepts from Boolean logic.
In the grey-scale case, the set paradigm is no longer valid, and as a consequence it is not a
priori clear which `combination mechanism' should be used. Furthermore, the choice of the
`combination mechanism' may also depend on the physical interpretation of the grey-values.
To extend binary morphology to grey-scale images (i.e., functions) people have chosen

di�erent approaches. Here we briey discuss the most important ones.

- The umbra approach: here, a grey-scale image is considered as a 3-dimensional land-
scape which can then be transformed using tools which are known from the binary
(2-dimensional) case [7, 8, 17, 22].
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- The threshold set approach: a grey-scale image is decomposed in terms of its threshold
(or level) sets. To each of these sets one can apply a binary operator, after which the
resulting sets can be used to synthesize a transformed grey-scale image [8, 11, 17].

- The complete lattice approach: today, complete lattices are considered as the right
mathematical framework for morphology. This framework can be used to formulate
(minimal) conditions that need to be satis�ed by grey-scale morphological operators [8,
16, 18].

It should be clear that these di�erent approaches, rather than leading to di�erent families of
operators (which they do only to a limited extent), mainly a�ect the way we conceive the
resulting operators. It cannot be denied, for example, that the introduction of the complete
lattice approach has resulted in an algebraization of morphology. Although this has been
very much to the bene�t of this area, it has some drawbacks too. The major drawback,
from our perspective, is the abandonment (to a high degree) of the set paradigm. However,
there exists yet a fourth approach, not mentioned so-far, which enables a return to the set
paradigm.

- The fuzzy logic approach: in this approach, one uses concepts from fuzzy logic and fuzzy
set theory for the design of morphological operators.

To our knowledge, the �rst author using concepts from fuzzy logic in mathematical mor-
phology is Goetcherian [5]. Since then, several authors have advocated this approach, for
example Sinha and Dougherty [19, 20], Bloch and Maitre [1, 2], and De Baets, Nachtegael
and Kerre [3, 4, 13]. Rather than discussing their work here, and the di�erences between the
various approaches, we refer to the paper of Nachtegael and Kerre [13] which presents an
excellent survey of the existing literature on fuzzy morphology. Another good source is the
recent volume edited by Kerre and Nachtegael [9].
To our point of view, one key ingredient is missing in all existing approaches of fuzzy mor-

phology: adjunctions. Adjunctions, which do arise naturally in a complete lattice framework,
can be considered as one of the most (if not the most) important concepts in mathemati-
cal morphology. It provides a unique pairing between dilations and erosions, in contrast to
complementation (or negation). Although it is true that negations can be used to construct
erosions from dilations (and vice versa), this technique has some serious drawbacks. First of
all, negations are, in most cases, not unique, meaning that the aforementioned pairing is not
unique either. Furthermore, the pairing provided by negations does not necessarily lead to
dilations and erosions that, when they are composed, yield openings and closings.
In this paper we adopt the fuzzy logic approach to grey-scale morphology and combine

it with the concept of adjunctions. It turns out that this amounts to considering (fuzzy)
conjunctions and implications which, themselves, satisfy the adjunction relation. Although
grey-scale images and fuzzy sets do have the same mathematical representation in this paper
(both are functions from a given set U into [0; 1]), they have a di�erent interpretation.
Although it is true that fuzzy set theory has become an important tool in image processing,
it does not make sense to think of an image as being a fuzzy set unless the grey-values are
known to represent a measure of uncertainty.
In this paper we use notions from fuzzy logic to extend binary morphology (which can be

described in terms of classical binary logic) to grey-scale images. In doing so, it turns out
that existing grey-scale operators such as grey-scale Minkowski addition and subtraction can
be considered as a very special case of the fuzzy logic framework.
This paper is organized as follows. In Sections 2 and 3, we recall, respectively, binary

morphology and morphology on complete lattices. In Section 4, we discuss various concepts
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from fuzzy logic that are needed in the sequel of the paper. Particular attention will be
given to adjunctions. Then, in Section 5, we show how such notions can be used to de�ne
morphological operators for grey-scale images, preserving as much as possible the geometri-
cal interpretation characteristic for binary morphology. We will also explain there how the
classical grey-scale operators can be �t within our framework. In Section 6, we explain the
role of negations. Some experimental results are presented in Section 7, and we end with
some conclusions and �nal remarks in Section 8.

2. Binary Morphology

Let U be a nonempty set called a universe, and let P(U) be the family of all subsets of U .
Often, we choose U = IRd, the d-dimensional Euclidean space, in which case a subset X of
U represents a continuous binary image on U , or we take U = Z

d, in which case X � U
represents a discrete binary image on U . Given a subset A of U and a vector h 2 U , we
denote by Ah the translation of A along the vector h, that is

Ah = fa+ h j a 2 Ag :

The Minkowski addition of two sets X and A is de�ned as

X �A =
[
a2A

Xa = fy 2 U j �Ay \X 6= ;g ; (2.1)

where �A = f�a j a 2 Ag is the reection of set A around the origin. The Minkowski

subtraction is

X 	A =
\
a2A

X�a = fy 2 U j Ay � Xg : (2.2)

Given A � U , the dilation �A and erosion "A of an image X 2 P(U) are, respectively, de�ned
as

�A(X) = X �A and "A(X) = X 	A :

The set A is called structuring element in the morphological literature. The most important
relation between dilation and erosion is

Y �A � X () Y � X 	A ; X ; Y ;A 2 P(U) ; (2.3)

which is called the adjunction relation. Another duality relation between dilation and erosion
is given by means of complementation It is easy to show that

Xc �A = (X 	 �A)c and Xc 	A = (X � �A)c ; (2.4)

where Xc denotes the set complement of X and �A is the reection of A. In fact, some authors
have used this duality to construct erosions from dilations or vice versa. However, from our
point of view the adjunction relation in (2.3) is the most general as well as the most powerful
duality relation between dilations and erosions. We will return to this issue in Section 6.
In general, dilation and erosion are not inverse operators. More speci�cally, if a set X is

eroded by a set A and then dilated by A, the resulting set is not the original set X but a
subset of it. In most cases this set is smaller than X. It is called the opening of X by A,
denoted by X � A:

X � A = (X 	A)�A :

Dually, if X is �rst dilated by A and then eroded we get the closing

X � A = (X �A)	A ;
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a set which contains the original set X, and in most cases, is larger than this set.
For the opening one can easily show that

X �A =
[
fAy j y 2 U ; Ay � Xg :

The most important property of the opening and closing operator is their idempotence. Recall
that an operator  is called idempotent if  2 =  .

3. Morphology on Complete Lattices

The formal mathematical framework for morphology is based on complete lattices and oper-
ators between them. In this section we briey recall this framework. For more details, the
reader may refer to [8].
A nonempty set L with a partial ordering � is called a complete lattice if every subset

M � L has an in�mum
V
M and a supremum

W
M in L. The least and greatest element

of a complete lattice are denoted by ? and >, respectively. Suppose that L and M are
complete lattices; an operator  : L ! M is said to be increasing if X1 � X2 implies that
 (X1) �  (X2), for X1;X2 2 L.
An operator � :M! L is called a dilation if �(

W
j2J Yj) =

W
j2J �(Yj) for every collection

fYj j j 2 Jg � M. An operator " : L !M is called an erosion if "(
V
j2J Xj) =

V
j2J "(Xj)

for every collection fXj j j 2 Jg � L. Note in particular that, by choosing J to be the empty
set, we get �(?) = ? and "(>) = >. Two operators " : L ! M and � :M! L are said to
form an adjunction if

�(Y ) � X () Y � "(X) ;

for any X 2 L and Y 2 M. In this case, we say that (" ; �) is an adjunction between L and
M. We list some elementary results.

3.1. Proposition. Let L and M be two complete lattices, and let (" ; �) be an adjunction

between L and M, then " is an erosion and � is a dilation.

3.2. Proposition. If � :M! L is a dilation, then there exists a unique erosion " : L !M
such that (" ; �) is an adjunction between L and M. Dually, if " : L !M is an erosion, then

there exists a unique dilation � :M! L such that (" ; �) is an adjunction between L and M.

3.3. Proposition. Assume that ("1 ; �1) is an adjunction between complete lattices L and

M, and that ("2 ; �2) is an adjunction between complete lattices M and N , then ("2"1 ; �1�2)
is an adjunction between L and N .

3.4. Proposition. Let ("j ; �j) be an adjunction between complete lattices L and M for any

j 2 J , then (
V
j2J "j ;

W
j2J �j) is an adjunction between L and M as well.

Given a complete lattice L, an operator � : L ! L is called an opening if � is increasing,
idempotent, and anti-extensive (that is �(X) � X, for every X 2 L). Dually, an operator �
is called a closing if it is increasing, idempotent and extensive (that is X � �(X), for every
X 2 L).

3.5. Proposition. If (" ; �) is an adjunction between complete lattices L and M, then "� is
a closing on M, whereas �" is an opening on L.

A simple example of a complete lattice is P(U). In this case, the least and greatest element
are ; and U , respectively. If U = IRd or Zd, then the dilations �A and the erosion "A introduced
in the previous section, form an adjunction. Moreover, it is not di�cult to show that every
translation invariant adjunction is of this form.
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4. Fuzzy Logic

In this section, we discuss some basic concepts from fuzzy logic which are important for
the sequel of this paper. In particular, we will discuss the conjunction and implication, and
we will explain how these two notions can be paired by means of the adjunction relation
discussed in the previous section.
There is a huge literature on fuzzy logic and fuzzy set theory (see e.g. [10, 15, 24]), and

it should be clear that the discussion presented here is far from complete, and only touches
upon the issues we believe are important here.

4.1 Conjunction and implication

Two important binary operations known from predicate logic are the conjunction and the
implication, in this paper denoted by C and I, respectively. For the conjunction C(s ; t) = s^t
we have

C(0 ; 0) = C(1 ; 0) = C(0 ; 1) = 0 and C(1 ; 1) = 1 ; (4.1)

and for the implication I(s ; t) = s! t we have

I(0 ; 0) = I(0 ; 1) = I(1 ; 1) = 1 and I(1 ; 0) = 0 : (4.2)

In fuzzy logic, the operations C and I are extended from the Boolean domain f0 ; 1g�f0 ; 1g
to the rectangle [0 ; 1] � [0 ; 1].

4.1. De�nition. A mapping C : [0 ; 1]� [0 ; 1] ! [0 ; 1] is called a fuzzy conjunction (briey,
conjunction) if it is increasing in both arguments and (4.1) holds. A mapping I : [0 ; 1] �
[0 ; 1]! [0 ; 1] is called a fuzzy implication (briey, implication) if it is decreasing in the �rst
argument, increasing in the second, and satis�es (4.2).

Evidently, every conjunction satis�es

C(s ; 0) = C(0 ; s) = 0 ; s 2 [0 ; 1] ;

and every implication satis�es

I(s ; 1) = I(0 ; s) = 1 ; s 2 [0 ; 1] :

4.2. De�nition. An implication I and a conjunction C are said to be adjoint (on [0 ; 1]) if

C(a ; t) � s () t � I(a ; s) (4.3)

for all a ; s ; t 2 [0 ; 1].

Thus an implication I and a conjunction C are adjoint if for every a 2 [0 ; 1], the pair
(I(a ; �) ; C(a ; �)) forms an adjunction on [0 ; 1]. Alternatively, we can say that the pair (I ; C)
is an adjunction. This means in particular that I(a ; �) is an erosion on [0 ; 1], or alternatively,
continuous from the right, and that C(a ; �) is a dilation, or alternatively, continuous from

the left. The reader should take notice of the fact that the supposition that (I; C) forms an
adjunction does not necessarily mean that I is an implication and that C is a conjunction.
Substituting a = 1 in (4.3) we get that

C(1 ; t) = t () I(1 ; t) = t ; for t 2 [0; 1] : (4.4)

Let us give some examples of conjunctions and their adjoint implications.
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G�odel-Brouwer :

C(a ; t) = a ^ t

I(a ; s) =

(
s ; s < a

1 ; s � a

Lukasiewicz :

C(a ; t) = 0 _ (a+ t� 1)

I(a ; s) = 1 ^ (s� a+ 1)

Kleene-Dienes :

C(a ; t) =

(
0 ; t � 1� a

t ; t > 1� a

I(a ; s) = (1� a) _ s

Reichenbach :

C(a ; t) =

(
0 ; t � 1� a

(t+ a� 1)=a ; t > 1� a

I(a ; s) = 1� a+ as

Hamacher family : If r > 1, de�ne

C(a ; t) =

(
t

r+(1�r)(a+t�at) a > 0

0 ; a = 0

I(a ; s) =

(
(1�r)as+rs

r+(1�r)(1�s+as) a > 0

1 ; a = 0

If 0 � r � 1, de�ne

C(a ; t) =

(
(1�r)at+rt

r+(1�r)(1�t+at) a > 0

0 ; a = 0

I(a ; s) =

(
s

r+(1�r)(a+s�as) a > 0

1 ; a = 0

From Proposition 3.4, the following result follows.

4.3. Proposition. Let implication Ij and conjunction Cj form an adjunction for j 2 J ,
then

W
j2J Cj is a conjunction,

V
j2J Ij is an implication, and the pair (

V
j2J Ij ;

W
j2J Cj) is

an adjunction.

4.4. Proposition. Let implication Ij and conjunction Cj be adjoint, respectively, for j =
1 ; 2. De�ne

I(a ; t) = I1(a ; I2(a ; t)) and C(a ; t) = C2(a ;C1(a ; t)) ;

for a ; t 2 [0 ; 1], then I is an implication and C is a conjunction, and moreover, the pair

(I(a ; �) ; C(a ; �)) forms an adjunction.
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Proof. It is easy to demonstrate that I is an implication and that C is a conjunction. From the fact
that (Ij ; Cj) is an adjunction for j = 1 ; 2, we �nd

C(a ; t) � s () C2(a ; C1(a ; t)) � s

() C1(a ; t) � I2(a ; s)

() t � I1(a ; I2(a ; s)) = I(a ; s) ;

for any a ; s ; t 2 [0 ; 1]. This means that the pair (I(a ; �) ; C(a ; �)) forms an adjunction for every

a 2 [0; 1].

4.5. Proposition. Let � : [0 ; 1] ! [0 ; 1] be a continuous, increasing mapping with �(0) = 0
and �(1) = 1, and with inverse ��1. Assume that the implication I and the conjunction C
are adjoint, and de�ne

I�(a ; t) = ��1(I(�(a) ; t)) and C�(a ; t) = C(�(a) ; �(t)) ;

for all a ; t 2 [0 ; 1], then I� is an implication, whereas C� is a conjunction. Furthermore, the

pair (I� ; C�) is adjoint.

Proof. The proof is straightforward.

4.6. Proposition. Let (I ; C) be adjoint, then

C(C(a ; b) ; s) = C(b ; C(a ; s)) () I(a ; I(b ; s)) = I(C(a ; b) ; s) :

for all a ; b ; s 2 [0 ; 1].

Proof. ): Since C(C(a ; b) ; t) = C(b ; C(a ; t)), for any a ; b ; t 2 [0 ; 1], we �nd that

C(C(a ; b) ; t) � s () C(b ; C(a ; t)) � s ;

for every s 2 [0 ; 1]. By the adjunction relation

C(C(a ; b) ; t) � s () t � I(C(a ; b) ; s) :

On the other hand

C(b ; C(a ; t)) � s () C(a ; t) � I(b ; s) () t � I(a ; I(b ; s)) :

Combination of both relations yields I(a ; I(b ; s)) = I(C(a ; b) ; s).

(: Analogous.

4.7. Corollary. Let (I ; C) be adjoint, and assume that C is commutative, then C is asso-

ciative if and only if

I(a ; I(b ; s)) = I(C(a ; b) ; s) ;

for any a ; b ; s 2 [0 ; 1].

Proof. (: By Proposition 4.6 and the condition that C is commutative, it is obvious that C is
associative.

): Since C is commutative and associative, we haveC(C(a ; b) ; s) = C(C(b ; a) ; s)) = C(b ; C(a ; s)),

for all a ; b ; s 2 [0 ; 1]. By Proposition 4.6, the equality I(a ; I(b ; s)) = I(C(a ; b) ; s) holds for all

a ; b ; s 2 [0 ; 1].

4.8. Proposition. Let (I ; C) be adjoint. If C is continuous from the left with respect to the
�rst argument, then,

C(
_
j2J

sj ; t) =
_
j2J

C(sj ; t) and I(
_
j2J

sj ; t) =
^
i2J

I(sj ; t) ;

for every family fsjgj2J � [0 ; 1] and t 2 [0 ; 1].
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Proof. Let
W
j2J sj = s, then C(sj ; t) � C(s ; t) for any j 2 J . So,

W
j2J C(sj ; t) � C(s ; t) =

C(
W
j2J sj ; t).

On the other hand, given � > 0, there exists j0 2 J such that s � � =
W
j2J sj � � < sj0 . Then

C(s� � ; t) � C(sj0 ; t) �
W
i2J C(sj ; t). By the continuity of C, we have that C(s ; t) �

W
i2J C(sj ; t).

Therefore, C(
W
j2J sj ; t) =

W
i2J C(sj ; t).

To prove the second relation, take r 2 [0 ; 1]. We have

r � I(
_

j2J

sj ; t) () C(
_

j2J

sj ; r) � t

()
_

j2J

C(sj ; r) � t

() 8 j 2 J ; C(sj ; r) � t

() 8 j 2 J ; r � I(sj ; t)

() r �
^

j2J

I(sj ; t) :

Hence, I(
W
j2J sj ; t) =

V
j2J I(sj ; t) :

If (I ; C) is an adjunction and C is commutative, then the condition that C is continuous
from the left with respect to the �rst argument, is trivially satis�ed.

4.2 Conjunctions and implications on arbitrary complete lattices

The mapping � : [0 ; 1]! [0 ; 1] in Proposition 4.5 may be extended to a more general mapping
� : [0 ; 1] ! T , where T is a complete lattice. This leads us to the de�nition of conjunctions
and implications on T . This extension plays a role later in this paper when we consider
grey-scale images.
Let us present here the de�nition of conjunctions and implications on arbitrary complete

lattices.

4.9. De�nition. Let T be a complete lattice with least and greatest element denoted by
? and >, respectively. An operator C : T � T ! T is called a conjunction on T if C is
increasing in both arguments, and

C(? ;?) = C(? ;>) = C(> ;?) = ? and C(> ;>) = > :

An operator I : T � T ! T is called an implication on T if I is decreasing in the �rst
argument, increasing in the second and satis�es

I(? ;?) = I(? ;>) = I(> ;>) = > and I(> ;?) = ? :

An implication I and a conjunction C on T are said to be adjoint if

C(s ; t) � r () t � I(s ; r) ; s ; t ; r 2 T :

4.10. Proposition. Let T be a complete lattice, and let � : [0 ; 1] ! T be a continuous

increasing mapping such that �(0) = ? and �(1) = >. Let I and C be two functions from

[0 ; 1]� [0 ; 1]! [0 ; 1], respectively. For any s ; t 2 T , de�ne C�(s ; t) = �(C(��1(s) ; ��1(t)))
and I�(s ; t) = �(I(��1(s) ; ��1(t))), then the following assertions hold.

(1) I is an implication on [0; 1] if and only if I� is an implication on T .

(2) C is a conjunction on [0; 1] if and only if C� is a conjunction on T .

(3) (I ; C) is an adjunction on [0 ; 1] if and only if (I� ; C�) is an adjunction on T .
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In the context of grey-scale morphology, De�nition 4.9 is useful when we are dealing with
other grey-value sets than [0; 1], in particular when there does not exist an isomorphism
between T and [0; 1]. This is the case, for example, if T is a discrete grey-value set, such
as T = Z = Z[ f�1 ;+1g or T = fa0 ; a1 ; a2 ; : : : ; aNg, where ak are real numbers. The
latter case will be discussed in more detail in x 5.5.

5. Grey-scale Morphology

In this section we de�ne a general class of grey-scale morphological operators based on con-
cepts from fuzzy logic.

5.1 Introduction

Let U be a given set called the universe, and let T be a set of grey-values. Then T U is the
set of functions mapping U into T . If T is a complete lattice with a partial ordering � , then
T U is also a complete lattice with a partial ordering, also denoted by � , de�ned as

F1 � F2 () F1(x) � F2(x) ; 8 x 2 U ; (5.1)

for any F1 ; F2 2 T U .
In morphology, T U is used as the basic model for grey-scale images. Within this model,

morphological operators are considered as operators on T U with some additional properties
such as increasingness and translation invariance.
In this paper we represent grey-scale images as fuzzy sets (but keeping in mind that they

have a di�erent interpretation), and we try to extend classical binary morphological operators
(see Section 2) to the fuzzy set framework by taking into account the underlying set-theoretic
interpretation. To be speci�c, we want to de�ne an erosion on F(U) by fuzzifying the set
inclusion and extending de�nition (2.2). For other morphological operators we want to �nd
similar extensions. As far as dilation and erosion are concerned, we also want to preserve
the adjunction relation. In view of what we have said before, this may sound obvious, but
this happens to be the issue where our approach deviates substantially from other existing
approaches on fuzzy morphology [1{4, 13, 19, 20].

5.2 Fuzzy sets

Fuzzy sets were introduced by Zadeh [23] in 1965. The de�nition of a fuzzy set is based on
the principle that meaning in natural languages is a matter of degree. The \set of young
people" does not have a sharp boundary (i.e., it is not the same as the set of people which
are not older than 18) but a transition region where \the degree of being young" varies.

5.1. De�nition. A fuzzy set on U is a function F : U ! [0; 1]. The function F is called
membership function. The family of all fuzzy sets on U is denoted by F(U). A fuzzy set F
is called crisp if it takes only the values 0 and 1.

It is obvious that the family P(U) of subsets A of U can be embedded into F(U) by means
of the characteristic function FA given by FA(x) = 0 if x 62 A and FA(x) = 1 if x 2 A. Note
that FA is crisp. Since F(U) = [0; 1]U we conclude from the previous that F(U) provided
with the pointwise partial ordering de�ned in (5.1) is a complete lattice.
Fuzzy set theory is largely concerned with the extension of notions from classical set theory

such as union, intersection, inclusion, complementation, et cetera, to the context of fuzzy sets.
Since this theory is treated comprehensively in various textbooks such as [10,14,15], we will
restrict ourselves here to those concepts that are important for our purposes. This holds in
particular for the so-called Extension Principle.
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Extension Principle. Let V be a set and p � 1 an integer. Every mapping 
 : Up ! V
can be extended to a mapping 
 : F(U)p ! F(V ) in the following way:


(F1; : : : ; Fp)(y) =
_
fF1(x1) ^ � � � ^ Fp(xp) j xj 2 U and 
(x1; : : : ; xp) = yg :

Note that 
(F1; : : : ; Fp)(y) = 0 if no solution of 
(x1; : : : ; xp) = y exists, since the supre-
mum of the empty set equals the least element.
Assume, for example, that � is one of the arithmetic operations addition, subtraction, or

multiplication. We get that

(F1 � F2)(x) =
_
fF1(x1) ^ F2(x2) j x1 � x2 = xg :

If both F1 and F2 are crisp, then F1 � F2 is crisp, too, and

x 2 F1 � F2 i� x1 � x2 = x for some x1 2 F1 and x2 2 F2 :

In this paper, we will go a step further and generalise the Extension Principle by replacing
the inf-operation by the more general concept of conjunction. As we shall see later, this leads
us to a new de�nition of the dilation.

5.3 Morphological operators on fuzzy sets

As we said before, we model grey-scale images with domain U as fuzzy sets on U . For the
de�nition of morphological operators on F(U) we need to fuzzify some well-known concepts
from set theory, starting with set inclusion. Let A ;B 2 P(U), then

A � B () 8 y 2 U ; y 2 A) y 2 B

() 8 y 2 U ; A(y)! B(y)

() 8 y 2 U ; I(A(y) ; B(y)) = 1 ;

where I is the classical binary implication!. We extend the above set inclusion relation from
the family P(U) of all subsets of U to the family F(U) of all fuzzy sets. Given F ;G 2 F(U),
we de�ne jG � F j as the degree (ranging from 0 to 1) of fuzzy set G being included in fuzzy
set F :

jG � F j :=
^
y2U

I(G(y) ; F (y)) ; (5.2)

where I : [0; 1] � [0; 1]! [0; 1] is a given fuzzy implication.
Analogously, let A ;B 2 P(U), then

A \B 6= ; () 9 y 2 U ; y 2 A and y 2 B

() 9 y 2 U ; C(A(y) ; B(y)) = 1 ;

where C is the classical binary conjunction C(a; b) = a ^ b for a; b 2 f0; 1g.
Sometimes we shall denote A \ B 6= ; by A * B, and we say that A `hits' B. We extend

the latter set relation to fuzzy sets. Let F ;G 2 F(U), we denote by jG * F j the degree of
fuzzy set G hitting fuzzy set F :

jG * F j :=
_
y2U

C(G(y) ; F (y)) ; (5.3)

where C is a given fuzzy conjunction.
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The fuzzy relations (5.2){(5.3) can be used to extend the binary dilation and erosion in
(2.1)-(2.2) to F(U). To do so we let G take the role of a `fuzzy structuring element' or
`structuring function'.
The erosion of a grey-scale image F by the structuring function G, at point x 2 U equals

jGx � F j, where Gx is the translation of G along x, i.e., Gx(y) = G(y � x) ; y 2 U . Thus

EG(F )(x) = jGx � F j : (5.4)

Similarly, we �nd for the dilation:

�G(F )(x) = j �Gx * F j : (5.5)

Here �G(y) = G(�y) and �Gx(y) = G(x� y) ; y 2 U .
Assuming that the implication I and conjunction C are adjoint, we may conclude that both

the erosion EG and the dilation �G are determined by C (and, of course, by G). Introducing
the notation

�G(F ) = F �C G and EG(F ) = F 	C G ;

we get

�G(F )(x) = (F �C G)(x) =
_
y2U

C(G(x� y) ; F (y)) ; (5.6)

EG(F )(x) = (F 	C G)(x) =
^
y2U

I(G(y � x) ; F (y)) : (5.7)

We can now state the main conclusion of this subsection.

5.2. Proposition. Let I be an implication and C be a conjunction on [0 ; 1]. The pair (I ; C)
is an adjunction on [0 ; 1] if and only if (EG ;�G) given by (5.6){(5.7) is an adjunction on

F(U) for every G 2 F(U).

Proof. ): For any a ; s ; t 2 [0 ; 1], we have C(a ; t) � s () t � I(a ; s). So for any F ;G ;H 2 F(U),

�G(F ) � H () 8 x 2 U ; �G(F )(x) � H(x)

() 8 x 2 U ;
_

y2U

C(G(x � y) ; F (y)) � H(x)

() 8 x 2 U ; 8 y 2 U ; C(G(x � y) ; F (y)) � H(x)

() 8 x 2 U ; 8 y 2 U ; F (y) � I(G(x � y) ; H(x))

() 8 y 2 U ; F (y) �
^

x2U

I(G(x � y) ; H(x)) = EG(H)(y)

() F � EG(H) :

(: Given a ; s ; t 2 [0 ; 1], de�ne the constant functions G � a ; F � s ; andH � t. Then �G(F )(x) =W
y2U C(G(x � y) ; F (y)) = C(a ; s) and EG(H)(x) =

V
y2U I(G(y � x) ; H(y)) = I(a ; t), for every

x 2 U . Therefore, C(a ; s) � t () �G(F ) � H () F � EG(H) () s � I(a ; t).

It is obvious that the operators EG and �G are translation invariant. Furthermore, if the
de�nitions of �C and 	C are restricted to binary (structuring) functions, they correspond
with the classical binary de�nitions of Minkowski addition and subtraction given in Section 2.
It follows immediately that_

j2J

Fj �C G =
_
j2J

(Fj �C G) and
^
j2J

Fj 	C G =
^
j2J

(Fj 	C G) ;
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for an arbitrary family fFj j j 2 Jg � F(U). Furthermore, Proposition 4.8 gives us that

F �C (
_
j2J

Gj) =
_
j2J

(F �C Gj) and F 	C (
_
j2J

Gj) =
^
j2J

(F 	C Gj) ;

for an arbitrary family fGj j j 2 Jg � F(U) if we assume in addition that the conjunction
C is continuous from the left with respect to the �rst argument.
The following result is a straightforward consequence of Proposition 4.6 and Corollary 4.7.

5.3. Proposition. Let (I ; C) be an adjunction, and assume moreover that the conjunction

C is commutative and associative. Then

(F �C G1)�C G2 = F �C (G1�C G2)

and

(F 	C G1)	C G2 = F 	C (G1�C G2) ;

for all F ; G1 ; G2 2 F(U).

This proposition shows that structuring elements are decomposable. The previous deriva-
tion of grey-scale dilation and erosion mimics the corresponding de�nitions in the binary case.
Our next result shows that, indeed, the case where both the structuring function and the
input function are crisp, coincides with the original binary case, regardless of the particular
choice of the underlying conjunction and implication.
Recall that for a set A � U , we denote by FA its characteristic function.

5.4. Proposition. Let (I ; C) be an adjunction, and let A;X � U , then

FX �C FA = FX�A and FX 	C FA = FX	A :

Proof. Using relation (4.4), we �nd that

(FX �C FA)(x) = 1 () 9 y0 2 U ; C(FA(x� y0) ; FX(y0)) = 1

() FA(x� y0) = 1 and FX (y0) = 1

() x� y0 2 A and y0 2 X

() x 2 X �A ;

for every x 2 U .

The second equality can be proved analogously.

From Proposition 3.5 we know that the composition of the dilation �G and the erosion EG
yields an opening and a closing on F(U).

5.4 Additive case

The representation of a grey-scale image as a fuzzy set requires that the set of grey-values is
[0 ; 1]. In this and the next subsection we will show how the previous results can be extended
to other grey-value sets T . In this subsection we assume that T = IR = [�1 ;+1], and we
show that classical grey-scale morphological operators using additive structuring functions
can be �t within the framework based on concepts from fuzzy logic.
Assume that � : IR! [0 ; 1] is a continuous, strictly decreasing function with

lim
t!�1

�(t) = 1 and lim
t!+1

�(t) = 0 :
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For example, �(t) = 1
2 +

1
�
arctan t. De�ning �(�1) = 1 and �(+1) = 0, we get that � is an

automorphism between the complete lattices IR and [0 ; 1], and we denote its inverse by ��1.
Now, we de�ne two functions C ; I : [0 ; 1] � [0 ; 1] ! [0 ; 1] as follows:

C(s ; t) = �(��1(s) + ��1(t)) (5.8)

I(s ; t) = �(��1(t)� ��1(s)) (5.9)

Note that C is unambiguously characterized by (5.8) except at points (0 ; 1) and (1 ; 0). We
de�ne

C(1 ; 0) = C(0 ; 1) = 0 (5.10)

Similarly, I has to be de�ned explicitly at the points (0 ; 0) and (1 ; 1) as:

I(0 ; 0) = I(1 ; 1) = 1 (5.11)

In fact, de�nitions (5.10)-(5.11) are based on the following conventions:

(�1) + (+1) = (+1) + (�1) = +1 ;

(�1)� (�1) = (+1)� (+1) = �1 :

Observe that the conjunction C de�ned by (5.8) and (5.10) is commutative and associative.

5.5. Proposition. Let C ; I be de�ned as in (5.8)-(5.11), then C is a conjunction and I is

an implication, and moreover, (I ; C) is an adjunction.

Proof. It is easy to check that C is a conjunction and that I is an implication by (5.8)-(5.11).
For any s ; t ; r 2 [0 ; 1]

C(s ; t) � r () �(��1(s) + ��1(t)) � r

() ��1(s) + ��1(t) � ��1(r)

() ��1(t) � ��1(r) � ��1(s)

() t � �(��1(r) � ��1(s)) = I(s ; r) :

Thus, (I ; C) is an adjunction.

With every function F 2 IR
U
, we can associate a fuzzy set �(F ) 2 F(U) de�ned by

�(F )(x) = �(F (x)) ; x 2 U :

Thus, if G 2 IR
U
is a structuring function, we can de�ne operators �G and EG on IR

U
in the

following way
�G(F ) = ��1(�(F )�C �(G)) ;

EG(F ) = ��1(�(F )	C �(G)) :

A straightforward computation shows that �G(F ) and EG(F ) are the classical grey-scale
dilation and erosion given by

�G(F )(x) =
_
y2U

(F (x� y) +G(y)) ;

and
EG(F )(x) =

^
y2U

(F (x+ y)�G(y)) :

Therefore the conclusion of the results obtained in this subsection is that classical additive
grey-scale morphology can be regarded merely as a special case of grey-scale morphology
based on fuzzy logic.



14

5.5 Finite grey-value sets

In practical applications, the grey-value set is usually a �nite point set, for instance, T =
fa0 ; a1 ; a2 ; : : : ; aNg, whereN is a positive integer. We assume that a0 � a1 � a2 � � � � � aN .
In this case, it is no longer appropriate to model grey-scale functions as fuzzy sets, and we
have to take recourse to the extension to arbitrary complete lattices as explained in x 4.2.
De�ne C and I on T as follows:

C(ai ; aj) = amax(0 ; i+j�N) and I(ai ; aj) = amin(N ; j�i+N) ;

for any i ; j 2 f0 ; 1 ; 2 ; : : : ; Ng. It is not di�cult to verify that C is a conjunction on T
and that I is an implication on T . Moreover, it can easily be shown that (I; C) de�nes an
adjunction on T , that is,

C(ai ; aj) � ak () aj � I(ai ; ak) ;

for 1 � i; j; k � N . Assume, for simplicity, that ai = i. Then we get that

C(i ; j) = max(0 ; i+ j �N) and I(i ; j) = min(N ; j � i+N) : (5.12)

Introducing the notation

j _+ i = C(i; j) = max(0 ; i+ j �N)

j _� i = I(i; j) = min(N ; j � i+N) ;

we arrive at the following expressions for the dilation and erosion for functions in T U :

�G(F )(x) =
_
y2U

(F (x� y) _+G(y)) ;

and
EG(F )(x) =

^
y2U

(F (x+ y) _�G(y)) :

Here G : U ! T is the structuring function.
In [6] (see also [8, Section 11.9]) one of us has derived similar expressions for the so-called

truncated grey-scale dilations and erosions. However, there we de�ned the truncated addition
_+ and subtraction _� in a di�erent way:

j _+ i =

8><
>:
0 ; if j = 0 ;

j + i ; if 0 < j + i � N ;

N ; if j + i > N ;

and j _� i =

8><
>:
0 ; if j � i < 0 ;

j � i ; if 0 � j � i < N ;

N ; if j = N :

De�ning C(i ; j) = j _+ i and I(i ; j) = j _� i using these expressions, we �nd that (I; C) is an
adjunction in the sense that

C(i; j) � k () j � I(i; k) ;

for 0 � i; j; k � N . However, in this case C is not a conjunction (for example, C(N; 0) = N)
and I is not an implication (for example, I(0; 0) = 0).
The major conclusion of this subsection is that the approach based on fuzzy logic suggests

a new class of grey-scale dilations and erosions in the case of a �nite set of grey-values.



6. Negations 15

6. Negations

In this section we will briey discuss the role of negations in mathematical morphology. The
simplest example of a negation operator is the complementation X 7! Xc on P(U). As we
have observed in Section 2, a number of authors use negations to construct erosions from
dilations and vice versa. But the theory developed in this and other papers illustrates clearly
that adjunctions provide the right framework for `pairing' dilations and erosions. Despite this
fact, the role of negations in mathematical morphology is quite important: negations have
the e�ect of transforming the image foreground into the image background and vice versa.
It is a well-known fact in mathematical morphology that erosions and dilations (as well

as closings and openings) are dual operators in the sense of negation (or complementation
in the binary case); see for example (2.4). Let us �rst briey discuss a formalisation of this
property in the general complete lattice case.
An operator � on a complete lattice L is called a negation if � is bijective, decreasing

(we say that � is a dual automorphism), and �2 = id, that is � is an involution. When no
confusion is possible, we will henceforth denote a negation with the symbol �, and instead of
�(X), we write X�.
Given an operator 	 on L and a negation �, we de�ne the negation 	� of operator 	, also

called the negative operator, as

	�(X) = (	(X�))� ; X 2 L : (6.1)

It is easy to show that (E ;�) is an adjunction on L i� (�� ; E�) is an adjunction on L.
Let us, henceforth, restrict ourselves to morphological operators constructed from fuzzy logic
concepts.

6.1. De�nition. A mapping � : [0 ; 1] ! [0 ; 1] is a negation if it is decreasing and satis�es
�2(t) = t for t 2 [0 ; 1].

6.2. Proposition. Every negation � on [0; 1] is a dual automorphism. This means in par-

ticular that � is bijective, that �(0) = 1 and �(1) = 0, and that

�(
_
j2J

ti) =
^
j2J

�(tj) and �(
^
j2J

tj) =
_
j2J

�(tj)

for every family ftjgj2J � [0 ; 1].

As before, we write � rather than � when no confusion is possible. Given a fuzzy set
F 2 F(U), we de�ne its negation (or complement) F � by

F �(x) = �(F (x)) ; x 2 U : (6.2)

The negation 	� of an operator 	 on F(U) is de�ned as in (6.1). It is evident that 	 is
increasing i� 	� is increasing, and that

(	�)� = 	 :

Furthermore, 	� is a dilation (resp. closing) if and only if 	 is an erosion (resp. opening).

6.3. De�nition. Given a function H : [0 ; 1] � [0 ; 1]! [0 ; 1], we de�ne

H�(s ; t) = H(s ; t�)� ; s ; t 2 [0 ; 1] :

It is evident that (H�)� = H for every given function H. We can prove the following result.

6.4. Proposition. (a) C is a conjunction if and only if C� is an implication.
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(b) I is an implication if and only if I� is a conjunction.

(c) Let C be a conjunction and I an implication, then (I ; C) is an adjunction i� (C� ; I�)
is an adjunction.

Proof. (a): ): Since � is decreasing and C is increasing in both arguments, we derive that C� is
decreasing in the �rst argument and increasing in the second. Furthermore, we get

C�(0 ; 0) = �(C(0 ; �(0))) = �(C(0 ; 1)) = �(0) = 1 :

Similarly, we get
C�(0 ; 1) = C�(1 ; 1) = 1 and C�(1 ; 0) = 0 :

Thus C� is an implication.
(: Analogous.
(b): The proof is similar to that for (a).
(c): ): From the fact that (I(a; �); C(a; �)) forms an adjunction, we get

I�(a ; t) � s () I(a ; t�)� � s

() s� � I(a ; t�)

() C(a ; s�) � t�

() t � C(a ; s�)�

() t � C�(a ; s) ;

for a; s; t 2 [0; 1]. This means that (C� ; I�) is an adjunction.

(: Analogous proof.

A straightforward computation show that for �(t) = 1 � t, the negation C� of the G�odel-

Brouwer conjunction C is the Kleene-Dienes implication, and the negations of the Lukasiewicz
conjunction and the Hamacher conjunction are their adjoint implications, respectively. For
the discrete conjunction and implication in (5.12) we also get C�(i; j) = I(i; j) and I�(i; j) =
C(i; j) for the negation i� = N � i.
The next results show the e�ect of taking the negation of the dilation F 7! F �C G and

the erosion F 7! F 	C G.

6.5. Proposition. Let C be a conjunction and I an implication such that (I ; C) is an

adjunction, and let � be a negation. For every structuring element G 2 F(U) we have

��G(F ) = (F � �C G)
� = F 	I�

�G ;

E�G(F ) = (F � 	C G)
� = F �I�

�G ;

for F 2 F(U); here �G(x) = G(�x) for x 2 U .

Proof. For any F 2 F(U) and any x 2 U ,

(F � �C G)�(x) = �(
_

y2U

C(G(x � y) ; �(F (y))))

=
^

y2U

�(C(G(x � y) ; �(F (y))))

=
^

y2U

C�(G(x� y) ; F (y))

= (F 	I�
�G)(x) :

The second statement can be proved similarly.
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7. Experimental results

In this section we present some experiments showing the di�erences between basic morpholog-
ical operators using di�erent conjunctions. We compare the outcomes of the operators based
on fuzzy logic with the corresponding at operators using a crisp structuring element. Our
input image is depicted in Fig. 1. The structuring function G used for the `fuzzy' operators

Figure 1: Original 256 � 256 grey-scale image.

is represented by the matrix

G =
1

20
�

0
BBBBBBBB@

0 2 4 5 4 2 0
2 6 9 10 9 6 2
4 9 13 15 13 9 4
5 10 15 20 15 10 5
4 9 13 15 13 9 4
2 6 9 10 9 6 2
0 2 4 5 4 2 0

1
CCCCCCCCA

Observe that this matrix approximates a cone in the sense that an entry is approximately
given by 1 � 1

4(i
2 + j2)

1

2 , where (i; j) are the coordinates of the entry relative to the centre
of the matrix. This approximation is based on the 5-7-11 chamfer distance [8]. The binary
structuring element is obtained by thresholding the (fuzzy) structuring function at level 0.5,
and is given by

A =

0
BBBB@
� � 1 � �
� 1 1 1 �
1 1 1 1 1
� 1 1 1 �
� � 1 � �

1
CCCCA

In Fig. 2 we show the dilation and the erosion and three gradient operators derived from these
two operators. The �rst column represents the operators with the at structuring element A,
the second column represents the operators using the structuring function G in combination
with the G�odel-Brouwer conjunction and implication, and the third column represents the
operators using the structuring functionG in combination with the Kleene-Dienes conjunction
and implication.
The rows represent, respectively, dilation, erosion, dilation minus erosion, dilation minus

original, and original minus erosion.
The fuzzy nature of the operators in the second and third column is clearly reected by the

images, especially close to the edges. Furthermore, there are various di�erences (again near
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the edges) between these two columns, indicating that the particular choice of the conjunction
does have a serious impact on the results. Similar observations can be made for the images
shown in Fig. 3. Here the columns have the same interpretation as in Fig. 2, but the rows
represent respectively the closing, the opening, the closing minus the opening, the closing
minus the original, and the original minus the opening.

8. Concluding remarks

We have shown that basic concepts from fuzzy logic can be used to build a large class of
grey-scale morphological operators. Such operators use two ingredients: the structuring
element, which does also play a role in classical grey-scale morphology, and the conjunction
and implication which are typical for the fuzzy logic framework. The choice of the conjunction
and implication, which has to be made in such a way that the two form an adjunction, gives
us additional freedom in the design of our operators. We have shown that the classical grey-
scale operators using additive structuring functions are nothing but a special member of our
enlarged class based on fuzzy logic.
The results of this paper have to be considered as a very �rst step towards a general theory

of grey-scale morphology using concepts from fuzzy logic. In future work we want to address
various other important issues such as

- generalisation of Matheron's representation theorem;

- systematic study of grey-scale granulometries and the role of convex fuzzy sets therein;

- geodesic and connected operators;

- design of morphological �lters.

The validity and usefulness of the fuzzy logic based approach to grey-scale morphology de-
pends largely on the outcomes and conclusions of such future investigations. Nevertheless,
we hope that we have succeeded in giving the reader an impression of the potential of this
approach.
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Figure 2: Top to bottom: dilation, erosion, dilation minus erosion, dilation minus original,
and original minus erosion. Left to right: at operator, fuzzy operator using G�odel-Brouwer
conjunction and implication, and fuzzy operator using Kleene-Dienes conjunction and impli-
cation.
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Figure 3: Top to bottom: closing, opening, closing minus opening, closing minus original,
and original minus opening. Left to right: at operator, fuzzy operator using G�odel-Brouwer
conjunction and implication, and fuzzy operator using Kleene-Dienes conjunction and impli-
cation.
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