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A two-dimensional embedded-boundary method for

convection problems with moving boundaries✩

Yunus Hassen∗, Barry Koren

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

In this work, a two-dimensional embedded-boundary algorithm for convec-

tion problems is presented. A moving body of arbitrary boundary shape is

immersed in a Cartesian finite-volume grid, which is fixed in space. The

boundary surface is reconstructed in such a way that only certain fluxes in

the immediate neighbourhood indirectly accommodate effects of the bound-

ary conditions valid on the moving (immersed-)body. Over the majority

of the domain, where these boundary conditions have ‘no’ effect, the fluxes

are computed using standard schemes. We employ the method of lines, with

higher-order spatial discretizations and the explicit Euler scheme for the time

integration. To validate the method, two cases, a rectilinear discontinuity of

arbitrary orientation, moving in a uniform two-dimensional flow-field, and

a cylindrical discontinuity of arbitrary initial location, moving in a circular

flow-field, are considered. The simulations show promising, globally accurate

solutions. It is anticipated that the algorithm can be used for 2D Euler flows,
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which we foresee to consider next.

Keywords: hyperbolic conservation laws, convection, finite-volume method,

immersed-boundary method, embedded boundaries, dimensional splitting

1. Introduction

There are a variety of numerical methods today that can be used to solve

fluid-flow problems involving both fluid and solid motions as well as their

interactions. Recently, immersed-boundary methods have been favourably

popularised by their relatively simple ideas and ease of implementation.

The immersed-boundary method, also synonymously known as embedded-

boundary method, in general, is a method in which boundary conditions are

indirectly incorporated into the governing equations. It is very suitable for

simulating flows around flexible, moving and/or complex bodies (see [1] for

a comprehensive review).

Basically, the boundaries of the bodies of interest are just embedded in

non-deforming Cartesian grids that do not conform to the shape of the body.

The governing equations are modified to include the effect of the embedded

boundaries (EBs). By doing so, mesh generation or regeneration difficulties

associated with the body-fitted grids are obviated, and the underlying regular

fixed-grid allows us to use a simple data structure as well as simpler numerical

schemes over a majority of the domain.

In this work, we present a new embedded-boundary approach for advec-

tion problems. As is standard in the immersed-boundary methods, moving

bodies are embedded in a fixed, Cartesian grid. We employ the method of

lines: a higher-order, cell-averaged, fixed-grid, finite-volume method for the
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spatial discretization, and the explicit Euler scheme for the time integration.

The essence of the present method is that body geometries are, without loss of

generality, effectively simplified and their presence is restricted to a minimal

zone in the computational region so that standard discretization schemes can

be readily applied elsewhere. The boundary conditions valid on a possibly

moving body are indirectly accommodated by specific fluxes in the vicinity

of the boundary.

The purpose of this work is to present a generic framework for the con-

struction of an algorithm for treating (moving or stationary) bodies of ar-

bitrary shape, immersed inside a flowing fluid. This paper focuses on the

geometric boundary-reconstruction and treatment. Analyses and implemen-

tations of the numerical flux formulae have already been dealt with in pre-

vious works. Readers are referred to [2, 3].

The outline of the paper is as follows. The embedded-boundary method

is described in § 2, and a brief exposition of the finite-volume method is given

in § 3. Section 4 contains the definition, set-up and results of the numerical

experiments, which demonstrate the performance of the current algorithm.

Some global errors in different norms are also presented; analysis is deferred

to future papers. Concluding remarks are given in § 5.

2. The embedded boundary method

As in the previous one-dimensional work [3], our approach uses a finite-

volume discretization that embeds the boundary of a body in a regular, fixed

grid. Dividing the current 2D computational domain D, of dimension ℓx×ℓy,

into Nx × Ny uniform, rectangular finite volumes that are fixed in space, we
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Figure 1: Immersion of a body in a Cartesian, finite-volume grid and detec-

tion of boundary intersection points with cell faces, at time tn.
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2
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∣

∣
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(
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)

hx + x0,
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j−

1
2

=
(

j − 1
2

)

hy + y0; i ∈ [1, Nx], j ∈ [1, Ny]
}

, (1)

where hx = ℓx/Nx and hy = ℓy/Ny are cell sizes, and x0 and y0 some con-

stants. The total simulation time T > 0 is equally divided into Nt time steps

of size τ = T /Nt.

Having generated the (Cartesian) grid, the body is immersed inside the

grid, see example in Figure 1. To obtain discrete embedded boundaries (EBs),

at a given time tn, n = 0, 1, · · · , Nt, firstly, the finite volumes that contain

(a part of) the boundary of the immersed body are identified, and then the

points of intersection of the boundary of the immersed body with the faces

of these computational cells, xn
B, are detected. That is, the coordinates of
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the boundary points x
k,n
B := (xk,n

B , yk,n
B ), k = 1, 2, · · · , NB, where NB is the

total number of boundary-face intersections, are computed.

2.1. Round-off error treatment

Care is required in making the underlying uniform fixed grid detect

boundary points that lie exactly at or very close to grid vertices. Grid ver-

tices are shared by more than one control volume, and a boundary point lying

exactly at a grid vertex, or in the immediate neighbourhood, is, due to the

round-off error, arbitrarily assigned to any of the cells that share the vertex.

The prevailing arbitrariness can lead to erroneous absence of an EB in a cell,

due to discount of a second boundary point (or two boundary points alto-

gether) within the cell. By taking the precision of the machine into account,

this undesirable scenario is remedied in the following manner.

For a given machine-precision number ζ, in our case ζ = 2.22 × 10−16, a

region of round-off error can be defined. Given a grid vertex with coordinate

(x
i+

1
2
, y

j+
1
2
), the region is computed, for a magnified ζ̃, in our case ζ̃ = 107ζ,

where it is assumed that ζ̃ ≪ hx and ζ̃ ≪ hy, as: (xk,n
B − x

i+
1
2
)2 + (yk,n

B −
y

j+
1
2
)2 = ζ̃2. Any boundary point x

k,n
B = (xk,n

B , yk,n
B ) that lies inside the

region is explicitly pegged ‘just-outside’ it.

To avoid overruling of correctly identified boundary points and further

complications, in case of two boundary points in the regions of two (or more)

consecutive grid vertices (Figure 2a), we propose a staggered approach, see

Figure 2b. This results in one or more boundary points, situated inside the

region of round-off error, to be exclusively visible to all cells that share the

vertex. For instance, in the example of Figure 2a, we have five boundary

points, four of them inside regions defined by ζ̃. Taking the left-most bound-
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Figure 2: Round-off error treatment for EB points that lie exactly at or very

close to grid vertices.

ary point as the kth point, since
{
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2
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2
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B −x
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2
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1
2
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1
2
)2+

(yk+3,n
B − y

j+
1
2
)2

}

< ζ̃2, we then have:
{

x
k,n
B , x

k+1,n
B , x

k+2,n
B , x

k+3,n
B

}

:=
{

(x
i−

1
2
, y

j+
1
2
− ζ̃), (x

i−
1
2
, y

j+
1
2

+ ζ̃), (x
i+

1
2
− ζ̃ , y

j+
1
2
), (x

i+
1
2

+ ζ̃ , y
j+

1
2
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}

.

Since (xk+4,n
B − x

i+
3
2
)2 + (yk+4,n

B − y
j+

1
2
)2 ≮ ζ̃2 and also (xk+4,n

B − x
i+

3
2
)2 +

(yk+4,n
B − y

j−
1
2
)2 ≮ ζ̃2, the coordinate of the right-most boundary point,

x
k+4,n
B = (xk+4,n

B , yk+4,n
B ), remains unchanged. Further details will be given in

a future paper.

Notice that, this procedure may result in two EBs adjacent to a cell

face, say a twin, as in Figure 2c. A scenario like this can also emerge from

boundary points which lie outside the regions of round-off error. This is

discussed and taken care of in § 2.3.

2.2. Determination of EBs

Once the boundary points are effectively detected, the actual boundary

of the body is readily degenerated as a piece-wise continuous, closed or open,
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poly-line, with NB and NB − 1 segments, respectively. This representation

facilitates explicit association of each side/segment of the polygon/poly-line

with individual control volumes, resulting in one discrete EB, at most, in a

cell.

An example of a two-dimensional EB segment is shown Figure 3a. To

take advantage of the one-dimensional method proposed in [3], we resort to

dimensional splitting. Dimensional splitting has already been successfully

applied in many discretization methods for convection operators; and, as

such, it is a commonly used practice in CFD.

δx

δy

(a) Continuous and discrete

EB

δx

(b) δx ≤ δy

δy

(c) δx > δy

Figure 3: Alignment of a two-dimensional EB, situated in a cell, with the

relevant grid (coordinate) direction.

The manner in which a generic two-dimensional EB, situated in a cell,

is projected on to the grid (coordinate) directions is crucial. Our method of

projection is concisely described as follows.

To project the discrete EB, shown in Figure 3a, into the relevant grid

direction and to get a single orthogonal EB in a cell, the following two geo-
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metrical properties are used:

1. Orientation: the relative inclination (of the EB) with respect to the

orthogonal coordinate axes, and

2. Location: the area the EB subsets in the cell.

In Step 1, by determining to which orthogonal direction the EB is closer

to, as shown in Figure 3, the EB is orthogonalized in the either direction. For

instance, if δx > δy, the EB is aligned in the x-direction (Figure 3c). In retro-

spect, as crude approximation as this sounds, the fluxes at the vertical faces

of the cell still feel the effects of the orthogonalized EB (indirectly) through

the average solution the cell holds. Whereas, the fluxes at the horizontal

faces indeed feel the orthogonalized EB directly. Vice versa, the same holds

good for vertical faces instead of horizontal faces, and for horizontal faces

instead of vertical faces, if δx < δy. If δx = δy, the EB is equally inclined to

both (grid) directions, and it can be arbitrarily projected on any of the axes.

For consistency, we invariably align the EB, under such circumstances, with

the y-direction (Figure 3b).

In Step 2, the actual location of the orthogonalized EB, at tn, inside a

cell is represented by βn = (βn
x , βn

y ), a normalised variable that discerns the

orthogonalized EB’s position relative to the left- or bottom-face of the cell

[3]. It captures the geometric data of all EBs at a given time, and it is the

primary variable that passes EB information to the relevant fluxes (§ 3.1). It

is determined by the area, subset in the cell by the non-orthogonalized EB.

This is beneficial for conservation.

Pure solid cells are assigned with βn
x = βn

y := 2, and pure fluid cells with

βn
x = βn

y := −2. Whereas, for cells with an EB, depending on the orientation
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of the orthogonalized EB, either βn
x := 2 or βn

y := 2, for largely solid cells;

and either βn
x := −2 or βn

y := −2, for largely fluid cells. For the example

depicted in Figure 3, it holds:

• δx = 1
2
δxδy/hy, resulting in βn

x := δx/hx and βn
y := −2 if βn

x ∈ [0, 1/2),

or βn
y := 2 if βn

x ∈ [1/2, 1], Figure 3b, and

• δy = 1
2
δxδy/hx, resulting in βn

y := δy/hy and βn
x := −2 if βn

y ∈ [0, 1/2),

or βn
x := 2 if βn

y ∈ [1/2, 1], Figure 3c.

Once all the discrete EBs in the domain are aligned with the relevant

grid direction and are appropriately positioned inside a cell, we achieve the

desired sub-cell resolution of the immersed body boundary. In the latter

respect, the present method essentially differs from the stair-case approach

wherein the boundary is projected on cell faces [1].

2.3. Merging of EBs

Occasionally, it might arise a scenario with two successive cells, along

a column or row of cells, each having orthogonalized EBs in the same di-

rection (see Figure 4). Technically, with the outlined procedure, this is a

natural outcome and it can be accommodated. However, this situation may

be non-physical. It might be a ‘numerical spray’ and, as such, it perturbs

an evolving solution, not to mention the algorithmic (flux-computation and

time-stepping) complications it creates during implementation.

In the event of two such distinct, orthogonalized EBs, we can effectively

get rid of the ‘numerical spray’ by properly merging these EBs, obtaining

a single equivalent EB in one of the cells. The ‘numerical spray’ is super-

seded by reuniting it with its ‘parent material’ that originally gave it off.
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(a) βy(i, j) := βy(i, j) + βy(i, j + 1)

jjj
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j

j

i + 1i − 1

(b) βx(i + 1, j) := βx(i, j) + βx(i + 1, j)− 1

Figure 4: Merging two EBs and determination of an equivalent EB.

Therefore, the merging is done in the direction of the ‘parent material’ and

such that the conservation law is satisfied. The procedure is illustrated in

Figure 4, and is concisely described, only in one grid direction, in Table 1.

Note, it is presumed, that the body or ‘parent material’, represented by the

shaded areas, extends in the negative j- and i-direction, in Figures 4a and

4b, respectively. The same presumption holds for the algorithm in Table 1.

3. Finite-volume discretization

In this section, we briefly formulate the governing (partial differential)

equation and give a concise description of the spatial (finite-volume) and

temporal discretization schemes. Only settings and the relevant formulae,

for the latter, are described. For detailed exposition, readers are referred to

[3].
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Table 1: Algorithm for merging EBs

1. iff ∃{βn
x (i, j), βn

x (i + 1, j)}∈ [0, 1], i ∈ [1, Nx − 1], j ∈ [1, Ny],

i) if βn
x (i, j) + βn

x (i + 1, j) < 1,

then βn
x (i, j) := βn

x (i, j) + βn
x (i + 1, j), and βn

x (i + 1, j) := −2;

ii) else

then βn
x (i, j) := 2, and βn

x (i + 1, j) := βn
x (i, j) + βn

x (i + 1, j) − 1.

iii) endif

2. endiff

A multi-dimensional convection problem, in conservation form, with the

associated initial condition, can be written as :

∂c

∂t
+ ∇ · F = 0, in D ∈ R2 × (0, T ], (2a)

c(x, t=0) = c0(x), in D ∈ R2, (2b)

where c(x, t) is the scalar field that is convected by the flow field u =
(

u (x) , v (x)
)T

. The components of the flux vector F =
(

f (u, c) , g (v, c)
)T

are defined, at tn, as: fn(u, c) := u(x) c(x, tn) and gn(v, c) := v(x) c(x, tn).

For a cell-averaged discrete solution in Di,j, at tn, i.e.,

cn
i,j ≡

1

hxhy

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

c(ξ, η, tn) dξ dη, (3a)

the convection equation (2a) can be rewritten, in the integral form, as:

d

dt

∫

Di,j

ci,j(t) dx +

∫

∂Di,j

F·n dS = 0, (3b)

where n is the unit outward-pointing normal to ∂Di,j. Assuming fluxes to
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be constant along cell faces, i.e.,

fi+1/2,j = fi+1/2,j(t) ≡
1

hy

∫ yj+1/2

yj−1/2

f(xi+1/2, η, t) dη , . . . , (3c)

we have the semi-discrete equation:

hxhy
dci,j

dt
+

(

fi+1/2,j(t)− fi−1/2,j(t)
)

+
(

gi,j+1/2(t)− gi,j−1/2(t)
)

= 0. (3d)

3.1. Flux computation

Let us consider an orthogonalized EB situated in cell Di,j, i.e., with either

βn
x (i, j) ∈ [0, 1] or βn

y (i, j) ∈ [0, 1], with its associated (Dirichlet) boundary

conditions cEBl(i, j) and cEBr(i, j), which are solution values appended to the

left- and right-side of the EB, respectively. Based on a three-point upwind-

biased state-interpolation, only three neighbouring fluxes feel its presence.

Deferring the detailed derivation to [3], these EB-affected fluxes accom-

modate the corresponding boundary conditions. Omitting the time indices

and denoting βx(i, j) by β, for convenience, the final (EB-affected) flux for-

mulae, only on vertical cell faces for ul,j > 0, l = {i− 1
2
, i + 1

2
, i + 3

2
}, can be

described as:

f̃i− 1

2
,j := ui− 1

2
,j

(

ci−1,j + 8
(3+6β)(3+2β)

(

cEBl

i,j − ci−1,j

)

+ 1+6β
18+12β

(ci−1,j − ci−2,j)
)

,

f̃i+ 1

2
,j := ui+ 1

2
,j

(

cEBr

i,j + 2−2β
3−2β

(

ci+1,j − cEBr

i,j

)

)

, (4)

f̃
i+

3
2

,j
:= u

i+
3
2

,j

(

ci+1,j + 11−6β
30−12β

(ci+2,j − ci+1,j) + 4
(9−6β)(5−2β)

(

ci+1,j − cEBr

i,j

)

)

.

In [3], relevant EB-sensitive limiters have also been derived for the corre-

sponding fluxes.

Elsewhere, where the EBs have ’no’ effect, the standard κ-scheme, κ ∈
[−1, 1], is used, see [4] for details. A typical flux formula for ∂Di,j+1/2, for
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κ = 1/3 and vi,j+1/2 > 0, can be written as:

gi,j+1/2 := vi,j+1/2

(

ci,j + (ci,j+1 − ci,j) /3 + (ci,j − ci,j−1) /6
)

. (5a)

Correspondingly, we also use the standard limiter:

ϕ(ri,j+1/2) = max(0, min(2ri,j+1/2, min(1/3 + 2/3 ri,j+1/2, 2))), (5b)

where ri,j+1/2 := (ci,j+1 − ci,j + ε) / (ci,j − ci,j−1 + ε) is the local solution-

gradient, for the relevant standard fluxes, with ε ≪ 1, some small number, to

avoid undefined ratio of consecutive solution gradients in uniformly constant

solution regions. See [5] for details. Notice that the time indices are again

omitted, for brevity.

3.2. Time integration

We are mainly interested in the spatial discretization, and with a very

small Courant number ν ≪ 1, we compute a temporally accurate solution

using the forward Euler scheme:

cn+1
i,j = cn

i,j −
τ

hxhy

(

fn

i+
1
2

,j
− fn

i−
1
2

,j

)

− τ

hxhy

(

gn

i,j+
1
2

− gn

i,j−
1
2

)

. (6a)

We choose τ based on the worst case, i.e., the maximum ν corresponding

to the combined effect of a large flow velocity and small cell size, and it is

uniformly taken to be:

τ = min







νhx/ max
1≤i≤Nx+1
1≤j≤Ny

∣

∣ui−1/2,j

∣

∣, νhy/ max
1≤i≤Nx

1≤j≤Ny+1

∣

∣vi,j−1/2

∣

∣







, (6b)

which ensures the CFL condition ν ≤ 1 everywhere.

Note that some fluxes are discontinuous in t ∈ [tn, tn+1] because of discrete

EBs crossing cell faces, and stability of the evolving solution (6a) is not
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guaranteed. For such cases, we have devised a locally adapted time-stepping

scheme, see [3].

4. Numerical examples

To validate the algorithm presented in this paper, we consider two test

cases, a translating rectilinear discontinuity and a revolving cylindrical dis-

continuity, with prescribed two-dimensional flow fields inside a rectangular

domain. Settings of the problems are depicted in Figure 5. Here, we take

ℓx = ℓy = 2, with D = [−1, 1] × [−1, 1].

EB

x

y

ϑ

u

v

ϑ

0 < ϑ < π
2

(a) translating rectilinear discontinuity

x

y

ω

u

v

(b) revolving cylindrical discontinuity

Figure 5: Domain, flow fields and problem settings.

4.1. A translating rectilinear discontinuity

Consider a rectilinear discontinuity of arbitrary orientation ϑ ∈ [0, π/2],

initially situated at the bottom-left corner of the domain, and moving in a

14



uniform two-dimensional flow field with velocity u = (cos ϑ, sin ϑ)T. The

flow field, as shown in Figure 5a, is normal to the discontinuity.

The discontinuity, which goes with the flow, is assumed to model a rigid,

infinitely thin plate that separates two quantities of different values, i.e.,

c = 1 (at the upstream side) and c = 0 (at the downstream side). These

solution values are taken as embedded boundary conditions, i.e., cEBl = 1

and cEBr = 0, to be used in the relevant fixed-grid fluxes in the immediate

neighbourhood (see Eq. (4)).

Figure 6 shows results for the translating rectilinear discontinuity, of typ-

ical orientation ϑ = π/6, on a grid (Nx, Ny) = (20, 20) at final time T =
√

2.

The results obtained with the current method appear to be significantly more

accurate than those obtained with the standard method.
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(c) Exact discrete solution

Figure 6: Results for a translating rectilinear discontinuity, of orientation

ϑ = π/6, obtained with limited fluxes and ν ≪ 1.
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Figure 7 shows the global errors in L1 and L∞ norms for various orienta-

tions ϑ ∈ [0, π/2]. We can see that, for the current EB method, the errors,

in both norms, are significantly lower for all ϑ, but ϑ = π/4, than those of

the standard method. The errors of the standard method show a minimum

for ϑ = π/4. This experimentally found error behaviour can be explained

analytically. This corroboration will be presented in a future paper.

Interestingly, the errors of the current EB method increase towards ϑ =

π/4. This is because of the orthogonalization of the EB. Apparently, the

orthogonalization is least justified for ϑ = π/4. In this particular case, even

though the EB is then equally inclined to both grid directions, we arbitrarily

project it on to one of them, which makes the EB to be seen in only one

direction. Nonetheless, regardless of this ‘crude’ approximation, the errors

of the current EB method for ϑ = π/4 are still bounded and not worse when

compared to those of the standard method.

4.2. A revolving cylindrical discontinuity

Consider a cylindrical discontinuity of radius R = 0.2, and unit height,

initially located at (x, y) = (1/2, 1/2), as shown in Figure 5b, which revolves

with a circular flow-field with velocity u = (−ωy, ωx)T, where ω = 2π is the

angular velocity (a solid-body rotation).

Similarly, as in § 4.1, the discontinuity, which goes with the flow, is as-

sumed to model a rigid, infinitely thin-walled cylinder that separates two

quantities of different values, i.e., c = 1 and c = 0, inside and outside the

cylinder, respectively. The solution values c = 1 and c = 0 are appended to

the boundary of the immersed cylinder; cEBl = 1 at the inner, and cEBr = 0

at the outer side of the cylinder’s wall.
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Figure 7: Global errors for various orientations, 0 < ϑ < π/2, of the translat-

ing rectilinear-discontinuity, obtained on a 20×20 grid, at T =
√

2 and with

ν ≪ 1. Blue: standard scheme; Black: current EB scheme; Green: standard

scheme with limited flux; Red: EB scheme with limited flux.

Figure 8 shows the results for the revolving cylindrical discontinuity ob-

tained on a grid of (Nx, Ny) = (40, 40), at a final time T = 1 (i.e., after one

full revolution). Clearly, the results of the current EB method, on this grid,

have higher resolution than those of the standard method, but they are not

yet monotone.

5. Conclusion

In this work, a new immersed-boundary method, which effectively embeds

boundary conditions, valid on a moving body, only in certain fluxes in the

immediate neighbourhood, has been introduced. The algorithm has been

tested with two problems and the results obtained are promising. They have

higher resolution compared to those obtained by standard methods, but are
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(c) Exact discrete solution

Figure 8: Results for a revolving cylindrical discontinuity after one full rev-

olution on a 40×40-grid, obtained with limited fluxes and ν ≪ 1.

not yet entirely monotone. It is a simple and elegant algorithm, and we

anticipate to use it for 2D Euler flows, which we foresee to consider next.
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