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ABSTRACT

The wavelet X-ray transform computes one-dimensional wavelet transforms along lines in Euclidian space in order
to perform a directional time-scale analysis of functions in several variables. A fast algorithm is proposed which
executes this transformation starting with values given on a cartesian grid that represent the underlying function.
The algorithm involves a rotation step and wavelet analysis/synthesis steps. The number of computations
required is of the same order as the number of data involved. The analysis/synthesis steps are executed by the
pyramid algorithm which is known to have this computational advantage. The rotation step makes use of a
wavelet interpolation scheme. The order of computations is limited here due to the localization of the wavelets.
The rotation step is executed in an optimal way by means of quasi-interpolation methods using (bi-)orthogonal
wavelets.
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1. INTRODUCTION
In this paper, we present results related to the fast wavelet X-ray transform, which performs a direc-
tional time-scale analysis of functions in several variables. Details concerning the wavelet transform
and the X-ray transform, and combined use of these two transforms, is given in the second part of the
introduction. First, we describe the results of this paper in general terms.

We start with a square integrable function f € L?(R™) for which values are given on the standard
grid Zey + -+ - + Ze,, (here eq,... e, is the standard orthonormal basis in R™). The wavelet X-ray
coefficients

1 t—20
Pyf(0,z,b,a) = r+t0)— | — | dt
ot 0.000) = [ s+ o (SF)
are computed by means of a uni-variate wavelet ). These coefficients are the result of one-dimensional
wavelet transforms along lines x + R which are parameterized by unit vectors 6 and by vectors = L 6.
The dilation parameter a > 0 and the translation parameter b € R arise from the wavelet transform.
In order to compute these coefficients Py f (6, x,b,a) by means of a fast wavelet algorithm, we need



grid values of the function f on these rotated lines x + Rf. We remark that the one-dimensional
fast wavelet transform computes coefficients for translation-dilation pairs (b, a) from the countable set
{(k2779,277) | j,k € Z}. In order to compute the fast wavelet transform along equi-spaced parallel
lines, we actually need grid values of the function on a rotated and dilated grid.

Such a rotated and dilated grid can be defined using an orthonormal basis 61, ... , 0, and positive
dilation factors di, ... ,d,. The rotated and dilated grid can be written as d1Z6, + - - - + d,Z6,,. In
Section 5, such a grid will be denoted by Gg 4, where 6 represents the orthonormal basis 61,... ,6,
instead of a single unit vector. In Section 5, some of the main results of this paper are proved. Indeed,
Theorems 5.5 and 5.6 state that if f € HPT1(R") is an arbitrary function with partial derivatives up
to order p + 1 in L?(R™), and if g denotes the function arising from interpolation on the grid Gy 4
(details are given in Section 5), then

n
I1f = gllez@ny < CB™ Y d2TH 0P £l Lo,

r=1

where C' and (3 are positive constants which do not depend on f, d and p. In particular, the theorems
state that the approximation of f by the interpolating function g improves as the mesh d of the grid
becomes finer. This theorem requires some known approximation results as described in Section 3
and a result on bi-orthogonal Riesz systems given in Section 2. In Section 2, a number of new results
are reported concerning the construction of bi-orthogonal systems of Riesz bases. These results are
inspired by the papers [Uns, Uns2, UA].

The approximation of functions by interpolating functions on finer and finer grids is formalized in
terms of multi-resolution analysis. The well-known theory on this matter is described in Section 4
and applied to rotated and dilated grids in Section 6. In the latter section, it is also shown that the
interpolation method, called the dual method, only requires a number of computations proportional
to the number of data involved.

We shall now present a concise review on wavelet and X-ray transforms. The wavelet transform is
by now an established mathematical tool to perform a time-scale analysis of functions [Dau, Hol, Mey,
LMR]. In this approach, a function 1 is fixed which plays the role of the wavelet. The wavelet should
satisfy certain technical conditions which we will mention later on. Given (b,a) € H = {(z,y) € R? |
y > 0}, a point in the open upper half plane, we consider a shifted and dilated version

Unalt) = 70 (t;b)

of the wavelet. Observe that the function v , is centered around b € R and is dilated by the positive
factor @ > 0. The normalization constant is chosen in such a way that the energy norm is preserved,
ie.,

.0l 2oy = 9]l 22y = / o(t)[2 dt,

where L?(R) is the Hilbert space consisting of functions for which the Lebesgue integral on the right
hand side exists and is finite. For (b, a) € H, we consider the wavelet coefficients

Wy f(b,a) = (f, ¥va)L2m) = /Rf(t)%,a(t) dt.

Typically, the function ¢ has compact support or is well-localized, e.g. has exponential decay outside
a compact interval. In that case, the wavelet coefficient Wy, f(b,a) probes the function f around
b € R at scale a > 0. In this manner, a time-scale analysis is performed using the wavelet transform

fr=Wyf.



Such an analysis becomes particularly useful in the case when the original function can be recon-
structed from its wavelet coefficients. The so-called continuous wavelet transform involves a recon-
struction of the function from all wavelet coefficients {Wy, f(b,a) | (b,a) € H}. In order to achieve this
reconstruction, an admissibility condition is put upon the wavelet Which in quite a few cases boils
down to the requirement that the wavelet has a vanishing mean, i.e. fR t) dt = 0. For more details,
see [Koo, LMR].

We could also try to reconstruct the function from only a countable set of its wavelet coefficients.
It turns out that this is possible. One simply requires that a countable set of shifted and dilated
versions of the wavelet constitutes an orthonormal basis in L?(R). The notion of orthonormal basis
can be relaxed to the notion of Riesz (stable) basis, as explained in Section 2. However, an explicit
construction of such wavelets is far from trivial, and these achievements (see e.g. [Chu, CDF, Dau2])
are keys to the present popularity of wavelet methods. In most cases, the aforementioned countable
subset of the open upper half plane H is given by K = {(k27,27) | j, k € Z}.

The pyramid scheme [Mal2] has made wavelet methods attractive for a wide range of applications
such as seismology, diagnostic medicine and telecommunications. This algorithm, which is also known
as the fast wavelet transform, computes wavelet coefficients of a function which is given by a finite
dataset. The number of computations is of the same (asymptotic) order as the number of data
involved. Since only a finite number of scales are used (e.g., the function is sampled at a finite rate),
not only a wavelet v is required in the analysis, but also a scaling function . This scaling function
typically satisfies [, ¢(t) dt = 1. The dataset (ay, (© ))k is usually interpreted as f =", ak go( k). Tt
is assumed that the wavelet 1 and the scaling functlon o satisfy two-scale relations

x) = thﬁ¢(2x —k), ¢(z)= ngﬁ@(2x — k), almost all z € R. (1.1)
k k

One constructs ¢ in such a way that a countable set of its translates and dilates forms an orthononormal
or Riesz basis, and % is derived from ¢. In Section 4, some details are given in the context of multi-
resolution analysis.

To give an idea of how the algorithm works, we introduce the wavelet- and scaling function coeffi-
cients as (j > 0, k € Z)

A9 = (f,279/2(277 - —k)) 2y = Wy f(k27,27), o) = (£,279/20(277 - —k)) 12(a),

respectively. Observe that substituting # — 272 —[ in (1.1) and taking the inner product of the result
with f € L?(R) provides

(J) Zh a’2jl+l?7 d(J) nga2l+k YA

These formulas provide an efficient means of computing the wavelet coefficients of a function for a
finite range of scales. Observe that the wavelet and scaling function coeflicients at the coarse scale
27 can be computed very efficiently by means of the scaling function coefficients corresponding to the
finer scale 27~1. The computations involve the sequences (gi)rez and (hx)rez. These coefficients are
called filter coefficients, since the convolution with these coefficients allows for a fruitful interpretation
as filter operations. In this terminology, (gx)rez gives rise to a high-pass filter and (hy)kez to a
low-pass filter. We remark that for most practical applications, the sequences of filter coefficients are
finite. Indeed, wavelets and scaling functions with compact support give rise to filters with finitely
many non-vanishing coeflicients. An introduction to wavelet filter bank theory is provided by [SN].

In this paper, we consider wavelet analysis of functions in several variables. However, all wavelet
methods here are based on uni-variate wavelets. We consider the wavelet X-ray transform, which
performs wavelet transforms along lines in R™. These lines are parameterized in the same fashion as
for the X-ray transform. The X-ray transform [Nat]

Pf(&,x):/]Rf(x+t0)dt



integrates a function f on R"™ along an affine line  + R, where x € R™ is perpendicular to the
direction 0. Observe that (0, z), where 6 is a unit vector and z a vector orthogonal to 6, parameterize
all lines in R™. In particular, the distance of the line x + R to the origin is given by ||z|. This
transformation (as the name suggests) has led to fruitful applications in diagnostic medicine [SSW].

Combined use of the X-Ray transform and the wavelet transform has also received attention. In
particular, the wavelet X-ray transform

Puf(0,,b,a) = /R o+ 10)Tnal0) dt

computes one-dimensional wavelet transforms along lines in R™ which are parameterized in the same
fashion as for the X-ray transform. First properties of this transform were studied in [KS, Tak]. The
transform was discretized using Fourier methods in [WD] and used to detect linear events in SAR
images. The transform has been studied further in [ZZ, Zui, Zui2], where an alternative discretization
was proposed. This discretization comes down to the computation of the fast wavelet transform along
parallel lines in a rotated and dilated grid.

The motivation for the authors to study the fast wavelet X-ray transform comes from exploration
seismology. In a seismic experiment, a dynamite explosion or a vibrating truck produces waves which
propagate through the earth’s sub-surface and reflect at geophysical interfaces. Wavefronts arriving at
the surface of the earth are detected by geophones which are lined up in arrays. An array of vibration
measurements in time gives rise to a two-dimensional data set, a shot record. This data set contains
arrivals, denoted by reflections, corresponding to reflected waves which contain relevant information
on the deep sub-surface. Unfortunately, the dataset is polluted with high-amplitude arrivals which
correspond to diffused waves, known as groundroll, just below the surface. These arrivals do not
contain relevant information and are simply disturbing. It is an aim of seismic processing to remove
such unwanted components from the dataset. Numerical results are presented in [ZZ2].

In [FKV], the X-ray (or Radon) transform was used in a cascade with wavelet transforms in order
to remove groundroll from shot records. A cascaded use of the wavelet and Radon transform was also
proposed in [MPO] for the detection of linear features in aerial images.

We conclude the introduction with some remarks on notational conventions. The inner product
and norm on a Hilbert space H is denoted by (-,-)g and || - | g, respectively. In case when H = R",
the subscript is omitted. The norm of a bounded operator A between Hilbert spaces is denoted by
[IA]]. The distinction between the norm of a bounded operator and the norm of a vector in R" should
be clear from the context. The range and kernel of a bounded operator A : H — K between Hilbert
spaces are denoted by ran A = {Azx |z € H} and by ker A = {x € H | Az = 0}. If G is a countable
set, then the Kronecker symbol 6§, 4 for p,q € G is defined as follows: §, , = 1 whenever p = ¢, and
8p.q = 0 whenever p # q. Further, we define the sequence space (?(G) = {(ap)pec | Y opeG lay|? < oo},
and we introduce the shorthand notation ¢? = ¢2(Z). The Hilbert space of square integrable functions
on R™ is denoted by L?(R™). The set of measurable functions which are square integrable on compacta
is denoted by L120c (R™). By abuse of notation, we denote the Fourier transform on ¢? and on L?(R)

by one and the same superscript: Indeed, if d € ¢2, then c?(w) =D ez dre™™F  which defines a
2m-periodic function in LIQOC(R). On the other hand, if f € L?(R), then f(w) = ﬁ Jo fF)em ™t dt

defines a unitary transformation f — f on L2 (R).

2. BI-ORTHOGONAL RIESZ SYSTEMS

We introduce Riesz systems in Hilbert space and focus on geometric issues related to bi-orthogonal
pairs of Riesz systems. For general reading on Riesz systems, we refer to [You], although wavelet
textbooks like [Chu, CR, Dau, Hol| contain material on the subject relevant to wavelets as well.
Recall that a Riesz system in a Hilbert space H is a sequence of vectors (x)72; with two positive



constants 0 < A < B such that

2

N N
AY ail® < <BY |af
k=1 H k=1
for all finite sequences a, ... ,ay. If the constants A, B are chosen optimally for the Riesz system

under consideration, then A, B are called the Riesz bounds of the Riesz system. Let (x)32, be a
Riesz system in the Hilbert space H with closed linear span V' = span(z)52,. We first remark that
there exists a unique sequence of vectors (Tx)52, in V such that the bi-orthogonality condition

(tr, Zi)g = Ok, k1 €ZT (2.1)

is satisfied. It turns out that (Z)p2, is a Riesz system and we get span(zj);2, = V. Finally,
if the Riesz bounds of ()72, are given by A, B, then the Riesz bounds of (z})72, are given by
A=B"1,B=A"1

A Riesz system (Zj)p2, which satisfies (2.1) will be called a dual Riesz system with respect to
(r)32,. Observe that a Riesz system is its own dual if and only if it is orthonormal. This particular
situation corresponds to the case when A = B = 1. In the case when the Riesz bounds are the same,
this procedure leads to the normalization A = B=1.

If we allow the sequence (Z%)52; to span a subspace V' C H which is different from the subspace
V', then the bi-orthogonality condition (2.1) does not imply that ()32, is a Riesz system. However,
we can state the following.

Theorem 2.1 Let (x1)52, be a Riesz system with Riesz bounds A, B and closed linear span V , and

(Zr)72, a Riesz system with Riesz bounds /T,E and closed linear span V. Assume that the bi-
orthogonality condition (2.1) is satisfied. In thatl case, there exists a bounded projection P onto V
along V+. Moreover, the Riesz bounds of the systems are subject to

2 <AB< 2, o®<AB< @,
where

e NPl _ o o [P lla
1mn ~ = T r—
ozecv lTlm  oFvev |yllm

[Pl [P*ylla

oiec N2l ozyev Iyl

8=

Proof Define the operators L : 2 — H and L:0>? > H by

Ckk1—§ckxka Ckk1—gckxk

Observe that A < L*L < B and A < L*L < B (in the sense of positive self-adjoint operators) and
that Z*L~: L*L = I. Consequently, P = LL* defines a bounded projection with ran P = V and
ker P =V, _
First, we prove that o and 3 are well-defined. We observe that P : V — V and P*:V —V are
bijections. Indeed, If x € V and y = Px €V, then there exist ¢,d € £? such that = Lc and y = Ld.
This gives Ld = LL*Lc and hence ¢ = (L*L) Y4 or © = L(L*L)"*L*y = Ily, where II denotes the

orthoprojector onto V. Consequently,

~ —1 ~ —1
g MPelE [yl _ ) (ly, z) _
a= inf _ = sup = sup SR At A =
ozoc? |llH oryev |lylla 02 0zyev NWllalZ]EH




-1
P*
( wp <y,x>H> B ) 1

osoctonyev Wllallzlle | ovev iyl

and

8= sup = sup —_— T = sup — T = —_
otaet N osactozyev [Elullyle  oraev opyev IZlallylln oxyev lylla

For later use, we observe that

~ —1
II
g (g 1wl
ovev Tyl

Next, with ¢ = (c)52, € £2, we get

E Lo < I ; i
(L*Le,c)pe < ||L||2<C,C>g2 = HL*H2<67 Clgz = sup w

S e (¢, c)ee. (2.2)

Note that for 0 # z € ‘N/,

(P*Px,x)pg (LL*LL*z, )5 - (LL*z, %)y
<J),JJ>H <.23,.13>H N <x71‘>H ’

SO

ELwoyn _ 1Pl _ 9 s

(wa)y  ~ Al ~ A '
Formulas (2.2) and (2.3) imply AB < (2. In the same fashion, one proves that AB < 32,
In order to prove the other inequalities, observe that
- o~ -1
~ Le, L L*x, L*
Ao e Lelon e @ow (o (P Lia)e])
0#cer (¢, C)p ogzev (L*x, L*x) e Okl (x,2) g

We continue as follows:

—~ *

G gy Wale _ o wlde o wan

A B ozt ozcer 1Tlullele  oieer oryev Iollal Loyl e
HLH sup <$,y>H — pl/2 sup <Z‘,y>H )
0zt 0xyev 1 ZlEYIH o0zeev 0zyev 1T E Yl
This provides
-2
AB > sup (z,y)n =a?,
ozzev ozyev 12 alYla

by the argument given to prove that a was well-defined. Similarly, one proves AB > o?. g

Observe that in the case when V = \7, the theorem reproduces the fact that A=Bland B= A1
Moreover, in that case, the projection P is orthogonal, i.e., P = II. The bounds in the theorem are
not sharp, but can be attained in specific cases. We give a finite-dimensional example to illustrate
this.



Example 2.2 Let H = R* and consider the bi-orthogonal Riesz systems (g € R)
z1=(1,0,0,0)", 22 =(1,1,0,0)"

and
T =(1,-1,1,00", 7 =1(0,1,0,q).

One can calculate that

3 1 31
A=5-oVh B=3+5V5

and
N_jz 2 4 2 ~_f3 2 ‘/4 2

The projection P is given by

1 0 1 ¢
01 0 ¢
0 0 0O
0 0 0O

and results in the values
3 1 3 1
a2:§+q2+§\/1+4q4, 6225—1—(]2—5\/1—1—4(]4.

For g € R, as in the theorem, AB < 32 and AB > a?, but only for the values ¢ = %1, both inequalities
are actually equalities. |

The following result deals with the case when one of the systems is orthonormal.

Proposition 2.3 Let (x)72, be an orthonormal system with closed linear span V, and (Tp)72, a
Riesz system with closed linear span V. Assume that the bi- orthogonality condition (2.1) is satzsﬁed

In that case, there exists a bounded projection P onto V' along V4. Moreover, the Riesz bounds A B
of (Tk)52, are given by A=a? and B = B2, where

o 1Pzl 1Pl
1n~
vsocy allm

6=

Proof In this case, the orthogonal projection onto V' is given by II = LL*, hence, with the substitution
x = L,

~ Le, L 11
O 700 7 VNP U0 VN (Y 1 ) RS
0#cel? <C, C>g2 0#£zeV <L*$,L*Z‘>g2 0£zet HJ?HH
Here we use
1I 11
Mzl Moy (wyn
oteet 1TNE  snev onyev 1BENYIE o Let onyer [@lEIYIEH

In the same fashion, using the substitution y = Le (and ¢ = L*y),

~ Le, L P*y, P* P
B— sup (Le,Leym sup { v, *?J>H —( sup 1Pyl m _ P 0
otcerz (€, 0)p ozyev (L*Y, L*y)e ozyev  ylla

The following proposition shows that the existence of a bi-orthogonal system in two subspaces V, vV C
H is equivalent to the geometric condition V & V+ = H.



Proposition 2.4 Let V, V C H be subspaces in Hilbert space, and assume that V' contains a Riesz
basis (xr)3Z, with Riesz bounds A, B. Then V' contains a Riesz basis (Tk)7Z, bi-orthogonal to (xk)3,
if and only sz oVt =H, ie., if and only if there exists a bounded projection onto 1% along V+. In
that case, the Riesz basis (Ek)zozl in V is uniquely determined. The Riesz bounds of this system are
subject to the same estimates as in Theorem 2.1.

Proof Assume that V contains a Riesz basis ()52, which is bi-orthogonal to (zz);>,. If z € V,
then x = Y 7 | apZy with ayy = (z,25) g for all k € ZT. However, if x € VL, then (z,2)g = 0 for
all k € Z*. Therefore, VNVt = (0). Given y € H, write y = > 7 | (y, xx) Tk + 2z with z € H. It is
immediate that z € VX, This implies V + V+ = i

To prove the converse, assume that V @ V+ = H. For each k € Z*, there exists a unique y, € V
such that (z;,yr)g = 5kl for all [ € Z*. In fact, the system (yx)72, is a Riesz system in V Indeed,
if L: 0% — H is given by L(ck)72; = > pey CkTk, then zp = Ley and y, = Key, = L(L*L) ey, Where
ex € % is the k-th standard basis vector. Observe that K*K = (L*L)"'L*L(L*L)~ = (L*L)~*

Bl'<K*K<A!

in the sense of positive self-adjoint operators. It follows that the Riesz bounds of (yz)72, are given
by B~ A~ B

By assumption, given y; € V, there exist unique T € V and 2z, € V*, such that yp = &) + 2.
Obviously,

(1, Zi)m = (T, k)i = Okts k1 EZT.

If P denotes the projection onto V along VJ-, then y = P*yi. Therefore, using the same notation
as in Theorem 2.1,

2

N N 2 N 2 &
> ardk| =P (Zakyk> <A arm|| < ZZWMQ,
k=1 H k=1 H k=1 H k=1
N 2 N 2 N 2 2N
San = (Son)| e [San] 2GS we
k=1 H k=1 H k=1 H k=1

This implies that (z4);2, is a Riesz system in V with Riesz bounds A B which satisfy o2 < AB < 3?

and a® < AB < 32 as in Theorem 2.1. In order to prove that (k)72 is a Riesz basis in V, observe
that if z € H, then

oo
Z 2, Tk)HYk + U,
k=1

where u € V. If P* is the projection along V- onto ‘7, then

oo

Pz = Z(z, Ti)HTk,

k=1

so V =ranP* C span(Ti)7 ;.
Finally, assume there exists uy € V which satisfies (T, ug)g = (5kl for all | € Z*+. It follows that
Tr—up e VNVLE= (0). This proves uniqueness of the system in V bi- orthogonal to (zx)32 ;. O



We shall now specialize to Riesz systems which consist of integer translates of a single function
¢ € L%*(R). More explicitly, we will assume that the sequence (p(- — k))rez is a Riesz system in
L?(R). If V is the closed linear span of this Riesz system, then there exists a unique Riesz system in
V bi-orthogonal to (¢(- — k))gez which is a basis in V. In particular, for the given function ¢, one may
construct a function @ € V, such that the dual Riesz system of (¢(- — k))rez is given by (&(- — k))kez-

In order to construct such a function, we quote from [Chu, CR, Dau] that for ¢ € L%(R), the
function

S=2r) |(- + 2nm)|?

ne”Z

defines a 27-periodic function in Lj (R). Put V' = span{p(- — k)}xez. The system {@(- — k)}rez is
a Riesz basis in V' with Riesz bounds 0 < A < B if and only if infg § = A and supgp S = B. In other
words, the function S should be bounded and bounded away from zero in order to correspond with a
Riesz basis. In particular, the system {¢(- — k) }xez is an orthonormal basis in V' if and only if S = 1.

In the case when {¢(- — k)}rez is a Riesz basis, then {¢°(- — k)}rez, given by @° = S~Y/23, is
an orthonormal basis in V. The dual Riesz basis {@(- — k) }rez of {¢(- — k) }kez in V is constructed
by means of af = S~1@. If in addition, ¢ has compact support and is bounded, then ¢° and @ have
exponential decay at infinity; see [CR].

We now specify Theorem 2.1 to this situation. The periodic function in this proposition can also
be found in [UA].

Proposition 2.5 Let ¢, p € L*(R) such that (p(- — k))kez and (p(- — k))rez are Riesz systems in
L?(R) with closed linear spans V and V , respectively. The function Z € Llloc(R) given by

=

_ ez Plw + 2nm)p(w + 2n)
\/EnEZ |P(w + 2nm) |2 - Y, oy |@(w + 2nr) |2

is 2m-periodic. Define the numbers

Z(w)

o= (ess sup0§w§2ﬂ|Z(w)|)71 , B =(ess inf0§w§2w|Z(w)|)71 .

If A, B and /T, B are the Riesz bounds of (p(- — k))kez and (p(- — k))rez, respectively, then

o®<AB< (%, o?<AB< B

Proof Using Theorem 2.1, it suffices to prove that

ITLf | 2wy .
————— =essinfy<y,<or|Z(w)|, 2.4
oy T 0<w<2r|Z (W) (2.4)
T || 2e
sup /LA R) = esSSUPg<,, <2, Z (W) (2.5)

ozfev Iflleem

Here II is the orthogonal projection onto V. Let w® eV and ¢° € V be given so that (p°(- — k))kez
is an orthonormal basis in V' and (¢°(- — k))rez is an orthonormal basis in V. The construction of

such functions has been indicated above.
If feV, then f=3, ,ce’(- — k) with ¢ = (cx)rez € £2. Moreover,

f= 3 enlp®— k), 80 — D)ram@(- ).

kl€Z
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If we write d; = >,y cu(@® (- + 1 — k), §°) L2(r), then d = (d;)iez is the discrete convolution of ¢ with
p = (pr)rez, where pp = (- + k), § >L2(R) We write d = ¢ * p. Observe that d = ¢ p implies

d =7¢- p. Therefore,

. 1 2 N N
I ey = SO 1 = 5= [ )Pl o

IeZ

27
112 = S lexl? = = / E(w)|? do.

kEZ

Note that (k € Z)

~o0 =~ itkw 1 o ikw
= (P + 1P = [ PF @) = 3= [ 2@ do.

Consequently, p = Z almost everywhere, and equations (2.5) and (2.5) follow. O
In the papers [Uns, Uns2, UA], the constant [ as in this section arises as the reciprocal cosine of the

angle between V and V and is used there to obtain the following result.

Proposition 2.6 Let V, V C H be subspaces in Hilbert space such that V @ VL =H. Let P be the
projection onto V' along VL and let I be the orthoprojector onto V. For all g € H, we get

lg—1gllz < |lg — Pylla < Bllg — gl a,

where

Pk
B= sup [Tty
ozkev  |IkllH

Proof Observe that

P*k P*k, g+ f)2
2 sup | Hk” HL2(]R) sup ( >L2(1R)
0#£keV L2(R) 0¢k€Vg€V k ( + )
FevVi g0 [ HLz(R) ||9H L2(R) HfHLz(R)

sup (k. 9) 2@ + (b, Pfram)”

0#£keV,geV |k ( + )
FEVE, g+ f#£0 H HLZ(]R) Hg” L2(R) Hf”L?(]R)

>

(here we restrict ourselves to g = k = tPf for some t € R)

2
(PIP 1oy + P agey)
sup =

01V 2| P20 (tQHPf”Lz(R) 1 )

s (t+ 2P fII7 ) — e If = P12
0£fev+L t2||PfH%2(R) + HfH%z(R) 0£fevL ||f||L2(R)

)
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if we choose

o ||f||2L2(]R)
1PFZam

Observe that the case when Pf = 0 is not relevant for the estimate. O

In the next section, we will elaborate on estimates from above of least squares distances of the form
lg — gl -

3. ESTIMATES ON THE LEAST SQUARES DISTANCE

Let h > 0 be a (small) positive number. We consider estimates from above of the least squares
distance || f — IIp, f|| L2(&ny, where f € L?(R) and IIj, is the orthogonal projection onto Vj, the closed
linear subspace spanned by the Riesz system (h~1/2p(h™! - —k))$ . It turns out that if f € L2(R) is
smooth in a sense to be explained below, and if ¢ satisfies the Strang-Fix conditions and has suitable
decay, then useful estimates can be given.

For ease of notation, we deal with uni-variate functions. These results allow for immediate appli-
cation to our grid functions. We remark, however, that corresponding results have been proved for
multi-variate functions and, in addition, there are even results describing the case when the single
function ¢ is replaced by a finite family of functions; see [HL, JL, SF].

The Sobolev space HY(R) consists of functions f € L?(R) which have all derivatives up to order ¢
in L?(R). Here ¢ is a nonnegative integer. The space H?(R) becomes a Banach space with the norm

£l @) = Steo 1F P 2wy

Theorem 3.1 Fiz ¢ > 0. Assume that ¢ € L*(R) induces a Riesz system and that it has sufficient
decay in Fourier domain:

esssup,,cpP(w)(1 + lw)1e < .

Moreover, assume there exists ¢ > 0 such that R(w) = > ., @(w + 27n) satisfies |R(w)| > c for
almost all w € R. In that case, the function pqr, defined through o1 = R™'$, is interpolatory, i.e.,
wor s continuous and por(k) = 0ko for k € Z. If, in addition, ¢gr has polynomial decay

sup [pqr()|(1 + [a|)PT < oo,
z€R

then the following statements are equivalent:

(1) For each f € HPTL(R) and each h > 0,

< CRPH| £ | oy

Hf =Y fk)ear (7 — k)
keZ LQ(R)
The constant C does not depend on f and h.

(2) The function pgr € V is an quasi-interpolant of order p, i.e., all polynomials Q of degree < p
satisfy

Q) =Y Qk)pqr(x — k).

kEZ

The series converges for each x € R.
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(3) The function wor € V satisfies the Strang-Fix conditions of order p:

Pai(0) #0, $512mn) =0, k=0,....p, n#0.

Under the condition that ¢ € L?(R) has compact support, an equivalence comparable to (1) < (3)
was proved in [SF]. For a proof of Theorem 3.1, we refer to [Uns, UD]. Theorem 3.1 can be applied
as follows to estimate || f — I, f|| L2 (r)- First of all, the operator Jj, : H4(R) — L*(R) given by

W =Y fkyeer (5~ k)

kEZ

maps H9(R) into V3. Therefore,

If =T fllcey < If = Tnfllzz) < CRPTH P Loy,

4. MULTI-RESOLUTION ANALYSIS

In this section, we define the notions of scaling function and wavelet in the context of multi-resolution
analysis. Multi-resolution analysis forms one of the key issues in wavelet theory; see [CR, Dau, Mal].
A multi-resolution analysis (MRA) in L?(R) is a sequence of subspaces (V;);ecz in L?(R) with the
following properties: For each j € Z, we have

(1) VJ - Vj+17
(i) feVy & f2)€ Vi,
and
(iii) ﬂjesz = (0),
(iv) Ujez Vi € L?(R) dense,
(v) there exists ¢ € Vp such that (¢(- — k))kez is a Riesz basis in Vj.

It is by now well-known that certain functions ¢ € L?(R) give rise to a multi-resolution analysis. The
construction, if possible, goes along the following lines: Conditions which are put on ¢ € L?(R) will
come along the way. Of course, condition (v) is satisfied only if (¢(- — k))kez is a Riesz system in
L?(R). The closed linear span of this Riesz system is -following notation above- denoted by Vg. It is
not difficult to see that for each j € Z, the sequence (27/2¢(27 - —k))xez is a Riesz system in L?(R)
with the same Riesz bounds as the original Riesz system. For each j € Z, we denote the closed linear
span of the Riesz system (2//2p(27 - —k))ez by V;. Observe that condition (i) is satisfied if and only
if there exists h = (hy)rez € £2, such that

p(x) = Z hiV2p(2x — k), almost all € R,
kEZ

or, after Fourier transformation,
V23(2w) = h(w)P(w), almost all w € [0, 27].

In the wavelet literature, one often writes mo(w) = ?L(w) = > ez hwe ™", and we shall adopt this
convention. Condition (iii) follows from (v). Moreover, if we assume that @ is uniformly bounded on
R and continuous at zero, and if $(0) # 0, then (v) also implies (iv); see [Dau]. A function ¢ € L?(R)
will be called a scaling function if it induces a multi-resolution analysis as indicated above. The
following lemma shows under which circumstances the dual wavelet is also a scaling function. Many
elements from the considerations below are taken from [CDF].
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Lemma 4.1 Let p € L3(R) be a scaling function and assume that p € L*(R) induces a Riesz system
bi-orthogonal to . If there exists h = (hy)rez € £ such that

= Zﬁk\/ﬁ&(% — k), almost all xz € R,
kez

then ¢ is a scaling function too.

Proof We need to show that ¢ induces a multi-resolution analysis. Define ‘7} to be the closed linear
span of (27/23(27 - —k))rez for j € Z. We prove that the sequence (‘Z)jez satisfies properties (i)-(v)
of a multi-resolution analysis. It is obvious that (i) and (ii) are satisfied. Proposition 2.4 implies that
ij- @ V; = L*(R) for all j € Z, from which we can derive (iii) and (iv). Condition (v) is satisfied by
assumption. O

We shall now construct wavelets starting with the bi-orthogonal scaling functions ¢ and ¢. Define
(for almost all w € [0, 27])

= thei‘“k, mo(w) = Zﬁkei“’k
k k
and
mi(w) = e “mo(w+7m), Mm(w)=e “mo(w+T).

The wavelets 1, {bv are defined through

~

Pw) = VI (@/2)Bw/2),  $(w) = 3V (w/2)3w/2)
Observe that this comes down to

U(z) =Y geV2e(2z — k), (z) =Y G202z — k),

k k
where g = (—l)kﬁl,k and gx = (—1)*h;_4.
Lemma 4.2 The wavelets w,’LZ induce Riesz bases in Wy, Wo, respectively.

Proof Observe that

Z |¢ (2w + 2nT)|? Z |m1(w + n7)]?|P(w + nr)|? =

nez nEZ

—Z{Ivm PIB(w + 2nm)|* + Jma (w + 7)?|P(w + 7 + 2n)|? }<—{Imo 1 + |mo(w + m)°} -
nez

Further,

~ ~ 1 - = ~ =
B2 [@@w+2mm) = 5 3 {fo(w) 5w + 20m)? + [io(w + m)2B(w + = + 2nm)|? | >
nez neEZ

2 o) + o + )}
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which implies that
> 92w + 2nm)2 < BBA.
ne”Z

In the same fashion, one proves that

> (2w + 2nm) [ > AABL.
nez

The proof that {/; induces a Riesz basis goes along the same lines. g
In addition to the result of the preceding lemma, note that if

W; = span(29/2(27 - —k))rez, W; = span(29/2(27 - —k))xez,
then we have the (not necessarily orthogonal) decompositions

W ®Vy =V, W;eV; ="V,
Further,

Vi LW,V LW,

so we may conclude that (27/2¢)(27 - —k)); xez and (29/2¢)(27 - —k)); kez are bi-orthogonal Riesz bases
in L?(R).

Let 0 # ¢ € L?(R) be a real-valued function with compact support [R;, Rz], say, and assume that
(p(- — k))rez is a Riesz system in L?(R) with closed linear span V. There exists a unique ¢ € V
such that (P(- — k))rez is a Riesz basis in V' bi-orthogonal to (p(- — k))kez. The construction of @,
which has been mentioned before, will be made more explicit here. The construction goes along the
lines as in [Chu] for the spline case. One needs to determine the sequence (cj)rez € ¢? such that
© = ez ck@(- — k). The bi-orthogonality condition implies

00 =Y cmlp(-+m—k), Q) 2@y, k€L
meZ

Define ap = (¢(- + k), ¢) 12(r). Observe that ax = a_j and that ax = 0 whenever |k| > Ry — Ry. If
we apply the Fourier transform, we get 1 = a(e?)c(e), where c(e?) = Y, , cxe™™® and, for some
positive integer m < Ry — Ry,

m
a(ew) =ag+ Z ap(e™®? + e_ika), am # 0.
k=1

Observe that a(-) does not vanish on the unit circle. Therefore, p(z) = z™a(z) is a polynomial of
degree 2m with roots inside and outside the unit circle. In fact, p(0) = a,, # 0 and if A # 0 satisfies
p(A) =0, then p(1/A) = 0. Therefore, we may write

m
a(z) = amz"™ H(z — )z — )\—), z#0,
where 1 > [A1| > [A2] > -+ > |An|. We state the following simple lemma.
Lemma 4.3 Let a,b be complex numbers such that |al,|b| < 1. Then

o0 o0
Zakzk Zbkz_k = ZAkzk, b] < |z2| < |a| 71,

k=0 k=0 kEZ
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where
ak
Akz{ g k20
1—ab? kSO

The lemma provides
1 5 1 Sy L rr [ = k| _k
= —_— . = — . )\
2 amj[[ll—/\j/z 1-Xz a H(l—)\z EJZ
for |\| < |z] < |A1|7!, and we arrive at (k € Z)

D

™ kit =k j=1

/\\k 5| 4+1

5. WAVELET INTERPOLATION METHOD

Throughout this section, we will assume that ¢ induces a multi-resolution analysis as described in the

previous section, i.e., ¢ is a scaling function. We will also fix a dual scaling function ¢ € L?(R).
Given an orthonormal basis 64, ... ,6, in R" we consider the grid

Ge,d - {ZpTdrar | (ph cee ;pn) S Zn}a

where dy, ... ,d, are positive real numbers. The standard basis in R™ will be denoted by e1,... ,e,
and the standard grid by G, accordingly. Observe that Gg 4 is the image of G, under reflection,
rotation and dilation. In fact, Gy 4 = DRSG,, where S is an n x n reflection matrix, R is an n x n

rotation matrix and D is an n x n diagonal matrix with diagonal d = (d,... ,d,)".
In order to deal with functions on R" for n > 2, we shall construct multi-variate functions by means
of products of uni-variate ones. Indeed, given an orthonormal basis 61, ... ,6, in R", we shall write
Dy q(y H d; 1/2 y,0.)), almost all y € R",

where ¢ is a scaling function. In the same fashion, one defines ;1397(1 using the dual scaling function ¢.
The next two lemmas justify that ®4 4 will be called a multi-variate scaling function.

Lemma 5.1 The system (®g q(- — p))pec, , i a Riesz system in L?(R™). The dual Riesz system is
given by (Pg.a(- — p))peGy.q- In particular,

(®g.a(- — p), E’e,d(' —q)) 2"y = Op,q-
The Riesz bounds of the system are given by A™, B™.

Proof First, we show that (®g 4(- — p))pec, , is a Riesz system with Riesz bounds A", B". We give
the proof for the upper bound for n = 2. Observe that by orthogonality of 61,60, and with the

substitution y = y1d161 + y2da202, we get
2
=] |

J.

2

> py oy — p1)e(y2 — p2)| dyr dys

Pp1,p2

Z ap, p, Po, d(y p1di161 — 2d292)

P1,pP2
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dy2 < B Z |ap1,P2|

P1,p2

Pz

The bound is optimal: Let € > 0 and let (ap, )p,ez and (bp,)p,ez be sequences in £2 such that

2 2

Z ap, ¥ _Pl > (B - 5) Z |a101|27 Z bpz@(' _p2) > (B - 5) Z |bp2|2'

P1EL L2(R) p1EZ p2€Z L2(R) p2€EZ

This implies

2
/ Z Ap, bp, Po a(y — p1d101 — padath)| dy =
B2 |p1 pa
2 2
/ Z ap, P pl dyl / Z bpzsp Y2 —Pz dy2 > (B - 6)2 Z |ap1bp2|2'
pP1EZ p2EZ P1,P2

In the same fashion, lower and upper bounds for general n > 2 are obtained, also for the dual Riesz
system. We will check the bi-orthogonality condition for n = 2:

(®o,a(- — p), Po,a(- — q))12(r2) =

4y / Hy, 01) — p1)e(dy ' (y, 2) — p2)x

x@(dy H(y, 01) — 1) B(dy *(y, 02) — q2) dy =

/ oyr —p1)e(y1 — q1) dys - / ©(y2 — p2)P(Y2 — q2) dy2 = Op, .1 * Opa,gs = Opg-
R R

O

A multi-resolution analysis in L?(R™) associated with a grid Gy 4 is a sequence of subspaces (Vp,4,;)jez
in L?(R™) with the properties: For each j € Z, we have

(i) Vo,a; C Vo,dj+1,
(i) feVoa; & f(2)€Vodj,
and
(iﬁ) ﬂjez VG,dJ = (0)7
(iv) UjeZ Vg.a; C L*(R™) dense,
(v) there exists ® € Vj 4,0 such that (®(- —p))pec, , is a Riesz basis in V 4,0.

Lemma 5.2 If ¢ induces a multi-resolution analysis in L?(R), then ®g 4 induces a multi-resolution
analysis in L?(R™) associated with the grid Gg 4.
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Proof Define Vp 4 ; as the closed linear span of (2"7/2®¢ 4(27 - —p))peg, .. If ¢ satisfies p(z) =
> kez hiv2¢(2z — k) for almost all « € R, then

Poaly) =[] \/dITSO (d "y, 0,)) =

11 \/72 (2d, " (y, 0 = Y h2"®ga(2y —p),
r=1

prEZL pEGg,d

where p = Y°"_, d.p,0, and hy, = hp, -~ hy,. In this manner, it follows that properties (i) and (ii)
hold. Fubini’s theorem implies that, for f € L?(R"), f € Vp,q; if and only if f(z+-6,) € V; for almost
all z € 0 and r = 1,... ,n. Properties (iii) and (iv) now follow easily. Property (v) is obtained by
using Lemma 5.1. g

We shall introduce a multi-variate interpolation operator which incorporates the Riesz system in-
duced by the multi-variate scaling function. Define Lg 4 : £*(Gg,q) — L?*(R™) by

Lo,a(ap)pec,.q( Z ap®o,a(y — p)
PEGy,a

for almost all y € R™. The operator Ee,d is defined in the same way using the dual scaling function.
Observe that by Lemma 5.1, we get

An” (ap)pEGe,d ||1’2(G9 ) = HL9 d(ap)pEGe d HLQ(]R” BnH (ap)pGGe,d H?Q(G&d)'

This implies that Lg 4 : ¢*(Ggq) — L?(R™) is a bounded injective operator with closed range. It
follows that Ly 4 has a bounded left-inverse. We shall discuss these matters in more detail below. The
adjoint operator Lj ; L2(R™) — (2(Gy q) of Lg 4 is given by

(Lz,dg) = (<97 ‘I’e,d(' - p))L?(R"))peGM , g€ LQ(Rn)-
We now identify a left inverse of Lg 4.

Proposition 5.3 The operator Lo 4 : (*(Go,q) — L*(R™) has E;,d : L*(R") — (*(Gyq) as a left
wmnuverse.

Proof Note that Lemma 5.1 and the continuity of the inner product implies

(Lp,aLo,d(ap)peGo a» (bg)acGo a)e2(Go.a) = (Lo,d(@p)pecy 4> Lo,d(bg)gety o) 12 (Rn) =

Z ap®g.a(- — p), Z by Po.a(- —q))L2@®n) = Z apby.

p€Go,a q€Goq p€Go,a

a
In the particular case when ®4 4 = ®¢ 4, i.e., in the orthonormal case, we obviously get Ly g = Lgq
and by Proposition 5.3, we see that in this case Ly ;Lg.a = Ir2(G, ,)- In the general situation, the
self-adjoint operator Ly 4Lo,a will not be the identity, although the following holds true.

Lemma 5.4 The operator Lj ;Lgq : 0%(Gg,a) — 1%(Ge,q) is a strictly positive, hence boundedly in-
vertible, operator which satisfies the estimates (in the sense of self-adjoint operators)

AT < L;dL@,d < B"I.
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The proof of this lemma is straightforward and omitted. Observe that the expression

(fp)peton = (Lo aLo.a) " L a9 (5.1)

makes sense and provides the least-squares solution to the equation

Lo.a(fp)peco.a = 9 (5.2)

where g € L2(R") is a given function. Another approximate solution to (5.2) is given by

(fo)peos = Li 49- (5.3)

We will now look at equation (5.2) and its approximate solutions (5.1) and (5.3) more closely. If we
apply the operator Ly 4 to the right hand side of (5.1), we get Lgﬁd(L;’dLg,d)*lLadg. The operator
My.q = Loa(Ly 4Lo.4)" " Lj 4 is the orthogonal projection onto ran Lg 4. The least squares solution
(5.1) produces an error ||g — Il 49| L2(r») Which equals zero whenever g € ran Lg 4. In general, this
error is minimal among all attainable errors, since ||g — Il 49/ z2(rn) equals the distance between g
and ran Ly 4.

On the other hand, if we apply Lg 4 to the right hand side of (5.3), we get Lg,digﬁdg. The operator

Pp.q = L97dig’ 4 1s a not necessarily orthogonal projection onto ran Lg 4. This dual solution produces
an error ||g — Py agl|z2n). Since g — g ag L Ilp a9 — Po a9, we get

g = Po.agllF2mny = 1Po.ag — To.ag||Z2(mny + 19 — To,ag]|72(mn)-

It is immediate that the error caused by the least squares solution is majorized by the error caused
by the dual solution. Moreover, the difference between the two errors can be measured by || Py a9 —
g.agllz2(rny- First of all, we recall from Section 2 that Py 4 = Ilp 4 whenever o, € V. Secondly,
we will use the following result to pursue these matters somewhat further. We prove the analogue of
Proposition 2.6 for multi-variate scaling functions.

Theorem 5.5 Let ®g 4 and ;1397(1 be multi-variate scaling functions as defined before which satisfy the
bi-orthogonality condition

<(D97d(' - p)7 (Ff)e,d(' - Q) = 5;0,(17 p,q €< G@,dv

and let 3 be defined as in Proposition 2.6. The closed linear span of (®g.a(- — p))pec,., is denoted by
Vo.a and the closed linear span of (P a(- — p))pec, , is denoted by Vy q. The orthoprojector onto Vo 4
is given by Ily 4, and the projection onto Vp q along Va%d reads Py 4. We get for g € L*(R"™),

lg —Ho.agllz2mn) < llg — Po.agllL2@ny < B"lg — g.agllL2@n)-

Before we prove the theorem, we state the following consequence of its result: Observe that

1Po,ag — To,ag|72(ny = 19 — Po.agllZ2ny — Il9 — o,agll72(ny <

(6% = 1)|lg — Hp,agll7 2 gny-

Moreover, 8 > 1, and § = 1 if and only if V' = V. In this manner, the coefficient 3%" — 1 measures
the relative distance between the dual solution and the least squares solution error.
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Proof of Theorem 5.5 Let ¢° and ¢° induce orthonormal bases in V' and ‘7, respectively. Define
ba=T1d 201 (00), @5 4= ] d /257" (. 6))-
r=1 r=1

Observe that (<I>g,d(- — P))peGy., and (ig,d(- — P))peGy, are orthonormal bases in Vy g and 1797(1,
respectively. Each f € Vj 4 admits an orthonormal expansion f = Zpengcpég,dQ — p), with
cp = (f, @g,d( —P))r2®n)- As a consequence, if f € Vp 4, we get

Hoaf = S ep(®4( — p) 85 al — )i @5a — a).
P,9€Go,a

Here ﬁg,d denotes the orthoprojector onto %,d. The sequence (dg)qec, ., Which is defined by d, =
ZpeG@,d cp(®g 4(- = p), P4 4(- — @) L2(wn), is a discrete convolution d = p * ¢, where p = (pg)gec, , 18

given by p, = <<I>§7d(- +4q), 587d>L2(R7l) and ¢ = (¢p)peGy,q-
Recall that if @ = (ap)pecy, € €*(Go,a), then @, defined through a(n) = > ¢, ,

n € R, satisfies @ € L?([0,27]"). Using this notation, we get d= p - ¢. Therefore, if f € Vy 4, we get

1T af 2oy = 3 1dgf? = (2m)°" /

q€Go.q [0,27]™

ap€71<777p> for

dadn =0 [l e,

while

11220 = (2m) " / @) di.

[0,27]™

Write
ﬁ:Zﬁrdr_len q:ZquT0T7
r=1 r=1

then (n,q) = >_I"_, nrqr. Moreover,
pg = (§ 4(- + ), Df g 2(rn) = / 11 e (d (. 6:) + 40)8°(dr (y, 0,)) dy =
n T:1
(write y = Y1 yrd,0;)

H /]R on(yr + (Ir)(ﬁo(yr) dyr = H Pq, -
r=1 r=1

This implies

n

p(n) = H Z pg.e” | = H pr(1r)-

r=1 qr€Z r=1

We conclude that

10 "
oz | it Moafleen
0£feVoa || fllL2@ny

-1
. N . N -1
) < (essinfyejo2np [P(m)]) = | | (essinfy, ejo,2m[pr(1r)])

1

n

T
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= 6n7
by the proof of Proposition 2.5. We may now apply Proposition 2.6. g
In proposition 2.5, the function Z was introduced. If we set (n € R™)

2 peGo.a ©g.a(1 + 27p)@g.a(n + 27p)

VS ecn [Boaln + 2wp>|2¢ et [Po.a(n + 27p)[2

then, with n =>""_ n,d,; ', and p=>_""_, n,d, 16,

Zg.a(n) =

)

Z(nr)-

. >opoez P + 21 ) P (0 + 27pr)) "
Zo,a(n) = H H
r=1 \/ZPTGZ |8(nr + 27pr)|2 \/Zprez |e(nr + 27p,) 2 r=1

Theorem 5.6 Let Iy 4 be defined the orthoprojector onto Vg4 and assume that f € HPTLH(R"), i.e.,
all partial derivatives of f up to order p+ 1 are in L?>(R™). Then

If = Toafllr2@e < CD AP fllL2@n),

r=1
where 0, denotes the r-th partial derivative operator.

Proof An orthonormal basis (®§ ;(- — p))peGy, of Vo,a is constructed from an orthonormal basis

(¢°(- — k))kez as in the proof of Theorem 5.5. Define for r = 1,... ,n the operator Héft)i by

0 f) =Y dy /fEey+t0 oyt —k)dt-°(d My, 0r) — k), y €R™
kEZ

It is not difficult to see that Hé C)l are mutually commuting orthogonal projections which satisfy

I1 Hf,f; = Tp.q.
r=1

Moreover, we get for each 1 <1 < n,

If - H fHL2(]R) /0L 1f (2 +-0,) = M, f (2 + -0,)[|72 (g dz <

C2dz VO f | (o
by Theorem 3.1. These considerations imply that
ILf —pafllL2@ny <

1 2
1f = 1050 £l 2 qny + TG0 — TG ) pamy + - +|\HH 15 )l 2 geny <

n
D OO f | pany.-

r=1
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6. INTERPOLATION BETWEEN ROTATED GRIDS

We shall now apply the results from the preceding sections to interpolation between dilated, reflected
and rotated Cartesian grids. The situation is as follows. In Section 5, we mentioned that the standard
grid

n
Ge={> aerl|(q,....qn) €Z"} CR"
r=1

is defined using the standard orthonormal basis ei,...,e,, and that for any orthonormal basis
01,...,0, and vector with strictly positive entries d = (di, ... ,d,)T, we may define the grid

GG,d = {Zprdrer | (ph v 7pn) € Zn}

r=1

Given is a collection of data (complex numbers) (aq)qec,, and a function g € L?(R") is attached to
this collection by means of interpolation on the standard grid. Indeed, we assume that

g(y) = Z aq®.(y —¢q), almost all y € R".
q€Ge

Here ®.(y) = [1"'_; »({(y,0)), for almost all y € R™, as in Section 5. The dual function ®, is defined
accordingly. Note that we have constructed a function g such that

ag = (9, Pc(- — @) 2mn), ¢ € Ge.

In words, the function g reproduces the original data when inner products are taken with translates
along the standard grid G, of the dual multi-variate function ®.. We now search for a collection
of data (f,)pec, , associated with the dilated, reflected and rotated grid Gg 4. This data should
reproduce the function g as an interpolant of (fy)pec, . In general, this is not possible. Therefore,
we shall write

fly) = Z fp®o,a(y —p), almost all y € R",
p€Go,a

and we shall try to minimize || f — g||2(gn)-
In Section 5, we defined ®¢ 4(y) = []_, dr 2 o(d= 1y, 0,)), which implies that if y = S Yrbr,

n

then ®p.q(y) = [[—; d;l/Qw(d;lyr). In terms of the interpolation operators (details are given in
Section 5)

Le(aq)qEGg = Z aq(I)e(y - Q)v Le,d(fp)peGe,d = Z qu)e,d(y _p)7

q€G, pEGy q

we have the following situation. Given the data (a,)q4ec, € €2(G.), we construct g = L(aq)gec.. The
least squares solution to

Le,d(fp)pEGe,d =g9= Le(aq)qGGe

provides us with data (fp)pec,, on the rotated and dilated grid, such that f = Lg 4(fp)pec, , mini-
mizes || f — g||2rn) among all possible solutions.
We propose the dual method

(fp)peGe,d, = Lé,dg = L;,dLe(aq)qer
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whic requires a number of computations proportional to the number of data involved, as will be shown
at the end of this section. Moreover, the dual solution can be taken equal to or arbitrarily close to
the least squares solution, depending on the choice of the dual wavelet. This fact is expressed by the
consequence mentioned after Theorem 5.5.

We shall describe the dual method by means of the operator

Ly aLe : 13(Ge) — £3(Gy q).

Observe that for p € Gg,q,

(Lg,dLe(aq)qEGe)p = / Le(ag)qec., (y)&;e,d(y —p)dy =

/ Z ag®e(y — q)Po,aly — p) dy = Z ag(®e(- — q), Po.a(- — ) 2(n)-

q€Ge q€Ge

If we define the infinite matrix M = (M} 4)pecy.4,qeG., With matrix elements given by the inner
products My, 4 = (®c(- — q), Pg,a(- — p))£2(rn), then the solution to the dual method is given by

(fp)peGe,d, =M (aq)qeGe'

Note that M, , does only depend on the difference between the indices. Indeed, if § = >"""_, d,6,0, €
GG,d, then

Myiogss = [ ®clu=a=0Foalu—p=d)dy [ ®cly=Boaly—p)dy =My,
In order to describe the number of calculations required to perform the dual method, we consider
the case when the data set (aq)qec, is finite. In particular, we denote a compact set in R™ by K
and assume that a, = 0 for ¢ ¢ K. Further, we will assume that the underlying scaling functions ¢
and @ have compact support. Indeed, assume that p,p > 0 are chosen such that supp ¢ C [—p, p]
and supp ¢ C [—p,p]. Let (p1,...,pn) € Z" and (q1,... ,qn) € Z™, then ¢ = >_"_, gre, € G, and
p=>_, prbrd, € Gy 4. The matrix element

n

Myo = [ TLetwer) = an)dy V250 .6~ pr)dy
n re1

is nonzero, only if
|<y76r>_qr|§pv |d;1<y7er>_pr|§ﬁ7 70:17“’7”“
We get

ly — qll* = ZI yer) —a* < p*n,
r=1

ly—plI* =>_ [y, 6r) — dvp,|? ZdQId —pel* < P%|d))%,

where ||d|| is the Euclidian norm of d = (dy, ... ,d,)T. This provides

0=ly—a)+@—p)+@—vl>Ilp—al—llv—2l—Illy—dl > llp—dal = (pv/n+pldl).
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As a result, we see that

o —all < (pv/n+ plld])).

We may conclude that if ||p — ¢|| > (pv/n + pl|d||), then M, , = 0. This means that the matrix M
has a band structure with band width majorized by (py/n + p||d||). The number of data N, i.e.,
the number of grid points of Gy 4 in K, is proportional to |[K|A™!, where A = d;...d, and |K]| is
the volume of K. The number of computations required to calculate (fp)peg, , is majorized by the
number N (py/n + p||d||) which is of the same order as the number of data involved.
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