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ABSTRACT

This paper presents a comprehensive discussion on connected morphological operators for binary

images. Introducing a connectivity on the underlying space, every image induces a partition

of the space in foreground and background components. A connected operator is an operator

that coarsens this partition for every input image. A connected operator is called a grain

operator if it has the following `local property': the value of the output image at a given point

x is exclusively determined by the zone of the partition of the input image that contains x.

Every grain operator is uniquely speci�ed by two grain criteria, one for the foreground and one

for the background components. A well-known criterion is the area criterion demanding that

the area of a zone is not below a given threshold. The second part of the paper is devoted

to connected �lters and grain �lters. It is shown that alternating sequential �lters resulting

from grain openings and closings are strong �lters and obey a strong absorption property, two

properties that do not hold in the classical non-connected case.

1991 Mathematics Subject Classi�cation: 68U05, 05C40

Keywords and Phrases: connectivity, mathematical morphology, connectivity class, connec-

tivity opening, grain, (geodesic) reconstruction, partition, zonal graph, connected operator,
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erator, strong �lter, grain �lter, alternating sequential �lter, translation invariance.
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1. Introduction

Classical morphological operators require one or more structuring elements. In practice, such

operators are either local themselves or compositions of one or more local operators. Here `local'

means that the output value at a given point (pixel, in the discrete case) is determined by the

input values at a small (e.g., �nite) neighbourhood. One could say that classical morphological

operators act on the pixel level, albeit that such actions are intrinsically parallel.

Connected morphological operators are essentially di�erent. They do not (or rather: can-

not) change values at individual pixels, but only the values at connected regions with constant

grey-level, the so-called at zones. Connected operators are determined by the criteria that gov-

ern the action of the operator at the at zones. In this paper we restrict ourselves to the binary

case. Here, the at zones are the connected components (called grains) of the foreground and
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background. Even in this simple case, criteria can be quite complex; they may depend on shape

characteristics of the individual zones, but also on characteristics of zones that are adjacent.

The observation that connected operators act on the at zone level gives rise to the

following, from an image processing point of view extremely important, property: connected

operators can delete boundaries, they can strengthen or weaken boundaries, but they cannot

shift boundaries nor create new boundaries. Here `boundary' means `boundary between zones

with di�erent grey-level'.

Connected operators cannot introduce new discontinuities and as such they are custom-

made for those image analysis and computer vision applications where contour information is

important, for example image segmentation. The morphological approach towards segmentation

is provided by the watershed algorithm, in all its manifestations. In practical cases, this algo-

rithm often produces a dramatic oversegmentation due to the presence of noise. To circumvent

this problem, one may take recourse to the following procedure: (i) �nd markers for the relevant

regions in the image, (ii) modify the image (or its gradient) using these markers, (iii) apply

the watershed algorithm. This leads to a segmentation comprising one region per marker; refer

to [3] for a comprehensive description. Connected operators have a great potential with respect

to automatic marker extraction (i.e., step (i)) [6, 10, 27]. Another branch in computer vision

where connected operators have proved their usefulness is motion. The reader is referred to [21,

26] for further details.

The �rst systematic study on connected operators is due to Serra and Salembier [30].

However, the concept of opening by reconstruction, one of the �rst connected morphological

operator studied in the literature, has emerged about ten years earlier in the beginning of the

eighties [19, 20]. The importance of connectivity with regard to image processing in general,

though, was recognised already by Rosenfeld in the sixties [25]. The recent work by Vincent,

who succeeded in �nding e�cient algorithms for grey-scale reconstruction [31, 32] and the area

opening [33], has given an enormous impulse to the contemporary interest in connected operators.

The current paper aims to provide a systematic discussion of the theoretical aspects of

connected operators. Here we limit ourselves to the binary case; in a future publication we will

deal with grey-scale images. The exposition in this paper has been inspired by the works of

Serra and Salembier [30, 27], as well as Crespo, Serra, and Schafer [6, 8, 9]. In fact, the major

objective of this paper is to unify the concepts found there, along with some new ones, into one

consistent mathematical framework. Towards that end, we have included most of the proofs,

also of those results that have been stated in one of the aforementioned papers.

We give a brief overview of the contents of this paper. We �rst give a short description of

some basic concepts and notations from mathematical morphology in Section 2. Our exposition

on connected operators starts with a discussion on connectivity classes, a beautiful concept

that is due to Serra [28]. This concept includes well-known connectivities (such as 4- and 8-

connectivity in Z2) but allows many other cases, too. Given a connectivity, we de�ne four

additional concepts: the connectivity opening (Section 4) which, for a given point x, returns

the connected component of a set that contains x; reconstruction (Section 5); partitions and

zonal graphs (Section 6). In this paper, the zonal graph representation will be used mainly

for visualizing connected operators and grain operators. However, as we intend to demonstrate

in our future work, this notion is also of theoretical interest. Furthermore, the zonal graph

representation may be useful with respect to the implementation of connected operators.

Every binary or grey-scale image induces a partition of the underlying space into at zones.

In Section 7 we use such partitions to give a formal de�nition of a connected operator, and we

present some basic methods for their construction. A rather special, yet relatively important,

subclass of connected operators are the grain operators; these are connected operators that are
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`local' in the sense that the output at a given point depends solely on the grain (connected

component) surrounding this point. Grain operators, studied in Section 8, are completely de-

termined by two grain criteria, one for the foreground and one for the background. In Section 9

we introduce the notion of `stability'. Essentially, stability means that two adjacent grains in a

zonal graph decomposition cannot change values simultaneously. This notion turns out useful in

our study of grain �lters in Section 10 and connected alternating sequential �lters in Section 11.

In Section 12 we make some simple observations about translation invariance. The paper is

concluded with some �nal remarks in Section 13.

2. Terminology and notation

In this section, we recall some notation and terminology that we shall use in the sequel. For

a comprehensive discussion on various theoretical concepts in mathematical morphology, the

reader may refer to [14].

Given a universal set E, we denote by P(E) the collection of subsets of E. The notation

X 2 P(E) and X � E will be used interchangeably. Given X � E and h 2 E, the expression

Xh denotes the translate of X along h, i.e., Xh = fx + h j x 2 Xg. Given two sets X;Y � E,

we denote by XnY the set di�erence and by X4Y the symmetric di�erence.

By an operator we shall mean a mapping  : P(E) ! P(E). The negative of an operator

 is de�ned as

 
�(X) = [ (Xc)]c : (2:1)

Note that  � can be interpreted as  being applied to the bacground.

An operator � is called a dilation if �(
S
i2I Xi) =

S
i2I �(Xi), for an arbitrary family

fXi j i 2 Ig � P(E). An operator " is called erosion if "(
T
i2I Xi) =

T
i2I "(Xi). The operator

 is said to be:

� increasing if X � Y implies that  (X) �  (Y ), X;Y � E

� translation invariant if  (Xh) = [ (X)]h, X � E, h 2 E

� extensive if X �  (X), X � E

� anti-extensive if  (X) � X, X � E

� idempotent if  2 =  .

Here  2 =  �  . An operator that is increasing and idempotent is called a (morphological)

�lter. An opening (resp. closing) is a �lter that is anti-extensive (resp. extensive). Openings are

denoted by � and closings by �. An increasing operator is called an inf-over�lter if  (id^ ) =  ;

dually, it is called a sup-under�lter if  (id _  ) =  . When both equalities hold,  is called

a strong �lter; refer to [14, 28] for a comprehensive discussion. Every strong �lter is a �lter,

but not vice versa. Openings and closings are strong �lters. The invariance domain of  is

Inv( ) = fX � E j  (X) = Xg.

Given two operators � and  , the notation `� �  ' means that �(X) �  (X) for every

X 2 P(E). By � ^  and � _  we denote the in�mum and supremum, respectively, of � and

 . That is, (� ^  )(X) = �(X) \  (X) and (� _  )(X) = �(X) [  (X), for every X � E.

The Duality Principle, known from the theory of partially ordered sets [4] plays an impor-

tant role in mathematical morphology. It means that all concepts, de�nitions, and propositions

occur in pairs. For example, dilation and erosion are dual concepts. And also, the dual of the

proposition \if  is an inf-over�lter, then id^ is an opening" is \ if  is a sup-under�lter, then

id _  is a closing".
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3. Connectivity class

The notion of a connected set in E is well-de�ned if E is a topological space. In [28], Serra

generalised this concept by the introduction of a connectivity class.

3.1. De�nition. Let E be an arbitrary nonempty set. A family C � P(E) is called a

connectivity class if it satis�es

(C1) ? 2 C and fxg 2 C for x 2 E

(C2) if Ci 2 C and
T
i2I Ci 6= ?, then

S
i2I Ci 2 C.

Alternatively, we say that C de�nes a connectivity on E. An element of C is called a connected

set. Note that this de�nition is in accordance with the de�nition of connected subsets of a

topological space: if E is a topological space then a union of topologically connected subsets

with nonempty intersection is again topologically connected [12, p.108].

In [23] Ronse compares the axioms (C1)-(C2) with another set of axioms giving a charac-

terization of connectivity in terms of separating pairs of sets.

Before we come down to concrete examples, we introduce the important subclass of con-

nectivity classes based on adjacency.

3.2. De�nition. A binary relation � on E �E is called an adjacency relation if it is reexive

(x � x for every x) and symmetric (x � y i� y � x).

3.3. Examples.

(a) On E = Z2, two well-known adjacency relations are 4-adjacency and 8-adjacency.

(b) On E = IR
2, the relation `x � y if kx� yk � 1' de�nes an adjacency relation.

Given an adjacency relation on E �E, we call x0; x1; : : : ; xn a path between the points x and y

if x = x0 � x1 � � � � � xn = y. De�ne C
�
� P(E) as the collection of all C � E such that any

two points in C can be connected by a path that lies entirely in C.

3.4. Proposition. If � is an adjacency relation on E �E, then C
�
is a connectivity class.

Proof. (C1) is obvious; we give a demonstration of (C2). Let Ci; i 2 I, be a collection

of connected sets that contain the point z in their intersection. Let x; y 2
S
i2I Ci, say x 2

Ci1 ; y 2 Ci2 . Within Ci1 there is a path between x and z, and within Ci2 there is a path

between z and y. Concatenation of these paths yields a path in
S
i2I Ci between x and y.

3.5. De�nition. C is a strong connectivity class if there exists an adjacency relation � on

E �E such that C = C
�
and E is connected. We say that E possesses a strong connectivity.

We present some examples.

3.6. Examples.

(a) If C comprises the empty set and the singletons, then C is a connectivity class. Observe that

C = C
�
, where � is the trivial adjacency de�ned by x � y if and only if x = y. However, this

connectivity is not strong since E is not connected.

(b) C = P(E) is a connectivity class, and C = C
�
, where � is the trivial adjacency given by

x � y, for every two points x; y 2 E. This connectivity is strong.

(c) The class C comprising the empty set, the singletons, and the co-�nite subsets of E (a set

X is co-�nite if its complement Xc is �nite) is a connectivity class. There is no underlying

adjacency in this case.

(d) De�ne C as the family of sets C � E with card(C) 62 f2; 3; : : : ; ng, where card(C) denotes

the number of elements of C. Then C is a connectivity class, but it is not generated by an

adjacency relation on E.
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The examples in (a) and (b) are the smallest and largest connectivity class, respectively, and we

shall denote them by Cmin and Cmax, respectively. Recall that the latter is a strong connectivity

class.

In the following example we restrict ourselves to spaces with some additional structure.

3.7. Examples.

(a) The 4- and 8-adjacency relations (cf. Example 3.3(a)) yield the strong connectivity classes

C4 and C8 in P(Z
2), respectively.

(b) De�ne an adjacency relation on IR
2 by: x � y if x = y or if x and y are integer points that

are 8-connected. The only connected sets that contain non-integer points are the singletons. For

the subcollection P(Z2), the connected sets are the sets in C8 introduced in (a).

(c) The collection C � P(IR) containing the empty set, the singletons, and the intervals (a; b),

where a; b 2 Z[ f�1;+1g and a < b, is a connectivity class.

(d) Let C � P(IR2) consist of all sets whose points cannot be separated by a straight line; see

Figure 3.1. It is not di�cult to verify that C de�nes a connectivity.

not connectedconnected

Fig. 3.1. A set is connected if its points cannot be separated

by a straight line.

In fact, a set is connected i� every orthogonal projection onto a 1-dimensional space is

connected in the usual sense.

(e) Say that C � IR
2 is connected if any two points in C can be joined by a polygonal line in

C; see Figure 3.2. This de�nes a connectivity class.

not connectedconnected

Fig. 3.2. A set C is connected if any two points in C can

be joined by a polygonal line in C.

The examples (c)-(d) are adapted from [23].

There are several ways to build new connectivities from existing ones. The most important

construction methods are given below in the form of propositions which are rather straightfor-

ward. For the sake of illustration, we shall prove the last one.
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3.8. Proposition. If Ck is a connectivity class in P(E) for every k 2 K, then their intersectionT
k2K Ck is a connectivity class, too.

3.9. Proposition. Assume that C is a connectivity class in P(E) and let x0 2 E be �xed. The

family C0 that consists of fx0g and all sets in C that do not contain x0 de�nes a connectivity

class.

3.10. Proposition. Assume that C is a connectivity class in P(E), let E0 be a nonempty set

and � : E0 ! E an arbitrary mapping. De�ne �(X) = f�(x) j x 2 Xg for X � E
0. Then

C0 = fC � E
0 j �(C) 2 Cg is a connectivity class in P(E0).

3.11. Proposition. Let E be an Abelian group and E0 a subgroup of E. Assume that C is a

connectivity class in P(E) that is invariant under translations in E0 (i.e., C 2 C implies that

Cx 2 C for x 2 E0). Let C
0 � P(E) consist of the empty set, the singletons, and the sets C�E0,

where C 2 C. Then C0 is a connectivity class.

3.12. Proposition. Let C be a connectivity class in P(E) and let  be an increasing operator

on P(E). Let C0 consist of the empty set, the singletons, as well as every element C 2 C for

which C �  (C), then C0 is a connectivity class.

Proof. Let Ci 2 C0 with
T
i2I Ci 6= ?, thus

S
i2I Ci 2 C. We have Ci �  (Ci), henceS

i2I Ci �
S
i2I  (Ci). Since  is increasing we �nd that

S
i2I  (Ci) �  (

S
i2I Ci). This

implies that
S
i2I Ci 2 C

0, and the result is proved.

An interesting application of this last proposition is the case that  = � is an opening. For,

then the condition C � �(C) reduces to �(C) = C, as the inclusion �(C) � C trivially holds.

We give an explicit example.

3.13. Example. Recall that C8 is the class of 8-connected subsets of Z2 (Example 3.7(a)). Let

� be the union of the four structural openings with elementary triangles (f(0; 0); (1; 0); (0; 1)g

and its 90�, 180�, 270� rotations). The family consisting of the empty set, the singletons, and

the 8-connected sets that are open with respect to � is a connectivity class.
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Fig. 3.3. The 8-connected subsets of Z2 that are invariant under the opening by the four ele-

mentary triangles constitutes a connectivity class.

In Figure 3.3 we depict three subsets of Z2: the �rst one is connected, the second one is not

connected since it is not 8-connected, and the third one is not connected since �(X) 6= X.

Another way to build new connectivities from existing ones is by means of dilation. We describe

this method in detail in the next section; see Proposition 4.3.
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4. Connectivity openings

By Cx, where x 2 E, we denote the subfamily of C consisting of sets C that contain the point

x. Every set X � E can be written as a union of connected sets that are pairwise disjoint and,

moreover, this decomposition is unique. To see this, pick an element x 2 X and de�ne x(X)

as the union of all sets C 2 C that contain the point x:

x(X) =
[
fC 2 C j x 2 C and C � Xg: (4:1)

Since all sets C at the right hand-side contain at least one point in their intersection, namely

x, their union x(X) is connected. Furthermore, we put x(X) = ? if x 62 X. The invariance

domain of x comprises, besides the empty set, all connected sets that contain x. In other words,

Inv(x) = Cx [ f?g: (4:2)

It is evident that

C =
[
x2E

Inv(x): (4:3)

The following result has been established by Serra [28]; see also [14, 24].

4.1. Proposition. Assume that C is a connectivity on E and let the operators x on P(E) be

de�ned by (4.1). The the following conditions are satis�ed:

(O1) every x is an opening

(O2) x(fxg) = fxg

(O3) x(X) \ y(X) = ? or x(X) = y(X)

(O4) x 62 X ) x(X) = ?

Conversely, if x; x 2 E, is a family of operators satisfying (O1)� (O4), and if C is de�ned by

(4.3), then C de�nes a connectivity. Furthermore, (4.1) holds in this case.

The openings x are called connectivity openings. Given a set X � E, every connected compo-

nent x(X) of X is called a grain of X. The next results says that every connected subset of X

is contained within some grain of X.

4.2. Proposition. Given a connectivity on E and a set X � E. If C � X is a connected set,

then C is contained within some grain of X.

Proof. Assume that Y1; Y2 are grains ofX and that C\Yi 6= ? for i = 1; 2. Then C[Y1; C[Y2 2

C and (C [Y1)\ (C [Y2) 6= ?, hence C [Y1 [Y2 2 C. But this contradicts the assumption that

Y1; Y2 are grains.

An interesting method to build a new connectivity from an existing one is by means of dilation.

This method was �rst described by Serra [28], but the formulation below are due to Ronse [24];

we refer to the latter for a proof.

4.3. Proposition. Let C be a connectivity class in P(E) with connectivity openings x. Assume

that � is an extensive dilation on P(E) such that �(fxg) 2 C, for every x 2 E. Then

C
� = fX � E j �(X) 2 Cg (4:4)

is a connectivity class with C � C�, and the corresponding connectivity openings are given by


�
x = id ^ x�; x 2 E: (4:5)

Furthermore, the equality

�
�
x = x�

holds.
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x

x
δγ

(X)x
γ

(X)

Fig. 4.1. From left to right: a set X and the grain x(X); the dilation �(X); the

grain �x(X).

This proposition is illustrated in Figure 4.1.

Assume that the connectivity class C in Proposition 4.3 is de�ned by the adjacency relation

� on E�E. If � satis�es the assumptions of Proposition 4.3, one can de�ne an adjacency relation
�
� as follows:

x1
�
� x2 if there exist y1 2 �(fx1g); y2 2 �(fx2g) such that y1 � y2: (4:6)

It is rather straightforward to show that the connectivity class C� in (4.4) is based on the

adjacency
�
�.

4.4. Remarks.

(a) For the family C� in (4.4) to be a connectivity class, it is su�cient that � is a dilation with

�(X) 6= ?, for every X � E. However, we cannot derive an explicit expression such as (4.5) for

the associated connectivity class in this case.

(b) Under the assumptions of Proposition 4.3 we can show that

C
� = fX � E j X � C � �(X) for some C 2 Cg (4:7)

The inclusion `�' is trivial. Assume now that X � C � �(X); we show that �(X) 2 C. From

Proposition 4.2 we know that C lies within some grain Y of �(X). Take x 2 X � C. As

x 2 �(fxg)\C, we get that �(fxg) � Y , too. Therefore, �(X) =
S
x2X �(fxg) � Y , which yields

�(X) = Y , i.e., �(X) 2 C.

(c) In fact, it is not di�cult to show that

C
 = fX � E j X � C �  (X) for some C 2 Cg (4:8)

is a connectivity class for any increasing operator  , presumed that  is extensive on singletons,

i.e., x 2  (fxg), for every x 2 E.

5. Reconstruction

Given a connectivity C on E, we write C b X if C is a grain of X, i.e., C = x(X) for some

x 2 X. Note that this notation means automatically that C is connected and C 6= ?. We de�ne

�(Y j X) as the union of all grains of X that intersect Y :

�(Y j X) =
[
fC b X j C \ Y 6= ?g: (5:1)
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We call �(Y j X) the (geodesic) reconstruction of Y in X [14, 20]; see Figure 5.1 below for an

example.

We establish the following relations between connectivity classes and reconstruction.

5.1. Proposition. Assume that C is a connectivity on E with connectivity openings x. The

reconstruction � given by (5.1) satis�es the properties:

(R1) Y \X � �(Y j X)

(R2) �(Y j �) is an opening, in particular �(Y j X) � X

(R3) �(� j X) is a dilation

(R4) �(� j X) is symmetric, i.e. y 2 �(fxg j X) () x 2 �(fyg j X)

(R5) �(� j X) is idempotent.

There exist the following relations between x and �:

x(X) = �(fxg j X) (5:2)

and

�(Y j X) =
[
y2Y

y(X) (5:3)

Conversely, assume that �(� j �) : P(E) � P(E) ! P(E) is such that (R1) � (R5) hold.

The operators x on P(E) given by (5.2) satisfy the properties (O1) � (O4), and as such they

correspond with a connectivity class C given by (4.3). Furthermore, (5.1) and (5.3) are satis�ed.

Proof. Let C be a connectivity on E with connectivity openings x and let � be given by (5.1).

Then �(fyg j X) =
S
fC b X j y 2 Cg = y(X), thus (5.2) holds. The set fC b X j C\Y 6= ?g

in (5.1) contains the grains of X that contain a point in Y , hence this set equals fy(X) j y 2 Y g.

Thus (5.3) is satis�ed. We demonstrate that properties (R1) � (R5) hold. Property (R1) is

obvious. Equation (5.3) says that �(Y j �) =
W
y2Y y; since a supremum of openings is an

opening [14], (R2) follows. Combination of (5.2) and (5.3) gives that

�(Y j X) =
[
y2Y

�(fyg j X);

which yields immediately that �(� j X) is a dilation. Property (R4) is a straightforward conse-

quence of (5.2) and (O3). To prove (R5) we use (5.3) and the fact that �(� j X) is a dilation

(see (R3)):

�(�(Y j X) j X) = �(
[
y2Y

y(X) j X) =
[
y2Y

�(y(X) j X)

=
[
y2Y

[
z2y(X)

z(X) =
[
y2Y

[
z2y(X)

y(X)

=
[
y2Y

y(X) = �(Y j X):

Here we have used that z(X) = y(X) if z 2 y(X).

To prove the converse, assume that � satis�es (R1) � (R5) and de�ne x by (5.2). First

we show that (O1) � (O4) hold. Property (O1) follows immediately from (R2). To prove (O2)

we must show that x(fxg) = fxg. From the fact that x is an opening, we get x(fxg) � fxg.

On the other hand, (R1) yields that x 2 x(fxg). To prove (O3), we �rst make the following

observation:

y 2 �(fxg j X) ) �(fxg j X) = �(fyg j X): (5:4)
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For, (R3) implies that �(� j X) is increasing, hence

�(fyg j X) � �(�(fxg j X) j X) = �(fxg j X);

where the equality follows from (R5). Furthermore, (R4) yields that x 2 �(fyg j X) if y 2

�(fxg j X), and the same argument now shows that �(fxg j X) � �(fyg j X), whence equality

in (5.4) follows. Now, if z 2 x(X)\y(X), then by (5.4), z(X) = x(X) = y(X), which proves

(O3). We prove (O4). Suppose x 62 X; we must show that x(X) = ?. Suppose y 2 �(fxg j X);

from (R4) we get that x 2 �(fyg j X). But (R2) yields that �(fyg j X) � X, so x 2 X, a

contradiction. The validity of relation (5.3) is a direct consequence of (R3) and de�nition (5.2).

However, starting from the connectivity openings x, relations (5.1) and (5.3) must yield the

same reconstruction, and we conclude that (5.1) holds as well. This �nishes the proof.

Proposition 4.1 and Proposition 5.1 show that there exists three equivalent but entirely di�erent

formulations of a connectivity on E: the connectivity class C satisfying (C1) � (C2), the con-

nectivity openings x satisfying (O1) � (O4), and the reconstruction � satisfying (R1) � (R5).

Depending on the situation at hand we can work with either of them.

In practice, Y is a subset of X in the expression �(Y j X). As a matter of fact, it is

obvious that �(Y j X) = �(Y \X j X), which yields the empty set if Y \X = ?. The sets X

and Y in �(Y j X) are called the mask (image) and marker (image), respectively.

If the connectivity is based on some adjacency relation, then there exists a simple propa-

gation algorithm for the reconstruction �(Y j X):

R = ?; N = Y \X;

while N 6= ? do f

R = R [N; N
0 = ?;

for x 2 N and y 2 XnR with y � x do N
0 = N

0 [ fyg;

N = N
0;

g

�(Y j X) = R

At the end of every step in the while-loop, N contains the points in X that are adjacent to

points added in the previous step and that have not been found before.

The algorithm is illustrated in Figure 5.1 for the case of 8-connectivity on Z2.

Fig. 5.1. Reconstruction algorithm for 8-connectivity. From left to right: the mask image X

(grey) and the marker image Y (black); 15 iterations; 50 iterations; �nal result �(Y j X).

From (5.2) we get that the opening x can be computed with the aid of the algorithm

given above; in this case we start with N = fxg.
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As an illustration, we consider the case described in Proposition 4.3, where C� is the

connectivity class C� = fX � E j �(X) 2 Cg. We have seen that �x = id ^ x� in this case. The

corresponding reconstruction �� is given by

�
�(Y j X) = X \ �(Y j �(X));

where � is the reconstruction associated with connectivity C. In fact, this relation results from

a simple manipulation:

�
�(Y j X) =

[
y2Y


�
y(X) =

[
y2Y

(X \ y�(X))

= X \ (
[
y2Y

y�(X)) = X \ �(Y j �(X)):

In image processing terminology, the reconstruction � yields a reconstruction of the fore-

ground. Instead, one can also perform a reconstruction of the background. We call the resulting

operator the background reconstruction or dual reconstruction, and denote it by �� (cf. (2.1)):

�
�(Y j X) =

�
�(Y c

j X
c)
�c
:

For this operator, one can derive properties dual to (R1)� (R5). In particular we get that the

mapping Y 7! �
�(Y j X) is an erosion. The dual reconstruction is illustrated in Figure 5.2.

Fig. 5.2. Dual reconstruction algorithm. From left to right: the mask image X (black) and the

marker image Y (grey and black); 20 iterations; 75 iterations; �nal result ��(Y j X) (grey and

black).

Observe that

�(Y j X) � X � �
�(Y j X);

for any two sets X;Y � E.

6. Partitions and zonal graph representations

Having introduced the notion of a connectivity class and the derived notion of a grain of an

image, we are able to give a formal de�nition of a connected operator. However, rather than

giving this de�nition right away, we introduce two other concepts that, so we believe, make the

de�nition of a connected operator easier to understand. The �rst concept introduced in this

section is that of a partition. In words, a partition is a subdivision of the underlying space into

disjoint zones.
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6.1. De�nition. Given a space E, a function P : E ! P(E) is called a partition of E if

(i) x 2 P (x), x 2 E

(ii) P (x) = P (y) or P (x) \ P (y) = ?, for x; y 2 E.

We call P (x) the zone of P that contains x.

If E is endowed with a connectivity C and if P (x) 2 C for every x 2 E, then we say that

the partition P is connected.

Given two partitions P; P 0 of the space E, we say that P is coarser than P 0 (or that P 0 is �ner

than P ) if P 0(x) � P (x) for every x 2 E; see Figure 6.1 for an illustration. We denote this by

P v P
0.

Fig. 6.1. The partition at the left is coarser than the one at the right.

The relation v de�nes a partial ordering on the set of all partitions of E. In fact, it is not

di�cult to show that the partially ordered set of partitions is a complete lattice [28]. The set

of all connected partitions, however, does not have a lattice structure (for what follows, these

observations are of no importance).

Every binary image (i.e., set) X � E can be associated with a connected partition P (X)

where the zones of P (X) are the grains of X and Xc. Writing P (X;h) = P (X)(h), we have

P (X;h) =

�
h(X); if h 2 X

h(X
c); if h 62 Xc.

Although this is not made explicit in our notation, the partition P (X) depends upon the un-

derlying connectivity; refer to Figure 6.3 below for an illustration.

Given a connectivity C on E, de�ne a binary relation � on C � C by

C1 � C2 if C1 [ C2 2 C: (6:1)

We say that the connected sets C1 and C2 are adjacent. By the second axiom (C2) of a

connectivity class, we �nd that C1 � C2 if C1\C2 6= ?. However, having a nonempty intersection

is not a prerequisite for adjacency. The attentive reader will have noticed that we use the same

notation for adjacency of connected sets as for points; see De�nition 3.2. This is justi�ed by

the following observation. Let C
�
be the connectivity class deriving from an adjacency � on

E �E. Two sets C1; C2 2 C� are adjacent in the sense of (6.1) if and only if there exist points

x1 2 C1; x2 2 C2 such that x1 � x2. The latter means that fx1g � fx2g in the sense of (6.1).

The zonal graph (also called region adjacency graph in the literature [1]) of a binary image

X is a graph that takes the zones of P (X) as its vertices and that uses the adjacency � in

(6.1) to de�ne edges [22]. Furthermore, this representation speci�es for each vertex whether it

belongs to the foreground or the background.
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6.2. De�nition. Let C be a connectivity on E and X � E. The zonal graph of X is the

triple (P (X);�; IX ), where IX : P (X) ! f0; 1g assigns the value 0 or 1 to every zone of P (X)

depending on whether this zone corresponds with a foreground or a background grain, i.e.

IX(C) =

�
1; if C b X

0; if C b X
c

An illustration of this concept is given in Figure 6.2.

Fig. 6.2. Zonal graph (top) associated with a binary

image (bottom).

Often, we refer to the value IX(C) as the colour at zone P . Note that, due to the fact

that two adjacent vertices must have di�erent colours, it su�ces to specify the colour of only

one vertex in each connected subgraph; see also Figure 6.3.

Di�erent connectivities yield di�erent zonal graphs, as is clearly illustrated by the ex-

amples in Figure 6.3. Here we consider three di�erent connectivities on Z2: 4-connectivity,

8-connectivity and the so-called chessboard connectivity. The latter is determined by the adja-

cency relation: (x; y) � (x0; y0) i� jx� x
0j+ jy � y

0j = 0 or 2, for two points (x; y); (x0; y0) 2 Z2.

This means that the white �elds of a chessboard are connected (as well as the black �elds);

however a white and a black �eld cannot be adjacent.

The three connectivities in Figure 6.3, although all of them are based on adjacency, are

essentially di�erent. Chessboard adjacency divides the space Z2 into two parts (as such, it is not

a strong connectivity), and as a result also the zonal graph associated with an image X consists

of two disjoint parts. For 4- and 8-adjacency the zonal graph is always connected. In fact, a

much stronger result holds in the case of 8-adjacency. Recall that a tree is a graph without

cycles [2].

6.3. Proposition. Consider the connectivity on Z2 given by 8-adjacency. If X � Z
2, then the

graph (P (X);�) is a tree.

A proof has been given by Kong and Roscoe [18]. The example in Figure 6.3 shows that this

result is not valid in the 4-adjacent case.
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Fig. 6.3. Zonal graphs of a given set X � Z2 corresponding with

three di�erent connectivities.

7. Connected operators

We start with a formal de�nition of a connected operator.

7.1. De�nition. An operator  on P(E) is connected if the partition P ( (X)) is coarser than

P (X), for every set X � E.

A connected operator acts on the zones of an image in an all-or-nothing way: a zone is left

untouched or is changed altogether. This means in particular that boundaries of the zones

can only disappear; they cannot be shifted or broken, nor can new boundaries emerge. This

is nicely illustrated in Figure 7.1: here the middle image cannot be the output of a connected

operator applied to the image at the left. However, the right image may result from a connected

operator.

We give some simple examples.

7.2. Example.

(a) The identity operator and the complementation operator X 7! X
c are connected (regardless

of the speci�c connectivity).

(b) The connectivity openings x are connected.

(c) For a �xed marker set Y , the reconstruction �(Y j �) and the dual reconstruction ��(Y j �)

are both connected.

We will discuss various other examples later. First we give an alternative characterisation of a

connected operator [30].

7.3. Proposition. An operator  is connected if and only if the symmetric di�erence X4 (X)

consists of grains of X and Xc, for every X � Z
2.
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Fig. 7.1. A connected operator applied to the left image can give rise

to the image at the right but not to the one in the middle.

Proof. `if': let X � E, we show that P (X;h) � P ( (X); h), for every h 2 E. We must

distinguish between the cases h 2 X and h 62 X. We consider only the �rst case; the second is

treated analogously. If h 2 X, then P (X;h) = h(X). We must show that h(X) � P ( (X); h).

Suppose h(X) 6�  (X); there is a point k such that k 2 h(X) and k 62  (X). Now k 2

X4 (X), which yields that k(X) � X4 (X). However, k(X) = h(X), whence we conclude

that h(X) �  (X)c. Therefore h(X) � h( (X)c) = P ( (X); h).

`only if': assume that  is connected, then P ( (X)) is coarser than P (X). We must prove

that for every h 2 X4 (X), the entire zone P (X;h) lies in X4 (X). We have to consider two

cases: h 2 X and h 62 X.

h 2 X: thus h 62  (X). Then P (X;h) � P ( (X); h) leads to h(X) � h( (X)c). But

this means that h(X) � X4 (X).

h 62 X: then h 2  (X), and P (X;h) � P ( (X); h) leads to h(X
c) � h( (X)). That is,

h(X
c) � X4 (X).

It is important to point out that the connectedness of a morphological operator does not only

depend on the action of the operator, but also on the underlying connectivity class. This point is

most clearly illustrated by considering the two extreme cases Cmin and Cmax; cf. Example 3.6(a)-

(b). If C = Cmin, then every operator on P(E) is connected. However, when C = Cmax, then

the only connected operators are the identity operator X 7! X, the complementation operator

X 7! X
c, and the constant operators X 7! ? and X 7! E. In those cases where it is important

to indicate the particular choice of the underlying connectivity class, we will speak about C-

connected operators.

7.4. Proposition. Consider the connectivity classes C and C0, and assume that C � C0. Every

C0-connected operator is also C-connected.

Proof. Given a C0-connected operator  , we must show that  is C-connected, that is, X4 (X)

consists of C-grains of X and Xc. Observe �rst that every C0-grain of a set Y � E is a union of

C-grains of this set. Since X4 (X) is a union of C0-grains of X and Xc, it is also a union of

C-grains of X and Xc. This proves the result.

In the next proposition we sum up some methods for the construction of connected opera-

tors. One of the results concerns operators resulting from substitution of given operators into

a Boolean function. The idea is the following: if b is a Boolean function of n variables, and if
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 1;  2; : : : ;  n are operator on P(E), then we can de�ne a new operator

 = b( 1; : : : ;  n)

as follows:

 (X)(h) = b( 1(X)(h); : : : ;  n(X)(h)); (7:1)

here X(h) is the indicator function associated with X, that is, X(h) equals 1 if h 2 X and 0

otherwise. For example, if b(u1; : : : ; un) = u1 � u2 � � � � � un, then b( 1; : : : ;  n) =  1 ^ � � � ^  n.

7.5. Proposition.

(a) An operator  is connected if and only if its negative  � is connected.

(b) If  1;  2 are connected, then their composition  2 1 is connected, too.

(c) If  i is a connected operator for every i in some index set I, then the in�mum
V
i2I  i and

the supremum
W
i2I  i are connected, too.

(d) Given a Boolean function b of n variables and n connected operators  1;  2; : : : ;  n, then the

operator  = b( 1;  2; : : : ;  n) is connected as well.

Proof. We prove (a) and (d). The other two results are proved in a similar fashion.

(a) Assume that  is connected, then P ( (X)) v P (X), for every X � E. Substituting

X
c yields that

P ( (Xc)) v P (Xc):

Using that P ( �(X)) = P ( (Xc)c) = P ( (Xc)), and that P (Xc) = P (X), we get that

P ( �(X)) v P (X):

This proves the result in (a).

(d) The proof becomes obvious by the observation that the value of  i(X)(h) is constantly

0 or 1 on zones of the partition P (X) (this value only depending on i). As a result,  (X)(h) is

constant on zones of P (X), too. Therefore  is a connected operator.

If the connectivity class is based upon adjacency, then every connected operator can be described

in terms of a recolouring and merging of the corresponding zonal graph. In this paper, we con�ne

ourselves to an informal description of this property; in a forthcoming paper it will be discussed

in much greater detail. The idea is the following: since every connected operator acts on the

level of the zones of the partition, it can change the value (colour) of the function IX from 1 to

0 or vice versa. After such a recolouring, two neighbouring vertices in the zonal graph may have

the same colour; such vertices can be merged into one new vertex that inherits all edges from

its predecessors. This results in a new zonal graph which can then be shown to correspond to

the transformed binary image. We illustrate this procedure by means of a simple example, the

area operator. This operator ips the colours at zones with area less than a given threshold T

(T = 10 in Figure 7.2).

If the connectivity class is not based upon some adjacency, this approach may fail dra-

matically, as the following example shows. In this example, we consider the connectivity class

de�ned in Example 3.13. Let  be the connected operator that changes background grains

comprising not more than one pixel. In Figure 7.3,  changes the value of pixel A from 0 to 1.

Since this pixel corresponds to an isolated vertex in the zonal graph, it cannot be merged with

the vertices B,C,D,E.

It is, on the other hand, also possible to build connected operators from a recolour-

ing/merging procedure of zonal graphs. We illustrate the idea by means of an example. A

comprehensive treatment will be postponed to a future publication.
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Fig. 7.2. The area operator that ips zones with area less than 10 (see the numbers printed inside

the vertices at the left �gure) can be interpreted as a recolouring followed by a merging of the zonal

graph.

ψ
C

D E

A
zonal graph

C

A BD

E

B

Fig. 7.3. The connected operator that changes isolated background

pixels cannot be described in terms of recolouring and merging; see

text.

Recall that a vertex in a tree is called a leaf if it possesses exactly one neighbour. For

example, the tree in Figure 7.4 contains 5 leaves. We de�ne a recolouring as follows: the

colour at the leaves is ipped (from 0 to 1 and vice versa), but the colours at other vertices is

left unaltered. We apply this recolouring to the zonal graph depicted at the left hand-side of

Figure 7.4, and merge adjacent vertices with the same colour. The outcome is depicted at the

right hand-side of Figure 7.4. The operator associated with this recolouring is connected (and

self-dual).

Suppose that �;  are operators on P(E), and that  is connected. De�ne the operator

� = �(� j  ) by

�(X) = �(�(X) j  (X));

that is, (cf.(5.3)),

�(X) =
[

h2�(X)

h( (X));
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Fig. 7.4. The leaves of the tree receive the colour of their neigbour.

and in combination with the fact that  (X) consists of grains of X and Xc, we conclude that �

consists of grains of X and Xc; thus � is connected. We have the following result.

7.6. Proposition. Assume that �;  are operators on P(E) and that  is connected, then the

operators � = �(� j  ) and � = �
�(� j  ) are connected. Furthermore,

� �  � �:

Using the previous result, one can construct connected openings (openings that are connected

operators). The basic idea is to start with an arbitrary opening and to perform a reconstruction

afterwards: let � be an opening on P(E) and de�ne

��(X) = �(�(X) j X): (7:2)

In Figure 7.5 we show an example, where �(X) = X � B, B being a disk.

Fig. 7.5. Opening by reconstruction: the original opening is an opening

by a disk (in black). From left to right: X, �(X), and ��(X).

7.7. Proposition. If � is an opening, then �� is a connected opening. Moreover, � is a

connected opening if and only if � = ��.

The opening �� is called opening by reconstruction. In Proposition 8.8 we state and prove a more

general version of this result.
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For closings � we de�ne

��(X) = �
�(�(X) j X);

called closing by reconstruction, and we can prove the dual statement of the proposition above.

Note that the following duality relations hold:

(��)�= (��)� and (��)�= (��)�:

In the following sections we will discuss other examples of connected openings and closings.

8. Grain operators

The opening depicted in Figure 7.5 has an interesting property: it can be computed by taking the

openings of the separate grains. In fact, this opening is a typical example of a class of connected

operators to which we refer as grain operators. This class of operators has been investigated

earlier by Crespo and Schafer [8] who called them connected-component local operators. The

treatment given here is di�erent from theirs, however.

Throughout the remainder, we use the following convention: for a statement S, the ex-

pression [S] equals the Boolean value (0 or 1) indicating whether S is true or false. Thus, instead

of X(h) we can write [h 2 X].

Given a connectivity C on E, by a grain criterion we mean a mapping u : C ! f0; 1g.

Suppose that we are given two grain criteria, u for the foreground and v for the background.

De�ne an operator  =  u;v as follows:

 (X) =
[
fC j (C b X and u(C) = 1) or (C b X

c and v(C) = 0)g: (8:1)

Thus  u;v is the operator that leaves foreground grains C for which u(C) = 1 and background

grains C for which v(C) = 1 unchanged, and that ips the values at the other zones of the

partition. Such operators will be called grain operators. The action of a grain operator is

captured by Figure 8.1. By a grain opening we mean an opening that is at the same time a

grain operator (same for closing, �lter, etc).

u=1

v=1

v=0

u=0

u=1
u=1

v=0

v=1

Fig. 8.1. A binary image X (left) and its transform  u;v(X) (right). In

every foreground (resp. background) grain of X it is printed whether the

grain criterion u (resp. v) equals 0 or 1.
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Observe that u; v can be recaptured from  u;v in the following way:

u(C) = [C �  (C)] and v(C) = [C �  
�(C)]: (8:2)

Note that the second expression is equivalent to

v(C) = [ (Cc) � C
c]:

Let us, by means of example, consider again the two extreme connectivity classes. When C =

Cmax, then each of the four connected operators X 7! X; X 7! X
c
; X 7! ?; X 7! E is a grain

operator. For C = Cmin the situation is less trivial. In this case, the singletons are the only

non-empty connected sets. Now the foreground and background criterion can be represented by

the mappings u; v : E ! f0; 1g, respectively. Let A;B � E be given by A = fx 2 E j u(x) = 1g

and B = fx 2 E j v(x) = 0g. Then

 u;v(X) = (X \A) [ (Xc
\B): (8:3)

Thus, every grain operator is of the form (8.3), with A;B arbitrary subsets of E. Recall that,

under the connectivity C = Cmin, every operator on P(E) is connected.

We write v � 1 if v(C) = 1 for every C 2 C; in this case we write  u;1 for  u;v. Dually,

 1;v represents the grain operator  u;v with u � 1. The connectivity opening h is a grain

operator with u(C) = [h 2 C] and v � 1. The next two examples of grain openings are more

interesting.

8.1. Example (Area opening). Let a : P(E) ! IR+ be an increasing mapping, i.e., X � Y

implies a(X) � a(Y ). De�ne the grain criterion uS(C) = [a(C) � S], where S is a given

nonnegative threshold. The operator �S =  uS ;1 is a grain opening. It is easy to verify by

direct means that �S is an opening, but it also follows from Proposition 8.7 given below. An

important practical example is the case where a is an area measure on IR
2 or Z2 (in the latter

case, a(X) is the number of pixels of X). In this case we refer to �S as the area opening. It

deletes from a set X all grains with area less than S. The area opening has become very popular

recently, mainly due to the e�orts of Vincent [33] who invented a fast algorithm for the area

opening, both for binary and grey-scale images.

8.2. Example (Opening by reconstruction). For simplicity we restrict ourselves here to

8-connectivity on Z2. Let B � Z
2 be a connected structuring element and consider the grain

criterion u(C) = [C	B 6= ?]. The operator �u =  u;1 is a grain opening; in fact, it is the opening

��(X) = �(�(X) j X), where � is the structural opening �(X) = X � B; cf. Proposition 7.7. If

B is not connected, then we only have the inequality �u � ��; refer to Proposition 12.4 for a

precise statement.

Similarly we can build area closings and closings by reconstruction.

Given a collection of grain operators, we can build new grain operators using supremum,

in�mum, negation, and Boolean functions; see also Proposition 7.5. We use the following nota-

tion: U and V map a grain operator onto the corresponding foreground and background criterion,

respectively; thus U( u;v) = u and V ( u;v) = v. Note that (8.2) guarantees uniqueness of u

and v.

We de�ne in�ma, suprema and Boolean functions of criteria in the usual way, namely

pointwise. For example, if u1; u2; : : : ; un are grain criteria and b a Boolean function, then

u = b(u1; u2; : : : ; un) is the criterion given by u(C) = b(u1(C); u2(C); : : : ; un(C)).
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8.3. Proposition.

(a) If  is a grain operator then  � is a grain operator, too, and

U( �) = V ( ) and V ( �) = U( ):

In other words  �u;v =  v;u. In particular,  u;v is self-dual if and only if u = v.

(b) Assume that  i; i 2 I, are grain operators, then
V
i2I  i is grain operator and

U(
^
i2I

 i) =
^
i2I

U( i) and V (
^
i2I

 i) =
_
i2I

V ( i):

Similarly,
W
i2I  i is a grain operator and

U(
_
i2I

 i) =
_
i2I

U( i) and V (
_
i2I

 i) =
^
i2I

V ( i):

(c) Assume that  1;  2; : : : ;  n are grain operators and that b is a Boolean function of n variables,

then  = b( 1;  2; : : : ;  n) is a grain operator, and

U( ) = b(U( 1); : : : ; U( n)) and V ( ) = b
�(V ( 1); : : : ; V ( n)):

Here b� denotes the negative of b given by b�(u1; : : : ; un) = 1� b(1� u1; : : : ; 1� un).

Proof. We prove (c); the results in (a) and (b) are proved in a similar way. We put ui = U( i)

and vi = V ( i). Furthermore, u = b(u1; u2; : : : ; un) and v = b
�(v1; v2; : : : ; vn). We must show

that  =  u;v.

Let C b X; for every h 2 C we have  i(X)(h) = ui(C). Recalling the expression for  in

(7.1), we get

 (X)(h) = b( 1(X)(h); : : : ;  n(X)(h))

= b(u1(C); : : : ; un(C))

= u(C):

Let C b X
c; for every h 2 C we have  i(X)(h) = 1� vi(C). Hence

 (X)(h) = b( 1(X)(h); : : : ;  n(X)(h))

= b(1� v1(C); : : : ; 1 � vn(C))

= 1� b
�(v1(C); : : : ; vn(C))

= 1� v(C):

These two expressions for  (X)(h), h 2 C, where C is a foreground resp. background grain,

yield that  =  u;v.

In general, however, a composition of grain operators does not yield a grain operator. Consider

the self-dual grain operator  =  u;u on P(IR
2), where u is the area criterion u(C) = [a(C) � 20]

and a(C) is the area of C. This operator ips the value at the foreground and background grains

with area less than 20. In Figure 8.2 the operator  2 is applied to two di�erent sets X and Y .

If  2 were a grain operator, the value of  2(X) and  2(Y ) at the grain with the thick boundary

ought to be the same; however, the value is 1 for  2(X) and 0 for  2(Y ). Therefore  2 is not a

grain operator.

This example illustrates also quite nicely how grain operators act on a binary image,

or better, the corresponding zonal graph. If  is a grain operator, then the value  (X)(h) is

completely determined by the valueX(h) and the vertex P (X;h) of the zonal graph; information

about adjacent vertices is irrelevant. This property is captured by the following proposition.
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Fig. 8.2. The operator  that changes the colour of zones with

area less than 20 is a grain operator, but  2 is not.

8.4. Proposition. A connected operator  : P(E) ! P(E) is a grain operator if and only

if it has the following property: if h 2 E and X;Y � E, are such that X(h) = Y (h) and

P (X;h) = P (Y; h), then  (X)(h) =  (Y )(h).

Proof. `only if': easy.

`if': Suppose that  is a connected operator with the given property. De�ne u; v by

u(C) = [C �  (C)] and v(C) = [ (Cc) � C
c];

we must show that  =  u;v. Let X � E and h 2 E, we demonstrate that  (X)(h) =

 u;v(X)(h). We consider only the case that h 2 X; the case h 2 Xc is treated similarly. Assume

therefore that h 2 C b X. There are two possibilities:

(i) u(C) = 1: then h 2  u;v(X). Furthermore, u(C) = 1 means that C �  (C). Since

X(h) = C(h) = 1 and P (X;h) = P (C; h) = C, we get that  (X)(h) =  (C)(h) = 1, i.e.,

h 2  (X).

(ii) u(C) = 0: then h 62  u;v(X). Since X(h) = C(h) = 1 and P (X;h) = P (C; h) = C,

we get that  (X)(h) =  (C)(h) = 0 because C �  (C)c. Thus h 62  (X).

In fact, in [15] we used this characterisation of grain operators as a de�nition and showed that

every grain operator is of the form  =  u;v, with u and v given by (8.2). Obviously, the

operator depicted in Figure 7.4, where the values at the leaf of a tree are ipped, is not a grain

operator. To determine whether a vertex is a leaf, one needs information about the neighbours

of this vertex: \is there one or more than one neighbour?"

The next problem that we address here is the increasingness of grain operators. A criterion

u : C ! f0; 1g is said to be increasing if u(C) � u(C 0) for C;C 0 2 C with C � C
0. It is tempting

to suppose that  u;v is increasing if both criteria u and v are increasing. A �rst counterexample

to this supposition is given in Figure 8.3, where E = Z2 endowed with 8-connectivity.

A second counterexample is obtained by examining the connectivity class Cmin, in which

case every criterion is increasing. We have seen that every grain operator is of the form  (X) =
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ψ

X Y

Fig. 8.3. The grain operator  =  u;u, where

u(C) = [area(C) � 15], is not increasing. Indeed, X � Y

but  (X) 6�  (Y ).

(X \ A) [ (Xc \ B); here A = fx 2 E j u(x) = 1g and B = fx 2 E j v(x) = 0g. This operator

is increasing if and only if B � A, in which case  reduces to  (X) = (X \A) [B.

The following result shows that we need an extra condition.

8.5. Proposition. The grain operator  u;v is increasing if and only if both u and v are

increasing criteria, and the following condition holds:

u(h(X [ fhg)) _ v(h(X
c
[ fhg)) = 1; (8:4)

if X � E and h 2 E.

Proof. `if': assume that u; v obey the conditions above; we show that  =  u;v is increasing.

Let X � Y ; we must show that  (X) �  (Y ). Take h 2  (X). Three cases are to be

distinguished:

1. h 2 X: put C = h(X), then C b X and C � C
0 = h(Y ). As h 2  (X), we have

u(C) = 1 and, by the increasingness of u, u(C 0) = 1 as well. This implies that h 2  (Y ).

2. h 62 Y : put C 0 = h(Y
c) and C = h(X

c), then C 0 � C since Y c � X
c. From the fact

that h 2  (X) we conclude that v(C) = 0 and thus v(C 0) = 0. We get that h 2  (Y ).

3. h 2 Y and h 62 X: suppose h 62  (Y ), then u(h(Y )) = 0. Now (8.4) implies that

v(h(Y
c [ fhg)) = 1. Obviously, h(Y

c [ fhg) � h(X
c), and since v is increasing, we get that

v(h(X
c)) = 1. However, this implies that the grain h(X

c) does not lie in  (X), contradicting

h 2  (X). Thus we conclude that h 2  (Y ).

`only if': assume that  =  u;v is increasing. First we show that u is an increasing

grain criterion. The proof that v is increasing is analogous. Let C � C
0 be connected, then

 (C) �  (C 0). Suppose that u(C) = 1, then C �  (C), hence C �  (C 0). Thus we get that

C � C
0\ (C 0), and we conclude that u(C 0) = 1 since otherwise C 0\ (C 0) = ?. Thus it remains

to show (8.4). Let X � E and u(h(X [ fhg)) = 0; we must show that v(h(X
c [ fhg)) = 1.
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Indeed, since h 62  (X [ fhg) and  is increasing, it follows that h 62  (X nfhg). This means

that v(P (Xnfhg; h)) = 1. Now

P (Xnfhg; h) = h((Xnfhg)
c) = h(X

c
[ fhg):

This yields the result.

Indeed, for C = Cmin, condition (8.4) amounts to u(h)_v(h) = 1, yielding that h 2 A or h 2 Bc,

for every h 2 E, i.e., B � A.

The area criterion of Example 8.1, u(C) = [a(C) � S], and the structural criterion of Ex-

ample 8.2, u(C) = [C	B 6= ?] that leads to the opening by reconstruction, are both increasing.

A criterion on P(Z2) that is not increasing is u(C) = [perimeter(C) � S], where perimeter(C)

equals the number of boundary pixels in C. Also u(C) = [area(C)=(perimeter(C))2 � k], a

criterion that provides a measure for the circularity of C, is nonincreasing. In [5] Breen and

Jones discuss some other nonincreasing criteria.

We conclude this section with some results on extensive and anti-extensive grain operators,

in particular, grain openings and closings. In Figure 8.2 we have presented an example showing

that composition of two grain operators does not yield a grain operator in general. However, we

do get some interesting results in the case where both operators are (anti-) extensive. We start

with a lemma.

8.6. Lemma. Let u1; u2 be two grain criteria, then

 u2;1 u1;1 =  u1^u2;1:

Proof. It is easy to establish the following relation:

C b  u;1(X) i� C b X and u(C) = 1:

Thus
 u2;1 u1;1(X) = fC 2 C j C b  u1;1 and u2(C) = 1g

= fC 2 C j C b X and u2(C) = 1 and u1(C) = 1g

= fC 2 C j C b X and (u1 ^ u2)(C) = 1g

This yields the result.

Grain operators of the form  u;1 are anti-extensive, and, moreover, every anti-extensive grain

operator is of this form. Combining Lemma 8.6 with Proposition 8.3(b), we arrive at the

following identities:

 u2;1 u1;1 =  u1;1 u2;1 =  u1^u2;1 =  u1;1 ^  u2;1 (8:5)

 1;v2 1;v1 =  1;v1 1;v2 =  1;v1^v2 =  1;v1 _  1;v2 (8:6)

Taking u1 = u2 = u in (8.5) and v1 = v2 = v in (8.6), respectively, we get

 
2
u;1 =  u;1 and  

2
1;v =  1;v (8:7)

i.e., every (anti-) extensive grain operator is idempotent. Using Proposition 8.5 we arrive at the

following result.

8.7. Proposition. Let u; v be increasing grain criteria. Then  u;1 is a grain opening and  1;v
a grain closing.
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We write

�u =  u;1 and �v =  1;v:

Note that we have the duality relation (cf. Proposition 8.3(a))

�
�

u = �u:

Specialising (8.5) to grain openings we �nd that

�u1�u2 = �u2�u1 = �u1^u2 :

In particular, we have

�uh = h�u

for every grain operator �u and every h 2 E. This follows from the fact that h is a grain

opening with foreground criterion u(C) = [h 2 C]. Taking the supremum over all h 2 E we get

the identity

�u =
_
h2E

�uh;

which expresses that a grain opening can be evaluated grain by grain.

We conclude this section with the following generalisation of Proposition 7.7.

8.8. Proposition. If �u is a grain opening and � is an opening � �u, then �� = �(� j �u) is

a connected opening.

Proof. From Proposition 7.6 we know that �� is connected. We must show that �� is an opening.

It is evident that �� is increasing and that �(X) � ��(X) � �u(X). Therefore ��2 � ��. We must

show that ��2 � ��. Clearly, ��(X) is a union of grains of �u(X), that is, grains of X that intersect

with �(X) and satisfy criterion u:

��(X) = fC b X j C \ �(X) 6= ? and u(C) = 1g:

It follows immediately that �u��(X) = ��(X). For ��2(X) we �nd:

��2(X) = �(���(X) j �u ��(X)) � �(�2(X) j ��(X))

= �(�(X) j ��(X)) =
[

h2�(X)

h(��(X)):

Using that h(��(X)) = h(�u(X)) for h 2 �(X), we get that ��2(X) �
S
h2�(X) h(�u(X)) =

��(X). This proves that �� is an opening.

For completeness we point out that the analogue of Proposition 7.4 for grain operators

does not hold. We leave it as an exercise to the reader to �nd counterexamples.

9. Stable connected operators

The stability concept for connected operators was introduced by Crespo et al [10] and studied

in more detail in [8]. In these studies, however, one speaks about `adjacency stability'. Before

stating the formal de�nition of this concept, we give an intuitive explanation. A connected

operator is stable if it cannot change two adjacent vertices (with values 0 and 1) in the zonal

graph associated with some binary image.
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0C

C

C

C

Fig. 9.1. C1 consists of the grey pixels, C0 of the white pix-

els. C1 � C0 at the left but not at the right.

We introduce the following notations. Let X � E and C1; C0 2 C; we write C1

X
� C0 if

C1 b X; C0 b X
c and C1 � C0. Furthermore, C1 � C0 means that C1

X
� C0 for some X � E.

Refer to Figure 9.1 for an example in the 2-dimensional discrete case.

9.1. De�nition. A connected operator  on P(E) is stable if for every X � E the following

holds:

C1

X
� C0 ) C1 �  (X) or C0 �  (X)c: (9:1)

Indeed, (9.1) means that  cannot change the colour at C1 and C0 simultaneously. If C = Cmin,

then every connected operator is stable. In fact, C1

X
� C0 is never satis�ed in this case so (9.1)

trivially holds. However, if C = Cmax, the operators X 7! X; X 7! E; X 7! ? are connected

and stable, whereas the operator X 7! X
c is connected but not stable.

The following result is evident.

9.2. Proposition. Every (anti-) extensive connected operator is stable.

We give a condition that is slightly stronger than the stability condition. For strong connectivity

classes these two conditions are equivalent.

9.3. Proposition.

(a) Every connected operator  satisfying

x(id _  ) = x _ x ; x 2 E (9:2)

is stable.

(b) On the other hand, if C is a strong connectivity class, then every stable operator satis�es

(9.2).

Proof. Observe �rst that the inequality `�' in (9.2) is trivially satis�ed.

(a): Assume that (9.2) holds; we show that  is stable. Suppose that C1

X
� C0, C1 6�  (X),

and C0 6�  (X)c. Thus C1 �  (X)c and C0 �  (X), since  is connected. Pick h 2 C1, then

C1[C0 � h(X[ (X)). However, h(X)[h( (X)) = C1 and therefore we get a contradiction

with (9.2).

(b): Next, we assume that C is a strong connectivity class and that the operator  is stable;

we show that (9.2) holds. If (9.2) does not hold, then there exist h andX for which h(X[ (X))
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is strictly larger than h(X) [ h( (X)). Obviously, h 2 X or h 2  (X); de�ning C = P (X;h)

we have C � h(X [  (X)) and C � h(X) [ h( (X)). There must exist another zone C 0 of

P (X) such that C 0 � h(X[ (X)) but C 0 6� h(X)[h( (X)). From our assumption that C is

a strong connectivity class, we conclude that there exists a path C = C1 � C2 � � � � � Cn = C
0

with Ck parts of P (X) and Ck � h(X [  (X)) (we also choose Ck 6= Ck+1). The zones Ck lie

in X and Xc, alternatingly. Since Ck � h(X [  (X)), the zones in Xc lie in  (X). But then,

by (9.1) the two neighbours Cj�1; Cj+1 of such a zone Cj lie also in  (X). However, this yields

that all zones, including C 0, lie in  (X), a contradiction.

As a matter of fact, Crespo et al [10, 8] use relation (9.2) to de�ne stable connected operators.

9.4. Proposition.

(a) Let  i; i 2 I, be connected stable operators, then
W
i2I  i and

V
i2I  i are stable, too.

(b) If  1;  2 are connected stable operators, then  2 1 is stable.

(c) If  is connected and stable, then  � is stable.

Rather than giving a formal proof (which is rather straightforward) we will sketch the intuition

behind, say, (b) in Figure 9.2.

ψ
2

ψ
1

Fig. 9.2. The composition  2 1 is stable if

both  1 and  2 are stable.

Two adjacent zones C1; C0 of X with opposite colours both receive the same colour or

remain unchanged if a stable connected operator  is being applied to X. Thus, subsequent

application of  1 and  2 leads to one of the con�gurations at the bottom of Figure 9.2: the

colours at C1 and C0 cannot be changed both.

Our motivation for introducing stable operators is their usefulness in the investigation of

connected �lters and grain �lters in the two forthcoming sections.

Recall that a (strong) connected �lter is a (strong) �lter that is a connected operator; see

also Section 2.

9.5. Proposition. Every strong connected �lter is stable.

Proof. Assume that  is a strong connected �lter and that  is not stable. Then there is a set

X � E and C1; C0 with C1

X
� C0 such that C1 6�  (X) and C0 6�  (X)c; refer to Figure 9.3 for

a sketch in terms of the zonal graph of X and  (X).
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Y=X      (X)

(X)
X

0C

1C

Fig. 9.3. See proof of Proposition 9.5.

Let C 0

1; C
0

0 be such that C 0

1

 (X)

� C
0

0 and C0 � C
0

1; C1 � C
0

0. De�ne Y = X [  (X).

There exists a grain C
00

1 of Y that contains C1 [ C
0

1, since C1 [ C
0

1 is connected. As C 0

1 b

 (X) =  
2(X) �  (Y ), we conclude that C 00

1 �  (Y ). But, since  is strong, we have

 (Y ) =  (X [  (X)) =  (X), whence we �nd that C 00

1 �  (X). In particular, we have

C1 �  (X), a contradiction.

The converse result is not true, however: there exist stable connected �lters that are not strong.

Consider the example in Figure 9.4 where E contains the vertices of a graph and C comprises

all subsets of E that form a connected subgraph. Let the operator  on P(E) be de�ned as

follows:

 (A) = B and  (B) = B:

For other sets X � E,  (X) = ? if X contains not more than two points and  (X) = E

otherwise.

ψ

ψ

BA

O

A     (A)ψ

Fig. 9.4. The connected �lter  is stable but not strong

since B =  (A) 6=  (A \  (A)) = ?.

The operator  is a stable connected �lter, but it is not strong since  (A) 6=  (A\ (A)).
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10. Grain �lters

This section is concerned with grain �lters. The main result (see Proposition 10.3) states that

for an increasing grain operator, stability implies the strong �lter property and vice versa.

Let us, by way of introduction, consider once more the special case C = Cmin. We have

seen that in this case every operator on P(E) is connected and stable. In Section 8 we have

learned that every grain operator is of the form

 (X) = (X \A) [ (Xc
\B);

where A;B � E; cf. (8.3). This operator is increasing if B � A. It is easy to verify (e.g, by

using characteristic functions) that under this condition  is a strong �lter. (In fact, one can

easily show that  is increasing i�  is idempotent.)

Let us return to the general situation. In what follows, the following condition on the

foreground and background criteria u; v plays an important role.

C1 � C0 ) u(C1) _ v(C0) = 1: (10:1)

Obviously, if u or v is identically 1, then this condition holds trivially. Furthermore, as we show

in our next result, this condition is somewhat stronger than (8.4); recall that the latter condition

has been used to establish increasingness of the grain operator  u;v.

10.1. Proposition. Assume that C is a strong connectivity class. Let u; v be increasing grain

criteria for which (10.1) holds, then (8.4) holds as well, i.e.

u(h(X [ fhg)) _ v(h(X
c
[ fhg)) = 1;

if X � E and h 2 E.

Proof. Let X � E and h 2 E. Without loss of generality we assume that h 2 X. Putting

C = h(X [ fhg) = h(X) and D = h(X
c [ fhg), we must show that u(C) _ v(D) = 1. We

distinguish two cases:

D = fhg: this means that every neighbour of h is an element of X, and hence of C. De�ne

Y = C nfhg, choose k 6= h with h � k, then k 2 Y . If C 0 = k(Y ), then C
0
Y
� fhg and from

(10.1) we derive that u(C 0) _ v(fhg) = 1. Since u is increasing and C
0 � C, this yields that

u(C) _ v(D) = 1.

D is larger than fhg: choose k 2 D such that h � k and de�ne D0 = k(X
c), then C

X
� D

0

and we conclude from (10.1) that u(C)_v(D0) = 1. Since v is increasing and D0 � D this yields

that u(C) _ v(D) = 1. This concludes the proof.

The following formal notation for the vertices of the zonal graph helps us to keep the proofs

below compact and understandable.

10.2. De�nition. Let X � E be �xed. Denote by �X the family of subsets of vertices of

the zonal graph of X that form a connected subgraph. In other words, an element p 2 �X
corresponds with a collection fP (X;h) j h 2 Hg, where H � E, such that

S
h2H P (X;h) is

connected. Let p; q 2 �X ; we write p � q if P (X;h) � P (X; k) for some P (X;h) 2 p and

P (X; k) 2 q. If u is a grain criterion and p 2 �X , p = fP (X;h) j h 2 Hg, then u(p) :=

u(
S
h2H P (X;h)). By �(p) we denote the element in �X comprising the zones in p and all of

its neighbours:

�(p) = p [ fP (X; k) j P (X; k) � P (X;h) for some h 2 Hg:
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If p 2 �X comprises one zone of X, say p = fP (X;h)g, we write p
:
= 1 if this zone has colour

1 (i.e., h 2 X) and p
:
= 0 if it has colour 0 (i.e., h 2 X

c). Furthermore, if  is a connected

operator, then P ( (X); h) is a union of zones of X (including P (X;h)); we denote this collection

by p . In mathematical terms:

p = fP (X; k) j P (X; k) � P ( (X); h)g:

We write p 
:
= 1 if h 2  (X) (meaning that all zones P (X; k) in p have achieved colour 1) and

p 
:
= 0 if h 62  (X).

Observe that p � p if p = fP (X;h)g and  is a connected operator.

We are now ready to state the main result of this section.

10.3. Proposition. Let u; v be grain criteria such that the grain operator  u;v is increasing

and let �u =  u;1 and �v =  1;v be a grain opening and closing, respectively. The following are

equivalent:

(i) C1 � C0 ) u(C1) _ v(C0) = 1 (i.e., condition (10.1) holds);

(ii)  u;v is stable;

(iii)  u;v is a strong �lter;

(iv)  u;v = �u�v = �v�u.

Proof. Note �rst that u; v are increasing by Proposition 8.5. In what follows we delete the

subindices u and v.

(i) () (ii): straightforward.

(i) ) (iv): assume that (10.1) holds, we show that  (X) = ��(X) for every X. This

amounts to showing that p 
:
= 1 i� p��

:
= 1 for p = fP (X;h)g 2 �X . We distinguish two

situations: p
:
= 1 and p

:
= 0.

p
:
= 1: If p 

:
= 1, then u(p) = 1 and, since p � p� and u is increasing, we have u(p�) = 1.

This implies that p��
:
= 1. If, on the other hand, p��

:
= 1, then p�

:
= 1 and u(p�) = 1. If we

would have u(p) = 0, then by (10.1), v(q) = 1 for q � p; this would imply p� = p. But this is in

contradiction with u(p�) = 1. Thus u(p) = 1 which means that p 
:
= 1.

p
:
= 0: If p 

:
= 1, then v(p) = 0 and we get that �(p) � p� . From (10.1) we get that

u(q) = 1 for q � p, hence u(p�) = 1. Therefore p�� has the same colour as p�, that is p��
:
= 1.

If, on the other hand, p��
:
= 1, then p�

:
= 1 and u(p�) = 1. This is possible only if v(p) = 0,

and we conclude that p 
:
= 1.

We have shown that  u;v = �u�v. Now, if (10.1) holds for u; v, then it holds for v; u as

well, which means that  v;u = �v�u. Taking negations and using Proposition 8.3(a) we �nd

that ( v;u)
� = �

�

v�
�

u, i.e.  u;v = �v�u.

(iv) ) (iii): It is a well-known fact [14] that �� is an inf-�lter and that �� is a sup-�lter.

This implies that  is a strong �lter.

(iii) ) (ii): see Proposition 9.5.

10.4. Corollary. A supremum/in�mum of strong grain �lters is a strong grain �lter.

Proof. Combination of Proposition 8.3(b), Proposition 9.4, and the previous result.

With some e�orts, one can �nd a grain �lter that is not strong. We present one particular

example.

10.5. Example. Let E = fa; b; cg contain the vertices of the graph

a

b c . The edges of the

graph induce a strong connectivity class on E. De�ne the grain criteria u and v as follows:�
u(C) = [a 2 C]

v(C) = [b 2 C or c 2 C]



31

(X)αβ

(X)βα

X

ψ(X)

Fig. 10.1.  is a grain �lter that is not strong. Furthermore,

�� �  � ��.

Note that condition (10.1) does not hold: let X = C1 = fb; cg and C0 = fag, then C1

X
� C0, but

u(C1) = v(C0) = 0.

In Figure 10.1 we compute  u;v as well as �u�v and �v�u for all possible subsets of E. It

follows immediately that  is a �lter; it is, however, not stable and therefore not strong.

In our next result we prove an interesting property of the invariance domain of a grain �lter  

(i.e., the family of sets X that satisfy  (X) = X).

10.6. Proposition. Assume that E possesses a strong connectivity. Let  be a grain �lter on

P(E) with  (X) = X.

(a) If Y is a union of grains of X, then  (Y ) = Y .

(b) If Y is a union of grains of Xc, then  (Y c) = Y
c.

Proof. (a): First we prove that  (Y ) � Y . Suppose not; since  is connected,  (Y )nY consists

of grains of Y c. Let D be a grain of Y c contained in  (Y )nY . We show that D \ Xc 6= ?.

Suppose namely that D � X. The grain D must be adjacent to a grain C of Y , meaning that

C [D is connected. However, C [D � X, and we conclude that C cannot be a grain of X. But

this contradicts our assumption that Y consists of grains of X. Thus D \Xc 6= ?.

Since D �  (Y ) and  is increasing, also D �  (X). This yields that  (X) \Xc 6= ?,

i.e., X \Xc 6= ?, a contradiction. We conclude that  (Y ) � Y , as asserted.

Next we show that Y �  (Y ). Take h 2 Y , then X(h) = Y (h) = 1. Further-

more, P (X;h) = P (Y; h) = h(X). The fact that  is a grain operator in combination

with Proposition 8.4 yields that  (X)(h) =  (Y )(h). But  (X) = X and we conclude that

 (Y )(h) = X(h) = 1, that is, h 2  (Y ). This shows that Y �  (Y ).

(b): If  is a grain �lter, then  � is a grain �lter too. Furthermore,  �(Xc) = X
c. If Y

is a union of grains of Xc, then  �(Y ) = Y , by (a). But this means  (Y c) = Y
c.

We illustrate this proposition by means of Figure 10.2. The �gure at the utmost left shows a set

X (along with its zonal graph) that is assumed to be invariant under a given grain �lter. Our

proposition gives us that the other sets depicted in this �gure are invariant, too. The �rst three

sets are built of grains of X. The arrows in the zonal graph indicate which grains are used as

building blocks. The six sets at the right are built by using background grains, again indicated

by arrows in the zonal graph.

In Proposition 7.6 we have shown that � = �(� j  ) is connected if  is connected.

Furthermore, Proposition 7.7 says that �� = �(� j id) is a connected opening if � is an opening.

Below we demonstrate how these results can be extended if  is a grain operator.

10.7. Proposition. Let E possess a strong connectivity. Assume that  is a grain �lter and

� an over�lter with � �  . Then � = �(� j  ) is a connected �lter and  � = �. Dually, if � is

an under�lter with � �  , then � = �
�(� j  ) is a connected �lter and  � = �.
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A

B

E

DC
B

C

D

E

A

Fig. 10.2. The left �gure shows a set invariant with respect to some grain �lter  . Proposition 10.6

states that the other sets (in grey) shown in this �gure are invariant, too.

Proof. By the Duality Principle, we only need to prove the �rst result. We observe that �(X)

is a union of grains of  (X) and, as  ( (X)) =  (X), we deduce from Proposition 10.6 that

 (�(X)) = �(X). This yields that  � = �. Furthermore, � �  implies that � � � �  . We get

that �2 �  � = �, and it remains to be proven that �2 � �. We get

�
2 = �(�� j  �) = �(�� j �)

� �(�2 j �) � �(� j �)

= �(� j �(� j  )) = �(� j  ) = �:

Here we used that �2 � � and that �(Y j �) is idempotent (see (R2) in Proposition 5.1). This

concludes our proof.

11. Alternating sequential �lters

A basic method to construct morphological �lters is by composition of openings and closings [14,

28]. Usually, one chooses monotonically decreasing sequences of openings (�1 � �2 � � � �) and

increasing sequences of closings (�1 � �2 � � � �). Then

(��)n = �n�n�n�1�n�1 � � � �1�1

(��)n = �n�n�n�1�n�1 � � ��1�1

are �lters. Furthermore, these �lters satisfy the absorption laws

(��)n(��)m = (��)n � (��)m(��)n; n � m

(��)n(��)m = (��)n � (��)m(��)n; n � m

For grain openings �n = �un we get monotonicity of the sequence �n by taking a mono-

tonically decreasing sequence un. Below we will show that we get some additional results for

alternating sequential �lters resulting from grain openings and closings. We start with the

following general result.

11.1. Proposition. Let E possess a strong connectivity. If  1;  2; : : : ;  n are strong grain

�lters, then the composition  =  n n�1 � � � 1 is a strong connected �lter.

Proof. First we prove the following auxiliary result. Let X � E and let C be a zone of the

partition of  (X). Suppose that Y � E is such that

P (X;h) = P (Y; h) and X(h) = Y (h); h 2 C;
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i.e., the zonal graphs of X and Y restricted to C coincide, then C is a zone of  (Y ) as well, and

 (X) and  (Y ) have the same value at C.

To prove this auxiliary result, we use that every  k is stable. Consider the zones P (X;h)

of X, where h 2 C; we distinguish:

internal zones: these are the zones that are not adjacent to some zone outside C;

boundary zones: these are zones that are adjacent to at least one zone outside C.

See Figure 11.1 for a visualisation of the zonal graph of X inside C.

b
ib

i

i

C

i

i

i

bi

Fig. 11.1. Boundary zones are denoted by b, in-

ternal zones by i; see proof of Proposition 11.1.

We make the following important observation: the value of X at a boundary zone, as

well as at its neighbouring zones outside C, does not change by application of any of the  k.

For, if some  k would change the value at a boundary zone, it must also change the value

at its neighbours outside C, since otherwise this boundary zone and the external zones would

be merged. However, the stability of  k does not allow that two neighbouring zones both

change their value. Therefore, all the boundary zones inside C have the same value, namely

the value of  (X) at C. Now, if Y satis�es the condition above, its zonal graph inside C,

as well as the classi�cation into internal and boundary zones, is the same as for X (however,

the same boundary zone may have a di�erent number of external neighbours for X as for Y ).

To compute  n n�1 � � � 1 at zones of X inside C, information about zones outside C is not

required. Therefore,  (X)(h) =  (Y )(h) for h 2 C.

We verify that  is an inf-over�lter, i.e.,  (id^ ) �  . Suppose that C is a zone of  (X)

with value 1. Let Y = X \  (X), then Y satis�es the condition mentioned above, and we get

that  (X) =  (Y ) = 1 at C. Therefore,  (Y ) �  (X).

Dually, we can derive that  is a sup-under�lter. Thus  is a strong �lter.

11.2. Corollary. Let E possess a strong connectivity and let uk; vk, k = 1; 2; : : : ; n, be

increasing grain criteria and �k = �uk ; �k = �vk , then (��)n and (��)n are strong �lters.

Note, however, that (��)n and (��)n are not grain �lters in general. Note also that, in contrast

to the classical case, Corollary 11.2 does not require that the sequences uk and vk are monotone.

Nevertheless, it may be useful to impose this restriction in practical cases.

In the classical (i.e., non-connected) case, it is not possible to say which is larger, ��(X)

or ��(X). When C = Cmin and �; � are the grain opening and closing, respectively, given by

�(X) = X \A and �(X) = X [B, one gets immediately that �� � ��, with equality i� B � A

(in which case �� = �� is a strong grain �lter; see Section 10). Somewhat surprisingly, the next

result shows that the reverse inequality holds presumed that E possesses a strong connectivity.
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11.3. Proposition. Assume that E possesses a strong connectivity. Let �; � be a grain opening

and closing on P(E), respectively, and � 6� ?; � 6� E. Then

�� � ��:

In particular,

��� = �� and ��� = ��:

Proof. Recall the notation introduced in De�nition 10.2, where X � E is given. Let p 2 �X
be a vertex representing a zone of X such that

p��
:
= 1 and p��

:
= 0:

We must show that this leads towards a contradiction. Assume, furthermore, that

p
:
= 0;

the case p
:
= 1 is treated in a similar way. Since � is an opening, we get that

p�
:
= 0:

From the assumption that p��
:
= 1, we �nd that v(p�) = 0. Since p � p�, this implies that

v(p) = 0 as well. Therefore,

p�
:
= 1:

Thus we have

p
:
= 0; p�

:
= 0; p�

:
= 1; p��

:
= 1; p��

:
= 0: (11:1)

From p
:
= 0 and p�

:
= 1 we conclude that �(p) � p� . Thus the inclusions

�2k(p) � p� and �2k+1(p) � p� (11:2)

have been established for k = 0 (where �0(p) = p). We use an induction argument to show that

the relations in (11.2) are valid for every integer k � 0. Suppose that they hold for k � m. Let

q 2 �X be a vertex contained in �2m+1(p) but not in �2m(p); then q must have the opposite

value of p, i.e., q
:
= 1. Then q � p� , and from the fact that p��

:
= 0 we �nd that u(q) � u(p�) = 0,

that is, u(q) = 0. Therefore, q � p�. As q
:
= 1, every neighbour q0 of q satis�es q0

:
= 0, hence

q
0 � p�. This means that �(q) � p� for q contained in �2m+1(p), i.e., �2m+2(p) � p�. We

show that �2m+3(p) � p� . Let q 2 �X be contained in �2m+2(p) but not in �2m+1(p), then

q
:
= 0, hence q � p�. Since p��

:
= 1, we �nd that v(q) � v(p�) = 0, and therefore q � p�. Since

q
:
= 0, every neighbour q0 of q satis�es q0

:
= 1, hence q0 � p� . This gives that �(q) � p� for

q � �2m+2(p)n�2m+1(p). However, for q � �2m+1(p) it is obvious that �(q) � p� , and we

conclude that �(q) � p� for every vertex q � �2m+2(p). Thus, �2m+3(p) � p� . This proves

the assertion.

Now �2k(p) � p� in combination with the assumption that E has a strong connectivity

yields that p� contains every vertex in �X ; in other words �(X) = ?. Similarly we �nd that

�(X) = E. However, we assumed explicitly that � 6� ? and � 6� E. Therefore our starting

assumption that there exists a p with p��
:
= 1 and p��

:
= 0 must be false, and the �rst result is

proved.

To get, for example that ��� = ��, we note that ��� � �� since � � id. On the other

hand, using that �� � ��, we �nd ��� � ��� = ��.

We say that the sequence  n has the strong absorption property if

 n m =  m n =  n; n � m:

We prove the following extension of Corollary 11.2.
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11.4. Corollary. Assume that E is endowed with a strong connectivity. Let u1 � u2 � � � � � uN

and v1 � v2 � � � � � vN be increasing grain criteria and �k = �uk ; �k = �vk , then the sequences

of strong �lters (��)n and (��)n have the strong absorption property. Furthermore,

(��)n � (��)n:

Proof. For the strong absorption property we have to show only that (��)m(��)n � (��)n as

the other inequality is satis�ed even in the non-connected case; see above. Now

(��)m(��)n � (�)m(��)n

= �m�n�n(��)n�1

� �n�n�n(��)n�1

= �n�n(��)n�1 = (��)n:

The proof for (��)n follows by duality.

The inequality (��)n � (��)n is a straightforward consequence of the previous result.

11.5. Example. In both examples considered below, we use the same criteria for foreground

and background grains. Therefore, the resulting �lters are self-dual. Consider the space E = Z2

endowed with 8-connectivity.

(a) Consider the area criterion

uS(C) = [area(C) � S];

where S is a nonnegative integer; see Example 8.1. In Figure 11.2 we illustrate the �lters (��)n
for n = 1; 2; 3, where un(C) = [area(C) � Sn] and S1 = 5; S2 = 20; S3 = 100. The noise-

cleaning e�ect of these �lters inside homogeneous regions is quite good; however, noise pixels

adjacent to edges are not a�ected by these �lters (as we have seen, this is a general property of

connected operators).

We make the following observation with regard to the �lters !S;T = �uT�uS . It is not

di�cult to verify that condition (10.1) holds for the pair u = uS , v = uT if S; T � 8. Thus, by

Proposition 10.1 and Proposition 10.3 we conclude that

!S;T =  uS ;uT = �uT�uS = �uS�uT

is a strong grain �lter if S; T � 8. If S = T , then !S;T is self-dual; see also [16].

(b) A second class of connected alternating sequential �lters is obtained by using openings and

closings by reconstruction; see Example 8.2. Consider the grain criterion

un(C) = [C 	Bn 6= ?];

where Bn is a connected structuring element. In Figure 11.2, second row, we illustrate (��)n
for n = 1; 2; 3, where B1; B2; B3 are squares of size 3� 3; 7� 7; and 21 � 21, respectively.

Before we conclude this section, we present a short discussion about some related concepts in

the literature. Serra and Salembier [30] call a �lter  on P(E) a ci-�lter (\connected invariant"

�lter) if the grains of  (X) are invariant under  , i.e,

 x = x ; x 2 E:

A connected ci-�lter is called a �lter by reconstruction. Proposition 10.6(a) gives that a grain

�lter is a �lter by reconstruction. It is easy to verify that every opening by reconstruction is
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Fig. 11.2. Top, left to right: original image X (appr. 20% noise), and the area open-close

�ltered images (��)n(X) for n = 1; 2; 3; see Example 11.5(a). Bottom, left to right: recon-

structed open-close �ltered images (��)n(X) for n = 1; 2; 3; see Example 11.5(b).

a grain opening. For closings, however, this is not true. Consider the space E = f�1; 0; 1g

where �1 � 0 and 0 � 1. De�ne � as follows: �(?) = ?; �(f0g) = f0g, and �(X) = E for

all other sets. One veri�es easily that � is a closing by reconstruction but not a grain closing.

This observation shows in particular that being a �lter by reconstruction is not a self-dual

property: the fact that  is a �lter by reconstruction does not imply that  � is such as well.

Crespo et al [11] de�ne a closing by reconstruction as the dual of an opening by reconstruction,

and a �lter by reconstruction as a composition of openings and closings by reconstruction that

is idempotent; see also [8].

12. Translation invariance

In classical morphology, translation invariance is an important issue. Here we shall briey

explain under which assumptions one may construct connected operators that are translation

invariant; see also [7]. Most of our results are rather straightforward, and in these cases proofs

will be omitted.

Throughout this section we assume that there exists a commutative group operation +

on E that we shall call `addition'; for a systematic treatment of translation invariance in math-

ematical morphology the reader may refer to [17] or [14].

12.1. De�nition.

(a) A connectivity class C � P(E) is called translation invariant if C 2 C implies Ch 2 C, for

every h 2 E.

(b) An adjacency relation � on E � E is translation invariant if x � y implies x+ h � y + h

for x; y; h 2 E.

Obviously, if � is translation invariant, then the associated connectivity class C
�
is translation

invariant as well.
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12.2. Proposition. Let C be a translation invariant connectivity class on P(E); the following

relations hold:
x+h(Xh) = [x(X)]h

�(Yh j Xh) = [�(Y j X)]h

P (Xh; x+ h) = [P (X;x)]h

for x; h 2 E and X;Y � E.

Apart from a translation of the zones, the zonal graphs ofX andXh are identical if the underlying

connectivity class is translation invariant; this is due to the fact that Ch � C
0

h if C � C
0, for

every h 2 E.

A grain criterion u is said to be translation invariant if u(Ch) = u(C) for C 2 C and

h 2 E.

12.3. Proposition. A grain operator  u;v is translation invariant i� both u and v are trans-

lation invariant.

To conclude this section, we answer the question under which conditions the opening by recon-

struction is a grain opening; see Example 8.2 for a special case.

12.4. Proposition. Let B � E be an arbitrary structuring element and consider the grain

criterion u(C) = [C 	 B 6= ?]. Furthermore, let �� be the opening by reconstruction de�ned by

��(X) = �(X � B j X); then �u � ��, with equality if B is connected. If we assume in addition

that B is �nite, then �u = �� (in particular, �� is a grain operator) if and only if B is connected.

Proof. To prove that �u � �� we need to show (see [14]) that Inv(�u) � Inv(��). Assume that

�u(X) = X and let C be a grain of X, then u(C) = 1, i.e., C	B 6= ?. However, this yields that

C � ��(X). We conclude that ��(X) = X. Assume that B is connected; we show that �� � �u,

that is Inv(��) � Inv(�u). Let ��(X) = X and C a grain of X. Since B is connected, it must

hold that C �B 6= ?, i.e., C 	B 6= ?. Thus u(C) = 1 and we conclude that �u(X) = X.

Finally, assume that B is �nite; we show that B has to be connected if �� = �u. Suppose

not; then ��(B) = B but �u(B) = ? since B does not �t inside any of its grains.

We were not able to prove this last result without the �niteness condition; note that C	B 6= ?

may hold for a grain C of B in case that B is in�nite.

13. Final remarks

As we observed in the introductory section, connected morphological operators are di�erent

from classical operators in at least two respects:

(i) they require the introduction of a connectivity class;

(ii) their operation is governed by criteria on the level of the zonal graph rather than by

structuring elements (on the level of individual pixels).

A special case of the criteria referred to in (ii) are the grain criteria which lead to grain operators.

In the most general case, criteria on the zonal graph level can be rather complex. Consider,

for example, the opening by reconstruction ��(X) = �(X � B j X), where B consists of two

non-adjacent points. As we observed in Example 8.2, this opening is not a grain opening (but

obviously, it is connected). In terms of the zonal graph, this opening is given by

��(X) =
[
fC [ C

0

j C;C
0

b X and Ch \ C
0

6= ?g

where h is the vector connecting the two points in B.
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If we consider criteria that are local in the sense that they can be evaluated grain by grain

(in particular, without knowledge about the underlying graph structure), then the resulting

connected operator is a grain operator. As we have shown, such operators satisfy a number of

interesting properties.

Various of the results stated in this paper can be extended to the grey-scale case. It is well-

known that increasing set operators can be extended to grey-scale images using level sets [13,

14]. But the grey-scale case also poses several new theoretical challenges:

{ criteria can include grey-scale and contrast information

{ there are several possible extensions of the de�nition of a grain operator

{ it is tempting to develop connectivities for functions that use also grey-scale information

(some �rst steps in this direction have been made by Serra in [29], where he considers

connectivities on complete lattices).

We will pursue such and other ideas in our future work.

References

[1] Ballard, D. H., and Brown, M. Computer Vision. Prentice-Hall, Englewood Cli�s,

1982.

[2] Berge, C. Graphs, 2nd ed. North-Holland, Amsterdam, 1985.

[3] Beucher, S., and Meyer, F. The morphological approach to segmentation: the water-

shed transformation. In Mathematical Morphology in Image Processing, E. R. Dougherty,

Ed. Marcel Dekker, New York, 1993, ch. 12, pp. 433{481.

[4] Birkhoff, G. Lattice Theory, 3rd ed., vol. 25 of American Mathematical Society Collo-

quium Publications. American Mathematical Society, Providence, RI, 1967.

[5] Breen, E., and Jones, R. An attribute-based approach to mathematical morphology. In

Mathematical Morphology and its Application to Image and Signal Processing, P. Maragos,

R. W. Schafer, and M. A. Butt, Eds. Kluwer Academic Publishers, Boston, 1996, pp. 41{48.

[6] Crespo, J. Morphological connected �lters and intra-region smoothing for image segmen-

tation. Ph.D. thesis, Georgia Institute of Technology, Atlanta, 1993.

[7] Crespo, J. Space connectivity and translation-invariance. In Mathematical Morphology

and its Application to Image and Signal Processing, P. Maragos, R. W. Schafer, and M. A.

Butt, Eds. Kluwer Academic Publishers, Boston, 1996, pp. 119{125.

[8] Crespo, J., and Schafer, R. W. Locality and adjacency stability constraints for mor-

phological connected operators. Journal of Mathematical Imaging and Vision 7, 1 (1997),

85{102.

[9] Crespo, J., Serra, J., and Schafer, R. Theoretical aspects of morphological �lters by

reconstruction. Signal Processing 47, 2 (1995), 201{225.

[10] Crespo, J., Serra, J., and Schafer, R. W. Image segmentation using connected

�lters. In Mathematical Morphology and its Applications to Signal Processing, J. Serra and

P. Salembier, Eds. Universitat Polit�ecnica de Catalunya, 1993, pp. 52{57.

[11] Crespo, J., Serra, J., and Schafer, R. W. Theoretical aspects of morphological �lters

by reconstruction. Signal Processing 47, 2 (1995), 201{225.

[12] Dugundji, J. Topology. Allyn and Bacon, Boston, 1966.



39

[13] Heijmans, H. J. A. M. Theoretical aspects of gray-level morphology. IEEE Transactions

on Pattern Analysis and Machine Intelligence 13 (1991), 568{582.

[14] Heijmans, H. J. A. M. Morphological Image Operators. Academic Press, Boston, 1994.

[15] Heijmans, H. J. A. M. Introduction to connected operators. In Nonlinear Filters for

Image Processing, E. R. Dougherty and J. Astola, Eds. SPIE Optical Engineering Press,

1997.

[16] Heijmans, H. J. A. M. Morphological grain operators for binary images. To appear in

proceedings of CAIP'97, 1997.

[17] Heijmans, H. J. A. M., and Ronse, C. The algebraic basis of mathematical morphology {

part I: Dilations and erosions. Computer Vision, Graphics and Image Processing 50 (1990),

245{295.

[18] Kong, T. Y., and Roscoe, A. W. A theory of binary digital pictures. Computer Vision,

Graphics and Image Processing 32 (1985), 221{243.

[19] Lantu�ejoul, C., and Beucher, S. On the use of the geodesic metric in image analysis.

J. Microscopy 121 (1980), 29{49.

[20] Lantu�ejoul, C., and Maisonneuve, F. Geodesic methods in quantitative image anal-

ysis. Pattern Recognition 17 (1984), 177{187.

[21] Pard�as, M., Serra, J., and Torres, L. Connectivity �lters for image sequences. In

Image Algebra and Morphological Image Processing III (1992), vol. 1769, SPIE, pp. 318{

329.

[22] Potjer, F. K. Region adjacency graphs and connected morphological operators. In

Mathematical Morphology and its Application to Image and Signal Processing, P. Maragos,

R. W. Schafer, and M. A. Butt, Eds. Kluwer Academic Publishers, Boston, 1996, pp. 111{

118.

[23] Ronse, C. Set-theoretical algebraic approaches to connectivity in continuous or digital

spaces. Research report 95/13, Universit�e Louis Pasteur, D�epartement d'Informatique,

1995.

[24] Ronse, C. Openings: main properties, and how to construct them. In Mathematical

Morphology: Theory and Hardware, R. M. Haralick, Ed. Oxford University Press, To appear.

[25] Rosenfeld, A. Connectivity in digital pictures. J. Association Comp. Mach. 17, 1 (1970),

146{160.

[26] Salembier, P., and Oliveras, A. Practical extensions of connected operators. In Math-

ematical Morphology and its Application to Image and Signal Processing, P. Maragos, R. W.

Schafer, and M. A. Butt, Eds. Kluwer Academic Publishers, Boston, 1996, pp. 97{110.

[27] Salembier, P., and Serra, J. Flat zones �ltering, connected operators, and �lters by

reconstruction. IEEE Transactions on Image Processing 4, 8 (1995), 1153{1160.

[28] Serra, J., Ed. Image Analysis and Mathematical Morphology. II: Theoretical Advances.

Academic Press, London, 1988.

[29] Serra, J. Connectivity on complete lattices. In Mathematical Morphology and its Appli-

cation to Image and Signal Processing, P. Maragos, R. W. Schafer, and M. A. Butt, Eds.

Kluwer Academic Publishers, Boston, 1996, pp. 81{96.



40

[30] Serra, J., and Salembier, P. Connected operators and pyramids. In Image Algebra

and Morphological Image Processing IV (San Diego, 1993), vol. 2030 of SPIE Proceedings,

pp. 65{76.

[31] Vincent, L. Morphological algorithms. In Mathematical Morphology in Image Processing,

E. R. Dougherty, Ed. Marcel Dekker, New York, 1993, ch. 8, pp. 255{288.

[32] Vincent, L. Morphological grayscale reconstruction in image analysis: e�cient algorithms

and applications. IEEE Transactions on Image Processing 2 (1993), 176{201.

[33] Vincent, L. Morphological area openings and closings for grey-scale images. In Proceedings

of the Workshop \Shape in Picture", 7{11 September 1992, Driebergen, The Netherlands

(Berlin, 1994), Y.-L. O, A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, Eds.,

Springer-Verlag, pp. 197{208.


