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A COMBINATORIAL IDENTITY ARISING
FROM COBORDISM THEORY

D. GIJSWIJT and P. MOREE

Dedicated to the memory of Alexander Reznikov

Abstract. Let α = (α1, α2, · · · , αm) ∈ Rm
>0. Let αi,j be the vector obtained

from α by deleting the entries αi and αj . Besser and Moree [1] introduced some

invariants and near invariants related to the solutions ε ∈ {±1}m−2 of the linear

inequality |αi −αj | < 〈ε, αi,j〉 < αi +αj , where 〈, 〉 denotes the usual inner product

and αi,j the vector obtained from α by deleting αi and αj . The main result of

Besser and Moree [1] is extended here to a much more general setting, namely that
of certain maps from finite sets to {−1, 1}.

1. Introduction

Let m ≥ 3. Let α = (α1, α2, . . . , αm) ∈ Rm
>0 and suppose that there is no

ε ∈ {±1}m satisfying 〈ε, α〉 = 0. Let 1 ≤ i < j ≤ m. Let αi,j ∈ Rm−2
>0 be the

vector obtained from α by deleting αi and αj . Let

Si,j(α) := {ε ∈ {±1}m−2 : |αi − αj | <
〈
ε, αi,j

〉
< αi + αj}.

Define Ni,j(α) =
∑

ε∈Si,j(α)

∏m−2
k=1 εk. Theorem 2.1 of [1] states that the reduction

of #Si,j(α) mod 2 depends only on α and that in case of m odd, Ni,j(α) depends
only on α. In particular it was shown that for m ≥ 3 and odd we have

Ni,j(α) = −1
4

∑
ε∈{±1}m

sgn(〈ε, α〉)
m∏

k=1

εk.(1)

From (1) we of course immediately read off that if m ≥ 3 is odd, Ni,j(α) does not
depend on the choice of i and j.

Example 1.1. We take β
m

= (log 2, . . . , log pm), where p1, . . . , pm denote the
consecutive primes and put Q = p1 · · · pm. Then it is not difficult to show that,
for 1 ≤ i < j ≤ m,

Ni,j(βm
) = (−1)m

∑
√

Q/pi<n<
√

Q

gcd(n,pipj)=1, P (n)≤pm

µ(n),
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where P (n) denotes the largest prime factor of n and µ the Möbius function. For
m ≥ 2 put

g(m) =
(−1)m+1

4

∑
d|p1···pm

sgn(
d2

p1 · · · pm
− 1)µ(d),

where sgn denotes the sign function. The fundamental theorem of arithmetic
ensures that there is no ε ∈ {±1}m satisfying 〈ε, β

m
〉 = 0. By (1) we then infer

that if m ≥ 3 is odd, Ni,j(βm
) = g(m) and so it does not depend on the choice of

i and j. By Remark 2.5 of [1] we have g(m) = 0 for m ≥ 2 and even. The first
non-trivial values one finds for g(m) are given in the table below.

m 3 5 7 9 11 13 15 17 19 21 23
g(m) 1 −1 3 −8 22 −53 158 −481 1471 −4621 14612

(The value given for m = 15 corrects the value at p. 471 of [1]. For a computer
program to evaluate these values see [2].)

Example 1.2. Put Q(n) =
∑

d|n, d≤
√

n µ(d).
The sequence {Q(0), Q(1), Q(2), . . . } is the sequence A068101 of OEIS [3].

Let n > 1 be a squarefree integer having k distinct prime divisors q1, . . . , qk

with k ≥ 2.

Note that in the previous example we used only that p1, . . . , pm are distinct
primes. If we replace them by q1, . . . , qk we infer, proceeding as in the previous
example, that

gn(k) :=
(−1)k+1

4

∑
d|n

sgn
(

d2

n
− 1

)
µ(d)

is an integer that equals zero if k is even. On using that
∑

d|n µ(d) = 0 it is seen

that gn(k) = (−1)k

2 Q(n), whence the following result is inferred:

Proposition 1. Let n > 1 be a squarefree number having k distinct prime
divisors. Then

Q(n) =

 1 if n is a prime;
0 if k is even;
even if k ≥ 3 is odd.

2. General setup

We consider a more general quantity Nσ(a, b) similar to Ni,j(α) so that the latter
is a special case of the former.

Let X be a finite set. Suppose that we have a map σ : 2X → {−1, 1} such that
σ(X\A) = σ(A) for all A ⊆ X. We will call such a map σ even. Let u, v ∈ X with
u 6= v. Define

Nσ(u, v) :=
∑

A⊆X, u∈A, v 6∈A
σ(A)=σ(A+v)

σ(A),(2)
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where the summation is over all subsets A of X such that u ∈ A, v 6∈ A and
σ(A) = σ(A + v).

Theorem 1. Let σ be an even map from X → {−1, 1}. Then

Nσ(u, v) =
1
4

∑
A⊆X

σ(A)

and thus in particular Nσ(u, v) does not depend on the choice of u and v.

Proof. We have

2Nσ(u, v) =
∑

A⊆X, u∈A, v 6∈A
σ(A)=σ(A+v)

(σ(A) + σ(A + v)) =
∑
A⊆X

u∈A,v 6∈A

(σ(A) + σ(A + v))

=
∑
A⊆X
u∈A

σ(A) =
1
2

∑
A⊆X
u∈A

(σ(A) + σ(X\A)),

=
1
2
(
∑
A⊂X
u∈A

σ(A) +
∑
A⊆X
u 6∈A

σ(A)) =
1
2

∑
A⊆X

σ(A),

where we used that there is a bijection between the sets containing u and those
not containing u, the bijection being taking complementary sets. �

Remark. In case the cardinality of X is odd, we can alternatively consider a
map τ : 2X → {−1, 1} such that τ(X\A) = −τ(A) for all A ⊆ X. Then the map
σ defined by σ(A) = (−1)#Aτ(A) is even and the conditions of Proposition 1 are
satisfied.

3. Examples

We present three applications of Theorem 1.

Example 3.1. Suppose X = {x1, . . . , xm} and m ≥ 3. Let f be a map such
that f(xj) = ±1 for 1 ≤ j ≤ m. Consider the map σ : 2X → {−1, 1} defined by
σ(A) =

∏
a∈A f(a) for A ⊆ X. Let us assume that

∏
x∈X f(x) = 1 (so that σ is

an even map). Theorem 1 then gives that

Nσ(u, v) =

{
2#X−2 if f(xj) = 1 for 1 ≤ j ≤ m;

0 otherwise.

Example 3.2. We reprove the main result from [1] which is reproduced in the
present note as (1), where we now drop the requirement that αj > 0 for 1 ≤ j ≤ m.
Let X = {α1, . . . , αm} be a set of cardinality m consisting of real numbers such
that there is no ε ∈ {±1}m satisfying 〈ε, α〉 = 0. Let A be any subset of X. To A
we associate ε = (ε1, . . . , εm), where εj = −1 if αj ∈ A and εj = 1 otherwise. Let
σ(A) = sgn(〈ε, α〉)ε1 · · · εm. By assumption 〈ε, α〉 6= 0 and hence σ(A) ∈ {−1, 1}.
Let i 6= j. We evaluate Nσ(αi, αj) according to the definition (2). We obtain that
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Nσ(αi, αj) =
∑′ sgn(〈ε, α〉)

∏m
k=1 εk, where the dash indicates that we sum over

those ε ∈ {±1}m, where εi = −1, εj = 1 and

−sgn(〈εi,j , αi,j〉 − αi + αj) = sgn(〈εi,j , αi,j〉 − αi − αj).

Note that the latter condition is satisfied iff αi − |αj | < 〈εi,j , αi,j〉 < αi + |αj |.
If ε ∈ {±1}m satisfies the latter inequality, εi = −1 and εj = 1, then

sgn(〈ε, α〉)
m∏

k=1

εk = −sgn(αj)
m∏

k=1
k 6=i,j

εk.

We infer that

Nσ(αi, αj) = −sgn(αj)
∑

ε∈{±1}m−2
αi−|αj |<〈ε,αi,j〉<αi+|αj |

m−2∏
k=1

εk.

In case m is odd, σ is even and Theorem 1 can be applied (note that Nσ(αi, αj) =
−Ni,j(α)) to give the following corollary.

Corollary 1. Let α = (α1, α2, · · · , αm) ∈ Rm and suppose that there is no
ε ∈ {±1}m satisfying 〈ε, α〉 = 0. Let 1 ≤ i < j ≤ m. Put

Si,j(α) := {ε ∈ {±1}m−2 : αi − |αj | <
〈
ε, αi,j

〉
< αi + |αj |}.

Define Ni,j(α) = sgn(αj)
∑

ε∈Si,j(α)

∏m−2
k=1 εk. If m ≥ 3 and m is odd, then

Ni,j(α) = −1
4

∑
ε∈{±1}m

sgn(〈ε, α〉)
m∏

k=1

εk = h(α),

does not depend on i and j. If one of the entries of α is zero, then h(α) = 0.

In case α ∈ Rm
>0 it is not immediately clear that this result implies (1). To

see that this is nevertheless true it suffices to show that under the conditions of
Corollary 1 we have Ni,j(α) = Ni,j(α). If αj ≤ αi this is obvious, so assume that
αj > αi. Notice that ε ∈ {±1}m−2 is in Si,j(α)\Si,j(α) iff αi − αj <

〈
ε, αi,j

〉
<

αj − αi. But if ε satisfies the latter inequality, so does −ε and both are counted
with opposite sign in Ni,j(α)−Ni,j(α) and consequently Ni,j(α) = Ni,j(α).

Example 3.3. Corollary 1 can be generalised to a higher dimensional setting.
Instead of numbers α1, . . . , αm we can consider points α1, . . . , αm with αi ∈ Rn

and n ≥ 2. We assume that ±α1 ± · · · ± αm 6= 0. Let us define B to be the
matrix with αj as jth row for 1 ≤ j ≤ m. Choose a hyperplane H through
the origin not containing any of the points ±α1 ± · · · ± αm (the assumption that
±α1 ± · · · ± αm 6= 0 ensures that this is possible). Let n 6∈ H be on the normal of
this hyperplane. Let A be any subset of X. To A we associate ε = (ε1, . . . , εm),
where εj = −1 if αj ∈ A and εj = 1 otherwise. Let σ(A) = sgn(〈n, εB〉)ε1 · · · εm.
The assumption on H implies that 〈n, εB〉 6= 0 and hence σ(A) ∈ {−1, 1}. Choose
two points αi and αj , i 6= j. Let V be the hyperplane with normal n containing
αi−αj and W be the hyperplane with normal n containing αi +αj . We define the
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weight w(α) of a point α of the form α =
∑

1≤k≤m
k 6=i, k 6=j

εkαk with εi,j ∈ {±1}m−2 to

be
∏

1≤k≤m
k 6=i, k 6=j

εk. Note that our choice of n ensures that none of these points is in

V or W . Then let M(i, j) be the sum of the weights of all points
∑

1≤k≤m
k 6=i, k 6=j

εkαk

that are in between V and W and for which εi,j ∈ {±1}m−2. If m ≥ 3 is odd, then
σ is an even map. It is not difficult to show that Nσ(αi, αj) = ±M(i, j), where
the sign is independent of i and j. Theorem 1 applies and we infer that M(i, j) is
independent of the choice of i and j.
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