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A finite-volume method is presented for the computation of compressible flows of 

two immiscible fluids at very different c..lensities. A novel ingredient in the method is 

a li11eari1t:d, two-lluid Osher scheme, allowing for flux computations in the case of 

different lluids (e.g .. water and air) left and right of a cell face. A level-set technique is 

ernpluycd to distinguish between the two fluids. The level-set equation is incorporated 

into the systcm of hyperbolic conservation laws. Fixes are presented for the solution 

t:rrnrs (pressure oscillations) that may occur near two-fluid interfaces when applying 

a capturink( method. The fixes are analyzed and tested. For two-fluid flows with 

arhitrarily large density ratios, a simple variant of the ghost-fluid method appears to 

he a pt:rt"t:ct rt:medy. Computations for compressible water-air flows yield perfectly 

sharp, pressure-oscillation-free interfaces. The masses of the separate fluids appear 
2002 Elsl..'vier Sl'icn-:i.: I USAJ to ht: conservt:d up to first-order accuracy. 

Ker Words: free surfaces, compressible liquid-gas flows, interface capturing, 

Osher scheme. lt:vel-sct method, interface-pressure error, ghost-fluid method. 

I. INTRODUCTION 

The present paper is directed towards an efficient, physically correct finite-volume com­
putation of the flow of two compressible fluids, e.g., water and air, at uniformly subsonic 
speeds. Other premises are that the two fluids do not mix, that vaporization and condensation 

phl!nomena do not occur and that surface tension can be neglected. 
In recent years, various papers have been published that present specific finite-volume 

methods for two-fluid flow computations. In most of these papers, a two-fluid flux formula is 
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proposed in which an approximate Riemann solver is applied. In 11, !OJ. Roe-tvpe ,cheifa', 

are proposed and in I 14], Rusanov-type and Harten-Lax-van-Leer-type sch~m_.,_ ln the 
p~·esent paper, an Osher-type two-fluid flux formula is proposed. The formula is ntren11:h 

: 1~ 1ple and computationally very efficient. At the boundaries of the computatinnal dnm;iir;. 
it 1s completely consistent with that in the interior. The flux formula incorporates a k\d-,1:1 
tenn for accurately capturing the two-fluid interface. 

A known difficulty of capturing contact discontinuities in a conservative formulation of 

the compressible, two-fluid Euler equations is that large solution errors (often ,alled pr-·,­
surc oscillations) may arise near the contact discontinuity. For incompressible twt1-ilmd 
flow computations (see, e.g., [ 17]) the pressure-oscillation problem is much b, ,c\cn.: 

than for compressible since density is not used for further computatiom, such as th<' ,·nm­

putation of pressure from an equation of state. For tracking and titting appmac:he, t!w 

pressure-oscillation problem does not exist at all. As far as conser\'ati\'e c·aptU1i11g mdh,,d, 

for cumpressihle two-fluid flows are concerned, we remark that not all lit' the,e mei.lwJ, 

arc necessarily cursed with the pressure-oscillation problem: in [JI we propose a ,, 1n­

scrvative formulation which, without any measure being taken, has no pressun: "rrur .it 

two-fluid interfaces. 
Without remedial intervening, the conservative formulation considered in the pre,ent 

paper also suffers from the pressure-oscillation problem. We will show this on the ha,i, nl 

a model llow with a known exact solution. The solution error is proportional Ill the d.:-nsi!;, 
ratio across the interface. For large density jumps across the interface, the error may ,•,_-n 
degenerate to instability. Fixes for the solution-error problem can be found in the literarnre 
We 1·efer to the works of Kami [ 10. 11] and Abgrall [I]. their common paper 12!. and 15. 'l. 
14 ]_ In most of the available literature though, the ratio of the two densitie, atthe interfo,·c 1' 

() ( I )-0 ( I 02 ). To our knowledge. only in 15. 141 ratios of 0( IO'). typi-:al water-air f(IBn,. 

are considered. In the current paper a simple fix is proposed. which allows arbitraril;, 

density ratios. . 
1 h t - ti )\\ rnt,Jei i, 

The contents of the paper is the following. In Section -, t econ muous < · . 
. 1. (t· . t . . d air) and level-set <.''-JUat11 1n In 

oiven: conservation laws, equations o state or wa e1 an · · 
"'" . . . - . ·. . ted (the Riemann pnihkm and 
Section 3, the space discret1zat1on of the equat10ns 1s presen _ . . 

b h · · . d boundarv cell la,·1:, 1. "se,t. 
the corresponding Godunov-type scheme. at ot rntenor ,m : . _ 

- bl • ·nterfaces In Sectwn '.I. sunie ap-
in Section 4, we analyze the solut1on-error pro em ne,tr 1 · · . ' . _ , 

. . N . 11 f th se approaches l some al read: klll"1 n · 
proaches to fix the problem are addressed. ot a O e. . . h h 

. . . h .. I· " ct, sitv J·ump. One hx is prop,1'eJ \\ " , 
appear to work for water-air flow Wlt its arce en. 1 . . ••... 1 . . h· h - fl ·o nethod ['i] In Sectwnb. nu,11cr11 .. 1 
works perfectly it is a simple vanant ot t e g ost- Ul 1 • · . • 

. . . . . . .. flows In Section 7. \\'e ,1uthnc th~ L'\h.ihlull 
results are presented for compressible water-alf · · . ., 1, 1 

. . . . bl . . din Section 8 the paper ts cnnuuc cu 
of our method to mult1chmens1onal pro ems. an 

2. FLOW MODEL 

2.1. Conservation Ec1uations 
. 1· 111·1ss 'l!ld 1m1mc·nlllrn 

I Q i.:onservatwn o ' · · ' 
In ID, for a sufficiently small control vo urne ' · 

reads 

== 0. l i 
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with p the bulk density 

(2) 

where a is, e.g., the volume-of-water fraction and p.,,(p) and p"(p) are the equations of 
state for water and air, respectively. To balance system ( 1) and (2), the equations of state and 
an equation determining the location of the interface (and hence a) still have to be chosen. 

With the above bulk-density formulation, in a finite-volume discretization, total mass of 
the fluid will be conserved, but not necessarily the masses of the two separate fluids. When 
a(x, t) is poorly resolved, the two separate masses are poorly conserved as well. Hence, an 
accurate resolution of the interface location(s) is of paramount importance. For this purpose, 
we follow a level-set approach, to be discussed in the next section. 

2.2. Level-Set Equation 

To accurately resolve the interface location(s), a level-set approach [ 16] is more appropri­
ate than the classical volume-of-fluid (VOF) approach [ 8] because of its better smoothness 
(and thus accuracy) properties at precisely the point of interest: the interface. Good smooth­
ness of the level-set function is first taken care of in the level-set function's initialization. A 
common approach is to initialize the level-set function as the signed distance to the initial 
interface, with the distance positive in, e.g., water and negative in air. (To get uniformly 
smooth level-set functions in the case of multiple interfaces, advantage may be taken of 
nonlinear initializations [ 12].) 

Keeping the level-set function smooth requires some attention, During the computation, 
the level-set function may need to be regularized. In this reinitialization step, care needs to 
be taken that the free-surface location is preserved. ln brief, the reinitialization can be done 
as follows. After one or more time steps the locations of the interfaces are determined as 
the zeros of the level-set function. Next, the level-set function is simply reinitialized as the 
signed distance to the nearest interface. 

Denoting the level-set function by ¢, in ID, it is advected by 

(3) 

Combined with the bulk-mass conservation equation from ( l ). advection equation (3) may 
be written in the conservative control-volume form 

1 acp<J>) 
n ~ dx + (pu¢ ),m,,,h, - (piuf> lan1,11 = 0. (4) 

Conservation of pq; is not physical; there is no conservation law for it. The form (4) is 
simply practical because it is consistent with system (I); it can be directly embedded into 
it. With ¢ (x, t) known, the VOF function a can be computed for any finite volume. In 
Section 3.2, for an equidistant ID finite-volume grid. a =a(q;) is worked out in detail; in 
Section 7.1 we outline the extension to multiple dimensions (multi-D). 

Summarizing, the VOF fraction is used, not the VOF method. In the VOF method, a 
transport equation for a is used. Instead, here we apply a transport equation for </> (in the 
consistent form of a conservation equation for pq; ). 

-_____,,,,.....,. 
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a. For two-phase flows b. For immiscible two-fluid flows 

FIG. I. Pressure-density diagrams. 

2.3. Equation of State 
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p 

In homentropic water-air computations, for both fluids, elegant use can be made of a 
single equation of state. viz. Tait's. 

P + B Pret ( P ) y 

( 1 + B) Pret = Pref 
(5) 

where the subscript ref indicates some reference state. The reference pressure Pref is chosen 

freely but equally for the two fluids. The value of Pref for each of the two fluids corresponds 

with /7rer and is read from standard data bases for fluid properties. Concerning the material 

constants y and B. for water: y = 7 and B = 3000, and for air y = ¾ and B = 0. With (5), 

both the water and air densities. p,, (p) and Pu (p ), are convex functio~s of pressure. So is the 

con-esponding bulk density p according to (2). The physical consequences of this overall 

convexity are that neither locally low speeds of sound (lower than in pure water or pure air) 

nor expansion shocks can occur. In two-phase approaches these phenomena can occur [7]. 

Forthese flows, the pressure-density diagram may look as sketched in Fig. la, i.e., as a mixed 

convex-concave curve with extremely small values of the speed of sound, c = dp/dp, in the 

condensation/vaporization zone. As opposed to that. in the present case of two immiscible 

fluids. a family of purely convex curves exists. curves that become increasingly steep for 

increasing a ( Fig. 1 b ). So, for any p and for all values of a E ( 0, I) it holds that Ca < c <Cu,. 

A slight inconvenience of using ( 2) in combination with (5) is that the calculation of p for 

known p and a ( a :/=- 0 and a :j=. 1) needs to be done iteratively. 

3, DISCRETIZATION 

3.1. Finite Vo/11111es 

Summarizing, for a ( sufficiently small) control volume Q, the system of equations con­
sidered reads 

i. ilq . 
--:---J d.r+(./(ql 

• Q ( t ( 
pu ) 

f (q) = pu~ + p , (6a) 

pu</) 



658 KOREN ET AL. 

P = c;(<f:, )Pw(P) + (I - a(¢ ))Pa (p ), (6b) 
I 

( P + BwPrer );;;;:-
Pw(P) = (I + Bu,)Prcf (Pw)ref, ( p )± Pa(P) = - (Palrcf, 

Pref 
(6cJ 

with a(¢) the fraction of the size of Q over which ¢ ::: 0. Two early papers that considered 
the computation of compressible water-air flows are [4, 6]. A basic difference between the 
present two-fluid flow equations and those from [4, 6J is that in the latter the third equation 
is the energy equation, whereas here it is the level-set equation. 

3.2. Volw11e-(~f Fluid Fraction 

The natural space discretization for (6) is a finite-volume technique. For convenience, we 
consider cell-centered finite volumes with constant mesh size. This choice directly allows 
us to work out the discretization of a(¢). Consider finite volume Qi and its left and right 
neighbors, Qi- I and Qi+ 1, respectively, and define the level-set values at the cell faces 

iJQi-! and iJQ;+! as 

(7) 

Then, for example, for ¢,; ::: 0, we propose the four ai possibilities given in Fig. 2. 
So, in <lctermining <pi_!, and ¢; + !, , as well as x ( ¢ = 0), we make use of piecewise linear 

intcrpolation of¢. The linear interpolation is exact as long as the level-set function is the 

signed-distance function. 

3.3. Riemmm-Prohlem Approach 

The challenge of a finite-volume formulation is to choose or devise a physically correct 
two-fluid 11ux formula to apply at the low discrete level of cell faces. The exact solution 
of the ID Riemann problem at each cell face, the well-known Godunov approach, requires 
the use of a numerical root tinder. We avoid this by considering an approximate Riemann 
solv1;r. For this, we prefer a two-fluid version of Osher's [13], particularly because of its 
con~istent boundary-condition treatment. Denoting the left and right cell-face states by qo 

' ' ' ' ' ' ' ' ' ' 
0 .i, b .i 1 

1-:r i 1+7 i+½ 

I ( <j>. ~ CX-=- --'- +I 
I 2 A. - qi· I 

"Yi l-3 

I ( qi. j CX;= - I+--'-
2 qi. - qi· I 

t 1+ 2 

FIG. 2. Four possihlc cornhinations of signs of ¢, _ ! and ¢, 1 ! , for ¢, :::: 0, Iogether with corresponding 

formulae for YOF frar.:tion ex,. 
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and q I and the flux formula by F (q0 • q 1 ), the Osher scheme may be written as 

!·q, df-
F(qo, CJ1) = f(qo) + --dq, 

• 1/o dq 
(8) 

with df- / dq the negative eigenvalue part of df/ dq. The eigenvalues of the present Jacobian 

are AJ = u - Jap/ap, A2 =u' and A3 = ll + Jap/ap. (op/3¢ does not occur in the wave 
speeds.) The Riemann-invariant relations describing the two intermediate states q 1 and q 1 

_i ~ 

along the wave path in state space for).. 1• )c 2, and}"_, successively are 

l•f'' I ti). ;·1' 1 I ti.1 1 ( /J op 
u1 - - -;--dp=u 1 - - -;--dp. 

1 . p dp . p op 

(9a) 

(9b) 

(9c} 

Hence. the level-set function ¢ can only change along the subpath corresponding to the 

eigenvalue Jc2, i.e., across the contact discontinuity. It is invariant along the outer subpaths; 

physically speaking, if ¢ is the signed-distance function, along the outer subpaths the 
distance to the two-fluid interface is constant. The integrals in (9a) and (9c) can be written 

explicitly for the equations of state given in (6c). However, when, e.g., a water-air interface is 

captured, the explicit calculation of u ~ and p { is hampered by nonlinearity; a transcendental 
equation then needs to be solved. · -

3.4. linearized, T,rn-Fluid Osher Scheme 

Since ¢ is constant along the two outer subpaths of the wave path, along both subpaths 
the bulk density can only vary due to pressure changes. For flows that are low-subsonic, 

large pressure and hence large bulk-density changes will not occur and. consequently, the 
integrals 

l•p * I ti'J_ p - -dp 
. p i!p 

and 

can be linearized by good approximation around p0 and p1, respectively, yielding for (9a)­
(9c) 

( Co 
1q =110 - Pt - Po)-. 

- ' Po 
(10) 

Likewise, p * can be linearized around p0 and p 1 as 

P~ =Po+ (P{ - Po)c~. P~ =/JI+ (Pj - Pl )c"T, (11) 

p1-pu JJ1-P1 
Elimination of Pt - p0 and p; - p 1 from (10) and ( 11) gives 11 ; _ 1111 = -poco and ,,~ _ 111 = 

' ~ 2 .2 
P1C1, i.e., 

Co= PoCo, ( 12) 



660 KOREN ET AL. 

For the density and level-set function in the two intermediate points it holds that 

( 13) 

Ignoring all supersonic possibilities among all possible combinations of signs of uo - co, 

u 1 - c 1 , u 1 + c,, and u 1 + c 1 (note the consequent efficiency improvement in checking 
2 3 ~ 3 

eigenvalue signs), the linearized, two-fluid scheme reads 

We remark that the real nonlinear flux functions f(q~) and f(q1) are applied and not 

df(qol 
F(qo, qi),, 1 ~() = f (qo) + (cu - l/11)-·-,-, 

., ' [, if 

. df(q1) 
F(qo, CJ1 ),, , ::CJ=./ (q1) + (q; - l/1)-1--

., ' C lf 

There is no need for the latter linearized formulae. On the contrary, as opposed to ( 12 )-( 14 ), 
they may give rise to an e1rnneous, ambiguous flux at u ~ = 0 (steady contact discontinuity J; 

f (qo) + (qt - l/o) [df (qD)/dq] and f (q1) + (1q - q 1) [df(1J1 )/def I may differ for u i = 0. 

3.5. Boundary-Condition Treatment 

A very favorable property of the Osher scheme is that the fluxes across the boundary 

faces can be computed with the same formula as that for the interior faces, i.e., with ( 14). 

Denoting the state at the boundary by C/h, in the case of a left boundary l/D = C/h and in the case 

of a right q 1 = l/h· We work out the inflow and outflow boundaries and the non permeable 

boundary as a limit case. For all three it holds that for boundaries at the left and right, 

respectively, 

/JI, - /ll 
---=C1, 
UJ, - ll1 

/Jh - /JO 
---=-Co. 
lit, - II() 

( l 5 l 

3.5.J. Inflow boundary. From ( 15), it follows that the two boundary conditions to be 

imposed here cannot be u1, and /Jh simultaneously; when 11" is imposed, 111, follows, and vice 

versa. Hence, the second boundary condition must be one for ¢1,. To compute the boundary 

flux, the OD bulk density p1, still needs to be defined. An appropriate OD choice is 

( l 6) 

3.5.2. Ou(fiow boundary. Here, in addition to ( 15 ), the equations 

( 17 J 

are available. So, the single boundary condition to be imposed must be u 1, or p1, or some 

combination of both. The bulk density p1, is defined as in the inflow case. 
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3.5.3. Nmzpermeohle boundur\". At a nonpermeable boundary (at least) ub = 0 must be 
imposed, which, given ( l 5 ), already determines p1,. Considering a nonpermeable boundary 
as the limit case of an inflow boundary, ¢1, must still be imposed. Considering it as the limit 
of outflow, ¢1, follows from the interior solution (¢1, = ¢ 1 for a left boundary and <pi,= ¢0 

for a right). The outflow-limit case is to be preferred. As opposed to the inflow-limit case, it 
allows the interface to freely move along the nonpermeable boundary. Also here, the bulk 
density may be defined according to ( 16 ). 

4. ERROR NEAR INTERFACE 

In the present section we analyze the pre.~sure-oscillation problem for the equations in 
system (6). Similar analyses for other systems of equations have already been given in [2, 
9. !OJ. 

4.1. Analysisfi1r Model Flow 

Consider a ID tube with unit length. x E 10. I]. inflow of water at x = 0, outflow atx = 1, 
and the initial solution 

ll(.r. I =0) = [/ > 0, 

{ 
p,,.(P). 

f>(.r. f = ()) = 
/Ji,(PJ. 

p(x,t=O)=P. 

X :'.S (Xf, )1=0, 

x > (xrs l1=il. 

(18) 

where U and P are constant and where .rrs is the location of the free surface, i.e .. the water­
air interface. For t > 0. the corresponding exact Euler flow solution reads u(x. t) = U, 

p(x, t) = P. p(x. t) = p 11 ,( P) for x :S (Xr,Ji=II + Ut and p(x, r) = p"( P) for x > (xr,)r=O + 
U t. This simple model tlow precisely uncovers the deficiency of capturing methods with 
regard to material interfaces. For the space discretization of (6) we consider an equidistant 
nnite-volume grid with mesh size h. For the time integration. the forward-Euler scheme is 
taken. The space discretization is taken as tirst-order accurate. Then. denoting the solution 
in cell i at the old time lewl by c}i'. 11 = (fl. pu. pq;)T, the equation for the solution q/+ 1 at 

the new time level is 

(19) 

with 6t the time step and F the linearized, two-tluid Osher flux ( 14). Considering the 
situation where 1J1' 1• q;', and qf'+ 1 are according to the initial solution ( 18), with (xf,) 11 = 
x,-\ (Fig. 3), ( 19) yields 

U!:,.,t 
O=---

h 
(20) 
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p 

Pw (P) -·-·-·---·-·-·-·-·-· ----. 

u 

h 

---·-·-·-·-·-·-· ---i--1-1---1--i-+_1 _,1_ ---·-·· -- X 

· I • I 
1·2 1+2 

FIG. 3. Bulk-density distribution near cell i at time level 11 and water-air interface at .r, ~. 

(g+1 it follows from (20) that 

( ,1.,)n+l (I ) I ¢"+1= P'f'; 0-Pw- -a Pa 1 

' p;'+I -O-Pw+(1-a)pa2' 
(21) 

whereas the exact discrete solution reads (¢;'+ 1 )exact= -h /2 +ah. Hence, for the local 
discretization error .6.¢;'+1 = ¢;'+ 1 - (¢;'+ 1 lexact it holds that 

,-.,1.,n+I (] ) Pw-Pa I 
W.'f'; =a - CY l. 

apw + (I - a )Pa 
(22) 

So, .6.¢;'+1 = 0 only if a = 0 (trivial), a = l, or p,,, =Pa. The local discretization error (22) 

is O(h), but cannot be made of higher order by applying a higher order discretization. 
(This holds for any numerical flux function F.) Higher than first-order accuracy is simply 

inhibited by the bulk density, which is a smeared representation of the exact discrete density. 
Through bulk-density formula (6b), the en-or (22) carries over into a pressure error .6.p;'+ 1• 

Given .6.p;'+1 =0, from (6b) it follows after linearization that 

7 ? 

.6. n+l - -c;,,c;, ( - ).6. 11+1 (21) 
P; - ( n+I + A 11+1) ,2 + (l _ 11-tl _ A 11+1) .2 Pw Pa O'; · • 

0'1 w.0' 1 la 0!1 w.0'1 lu, 

From Fig. 2 we know that besides depending on 6.¢;1+1 , ti.a;i+ 1 also depends on .6.¢/_+/ 
and f:..4>:'ti. For the model flow considered, it follows with the current scheme that ¢;' +i = 
h/2 + ah and ¢;'t/ = -3h/2 + ah, which are both the exact results. With the formulae 
f F. 2th . 'f df h " 11+1 - 11-tl ( 11-tl ' rom 1g. , e expressions oun or t e error w.O!; - O'; - a; lcxact are 

(24) 

So, .6.a7+ 1 = O(h0), say 0( I), and hence with (23), the pressure error 6.p;'+ 1 also is O ( 1). 

Moreover, the pressure error (23) is proportional to the density ratio p11 , / p,, . 
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4.2. Guidelines for Error Improvements 

Before proposing ways to improve the poor local error behavior near the interface, it is 
useful to consider the conservative equations near the two-fluid interface and to make an 
error analysis of bulk-density relation (6b ). 

4.2. l. Fluid-flow equations near interface. Consider the situation in which the interface 
is in cell Q = Q; (only the interface, so no shock or rarefaction). Since velocity and pressure 
are continuous across the interface, for sufficiently small Q;, we may then write by good 

approximation u i--\- = u; + { = u; and Pi--\- = P; + {. With this, (I) can be rewritten as a system 
of advection equations for-the entire solution vector q;, 

(25) 

Contact discontinuities are linear phenomena. If all conservative solution components are 
advected, Pi, (pu);, and (p(/J);, then any solution component inn; (either conservative or 
nonconservative) is advected. That is, in (25) for a cell with only a contact discontinuity, 
instead of the fully conservative solution representation q; = (p;, (pu);, (p(/J);) we may 
equally well consider, e.g., the partially conservative representation q; = (p;, (pu ); , </);),the 
fully nonconservative representation qi = (u;, p;, </); ), or other representations. 

4.2.2. Error analysis of bulk-density relation. Errors in the pressure and VOF fraction 
(6.p and t:i.a) induce an error in the bulk density (t:i.p), which, given (6b), satisfies the 
equation 

p + t:i.p =(a+ 6.a)pu,(P + 6.p) + (I - a - 6.a)pa(P + t:i.p). (26) 

For the model flow and discretization method considered in Section 4.1, we found 6.p = 0 
and 6.a = 0( 1 ). Then, according to (26), t:i.p = 0( 1) as well, which agrees with what we 
derived in Section 4.1. Instead of the zeroth-order pressure error t:i.p described by (23) and 
(24), we ideally prefer t:i.p = 0, which implies according to (26) that 

f::.p = 6.a(pu,(P) - Pa(p)). (27) 

One of the fixes considered in the following section is to make the numerical method such 
that the updates f::.p and !::.a exactly satisfy (27). 

5. FIXES FOR ERROR IN CELL WITH INTERFACE 

5.1. Advection <fLevel-Set Function 

This approach is based on the observation made in Section 4.1 that the update of ¢? 
through division of (p</>);1+1 by p;1+ 1 leads to an O(h) accuracy barrier in <g+i because of 
the intrinsic smearing in the bulk-density representation itself. For the update of the real 
physical quantities Pi and (pu); we may stick to the conservative formulation and, hence, 
to the linearized. two-fluid Osher scheme. Doing so, with the forward-Euler, first-order 
upwind discretization of the single advection equation 

(28) 
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for the model flow considered-in addition top;'+ 1 and (p11 J;i+ 1 according to (20)-wc get 

h 
r1..11+1 =-- +crh, 
'+', 2 (29) 

which is exact (because ¢ has been defined as the signed-distance function). Becau~e 

t:,,¢;'+ 1 = 0, it also holds that t:,,a;1+ 1 = 0. Since t::,.p;1+1 = 0 as well ( Section 4.1 ), it then 

follows from (26) that t:,,p;i+ 1 = 0. In all other cells. the fully conservative scheme ( l 9) 

is applied, yielding the exact discrete solution. However. at time level n + 2 the nun11.:r­

ical solution is no longer exact: p;' +2 = 2cr p11 , + ( I - 2a) p11 - o 2 ( p11 , - p11 ), whereas 

(p;'+2)e,ac1=2CJP11,+(l-2o)p". Hence. 6.p;'+- 2=-o2(fl11,-Pu)=O(I). With the 

forward-Euler, first-order upwind discretization of (28), l:,.¢t'-2 = 0 and, as a consequence, 

!::,..a;'+2 = 0. With (26) and l:,.,p;1+2 = 0( 1), it then follows that 6.p;'+ 2 = 0( l ). So, this par­

tially conservative approach is not a fix. With some tricks one can make the method work. 

Taking for the left and right cell-face densities to be substituted into the linearized. two-fluid 

Osher scheme, instead of the bulk densities, the lorn! ce/ljace densities ( pure water or pure 

air) at t = t", the method works as long as the interface does not cross a cell face during a 

time step. That is, the method works for a= 1/m. with ,nan integer. Unfortunately, this 

requirement on CJ is too restrictive for the method to be of practical use. 

5.2. Advection of' Velocity, Pressure and Level-Set Function 

Taking in (25) C/1 = (u,. p,, ¢, ), with (u 1 _ j · fi,-j) = (11 1+ {. Pi+j ), the exact result be­
comes 

However, in cell s:21+ 1 an error arises; cJ:':) and cf!':) are still exact, ct//= (U. P, - ~h + 
l) ·d 11 +1-(UP 51 l)Bt'·•- 11 +2 f'dh·· 11 +2 - 2 er 1 an q1+2 - , • - 2 1 +a 1. ut ott-1 we 111 t cttp1+1 -/J11 +a (f!w -- /Jal-

For a < I /2, this is wrong; water is erroneously transported from cell i into cell i + l. 
The corresponding error reads t::,.p;' +:. = er 2 ( /Jir - p11 ) = 0( l J. Meanwhile, for rf < 1 /2 

such that ¢ 11 t~ = c//'+2 are both still negative, we correctly find a"++12 = 0. So, with ( 26) 1+, t+c; "- f 

it then follows that t::,__jJ;'t? = 0( I) and therefore this approach is not viable. 

5.3. Advection of Density and Algebraic Update of' VOF Fraction 

In Section 4.2 it was shown that if the updates l:,.p and !::,.a are such that ( 27) is satisfied, 

then l:,.p = 0. We now will try a possible fix based on (27). Consider the advection c4uatio11 

(3 I l 

The updates for Pi, rendered by (3 l ), rnlly be directly translated through (27) into updates 

for ai. However, as with the fully nonconservative approach from Section 5.2. in the second 

time step an 0( I) pressure error arises in neighboring cell Q, 1 1, when the l"ully conservative 

approach is still applied there. Moreover, even in a better case, the present approach will 

yield an exact pressure solution at the expense of a diffused density profile. 
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In [15], a YOF-fraction formulation is considered which is suitable for the computation 
of both mixtures of fluids and (immiscible) multifluids and which appears not to suffer 

from the pressure-oscillation problem. This is probably due to the fact that, as mentioned in 
Section 3.4 of [ 15], boundary conditions are imposed at the interface (tracking rather than 
capturing). 

5.4. Ghost-Fluid Method 

A pe1fect fix for the pressure-oscillation problem is a simple variant of the ghost-fluid 
method (5]. In [5], the ghost-fluid method is introduced for the nonhomentropic Euler 
equations of gas dynamics. For our more compact system of fluid flow equations, we 

propose a variant, which is comparable to that proposed by Abgrall and Kami [2]. 
In updating the finite-volume solutions with a single explicit time step, the following is 

done. For convenience, suppose we have an equidistant, cell-centered finite-volume grid 

!:2;, i = l. 2, .... N. with the cell faces denoted by an;+{, i = 0, I, ... , N, with ant and 
anN+t the faces at the domain boundaries. Also suppose that at time level n we have a 
known: unique solution (u;'. Pi', ¢i' ). i =I, 2, .... N. Then, as first step, at the actual time 
level n. the cells and cell faces are classified into different types. For cells, the following 
three types are distinguished: (i) pure-water cells. (ii) pure-air cells, and (iii) cells with one 
(or two) interface(s). To make this classification, we determine¢'.' 1 , i = 0, I, ... , N. At 

t+-:; 

the interior faces we take -

At the inflow-boundary face. say a Q ½, we take 

"''/="',". '¥. "+' J 

with¢/: denoting the boundary condition, and at the outflow boundary, say anN+½, 

(32a) 

(32b) 

(32c) 

Then. cell !:2; is (i) a pure-water cell if¢;' > 0, ¢;'_¼ > 0, and¢;~{ > 0, (ii) a pure-air 

cell if¢" < 0, ¢" , < 0, and ¢'.' , < o. or ( iii) a eel( with one or two interfaces. Cells of 
t l--; 1+-:; 

the third type are named ghost cells. This classification is also applied to the cell faces; 
(i) pure-water, (ii) pure-air, and (iii) ghost faces are distinguished. The two faces of a ghost 
cell are both identified as ghost faces. That is, if rl; is a ghost cell, then both an;-J, and 
an;+{ are ghost faces. A cell face not belonging to a ghost cell is-depending on the sign 
of¢ at that face-either a pure-water or a pure-air face. Across the latter two types of faces, 

the flux is simply computed with the single-fluid flux formula 

where the left and right cell-face states are expressed as ij = (u, p). As in ( 14 ), u J, and P J, 
are given by (12), but now with either (Co, C 1) = (Co, C1) 11 , (pure water) or (C~, Ci),,; 
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( Co, C 1 )i, (pure air). So, across pure-water faces we get F = Fu, and across pure-air faces 

F =Fa. Across the ghost faces two fluxes are computed: a water and an air fhtx, i.e .. both 

(34a) 

and 

(34b) 

with iq and p ¾ given by (12) and for (34a). ( C0 • Ci) = (Co, C 1 lw and for (34b), (Co, C 1) = 
( Co, C-, )a. Applying the forward-Euler scheme, the subsequent update of finite-volume 

solutions-expressed in conservative variables, q = (p, pu)-reads 

(i) in pure-water cells, 

n+I " l:,.t ((F )" (F )" ) lJ; = Cf; - -, w ;+l - II' j-l ' 
1 2 2 

(35) 

(ii) in pure-air cells, 

(36) 

(iii) in ghost cells, 

and (37a) 

( )n+I " /:,.t((F)" (F)") 
lJa; =q;-h a;+1- "i-1" (37b) 

So, in ghost cells we are left with two possibly different updated solutions: q,,, and lfu· 

Expressed in ij = (u, p) variables, these two new ghost solutions will not differ very much 

for the flows considered here. For the 1 D problem introduced in Section 4. l, both solutions 

will be identical. (When allowing shock waves, the two solutions in a ghost cell may 

significantly differ from each other, if the ghost cell also contains a shock wave.) In case 

a solution ambiguity arises, we proceed as follows. From the updated level-set function 

(updated separately through an advection equation), the VOF fraction cx;1+ 1 in the ghost cell 

can be computed. Next, the updated solution in the ghost cell is simply made unique with 

(38) 

There are no physical or mathematical arguments for applying this weighting; other choices 

are possible. 

In the computation of the fluxes, we use the same unique values of u and p in each 

cell, which ensures that the free-surface conditions are satisfied implicitly. In I 5 I, for the 

nonhomentropic Euler equations of gas dynamics, entropy is extrapolated across the inter­

face. The present homentropic equations require no solution-component extrapolation. 
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In the ghost-fluid method the interface is no longer captured at the lowest discrete level, 

that of the cell face, but at the next higher level, the cell. Because fluxes are always of the 

single-fluid type in the ghost-fluid method, explicit calculation of u 1 and p 1 can be easily 

done by using, e.g., the full, nonlinear Osher scheme instead of a li~earized\cheme. 

6. NUMERICAL RESULTS 

6.1. Water Front at Constollt Speed and Pressure 

The first test case to be considered is the ID tube flow from Section 4.1. Numerical 

values to be used are (x1,) 1=0 = 0.5 (initial interface halfway tube) and (xf,)i=O = 0 (initial 

interface at inlet boundary). U = I. P = I. /Ju,( P) = I. p"( P) = 0.001 (other values are 

considered as well), Yu• = 7. Ya = 7 /5. B 11 , = 3000, and Bu= 0. According to the speed­
of-sound relations 

l (1 + B11,)/J 
<'~. = Y11· 

Pu· 

these values imply Cu,(P);:::; v/JSc,,(P). which agrees fairly well with standard sea-level 

conditions. As in Section 4. the grids to be used are equidistant. The boundary condi­

tions to be imposed are u(x = 0.1) = U. ¢(x = 0. t) = Ut, and p(x = !, f) = P. The 

space discretization is first-order accurate, as in Section 4.1. Time integration is done with 

the forward-Euler scheme, with the time step constant and sufficiently small to guarantee 
stability: 

Ii 
t>,,t=a---­

U +c 11 .(P) 
a < I. 

6.1. I. Full_\· co11se1Tati1·e Oflf)roach. This is the approach without any fixes for solution 

enors near the interface. For the above numerical values. the computation breaks down. 

The stumbling block is the large density ratio. In Fig. 4. pressure errors are depicted for 

computations with three still rather small density ratios. p,,,/ p0 = 2, 4, and 8. after 10. 

20, and 40 time steps. The time step on the coarsest grid is twice as large as that on the 

middle grid and four times larger than that on the finest grid. No results were obtained for 

Pu· I Pa = 8 after 40 time steps. The pressure error appears to be about linearly proportional to 

the number of time steps taken. In agreement with the theoretical findings, it also increases 

with the density ratio f!u•I Pu· The latter increase is clearly nonlinear. With the conservative 

approach. results for Pir / Pu = 1000 are still far out of reach. The deceptive performance 

of the conservative approach was expected given the analytical results of Section 4.1. (The 

behavior is typical for most conservative formulations but not intrinsic to all [3].) 

6.1.2. Adl'!'ction cif lei·e!-set .fimction. Here the fix proposed in Section 5.1 is numer­

ically investigated. It is applied not only in the cell in which the interface actually is, but 

also in its left and right neighbor cells. The fix clearly gives an improvement as compared 

to the fully conservative approach but is not adequate. For (xr, li=O = 0 and Pu,/ Pa= I 0, in 
each of the three graphs in Fig. 5 we present the computed bulk-density profiles at r = 0.0, 

0.1. 0.2 ..... 1.0. The results are perfect as far as the capturing of the interface is concerned; 

capturing over a single mesh width /z only (thanks to the level-set approach). However. they 

111111111111111 
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FIG. 4. Pressure-error distributions by the fully conservative approach (solid lines, /1 = I/ IO: coarsely dashed 
lines. h = 1/20; finely dashed lines, h = 1/40). 

are cursed with a pressure error, which for Pw! Pa= 10 is still negligibly small, but which, 

as in the previous section, grows nonlinearly with increasing density ratio p 11 ,/ fiu• Results 

similar to those in Fig. 5 cannot be obtained for Pu,/ Pa= I 000, not even for p 11 ,/ f!u = I 00. 

From Fig. 6 it appears that the pressure error grows exponentially with p 11 ,/ pl/' 
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FIG. 5. Bulk-density profiles at r == (l.0. 0.1. 0.2 ..... 1.0. fix with advection of level-set function. p,,./ p,, = l 0. 

6.1.3. Aclvection c~l l'e!ocity, pressure, and level-set jimction. Here, the fix proposed in 

Section 5.2 is tested. The aclvection of u, p. and¢ is applied to the cell with the interface as 

well as to its left and right neighboring cells. The fix is an improvement compared to that 

with aclvection of¢ only. but it does not work satisfactorily either. Capturing is again perfect, 

but the method also breaks clown for increasing density ratio Pu•/ Pa, for Pw / Pa = l 00 after 

t = 0. 7, and for p,,,j p11 = I 000 after t = 0.4 (Fig. 7 ). 

6.1.4. Ghost~ffuid method. The tix proposed in Section 5.3 is not tested; its expected 

smearing of the density excludes it as an interesting option here. However, the ghost-fluid 

method described in Section 5.4 is interesting. It works (Fig. 8); it gives perfectly sharp 

interfaces and does not break clown with increasing density ratio. As opposed to the previous 

methods it works for standard water-air conditions, p,,,/ Pa= 0( 103). For the problem at 

hand. it even works for arbitrarily large density ratios (Fig. 9). Reinitialization of the level-set 

function is not necessary for the running water front. 

6.2. Oscilluting Wate>r Column 

Although the previous constant-speed-and-pressure test case is not trivial from a numer­

ical point of view. from a physical perspective it is. For the second test case, we consider 

ID 
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i3 I 

Cl 
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FIG. 6. Pressure-error distributions at 1 = ll. I for p,, /Pu= 70( + ), 75( x ), and 80(*), tix with advection of 

levd-set function. I,== I /-+0. 
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.__ ______ ai_·, ________ 1-_-_-_-_-_ ...... :_u __ ai_·r _____ __, 

-1 0 

-x 

FIG. 10. Initial condition: shut off tube with column of water (grey) in between two columns of air, all three 

columns flowing to the right at constant speed U and pressure P. 

a closed ID tube (i.e., with impermeable boundaries at the left and right), with the initial 
solution as sketched in Fig. 10. Starting from t = 0, the air at the right is compressed by 
the water and the air at the left expands. Hence, a pressure difference is built up across the 
column of water, with a consequent deceleration of the latter's flow to the right, followed 
by stagnation, and then an acceleration and flow to the left. This leads to a reverse pressure 
gradient across the water, which redirects the flow from left to right again, and so on. The 
water column starts to oscillate. 

We present numerical results obtained through the ghost-fluid method. As for the previous 
test case, we take y 11 , = 7, Ye1 = 7 /5, B11 , = 3000, Ba =0, Pu,(P) = 1, and p"(P) = 0.001. 
Further, we take U = l, P = I, and xr, = 0.1. 

6.2.1. Pressure behavior. An equidistant grid with h = 1/40 is applied. The space dis­
cretization is again first-order accurate and time integration is done again with the forward­
Euler scheme. The level-set function is taken as the signed-distance function. For this 
test case, as opposed to the foregoing, the level-set function is reinitialized. (The reini­
tialization is done after each time step.) Fig. 11 shows the time evolution of the pressure 
coefficients 

P p(x = -l.t) - p 
(x = -1, t) = ___ p __ _ 

p(x = I, t) - P 
P(x = I. t) = P . 

The ghost-fluid method appears to work fine. 

6.2.2. Conservation errors. In the ghost cells, the conservation laws are applied to 
ghost (i.e., virtual) amounts of water and air, not to the real physical amounts. Therefore, 
conservation of the real amounts of mass and momentum in these cells is not guaranteed. 

"' o+-------~----.---.....-----1 
I 

0 2 4 6 8 1D 

t 

FIG. 11. Time evolution of pressure coeftkients at leti and right boundaries (solid line, left boundary; dashed 

line, right boundary J, I, = I /40. 

-
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FIG. 12. Time evolution of relative error in total mass of air in shut off tube. 

In Fig. 12a we give the time evolution of the relative mass error 

8 10 

where m 0 (t) is the total mass of air in the tube at time t. The air-mass error appears to be 

composed of two components: one oscillating and the other behaving linearly in time. The 

total mass of air is slowly decreasing; air is being conve1ted into water. Fortunately, the 

orders of both the oscillatory and the linear error component are close to the computational 

method's order of accuracy, which is first order. To show the latter, in Fig. 12b the time 

evolution of the relative air-mass error is given for a grid and time step twice as tine as those 

in Fig. 12a. (The orders of accuracy of the oscillatory and linear error component in going 

from h = 1/40 to h = 1/80 appear to be 0.78 and 0.90, respectively.) 

7. EXTENSION TO MULTIPLE DIMENSIONS 

In this section, the extension to multi-D of the best performing method, the ghost-fluid 

method, is outlined. For convenience, we consider the extension to 2D only. The subsequent 

extension to 3D is rather straightforward. We consider quadrilaterals as finite volumes in 
2D. 

7.1. lntetface Location and VOF Fraction 

As in 1 D, to identify cells intersected by the two-fluid interface (ghost cells), we first in­

terpolate the cell-center values of the level-set function¢ to the cell vertices. For sufficiently 
smooth grids, this interpolation may be simply done as 

(39) 

(If desired, it may be done more accurately by grid-dependent bilinear interpolation.) Know­

ing the values of¢ in the cell centers and cell vertices, we can determine for each cell the 

VOF fraction a i.n the following way. lf for a cell, ¢ has the same sign in its center and 

four vertices (e.g., a positive sign, Fig. 13a), that cell is fully tilled with one of the two 



HOMENTROPIC TWO-FLUID FLOW COMPUTATIONS 

+ + ~++ + ~:+,': 
~ \ --------, 

+ - -
+ + 

a. All four positive b. One negative 

+ - ~+ - --' ' 
- - \ ___ _: ___ : 

+ 
d. Two diagonally opposite negative e. Three negative 

c. Two neighboring negative 

f. All four negative 

673 

FIG. 13. Six possible combinations of signs of</) at the four vertices of a quadrilateral finite volume. assuming 

¢ to be positive in the tinite rnlume·, center 1dashed lines indicate the two-fluid interface). 

fluids (a= I or a= 0). If¢ does not have the same sign in its center and four vertices, we 

assume linear distributions of¢ along the cell faces connecting two vertices with different 

sign of¢. as well as along the line segments connecting the cell center and a cell vertex 

with different sign of¢. Given these linear distributions, the locations of the interface along 

these cell faces and line segments can be determined. Next, assuming a piecewise linear 

shape of the interface in between the latter locations (Figs. l 3b-l 3f), the VOF fractions can 
be calculated. 

7.2. F/11.r Co111putotio11 

In all cells intersected by an interface (ghost cells), as in ID. we compute both a ghost­

water and a ghost-air flux across all four faces. Across all other cell faces, depending on 

the sign of¢. either pure-water or pure-air fluxes are computed. All flux computations can 

be done in a standard. locally ID manner, i.e .. by considering the flux at each cell face as 
the solution of a Riemann problem normal to that cell face. An ambiguity in the ghost-fluid 

solution may be removed through a formula analogous to (38). 

8. CONCLUSIONS 

To accurately compute compressible. immiscible two-fluid flows with very large density 
differences (such as water-air flows). we have proposed a method that uses a level-set 

technique to distinguish between the two fluids. The level-set equation has been incorporated 

consistently into the system of hyperbolic conservation laws. The resulting equations have 

been discretized through a finite-volume method. To compute the fluxes across the finite­
volume faces (the level-set Aux being one of the Aux-vector components), we have proposed 

a linearized, two-fluid Osher scheme. The scheme allows a physically correct capturing of 
the interface across a single cell face, as well as a neat boundary-condition treatment (for 

example, no sticking of interfaces to solid walls). The novel scheme combines good physical 
properties with great simplicity and efficiency. 

To avoid large solution errors near interfaces. which is a problem for many conserva­
tive capturing methods. four fixes have been proposed, three consisting of some locally 



674 KOREN ETAL 

advective solution update and the fourth a ghost-fluid fix. For density ratios of order I 000 
(typical water-air ratio) the advective fixes fail in the analyses as well as in the numerical 
experiments. In contrast. the simple ghost-fluid technique does work. Even the computation 

of fronts running into a vacuum (p,,, /Pa= oo) is expected to be possible with the ghost-fluid 
method. Extension of the method to higher order accuracy is straightforward through the use 
of, e.g., a MUSCLapproach and a multistage time integrator. (For flow problems such as the 
running water front considered in this paper, higher order accuracy is not necessary; already 
the first-order-accurate discretization method-thanks to the level-set approach-captures 

the interface over the distance of a single mesh width only.) Concerning the extension to 
higher dimensions of the ghost-fluid method. no principal difficulties exist. 
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