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This paper consists of two parts, both dealing with conditioning techniques for low-Mach
number Euler-flow computations, in which a multigrid technique is applied. 

In the first part, for subsonic flows and upwind-discretized linearized 1-D Euler 
equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation 
is investigated. Error decay by convection over domain boundaries is also discussed. A fix 
to poor convergence rates at low Mach numbers is sought by replacing the point 
relaxation applied to unconditioned Euler equations by locally implicit "time" stepping 
applied to preconditioned Euler equations. The locally implicit iteration step is optimized 
for good damping of high-frequency errors. Numerical inaccuracy at low Mach numbers is 
also addressed. In the present case it is not necessary to solve this accuracy problem. 

In the second part, insight is given into the conditions of derivative matrices to be 
inverted in point-relaxation methods for 1-D and 2-D, upwind-discretized Euler equa
tions. Speed regimes are found where ill-conditioning of these matrices occurs, and 1-D 
fl.ow equations appear to be less well-conditioned than 2-D fl.ow equations. Fixes to the 
ill-conditioning follow more or less directly, when thinking of adding regularizing matrices 
to the ill-conditioned derivative matrices. A smoothing analysis is made of point Gauss
Seidel relaxation applied to discrete Euler equations conditioned by such an additive 
matrix. The method is successfully applied to a very low-subsonic, steady, 2-D stagnation 
flow. 

Keywords: Subsonic flows, Euler equations, multigrid methods, conditioning matrices, convergence 
and accuracy 

1. PRECONDITIONING OF JACOBIANS 

1.1. Introduction 

The mathematical theory of subsonic gas flows is 
relatively undeveloped in comparison with that of 
transonic, supersonic and hypersonic flows. An in
dication of this is the small amount ofliterature that 
is available on subsonic gas dynamics. While vari
ous text books deal exclusively with the mathem-
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atics of either transonic, supersonic or hypersonic 
gas flows, for the subsonic case we only know of 
a few book chapters (e.g., Chapters 2 and 3 from 
Bers 1, and Chapter 2 from Majda 7). At present, 
research in the subsonic flow regime is at a rapid 
pace, particularly as far as it concerns numerical 
computations in the zero-Mach-number limit. Both 
sections from this paper contribute to this develop
ment. In the present section, the flows of interest are 
not flows with uniformly low Mach numbers (i.e. 
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with M « 1 throughout almost the entire computa
tional domain), but flows with locally low Mach 
numbers (flows with small stagnation regions and -
particularly- for Na vier-Stokes extensions: flows 
with thin boundary layers and wakes). 

Since about a decade, various multigrid methods 
exist that give good convergence rates for steady 
Euler-flow computations at high-subsonic inflow 
Mach numbers (see Chapter 9 from Wesseling16 for 
an overview). For decreasing inflow Mach numbers, 
or enlarging low-subsonic flow regions, conver
gence rates are known to deteriorate. This decrease 
is not specific to multigrid methods, but seems to 
hold for any solution method. The cause has to be 
sought in the continuous Euler equations, in their 
increasing stiffness (i.e., in their increasing disparity 
of wave speeds) at decreasing subsonic Mach numb
ers. With the application of single-grid, explicit time 
stepping schemes in mind, various fixes have al
ready been proposed for this stiffness problem. See 
Turkel 13 for a review of this. An early research paper 
is van Leer et a/.6 • In it, for the Jacobian of the 1-D 
Euler equations, the preconditioning matrix is given 
which equalizes the three wave speeds u - c, u and 
u + c. Further, the paper gives preconditioning ma
trices for the 2-D and 3-D Euler equations. Besides 
convergence problems, for decreasing Mach numb
ers accuracy problems also arise 14- 15 . While the 
convergence problems are intrinsically related to 
the continuous Euler equations (to their stiffness), 
the accuracy problems hold for the discretized equa
tions (independent of whether the discretization is 
central or upwind). 

In the present section, we will mainly focus on the 
stiffness problem. It is expected that solution 
methods other than explicit time stepping schemes 
may also profit from preconditioning matrices such 
as those proposed in van Leer et a/.6• Led by this 
expectation, we will optimize a multigrid acceler
ated, locally implicit iteration method, applied to 
subsonic, preconditioned Euler equations. To start 
with, in Section 1.2, the continuous, unconditioned 
equations and their discretization are introduced. In 
Section 1.3, first a smoothing analysis is given of 
point Gauss-Seidel relaxation for the discrete equa-

tions, and next a discussion is made of error convec
tion across domain boundaries. It is shown that for 
low Mach numbers, the convergence properties of 
this solution method are poor. In Section 1.4 it is 
made clear that for flows with uniformly low Mach 
numbers, numerical accuracy may be poor, as well. 
Since the latter flows do not interest us, in Section 
1.5 a 1-D preconditioning matrix is derived which 
is only meant for removing stiffness and not for 
improving low-Mach-number inaccuracy also. In 
Section 1.6, a simple way of implementing the pre
conditioning matrix is discussed. At the end of 
Section 1.6 we arrive at the discrete, preconditioned 
system to be solved. The system contains a free 
parameter: a locally implicit iteration step, which is 
optimized for smoothing. The optimization is done 
in Section 1.7 through local-mode analysis applied 
to the upwind-discretized, linearized, preconditioned 
1-D Euler equations. In Section 1.8, the error smooth
ing and error convection of the locally implicit 
iteration are verified. 

1.2. Equations 

1.2.1. Continuous Equations 

Consider the 1-D Euler equations 

with Q the conservative state vector 

f(Q) the corresponding flux vector 

pu 

f(Q) = pu2 + p 

pu(e +~) 

(l.la) 

(l.lb) 

(l.lc) 
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and e the internal energy, which for a perfect gas 
reads 

1 p 1 2 
e=---+-u. 

y- lp 2 
(l.ld) 

Linearization of (l.la) with respect to the conserva
tive variables yields 

df 
dQ= 

aQ dJaQ_ 0 
at+ dQ ax - ' 

(3 -y)u 

(1.2a) 

0 

y-1 ' 

(1.2b) 

where c2 = Jyifp. To simplify the analysis, follow
ing Turkel1 2, the transformation from conservative 
variables Q to non-conservative (entropy) variables 
q is made: 

(1.3) 

The corresponding transformation matrix 

p 
0 

1 

C - c2 

dQ pu u 
(1.4) -= p - c2 dq C 

1 pu2 1 1 u2 

--+--pc pu -2c2 2 C y-1 

brings equation (l.la) into the analytically much 
more tractable form 

(1.5a) 

(1.5b) A= dq dfdQ = (: : ~u)· 
dQdQdq 

0 0 

1.2.2. Discrete Equations 

For simplicity we assume A to be constant and next 
make a first-order upwind, cell-centered finite-vol
ume discretization of the space operator in (1.5a). 
Then, the semi-discrete equation in cell Qi (with 
mesh size h) reads 

with i running in positive x-direction, and with A+ 
and A - the matrices corresponding with the posi
tive and negative eigenvalues of matrix A: 

(1.7a) 

(1.7b) 

With AA= diag(u- c, u, u + c), it holds 

( 1 0 1) 
RA= -1 0 1 , 

0 1 0 

(1.8) 

and, hence, for subsonic flow in positive x-direction, 
O<u<c: 

(u+c u+c ~} A+=~ u~c u+c 

0 2u 

(1.9a) 

(u-c c-u ~) A-=~ c~u u-c 

0 

(1.9b) 
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1.3. Convergence 

1.3.1. Convergence Through Error Smoothing 

Applying point Gauss-Seidel relaxation to find the 
steady solution of (1.6), for successively a down
stream and upstream relaxation sweep the iteration 
formulae are 

I A I ( qf + 1 - qf) = - A + ( qf - q7 ~ i1) - A - ( qf + 1 - qf), 
(1.10a) 

I A I ( q? + 2 - q? + I) = - A + ( q7 + 1 - qf ~ f) 

-A-(q?:f-q7+ 1 ), (1.10b) 

with \Al= A+ -A- and n the relaxation sweep 
counter. To investigate the smoothing properties we 
introduce the local solution error 

(l.lla) 

and the Fourier form 

J? = D"ewi I e1e[~ n] 
' ' 2' ' 

(1.llb) 

with qf the exact local solution, D" the amplitude 
vector (D~, n;, D;) and i 8 i the (scalar) mode. With 
(1.1 la) and (1.11 b), it follows for the amplification 

matrices .${ downstream and .${ upstream: 

.${downstream= - ( - e - iB A+ + I Al)- 1 ei6 A - , 
(1.12a) 

,U ( i8A- IAl)-1 -i8A+ 
..ll't upstream = e + e . (1.12b) 

Substituting A+ and A- we find the solution-inde
pendent matrices 

( 
eiB 

- 1 i0 
.${ downstream - 2 -; (1.13a) 

0 

(

e-ia 

1 -i8 
.${ upstream = 2 e O 

with spectral radii 

0 

0 l 0 , 
2e-ie 

(1.13b) 

(Since the matrices (1.13a) and (1.13b) are sym
metric, the spectral norms, which determine the 
smoothing properties for n = 1, are identical to the 
spectral radii.) Note that in case of a symmetric 
sweep, according to this Fourier analysis, one has 

perfect smoothing: .It upstream .It downstream= 0. How
ever, in case of subsonic flow with non-periodic 
boundary conditions, one generally has error reflec
tions at the outflow boundary when still iterating. 
Therefore, this theoretical, perfect smoothing result 
is not realistic and therefore, we prefer to consider 
the downstream and upstream amplification ma
trices separately. However, for the two separate 
sweeps, the smoothing factors ( 1.14a) and ( 1.14b) are 
surprising, as well. They are in contradiction with 
numerical findings; e.g., for standard, high-subsonic 
airfoil-flow computations, one generally observes 
good multigrid convergence. A first explanation of 
this contradictory result is that care has to be taken 
in interpreting (1.14a) and (1.14b); the frozen coeffi
cients assumption generally loses its validity for high
subsonic Mach numbers. As opposed to this, for 
low-subsonic Mach numbers it seems a reasonable 
assumption (e.g., for limM!O• p becomes constant). 

1.3.2. Convergence Through Error Convection 

A second explanation of the contradictory conver
gence estimate for high-subsonic flows in the general 
case of non-periodic boundary conditions is that for 
the downstream and upstream sweep separately, 
local-mode analysis solely is just too pessimistic. 
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For non-periodic high-subsonic flow computations, 
additional error decay through advection over the 
domain boundaries may be of significant import
ance and may therefore not be neglected. Note 
herewith, that point Gauss-Seidel relaxation can be 
interpreted as locally implicit time stepping at an 
infinitely large time step, which with nonzero wave 
propagation speeds u - c, u and u + c, implies a signifi
cant beneficial influence on convergence. This phe
nomenon of solution errors being expelled out of the 
computational domain by convection, may further 
explain the poor multigrid performance for low
subsonic flows. In spite of the infinitely large time 
step associated with point Gauss-Seidel relaxation, 
for limM!O• the propagation of entropy errors and 
therefore their expulsion, may well start to stagnate. 

1.4. Accuracy 

1.4.1. Well-posedness Continuous Equations 

For limM!O• exact solutions of the continuous Euler 
equations are assumed to converge to the corre
sponding, exact, incompressible flow solutions. 
(Compressible flow in the incompressible limit is 
assumed to be a regular perturbation ofincompress
ible flow.) In support of this, see e.g. the perturbation 
theory analysis of slightly compressible flow past 

1 
M 

1 0 
1 

M 
1 0 

a circle in Chapter 2 of Van Dyke2• The singularity 
occurring for limM!O is not known to cause general 
non-uniqueness problems; as opposed to limM-i 
(see Morawetz8), for limM!O boundary-value prob
lems are not known to become ill-posed. 

1.4.2. Inaccuracy Discrete Equations 

Accuracy problems for limM!O do arise in the dis
crete case. The inaccuracy can be analyzed through 
the modified equation corresponding with: (1.5a)
(l.5b) discretized through e.g., a first-order accurate 
flux-difference splitting scheme (such as Osher's9 or 
Roe's11 ). The corresponding modified equation 
reads 

With 

(

C U 0) 
IAI = u c 0 

0 0 u 

(1.16) 

the numerical diffusion terms in the right-hand side 
of(l.15) can be written out as 

h au 1 
0 

a 
1 

1 
0 oq + IAla2q - 1 - +u- -

2 ax M ax M ax ox2 

0 0 1 0 0 1 
(1.17) 

cap 18c) au --+-- c+(y-l)M-pox cox ax 
Cop 1 ac) au --+-- u+(y-1)-pox cox ax 0 

h au lop Mau +!op c _ _!__Mou aq 
+- -+--u ax· 2 ax pox ax pox pc ax 

( ac 1 au) p 2c-+--u-ax y-1 ax 
( ac l au) p 2u-+--c-ox y-1 ax 

-2Mac 
ax 
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It appears that for limMio and with h fixed and au/ax 
and ap/ax nonzero, the first of the two numerical 
diffusion terms in system (1.15) becomes infinitely 
large for the first two equations in the system. 

1.5. Preconditioning 

1.5.1. Removing Stiffness 

For a detailed account of this topic we refer to van 
Leer et al.6 • For the condition K of A over the entire 
subsonic flow regime, it holds 

K(A)=max(1 :M, ~ ~:), M= l;le(0,1), 

(1.18) 

see also Figure 1.1. At M = 0 and M = 1, A is 
singular. Preconditioning A (by premultiplying it) 
with the 3 x 3-matrix P transforms Equation (1.5a) 
into 

oq oq 
-+PA-=0. at ax (1.19) 

For general P, the possibility of doing time-accu
rate calculations is lost. When solving steady prob-

~ -r----ir------------, 

~ +-------.---'-----! 

0 0.5 

M 

a 
3 1 

FIGURE 1.1 Condition of derivative matrix A as a function of 
the Mach number. 

!ems, this is of no concern. P should at least be 
invertible and should remove the static and sonic 
singularity. In the ideal case, Pleads to the situation: 
(i) that K(PA) = 1 over the entire subsonic Mach
number range, and (ii) that PA yields two down
stream waves and one upstream wave. Satisfaction 
of the second property, conservation of the propa
gation directions of the three waves, avoids a change 
ofnumbers of boundary conditions to be imposed at 
in- and outlet. This property is satisfied by taking 
P positive definite, which implies that P must be 
symmetric. 

A common choice for P is 

(1.20) 

with V being some propagation speed that can still 
be chosen. With (1.20) one has APA= diag(- V, 
V, V). In multi-D, perfect subsonic preconditioning 
is not possible. For 2-D subsonic Euler flows and 
for dq=(l/(pc)dp,du,dv,dp-c2dpf, the follow
ing preconditioning matrix is proposed in van Leer 
et al.6 : 

M2 -M 
Jl-M2 Jl-M2 

0 0 

-M 1 
0 +1 0 

P= Jl-M2 Jl-M2 

0 0 Jl-M2 0 

0 0 0 1 

(1.21) 

The 3-D subsonic preconditioning matrix pro
posed in van Leer et al. 6 is very much the same as 
(1.21). Our practical interest lies in doing 2-D and 
3-D computations. However, since already in 2-D, 
local-mode analysis for the preconditioned, full Eu
ler equations is hard and does not lead to transpar
ent results, we do the analysis for the 1-D Euler 
equations, with as preconditioning matrix a 1-D 
version of2-D P (1.21). We proceed by deriving such 
a 1-D P. 
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Striving for the almost diagonal form 

(
- V O 0) 

PA= V V O, 

0 0 V 

( 1.22) 

a symmetric 1-D version of(l.21) can be found. For 
V = u, it follows 

M2 

1-M2 

-M 
P= l-M2 

0 

-M 
1-M2 

0 

l 1 0 
1-M2 + (1.23) 

0 

(and, unimportant, V = 2c). Since entropy propa
gates with the flow speed, just as in (1.21), the 
entropy equation is left unchanged. Note that P 
according to (1.23) is positive-definite; for M e(O, 1) 
its three eigenvalues are all positive: il 1 = 1 and 

il 2 , 3 = ( 1 ± j 1 - M 2 + M 4 )/ ( 1 - M 2 ) > 0, 
"IM e(O, 1). Also still note the freedom in the deriva
tion of this preconditioning matrix. For example, 
another V could have been chosen; V = u + c would 
have yielded 

M -1 
0 

1-M 1-M 

P= 
-1 2-M2 

0 (1.24) 
1-M M(l -M) 

0 0 
l+M --

M 

Moreover, instead of preconditioning, postcon
ditioning could have been applied. The difference 
between pre- and postconditioning can be clarified 
by considering the auxiliary equation A dq/dx = r. 
Preconditioning this equation (PA dq/dx = r) is 
identical to right-hand side transformation (A dq/ 
dx = p- 1 r), whereas postconditioning (APdq/dx =r) 
can be interpreted as solution transformation. Post-

conditioning (1.5a) by a symmetric P such that 

leads to 

P= 

M 2 -2 

M 2 -l 
M 

M 2 -l 

0 

(1.25) 

(1.26) 

0 1 

Interpreting this postconditioning matrix as 
a solution transformation matrix dq/dq, we get 

M 2 -2 1 M 
M2 - 1 pc dp M2 - 1 du 

dq= 
M 1 M 2 

--2--dp + - 2-du . (1.27) 
M - lpc M -1 

dp-c2 dp 

Physical interpretation of the first two components 
of dq is not trivial. In the remainder we consider 
preconditioning according to (1.23). 

1.5.2. Concerning Inaccuracy 

A partial fix to the discrete accuracy problem dis
cussed in Section 1.4.2, is to make the discretization 
second-order accurate. (In practical computations, 
the discretization will be at least second-order accu
rate anyway.) Of course, as long as the two limits 
M LO and hLO are independent (and as long as the 
discretization method is not exact), formally the 
accuracy problem remains. A subsequent partial fix 
would then be to take the mesh size appropriately 
dependent on the Mach number. 

A real fix is to exploit the freedom still existing in 
the choice of the preconditioning matrices for re
moving the stiffness problem. By first precondi-
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tioning, 

(1.28) 

and then discretizing, one gets the influence of the 
preconditioning in the discretization error. For flow 
computations at uniformly low Mach numbers, the 
challenge is then to get rid of both the stiffness and 
the accuracy problem by a single preconditioning 
matrix P. Such double-edged preconditioning 
matrices are expected to become available soon14. 

Discretization of (1.28) requires the incorporation of 
a space discretization scheme which is modified for 
the preconditioning (both at the interior and the 
boundary cell faces). Further, in multigrid contexts 
the residual transfer has to be reconsidered in order 
to maintain the Galerkin property and hence good 
multigrid convergence4 - 5• Since uniformly low
Mach-number flows are not of interest to us at 
present, we will not apply preconditioning in the 
form (1.28). (For computations in which the Mach 
number is not uniformly low, the accuracy problems 
occurring for limMto are local, and hence, no reduc
tion of global solution accuracy is expected to be 
found.) 

1.6. Implementing Preconditioning 

By implementing the preconditioning as 

(1.29a) 

with p- 1 the inverse of ( 1.23): 

2-M2 1 
0 Ai2 M 

p-1 = 1 

M 
1 0 (1.29b) 

0 0 1 

the original space discretization scheme can still be 
applied (simply because the space operator is still 
original). Steady-state solutions will therefore be 
identical to those belonging to the unconditioned 
equations (1.5a) and (1.15). The conservative form 
corresponding with (1.29a) reads 

Discretizing (1.30) by a first-order upwind finite
volume method, and denoting the numerical 
flux function which approximates cell-face flux 
f(q;+<i;2 J) by F(q;, q;+ 1), for cell ni the semi-discrete 
equation reads 

Given the good smoothing properties of point 
Gauss-Seidel relaxation in the multigrid computa
tion of high-subsonic, transonic and supersonic 
flows, in choosing the time discretization for (1.31) 
we deviate as little as possible from this trusty 
smoother, by applying locally implicit time stepping 
in a Gauss-Seidel fashion. Hence, as a fully discrete 
equation in cell !l;, for a downstream and upstream 
sweep respectively, it follows: 

[ hdQ( n)p-l(Mn)+8F(q~,q?+1)_8F(q~~f,q?)](qn+l_q'.')=F(q'.'+l q'.')-F(q'.'q'.' } 
-- qi i an a n i I 1-1' I 1> 1+1' l!i.tdq qi q; 

(1.32a) 
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The time step t.t (which due to the precondition
ing is not identical to a physical time step) is still 
amenable to optimization. In the next section it will 
be optimized for smoothing. 

1.7. Optimizing Locally Implicit Iteration Step 

For simplicity, smoothing optimization of !:it from 
(1.32a) and (1.32b) is done for the non-conservative, 
frozen-coefficient variants of both equations, i.e. 
for: 

(1.33a) 

1.7.1. Qualitative Optimization 

From (1.33a) and (1.33b), with (1.1 la) and (1.1 lb), in 
the same way as in Section 1.3.1 we derive: 

( h )- 1 
A downstream= At p- 1 - e - i8 A+ + IAI 

x (..!!...p- 1 - ew A-) (1.34a) 
!:it ' 

( h )- 1 
A upstream= At p- l + eiO A - + IAI_ 

We proceed by cortsidering the two highest error 
frequencies: 101 = n. For both frequencies, with 

h 
rr=

- cAt' 
(1.35) 

(1.34a) and (1.34b) can be written as: 

.,pf downstream = 

2-M2 3 1 1 1 3 
(J---+-+-M rr-+-+-M 

M 2 2 2 M 2 2 
1 1 3 3 1 

rr-+-+-M a+-+-M 
M 2 2 2 2 

0 

0 

-1 

0 0 rJ+2M 

2-M2 1 1 
a-----+-M 

M 2 2 2 
1 1 1 

rr-+---M 
M 2 2 

0 

Jl'/upstream = 

2-M2 3 1 
a---+---M 

M 2 2 2 
1 1 3 

(J---+-M 
M 2 2 

0 

2-M2 1 1 
rr-------M 

M 2 2 2 
1 1 1 

a-----M 
M 2 2 

0 

0 

1 1 3 
rr---+-M 

M 2 2 
3 1 

(J+---M 
2 2 

0 

1 1 1 
(J-----M 

M 2 2 
1 1 

a----M 
2 2 

0 

The corresponding eigenvalues are: 

(.1c ) = a 
1 .4¥,,.,m,.m (J + 2M' 

a 

(1.36a) 

0 

0 

0 

0 

a-M 

-1 

(1.36b) 

(1.37a) 

1c _ a+ (J 2 -M 2 ±J4a2(1-M2 ) +M4 

( 2,3).H,,wostcoam - 3rr + (J2 + 2M2 ' 
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u-M 
(.-1.1) =--.Hupst,eam (T + M' 

u + u2 - M 2 ± J 4u2 (1 - M 2) + M4 

3cr+ u2 + 2M2 

(1.37b) 

Note that (.-1.2,3).Hdown,uoam = (.-1.2,3).H,p,1,eam" We proceed 
by considering the eigenvalues for limMio- With 
u a finite (positive) constant, this yields 

lim(.-1. ,1, ,1, ) = ( 1 1 - er + cr2) 
M!O 1, 2, 3 ...Ndownstream,cr•cons.r.ant ' ' 3a + (12 ' 

(1.38a) 

lim(.-1. .-1. .-1. ) = ( 1 1 - er+ u2
) 

M !0 1• 2, 3 .Hupsucam.••constant ' ' 3cr + CT2 • 

(1.38b) 

For er= aM with a a finite (positive) constant it 
yields 

lim(.-1. .-1. .-1.) -(-a- 1 _!) 
M!O 1• 2, 3 .Hdownstream.o••M - a+ 2' ' 3 ' 

(1.39a) 

Jim ,1, ,1, ,1, = -- 1 --( a -1 1) 
M!0 ( 1• 2• 3).Hupstr,am,o•oM a+ 1' ' 3 • 

(1.39b) 

2 from Golub and Van Loan3) and hence better 
smoothing when applying two, three, four, ... 
Gauss-Seidel sweeps. Note that no function 
er= cr(M) exists which makes the moduli of all three 
eigenvalues smaller than one for limMW We proceed 
with er= aM. In the next section the optimal value of 
a is derived. 

1.7.2. Quantitative Optimization 

To optimize a from u = aM, we continue to apply 
Fourier analysis for the highest error frequencies 
101 = 1t, where, as in Section 1.3.1, we look for spec
tral radii of the amplification matrices. To avoid 
Mach-number dependence of a, we consider the 
moduli of the amplification matrices' eigenvalues 
integrated over the entire subsonic Mach-number 
range. (Avoiding Mach-number dependence by tak
ing limM!O does not allow a-optimization; from 
(1.39a) and (1.39b) it appears that the correspond

ing spectral radii of both ..It downstream and 
...ltupstream equal one, for any a.) In Figure 1.2 the 
distributions of the aforementioned eigenvalue inte
grals are depicted over the a-range [O, 10]. (Note 

that since (.-1.2,3).Hdowo,troam = (.-1.2,3).H.ps1roam' the corre
sponding integrals are the same.) From Figure 1.2 it 
can be seen that the optimal value of C( follows from 

Hl(.-1.1).A'upstroamldM = Hl(.-1.2).HupmeamldM (dashed line 

in Figure 1.2b), i.e. (after some computer algebra) 
from: 

- 4 + 2C( -2a2 + a 3 + (5 - 2a2)ln( % + 2)
2 
))- 3)1 -4C(2 !n(~ + 1) 

a a+l 2C( a-1 
a:-----------~---=--......,,..-'--------'--------'---+--=O. (140) 

(a 2 + 2)2 a + 1 · 

So the choice er= constant yields two maximum 
eigenvalues equal to one, for both the downstream 
and upstream sweep. For er= C(M with a constant, 
this number is only one, which probably implies 
smaller Frobenius matrix norms (see e.g. Chapter 

From (1.40) it follows by good approximation 
that C( = ¾, and thus as (approximately) optimal er: 

(1.41) 
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FIGURE 1.2 Integrated moduli of eigenvalues of amplification matrices for highest error frequencies. 

1.8. Convergence for Preconditioned Equations 

1.8.1. Error Smoothing 

Relation (1.41) implies as (approximately) optimal 
iteration step ~t: 

(1.42) 

i.e. CFL = t, We verify the smoothing behavior for 
this iteration step. This is done over the entire 
subsonic Mach-number range (0, 1), for the three 
error frequencies e = 1r:/2,31r:/4 and 1r:. In Figure 1.3 
the distributions of the corresponding spectral radii 
are depicted. Recalling from Section 1.3.l that the 
spectral radii of downstream and upstream point 
Gauss-Seidel relaxation equal one over the entire 
subsonic Mach-number range, from Figure 1.3 it 
appears that the preconditioning does a good job. 

1.8.2. Error Convection 

The locally implicit iteration applied to precon
ditioned Euler equations may be interpreted as 
physical time stepping. To do so, for simplicity we 
consider the common P according to (1.20) with 
V = I ul. Then, with CFL = lul At/h, the iteration 
formulae (1.33a) and (1.33b) become 

(1.43a) 

From (1.43a) and (1.43b) it appears that for this 
common P, the locally implicit time stepping can be 
directly interpreted as point Gauss-Seidel relax
ation with underrelaxation factor w = 1 + CFL. I.e., 
even with CFL = CD(l), (1.43a) and (1.43b) can still be 
interpreted as locally implicit physical time stepping 
at an infinitely large time step. 

1.9. Conclusions 

• Poor convergence of multigrid accelerated 
point Gauss-Seidel relaxation at low Mach 
numbers is explained by the relaxation's poor 
smoothing at low Mach numbers and by the 
likewise poor entropy-error expulsion across 
domain boundaries. 

• Poor solution accuracy known to occur at low 
Mach numbers can be explained by means of 
the modified equation for the 1-D Euler equa
tions, discretized by a first-order accurate flux
difference splitting scheme. For flows with uni
formly low Mach numbers, a fix to this inaccur
acy is necessary. For flows of which the global 
solution error is not affected by the occurrence 
of low-subsonic flow regions, it is not. 
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FIGURE 1.3 Spectral radii of amplification matrices, for downstream and upstream (approximately optimal) point Gauss-Seidel 
time-stepping and three error frequencies. 

• For the latter flows, implementation of precon
djtioning in a locally implicit time stepping 
method with the inverse of the preconditioning 
matrix working on the time operator, may be 
practical. It allows the application of an off
the-shelf space discretization method. 

• Local-mode analysis shows that optimal high
frequency damping for locally implicit "time" 
stepping in a Gauss-Seidel way, is obtained for 
CFL ~ l (When preconditioning with the 1-D 
matrix P = lu II A 1- 1, the locally implicit "time" 
stepping boils down to point Gauss-Seidel re
laxation with underrelaxation factor 1 + CFL.) 

• Given the direct availability of the 2-D and 3-D 
extensions of the 1-D preconditioning matrix 
analyzed, the present improved solution 
method is directly extendible to multi-D. 

2. CONDITIONING OF ABSOLUTE
EIGENVALUE MATRICES 

2.1. Introduction 

In the zero-Mach-number limit, point-relaxation 
methods for solving discretized, steady Euler equa
tions may suffer from ill-conditioning of the corre
sponding derivative matrices to be inverted. (For 
clarity, here derivative matrices are the local, abso-

lute-eigenvalue matrices, not the Jacobians.) To see 
this, we start by considering the perfect-gas, steady, 
1-D Euler equations 

df(Q) =O 
dx ' 

(2.1) 

with Q the conservative state vector (l.lb),f(Q) the 
corresponding flux vector (l.lc) and e the internal 
energy (l.ld). Linearization of (2.1) with respect 
to the conservative variables and transformation 
from conservative variables Q to non-conservative 
(entropy) variables q according to (1.3), yields the 
steady, analytically tractable form 

(2.2) 

with A according to (1.5b). Again we assume A to be 
constant and consider a first-order upwind, cell
centered finite-volume discretization of (2.2). Then, 
the discrete equation in cell Qi reads 

(2.3) 

with i running in positive x-direction, and with A+ 
and A- defined by (1.7a) and (1.7b), respectively. 
Applying point Gauss-Seidel relaxation to find the 
solution qi of (2.3), for successively a downstream 
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and upstream relaxation sweep we have the iter- with 
ation formulae (1.10a) and (1.10b), respectively, with 
IAI the matrix to be inverted; 

For O < u < c, it holds 

A
1
A

1 
= diag(c - u, u, u + c), (2.5) 

and so IAI has as condition over the entire subsonic 
flow regime Gust as A): 

see also Figure 1.1. The best condition occurs at 
M = ½; K (M = ½) = 3, singularities occur at M = 0 
and M = 1. Hence, in 1-D, in the neighborhood of 
the static and sonic flow conditions, when applying 
the iteration formulae (l.lOa)-(1.lOb), one may 
expect very large (too large) solution changes in case 
of very small right-hand sides only. 

In 2-D numerical practice, ill-conditioning of de
rivative matrices to be inverted is not experienced in 
the neighborhood of M = 1, but only near M = 0. 
To get some evidence of this we analyze the 2-D case 
also. With O < u < c, 0 < v < c, a square finite vol
ume, and j as additional running index in positive 
y-direction, one derives as iteration formulae for 
successively a downstream and upstream relaxation 
sweep: 

(2.7b) 

C' 
u+c 0 

~ )· A+=! u+c u+c 0 

2 0 0 2u 

0 0 0 2u 

(2.8a) lu-c 
c-u 0 

i)· 
1 c-u u-c 0 

A- =-
2 0 0 0 

0 0 0 

(He 0 v+c 

~ )· + 1 0 2v 0 

B =2 v;c 0 v+c 

0 0 2v 

lv-c 
0 c-v 

~)· 
1 0 0 0 

B- --
-2 C~V 0 v-c 

0 0 

(2.8b) 

Therefore, in 2-D the matrix to be inverted is 

For A1Al+IBI it holds when, without loss of generality, 
rotating in the flow direction: 

V 
ii= u cos¢+ v sin¢, ¢ = arctan -, 

u 
(2.10) 
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and thus 

KIAl+IBl(M) 

=max(3+jl +4M2,3+jl +4M2
), 

2M 3-jl +4M2 

lul M = -E(O, 1), (2.11) 
C 

see also Figure 2.1. We see that in 2-D the singular
ity at M = 1 no longer exists, which explains the 
aforementioned numerical experience. (The best 
condition occurs at M = i, K (M = j) = -I,) 

In the remainder of this paper, we discuss possible 
fixes to the 1-D and 2-D ill-conditionings of the 
absolute-eigenvalue matrices (Section 2.2), analyze 
the multigrid smoothing properties of a favorite 
fix (Section 2.3) and do some numerical experiments 
(Section 2.4). The first, already mentioned difference 
with the work presented in Section 1 is that whereas 
in Section 1 the condition of a non-absolute-eigen
value matrix was improved, here the conditions 
of absolute-eigenvalue matrices are improved. 
Moreover, whereas in Section 1 the improvement 
was made only for 1-D, here it is done for 1-D 
and 2-D. 

~ -,--,-----------.---, 

C') ---------

~ -+------.....---------1 

0 0.5 

M 
1 

FIGURE 2.1 Condition of exact, 2-D absolute-eigenvalue 
matrix, as a function of the Mach number. 

2.2. Fixes to Ill Conditioned Subsonic, 
Absolute-Eigenvalue Matrices 

2.2.J. Trimming 2-D Singular Matrix 

For 2-D low-Mach-number flows, equations (2.7a)
(2.7b) can simply be regularized by (locally) drop
ping the entropy-equation part, and by replacing 
that, in case of, e.g. (2.7a), by either the homentropic 
iteration formula 

n + 1 n _ ( n + 1 n ) ( n )2 ( n + 1 n ) 0 
si,i - si,i = Pi,i - hi - ci,i Pi,i - P;,i = , 

(2.12a) 

or, alternatively, the incompressible formula 

(2.12b) 

Dropping the entropy equation from system 
(2. 7 a )-(2. 7b ), the corresponding derivative matrix to 
be inverted reduces to 

(
2c 

IAl+IBI= : 

u 

v+c 

0 

V ) 0 ' 

u+c 

with, rotating again in the flow direction 

. (3 1 ✓ 2 -2 -A141 + 181 = diag 2c - 2 .c + 4u , u + c, 

and thus 

(2.13) 

(2.14) 

(2.15) 

see also Figure 2.2. A diffiulty of splitting off the 
singular part from the iteration formulae in case of 
general subsonic flows is that it requires the intro
duction of a monitor for switching on and offhome
ntropy or incompressibility, i.e. (2.12a) or (2.12b). 
Rigorous formulae for setting thresholds for the 
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M 

FIGURE 2.2 Condition of trimmed, 2-D absolute-eigenvalue 
matrix as a function of the Mach number. 

monitors are hard to derive. Therefore, we refrain 
from applying these reduced derivative matrices. 

2.2.2. Adding 1-D and 2-D Regularizing Matrices 

Considering the 1-D absolute-eigenvalue matrix 
(2.4), it can be regularized by adding a matrix R to it, 
leading to the approximate derivative matrix: 

(2.16) 

Taking 

(2.17) 

for any constant Pe(O, 1] the singularities at M = 0 
and M = 1 are removed. For both R's from (2.17) we 
find 

A1A1, = diag(c -JI="pu, Pc 

+ (1 - P)u, c + -/f=Pu). (2.18) 

However, since I A IR is not symmetric, its condition 
number does not equal the ratio of its largest and 
smallest eigenvalues. Here we use the general formula 
K1AIR =II/AIR 1111 /A/i 1 II. TakingtheL 00 -normasthe 
matrix norm, for both R's in (2.17) we derive 

( 1 + M (1 + M)2 ) 

K1A1,(M) = max f:J + (1-(:J)M' 1 -(1- f:J)M2 ' 

Me(O, 1), (:Je(O, 1], (2.19) 

see also Figure 2.3. For /3 = 1, /AIR is best condi
tioned over the entire subsonic Mach-number 
range, whereas the corresponding approximate de
rivative matrix IA IR will generally be rather close to 
the exact derivative matrix IA/. A convergence re
quirement to be satisfied is that the eigenvalues of 
/AIR are positive. This requirement is met by both 
R's from (2.17), for any (:JE(O, 1]. 

In 2-D, where no sonic singularity exists, to regu
larize (2.9) we may take 

0 0 0 

0 0 0 
R=f:J 

0 0 0 

0 0 0 

a 

0 

0 

0 

c-u-v 

0.5 

M 

, /3e(O, 1]. (2.20) 

1 

FIGURE 2.3 Condition of through-addition-regularized, 1-D 
absolute-eigenvalue matrix as a function of the Mach number. 
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Therefore, in 2-D we have the advantage of 
remaining closer to the exact derivative matrix than 
in 1-D. For the corresponding eigenvalue-matrix 

.t\iAl+IBllR' where (IAI + IBl)R = IAI + IBI + R, it 
holds 

and hence 

( 3+J1+4M2 3+)1+4M2 ) 
max 

2(/3+(1-/3)M)'3_J1+4M2 ' 

M e(O, 1), /3e(O, 1], (2.22) 

see also Figure 2.4. As opposed to the preceding 1-D 
conditioning, which is perfect for p = 1, perfect 2-D 
conditioning through (2.20) is not possible. In the 
next section, for 2-D flows, we will investigate 
the mttltigrid smoothing (high-frequency damping) 
properties of f:)oint Gauss-Seidel relaxation when 
applying additive conditioning. For reasons of 

~ -,------.------------, 

IO 

C\1 

'"O) 

\\ 
0 

.-➔ -+-------.---.,__ __ _ 

0 0.5 

M 

2 
3 1 

FIGURE 2.4 Condition of through-addition-regularized, 2-D 
absolute-eigenvalue matrix as a function of the Mach number. 

transparency, smoothing properties are inves
tigated for the 1-D equation. 

2.3. Smoothing for Additive Conditioning 

Consider the downstream iteration formula 

and the upstream formula 

(R + IAl)(q7+ 2 - q7+ 1) 

= -A+ (q7+ 1 - q7~ {) -A-(q7tf - qf + 1), (2.23b) 

where R is the 1-D equivalent of the 2-D additive 
matrix (2.20): 

(
0 0 

R=/3 0 0 

0 0 
0 l 0 . 

c-u 

(2.24) 

To investigate the smoothing properties, the local 
solution error (l.lla) and its Fourier form (l.llb) 
are introduced again. Keeping the coefficient ma
trices in (2.23a) and (2.23b) frozen, with (1.lla) and 
(1.1 lb), from (2.23a) and (2.23b) it follows for the 
corresponding amplification matrices .A downstream 

and .A upstream: 

c.4't downstream = 

.,«upstream= (R +A+ -(1- ei6)A -)- 1 (R + e-iB A+). 

(2.25b) 

In both.,{( downstream and .,{{ upstream the influence of 
/3 is confined to a single eigenvalue per matrix only: 

). _ /3(1-M) 
.lldownst=J/3)- /3(1 _ M) + (1 _ e-i6)M' 

(2.26a) 
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It can be seen that for (3 = 1, it still holds 

(2.27) 

We assume that (3 = 1 is an acceptable choice in 
2-D as well. In the next section the conservative 
implementation of the 2-D additive conditioning is 
discussed and some numerical results, obtained for 
a 2-D stagnation flow, are given. 

2.4. Applying Additive Conditioning 

2.4.1. 2-D Conservative Implementation 

Discretizing the steady, 2-D, conservative Euler 
equations by a first-order upwind, cell-centered 
finite-volume method, and denoting the numerical 
flux functions which approximate the cell-face fluxes 

in x- and y-direction (f (q; +(l/ZJ.j) and g(q;,j+(1;2 )) by 
F(q;,j, qi+ 1 ) and G(q;,j, qi.j+ 1), respectively, the 
conservative upstream and downstream relaxation 
sweeps read: 

= F(q7~ rj, q7Jh,-(l/2). j - F(qf.j' q?+ 1 )hi+(l/2).j 

+ G(q7_;l 1, q?)hi,j-(l/2) - G(q?_j, q7,j+ 1)h,,j+(l/2)• 

(2.28a) 

8f ( n + 1 n+ 1) _ qi-1,j,qi,j h 
8q'!:1 i-(1/2),j ,.; 

8G( n+l n+2) + qi.j ,q;,j+ 1 h 
8q?+l i,j+(l/2) ,.; 

-F( n+l n+l)h - qi-1,j•qi,j i-(1/2),j 

F( n+l n+2 )h - qi,j , qi+ 1.j i+(l/2),j 

+G( n+l n+l)h 
q,,j-1• q,,j i,j-(1/2) 

G( n+ 1 n+2 )h - qi,j , qi,j+ 1 i,j+(l/2)' (2.28b) 

where h,,j is a cell-averaged mesh width, e.g. liu = 
¼(h;-<112>,i + h;+<112J,i + h,,j-c1;2J + hi,j+c1;2J), and 
where 

dQ 
-= 
dq 

p 
0 0 

C 

1 
-c2 

pu 
0 p 

C 

u 
- c2 

pv 
0 p 

C 

V 
- c2 

1 p(u2 + v2) 1 
2 +--lpc 

C y-
pu pv 

1 u2 + v2 

-2-c-~-

yielding 

0 0 0 

dQ 
0 0 0 

-R= 
dq 

0 0 0 

0 0 0 

c-u-v 
c2 

u(c- u -v) 
c2 

v(c - u - v) 
c2 

l(u2 + v2 )(c - u -v~ 
2 c2 

'2.29) 

. (2.30) 
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In 3-D, we have 

dQ 
-R= 
dq 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

c-u-v-w 
c2 

u(c- u-v-w) 
c2 

v(c - u- v-w) 
c2 

w(c-u-v-w) 
c2 

1 (u 2 + v2 + w2 )(c - u - v - w) 
2 c2 

(2.31) 

2.4.2. Numerical Results 

A suitable test case is steady, 2-D stagnation flow 
normal to a flat plate (Figure 2.5). A favorable 
property of this test case is the direct availability of 
good approximate boundary conditions (because of 
the availability of an exact, incompressible potential 
flow solution, see e.g., Chapter X from Prandtl and 
Tietjens 10). For computational efficiency, we only 
compute half the problem (x;,,: 0). (We remark that 
exact solutions of subsonic flows along a kinked 
wall have a singularity at the kink for all kink angles 
[) except for J = 0 and J = n/2, the latter case is 
identical to the present normal stagnation flow.) 

·~x 

·I 0 

FIGURE 2.5 Stagnation flow against a flat plate. 

Introducing known quantities in the point (x,y) = 
(1, 1): a reference speed vref• a reference density Pref• 
and a reference Mach number M,ef• the boundary 
conditions imposed are: 

• at the inflow boundary, assuming homenthalpy: 

u(x, y = 1) = v,efx, 

v(x,y = 1) = -vref• 

(2.32) 

(2.33) 

c(x,y=l)= 

v?er y-1( 2 2( l) 2( )) M 2 +-2- vrer-U x,y= -v x,y= 1 , 
ref 

(2.34) 

• at the outflow boundary, assuming home
ntropy and homenthalpy: 

y 

( 
y -1 w2 (x = 1,y))-ri 

p(x = 1,y) = 1 + 2 c2 (x = l,y) Pi, 

(2.35a) 

where 

(2.35b) 

v2 y-1 
c2(x = 1 y) =~ +--(v2 -w2 (x = 1 y)) 

' M;ef 2 ref ' ' 

( 
y - l )y~ t 

P, = 1 + -2-M;ef Pref• 

(2.35c) 

1 v;ef 
Pref=-')' M2 Pref• 

ref 
(2.35d) 

• at the vertical-wall boundary: 

u(x = 0, y) = 0, (2.36) 

• at the lower-wall boundary: 

v(x,y = 0) = 0. (2.37) 
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In Figure 2.6, for two low-subsonic (though not 
yet very low-subsonic) values of M,.r, we give the 
convergence behaviors of the point relaxation in 
some arbitrary cell, at some arbitrary instant in the 
iteration process. (The residual considered is that of 
the energy equation.) From the results it appears 
that the additive conditioning does a good job. 
Though quadratic convergence is lost, the diver
gence that occurs at M,er = 0.075 (Figure 2.6a) has 
disappeared by applying the conditioning (Figure 
2.6b). In Figure 2.7, convergence results are pres
ented, as obtained through the conditioned relax
ation method accelerated by nonlinear multigrid. 
(The residual considered is the L 00-norm of the 
energy equation's residual field.) The Mach-number 

--ti! IO 
::, I 
'O ..... 
rn 
Q) 
... 0 ....., ... 
t>11 I 
0 -

0 2 4 6 8 10 

# Newton steps 

a. Without conditioning. 

sequence considered is: M,.r = 0.5, 0.05, 0.005. Note 
that the method does not break down, but still 
converges in the very low-subsonic case M ,er = 0.005. 

2.5. Conclusions 

Two methods have been proposed for removing 
singularities in local, absolute-eigenvalue matrices 
of upwind-discretized Euler equations: 

--ti! IO 
;::J I 

'O ..... 
rn 
Q) 
... 0 ....., ... 
QI! I 
0 -

• elimination of the entropy-equation part from 
the exact, 2-D derivative matrix, 

• addition of a singular matrix (which is very 
close to the zero matrix) to the singular, exact 
derivative matrix. 

0 2 4 6 8 10 

# approximate Newton steps 

b. With conditioning. 

FIGURE 2.6 Convergence behaviors point relaxation, +: M,.r = 0.1, x: M,.r = 0.075. 

0 0 0 _ ... ... ... 
- I I I 
ti! 
::, C\I N C\I 
~I I I 
rn 
Q) C') C') C') ... I I I ....., 
QI! 
0 ... ... ... - I I I 

IO "' "' I I I 

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 

# NMG-cycles # NMG-cycles # NMG-cycles 

a. Mrer = 0.5. b. Mrer = 0.05. c. M,.r = 0.005. 

FIGURE 2.7 Convergence behaviors nonlinear multigrid iteration, +: h = ¼, x: h = -h, *: h = A 



70 B. KOREN 

The first fix does not work in 1-D. Another draw
back is that its successful application requires tu
ning. The second fix is free of tuning parameters and 
may remove the ill-conditioning without deteriora
ting too much the quadratic convergence rate of the 
exact Newton iteration. The latter fix has been 
successfully applied to a steady, 2-D, low-subsonic 
stagnation flow. 
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