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ABSTRACT
In bandwidth-sharing networks, users of various classes re-
quire service from different subsets of shared resources si-
multaneously. These networks have been proposed to ana-
lyze the performance of wired and wireless networks. For
general arrival and service processes, we give sufficient con-
ditions in order to compare sample-path wise the workload
and the number of users under different policies in a linear
bandwidth-sharing network. This allows us to compare the
performance of the system under various policies in terms
of stability, the mean overall delay and the weighted mean
number of users.

For the important family of weighted α-fair policies, we
derive stability results and establish monotonicity of the
weighted mean number of users with respect to the fairness
parameter α and the relative weights. In order to broaden
the comparison results, we investigate a heavy-traffic regime
and perform numerical experiments.

1. INTRODUCTION
In recent years a lot of attention has been devoted to

multi-class stochastic networks where the capacity allocated
to the various classes depends on the number of users present
in all classes. Analyzing multi-class stochastic systems tends
to be very challenging. Metrics like the joint (marginal)
distribution of the number of users of the various classes,
or even the mean number of users of the various classes,
can only be determined in some special cases. To gain in-
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sights into the performance of the system, researchers have
resorted to deriving qualitative properties of the stochas-
tic processes, among them stability, comparison results and
performance bounds.

Stability of stochastic systems is a well-founded theory [18,
5]. Recently new results have been derived for systems
with state-dependent (and time-varying) capacities. For ex-
ample, in [13] the stability conditions for utility-based al-
location policies in a time-varying scenario are character-
ized. In [4] necessary and sufficient stability conditions for
parallel-server queues with state-dependent capacities are
derived.

There is a wide range of literature on the ordering of
random processes, see for example [24, 20]. In particular,
stochastic comparison is often used. In the seminal pa-
per [16] (see also [15]) necessary and sufficient conditions on
the transition rates are given for the existence of a stochastic
ordering between two Markov processes defined on ordered
state spaces, starting from any two ordered initial states.
It turns out that these conditions are often too strong in a
queueing context. In particular, the conditions are not sat-
isfied in the examples we will study in this paper. In this
paper we will consider a special case of stochastic ordering:
We use a sample-path approach to compare two stochastic
networks, that is for both networks we consider the same re-
alizations of the arrival processes and service requirements
(see [6, 14] for more details).

A related research direction is to obtain bounds for the
stochastic process of interest. In a recent paper [3] the au-
thors consider a network of processor sharing queues with
independent Poisson arrival processes. The capacity of the
various queues is variable and depends on the number of
users present in all the queues. Stochastic bounds for the
number of users present in each queue are obtained for so-
called monotone policies (removing a user from any queue
increases the capacity allocated to any user).

Our main interest is in stochastic processes that arise
in so-called bandwidth-sharing networks introduced in [17]
to model the dynamic interaction among competing elastic
data flows that traverse several links in the Internet. An
important family of rate allocation policies originally intro-
duced in [19] are the so-called weighted α-fair bandwidth-
sharing policies, where as a function of the parameter α one
obtains popular disciplines such as maximum throughput
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(α → 0), Proportional Fairness (PF, α = 1) and max-min
fairness (α → ∞). It has been argued that the bandwidth
sharing realized by TCP (Transmission Control Protocol)
in the Internet can be well approximated by an α-fair pol-
icy with parameter α = 2 [9]. In [2] it is shown that any
α-fair policy (α > 0) achieves maximum stability, assum-
ing Poisson arrival processes and exponentially distributed
flow sizes. Obtaining closed-form expressions for the perfor-
mance metrics of α-fair policies has proved to be rather dif-
ficult. Therefore, researchers have studied the performance
under certain probabilistic limiting regimes. For example,
in [7, 8, 10] the authors study the number of users of the
various classes under a fluid and a diffusion scaling when at
least one node is in heavy traffic, and investigate diffusion
approximations for the queue lengths.

A simple but important case of bandwidth-sharing net-
works is the so-called linear network. A linear network is
the canonical model to study the interaction between traffic
that traverses multiple links and the cross-traffic it meets on
its route. For α = 1, the joint equilibrium distribution of the
number of users in a linear network is known [17]. In [12]
approximations are given for the mean number of users un-
der general weighted α-fair policies when one or more of the
nodes are in heavy traffic.

In this paper we consider a linear bandwidth-sharing net-
work with general arrival and service processes. The capac-
ity of the various nodes may vary in time. The main goal
of this paper is to give sufficient conditions on two policies
in order to compare sample-path wise the workload and the
number of users of the various classes. We obtain weaker
sufficient conditions on the transition rates than [16, 15],
which can be explained from the fact that we only compare
the two processes starting in the same initial state, as op-
posed to starting from any two ordered initial states as in
[16, 15]. From the performance point of view, starting from
the same initial state does not diminish the applicability
of the results, since the steady-state behavior does not de-
pend on the initial state. Furthermore, our result is a pure
sample-path comparison, and as a consequence it holds for
arbitrary arrival processes, service time processes and rate
region variations.

We then consider the family of weighted α-fair policies.
From our sample-path result we obtain stability results and,
under certain restrictions on the service requirements, we
prove monotonicity of the weighted mean number of users
with respect to the fairness parameter α and the relative
weights. To completely investigate all service requirement
parameters, we consider a two-node linear network in a heavy-
traffic regime and fully characterize the monotonicity results
by making use of a conjecture in [7, 8].

The remainder of the paper is organized as follows. In Sec-
tion 2 the linear bandwidth-sharing network is introduced
and in Section 3 the comparison results are stated. Then we
focus on the family of weighted α-fair policies in Section 4.
We obtain stability results and, under certain restrictions on
the service requirements, prove monotonicity of the weighted
mean number of users with respect to α and the relative
weights. In Section 5 we consider a heavy-traffic regime and
obtain monotonicity results for the weighted mean number
of users for all service requirement parameters. We also
present numerical experiments that provide further insight
into the performance of the α-fair policies. The conclusions
and future research directions may be found in Section 6.

2. MODEL DESCRIPTION
We consider a linear bandwidth-sharing network with L

nodes and L + 1 classes of users, see Figure 1. Class-i users
arrive according to a renewal process with mean inter-arrival
time 1/λi, and have service requirements Bi with mean 1/μi,

i = 0, . . . , L. Then ρi = λi

μi
represents the offered work of

class i per time unit. The inter-arrival times and service
requirements are mutually independent random variables.

The capacity of node i at time t is equal to Ci(t). Class-i
users require service at node i only, i = 1, . . . , L, while class-
0 users require service at all nodes simultaneously. When
Ci(t) = C for all i and all t, we call it a symmetric linear
network. Otherwise the model is called an asymmetric linear
network with possibly time-varying capacities.

node 1 node 2 node 3 node L

Figure 1: Linear network.

Example 2.1 (Wired and wireless networks). As
mentioned in the Introduction, linear bandwidth-sharing net-
works model the dynamic interaction among competing data
flows that traverse several links in a wired network.

In a wireless network we can think of the following simple
example. Users can be either in cell 0, cell 1 or cell 2, see
Figure 2. Users in cells 1 and 2 can be served in parallel
by their own base station. Because of interference, a user
in cell 0 can only be served when exactly one base station
is on and transmits the requested file to the user in cell 0.
Hence, class 0 can only be served when both classes 1 and
2 are not served, which can be modeled by a linear network
consisting of two nodes. The results for the linear network
which we will obtain later in this paper can be applied to
a wireless network if coordination between base stations is
possible. This has recently been proposed in for example [1,
28].

Base station 1 Base station 2

cell 0cell 1 cell 2

Figure 2: Two base stations.



For a given policy π, denote by Nπ
i (t) the number of class-i

users in the system at time t and let �Nπ(t) = (Nπ
0 (t), Nπ

1 (t),
. . . , Nπ

L(t)). Define

Nπ(t) :=
LX

i=0

Nπ
i (t)

as the total number of users in the system at time t. Let
W π

i (t) denote the total residual amount of work in class i
(i.e. the workload in class i) at time t. We further define
Nπ

i , W π
i and Nπ as random variables with the corresponding

steady-state distributions (when they exist).

For a given policy π, denote by sπ
i (t, �N) the instantaneous

service rate received by class i at time t when the system is
in state �N = (N0, N1, . . . , NL). Hence the allocation given
to class i can only depend on the time and on the num-
ber of users present in the system. The allocation vector
�sπ(t, N) = (sπ

0 (t, �N), . . . , sπ
L(t, �N)) has to lie in the rate re-

gion

R(t) = {�s ∈ RL+1 : s0 + si ≤ Ci(t), ∀i = 1, . . . , L}
where Ci(t) may depend on the time t, but not on the state
�N itself. In the remainder of the paper we suppress the
dependence on t and write sπ

i ( �N) instead of sπ
i (t, �N). Let

Sπ
i (t) :=

tZ
u=0

sπ
i ( �Nπ(u))du

be the cumulative amount of service received by class i dur-
ing the time interval [0, t].

The service discipline within a particular class, the intra-
class policy, is the First Come First Served discipline (FCFS).

Remark 2.2. It is worth observing that the FCFS as-
sumption is not common in bandwidth-sharing networks,
where the intra-class policy is typically assumed to be
Processor-Sharing (PS). However, in case the service re-
quirements are exponentially distributed, as is also usually
assumed in bandwidth-sharing networks, the stochastic be-
havior in fact does not depend on the intra-class policy as
long as it is non-anticipating. A policy is called non-
anticipating when the discipline is not based on any knowl-
edge of the actual realizations of the service requirements.
This implies that when the service requirements are exponen-
tially distributed, the results we obtain (by assuming FCFS)
will also be valid for non-anticipating policies like PS, the
Last Come First Served discipline and the Foreground Back-
ground discipline.

Remark 2.3. When the service requirements are expo-
nentially distributed, the arrival processes are Poisson and
the capacities do not vary in time (Ci(t) = Ci), the process
{Nπ

0 (t), Nπ
1 (t), . . . , Nπ

L(t)}t≥0 is a continuous-time Markov
process. The transition rates are given by:

(N0, . . . , Ni, . . . , NL) → (N0, . . . , Ni + 1, . . . , NL)

at rate λi and

(N0, . . . , Ni, . . . , NL) → (N0, . . . , Ni − 1, . . . , NL)

at rate μis
π
i ( �N)1(Ni>0). As indicated in Remark 2.2, the

transition rates are independent of the non-anticipating intra-
class policy used.

For any policy π we assume that Ni = 0 forces sπ
i (N) = 0,

i.e. no capacity is given to a class when there are no users
present. Furthermore, sπ

i (N) = Ci(t)−sπ
0 (N) when Ni > 0,

i = 1 . . . , L, i.e. the remaining capacity in node i is given
fully to class i at time t. This implies that no capacity is
unnecessarily left unused by a policy. However, this does
not ensure that a policy gives a stable system under the
necessary stability conditions. Consider for example a sym-
metric linear network with unit capacities. It is clear that
the necessary stability conditions are ρ0 +ρi < 1 for all i. In
fact, for the policy that gives preemptive priority to class 0
these conditions are sufficient for stability as well. However,
the policy that gives preemptive priority to classes 1, . . . , L
(note that this policy satisfies the conditions on �sπ as stated
in the beginning of this paragraph) is stable if and only if
ρ0 < ΠL

i=1(1−ρi) which is more stringent than the necessary
stability conditions. The instability can arise here since the
latter policy can leave a substantial portion of the capacity
unused, regardless of how large the number of class-0 users
is.

Our goal in this paper is to compare the performance of
the network under different policies. First of all, we will
be interested in whether a policy can achieve a stable sys-
tem. Another important performance measure we consider
is the (weighted) number of users present in the system. Be-
cause of Little’s law, a policy that minimizes the total mean
number of users present in the system, minimizes the mean
overall sojourn time as well.

3. COMPARISON OF POLICIES
In this section we consider the behavior of the network un-

der two different policies π and π̃ for the same realizations of
the arrival processes and service requirements. The follow-
ing property states conditions that will allow us to compare
the two policies π and π̃.

Property 3.1. Let π and π̃ be two policies such that
sπ
0 ( �Nπ) ≤ sπ̃

0 ( �N π̃), when Nπ
0 = N π̃

0 and Nπ
i ≥ N π̃

i , i =
1, . . . , L.

In particular, note that Property 3.1 is implied by the fol-
lowing property.

PROPERTY 3.1’ Let π and π̃ be two policies such that
sπ
0 ( �N) ≤ sπ̃

0 ( �N), and either sπ
0 ( �N) or sπ̃

0 ( �N) is non-increasing
with respect to Ni for all i 	= 0.

These properties basically state that higher priority is
given to class 0 under policy π̃ compared to π. In the re-
mainder of this section we will see that under policy π̃ the
number of class-0 users is less than under policy π (Propo-
sition 3.2 (iii)) and the stability conditions are less strict
for policy π̃ (Corollary 3.5). These results arise from the
fact that when class 0 is served, it simultaneously uses ca-
pacity in all nodes. Hence, we can prove that giving more
preference to class 0 makes better use of the available ca-
pacity and makes the workload in each node smaller, i.e.
W π

0 (t) + W π
i (t) ≥ W π̃

0 (t) + W π̃
i (t), i = 1, . . . , L (Proposi-

tion 3.2 (iv)). The main challenge in the proof of Propo-
sition 3.2 is that the flip side of giving higher priority to
class 0 is that classes 1 and 2 will receive lower preference,
and therefore contain more users. Class 0 can then receive
less service later on, so that the ultimate impact on the



number of class-0 users and the workload in a node is not
obvious.

We first establish the sample-path comparison result for
the number of class-0 users and for the workload in the sys-
tem. This result will play a key role in the remainder of the
paper.

Proposition 3.2. Let π and π̃ be two policies that satisfy
Property 3.1 and consider the same realizations of the arrival
processes and service requirements. If at time t = 0, we have
�Nπ(0) = �N π̃(0) = �N(0) and at time t = 0 the k-th class-i
user has the same remaining service requirement under both
policies π and π̃, for all k and i, then for all t ≥ 0,

(i) Sπ
0 (t) ≤ Sπ̃

0 (t),

(ii) Sπ
0 (t) + Sπ

i (t) ≤ Sπ̃
0 (t) + Sπ̃

i (t),

and hence

(iii) Nπ
0 (t) ≥ N π̃

0 (t), W π
0 (t) ≥ W π̃

0 (t),

(iv) W π
0 (t) + W π

i (t) ≥ W π̃
0 (t) + W π̃

i (t).

Proof. Denote by Bj,n the service requirement of the n-
th class-j user, j = 0, 1, . . . , L. When the user was already in
the system at time t = 0, Bj,n denotes the remaining service
requirement at time t = 0. Denote by Fj(s) := sup{n :

nP
m=1

Bj,m < s} the number of class-j service completions as

function of the amount of service received by class j. Thus
Dπ

j (t) = Fj(S
π
j (t)) represents the number of class-j service

completions during the time interval [0, t]. Denote by Qj(t)
the number of class-j users arriving during the time interval

[0, t]. Denote by Aj(0, t) :=
PQj(t)

m=1 Bj,Nj(0)+m the amount
of class-j work arriving during the time interval [0, t].

Thus, the total number of class-j users present at time t
can be written as

Nπ
j (t) = Nj(0) + Qj(t) − Dπ

j (t) (1)

and the class-j workload can be written as

W π
j (t) = Wj(0) + Aj(0, t) − Sπ

j (t).

Note that Nj(0), Wj(0) and the functions Fj(·), Qj(·) and
Aj(0, t) are independent of the policy, and the function Fj(·)
is non-decreasing. Hence, inequality (i) implies (iii) and in-
equality (ii) implies inequality (iv). It suffices to prove that
inequalities (i) and (ii) hold.

We will prove (i) and (ii) by contradiction. Suppose they
do not hold sample-path wise. Let t be the first time epoch
at which one of the two inequalities is violated.

First assume that inequality (i) is the first one to be vi-

olated, that is Sπ
0 (t) = Sπ̃

0 (t) and sπ
0 ( �Nπ(t)) > sπ̃

0 ( �N π̃(t))
(with strict inequality), but Sπ

0 (t) + Sπ
i (t) ≤ Sπ̃

0 (t) + Sπ̃
i (t)

for all i = 1, . . . , L. Hence from (1) we obtain Nπ
0 (t) = N π̃

0 (t)
and Nπ

i (t) ≥ N π̃
i (t) for all i = 1, . . . , L. Together with Prop-

erty 3.1 this contradicts the initial assumption.
Next, assume that inequality (ii) is the first one to be

violated, i.e., Sπ
0 (t)+Sπ

i (t) = Sπ̃
0 (t)+Sπ̃

i (t) and sπ
0 ( �Nπ(t))+

sπ
i ( �Nπ(t)) > sπ̃

0 ( �N π̃(t))+sπ̃
i ( �N π̃(t)) (with strict inequality),

but Sπ
0 (t) ≤ Sπ̃

0 (t) and Sπ
0 (t) + Sπ

j (t) ≤ Sπ̃
0 (t) + Sπ̃

j (t) for all

j 	= 0, i. By (1) we have Nπ
0 (t) ≥ N π̃

0 (t) and Nπ
i (t) ≤ N π̃

i (t).
First assume N π̃

i (t) > 0. Since we made the assump-

tion that no capacity is unnecessarily left unused (si( �N) =

Ci(t)−s0( �N) when Ni > 0), it then follows that sπ
0 ( �Nπ(t))+

sπ
i ( �Nπ(t)) ≤ Ci(t) = sπ̃

0 ( �N π̃(t)) + sπ̃
i ( �N π̃(t)) which contra-

dicts the initial assumption.
If N π̃

i (t) = 0, then Nπ
i (t) = 0 as well and Sπ

i (t) = Sπ̃
i (t).

Hence Sπ
0 (t) = Sπ̃

0 (t) and Sπ
j (t) ≤ Sπ̃

j (t) for all j. By

(1) we obtain Nπ
0 (t) = N π̃

0 (t) and Nπ
j (t) ≥ N π̃

j (t) for all

j. By virtue of Property 3.1 this means that sπ
0 ( �Nπ(t)) ≤

sπ̃
0 ( �N π̃(t)). Since N π̃

i (t) = Nπ
i (t) = 0, we also have that

sπ
i ( �Nπ(t)) = sπ̃

i ( �N π̃(t)) = 0, and hence sπ
0 ( �Nπ(t))+sπ

i ( �Nπ(t))

≤ sπ̃
0 ( �N π̃(t)) + sπ̃

i ( �N π̃(t)), which contradicts the initial as-
sumption.

Remark 3.3. Proposition 3.2 is a sample-path result and
does in fact not require any distributional or independence
assumptions with respect to the inter-arrival times and ser-
vice requirements.

Assume for the moment Poisson arrivals, exponentially dis-
tributed service requirements and that the capacities do not
vary in time, i.e. Ci(t) = Ci. The process {N0(t), . . . ,
NL(t)}t≥0 is a continuous-time Markov process, see
Remark 2.3. Hence Proposition 3.2 (iii) then states in fact a
sample-path wise pre-ordering on two continuous-time
Markov processes { �Nπ(t)}t≥0 and { �N π̃(t)}t≥0 starting from
the same initial state.

There is a broad range of literature on the existence of
orderings of stochastic processes. An important ordering
is the stochastic ordering ≤st ([20, 24]). Note that the
sample-path ordering is a special case of this. Let X(t)
and Y (t) be two continuous-time processes. We say that
{X(t)}t≥0 ≤st {Y (t)}t≥0 if and only if there exists a cou-

pling (X ′(t), Y ′(t)), i.e. X(t)
d
= X ′(t) and Y (t)

d
= Y ′(t),

which is order-preserving, i.e. P(X ′(t) ≤ Y ′(t), ∀t ≥ 0) = 1
(here ≤ is an ordering on the state space). So if the pro-
cesses X and Y are initially ordered, then the order is kept
at all times.

When X(t) and Y (t) are two continuous-time Markov pro-
cesses, in [16, Theorem 5.3] and [15, Theorem 2] necessary
and sufficient conditions on the transition rates are given in
order for an order-preserving coupling to exist ({X(t)}t≥0

≤st {Y (t)}t≥0) for any ordered initial states (X(0) ≤ Y (0)).
Here ≤ denotes a pre-order relation. In particular, the nec-
essary and sufficient conditions on the policies π and π̃ to
obtain

{Nπ
0 (t)}t≥0 ≥st {N π̃

0 (t)}t≥0, (2)

for any two ordered initial states Nπ
0 (0) ≥ N π̃

0 (0), are

sπ
0 ( �Nπ) ≤ sπ̃

0 ( �N π̃) when Nπ
0 = N π̃

0 . (3)

It can immediately be seen that Property 3.1 is a weaker
condition than (3). Interestingly, we will show that for
α-fair bandwidth-sharing policies, Property 3.1 is satisfied,
but (3) is not satisfied. Note that the stochastic ordering re-
sult in (2) holds for any two initial states that are ordered,
whereas in Proposition 3.2 the initial state is the same. This
explains the fact that Property 3.1 can be weaker than (3).
Since we are interested in performance metrics in steady
state (stability and mean number of users), the assumption
that the processes have the same initial state is not restric-
tive. In addition, Proposition 3.2 is not restricted to Markov
processes, hence it applies as well for generally distributed
arrival processes, service requirements and time-varying rate
regions.



Property 3.1 and Proposition 3.2 are stated in order to
compare two different policies. However, they also allow us
to evaluate the impact of removing a node from the linear
network on the performance of class 0.

Corollary 3.4. Let π be a policy in a linear network
with L nodes that satisfies the following property:

sπ
0 (N0, N1, . . . , NL) ≤ sπ

0 (N0, M1, . . . , ML−1, 0)

for all Ni ≥ Mi, i = 1, . . . , L − 1.
Consider the linear network where node L is removed (and

hence has L − 1 nodes) and apply the same policy π in the
following way: sπ

0 (N0, . . . , NL−1) := sπ
0 (N0, . . . , NL−1, 0).

Then

Nπ,L
0 (t) ≥ Nπ,L−1

0 (t),

and for i = 1, . . . , L − 1

W π,L
0 (t) + W π,L

i (t) ≥ W π,L−1
0 (t) + W π,L−1

i (t),

with Nπ,l
i (t) and W π,l

i (t) the number of class-i users and the
class-i workload, respectively, at time t under policy π in a
linear network with l nodes.

Proof. Policy π in a linear network with L − 1 nodes
can be seen as a policy in a linear network with L nodes by
ignoring the class-L users. Denote this policy by π̃. So for
all x ≥ 0, sπ̃

0 (N0, N1, . . . , NL−1, x) := sπ
0 (N0, N1, . . . , NL−1).

Hence

sπ
0 (N0, . . . , NL) ≤ sπ

0 (N0, M1, . . . , ML−1, 0)

= sπ
0 (N0, M1, . . . , ML−1)

= sπ̃
0 (N0, M1, . . . , ML−1, x)

for all x and all Ni ≥ Mi, i = 1, . . . , L − 1. This implies
that policies π and π̃ satisfy Property 3.1 and from Propo-
sition 3.2 the result follows.

In the next two sections, Proposition 3.2 will be used to
readily derive results for the stability and the weighted mean
number of users present in a linear bandwidth-sharing net-
work.

3.1 Stability
Recall that the stability conditions depend on the policy

being used. We note that the sample-path comparison in
Proposition 3.2 does not require the system to be stable. In
particular, Proposition 3.2 (iv) implies the following result.

Corollary 3.5. Assume policies π and π̃ satisfy Prop-
erty 3.1. If the system is stable under policy π, then it is
stable under policy π̃ as well, in the sense that the system is
empty under policy π̃ whenever it is empty under policy π.

In particular, if the empty state is positive recurrent under
policy π in the case of Poisson arrivals, then it is positive
recurrent under policy π̃ as well.

Proof. The first statement follows by noting that ifPL
i=0 W π

i (t) = 0, then we obtain from Proposition 3.2 (iv)

that
PL

i=0 W π̃
i (t) = 0.

The second assertion is a direct implication of the first
one.

3.2 Mean number of users
In case the service requirements are exponentially dis-

tributed and
PL

i=1 ciμi ≤ c0μ0, the sample-path compari-
son established in Proposition 3.2 will allow us to show that

giving more priority to class 0 decreases the weighted mean
number of users.

Proposition 3.6. Assume the service requirements are
exponentially distributed. Let π and π̃ be two policies that
satisfy Property 3.1 and assume policy π gives a stable sys-
tem. If

PL
i=1 ciμi ≤ c0μ0, then

LX
i=0

ciE(Nπ
i (t)) ≥

LX
i=0

ciE(N π̃
i (t)), ∀ t ≥ 0. (4)

Proof. From Proposition 3.2 (iii) we have that Nπ
0 (t) ≥

N π̃
0 (t) for all t ≥ 0. Taking expectations we get

E(Nπ
0 (t)) ≥ E(N π̃

0 (t)). (5)

From Proposition 3.2 (iv) we have that W π
0 (t) + W π

i (t) ≥
W π̃

0 (t) + W π̃
i (t) for all t ≥ 0. Taking expectation we get

E(W π
0 (t)) + E(W π

i (t)) ≥ E(W π̃
0 (t)) + E(W π̃

i (t)) for all i =
1, . . . , L. Since the policy is non-anticipating and the service
requirements are exponentially distributed, and thus memo-
ryless, we obtain E(W π

i (t)) = 1
μi

E(Nπ
i (t)) and hence for all

i = 1, . . . , L,

1

μ0
E(Nπ

0 (t)) +
1

μi
E(Nπ

i (t)) ≥ 1

μ0
E(N π̃

0 (t)) +
1

μi
E(N π̃

i (t)).

(6)

Inequalities (5) and (6) together with
PL

i=1 ciμi ≤ c0μ0 give

LX
i=0

ciE(Nπ
i (t)) =

c0μ0 −
PL

i=1 ciμi

μ0
E(Nπ

0 (t))

+
LX

i=1

ciμi

„
1

μ0
E(Nπ

0 (t)) +
1

μi
E(Nπ

i (t))

«

≥ c0μ0 −
PL

i=1 ciμi

μ0
E(N π̃

0 (t))

+
LX

i=1

ciμi

„
1

μ0
E(N π̃

0 (t)) +
1

μi
E(N π̃

i (t))

«

=
LX

i=0

ciE(N π̃
i (t)).

Note that by Remark 2.2, Proposition 3.6 holds for any non-
anticipating intra-class policy, so not only for FCFS.

Remark 3.7. One natural choice for the weights ci in (4)
could be to relate them to the number of links each class
uses. For example, take c0 = L and ci = 1, i = 1, . . . , L.
In this case the result of Proposition 3.6 will be valid under
the intuitively appealing condition 1

L

PL
i=1 μi ≤ μ0, i.e. the

departure rate of class 0 is larger than or equal to the average
departure rate for classes 1, . . . , L.

Remark 3.8. We only obtain a comparison result in terms
of the mean number of users, while we start from a sample-
path comparison as stated in Proposition 3.2. The derivation
of stochastic ordering results remains as a challenging topic
for further research.

Assume �Nπ(t) and �N π̃(t) are two Markov processes. The
necessary and sufficient conditions in order to obtain
Nπ(t) ≥st N π̃(t) for any ordered initial states Nπ(0) ≥
N π̃(0), are

PL
i=0 μis

π
i ( �Nπ) ≤ PL

i=0 μis
π̃
i ( �N π̃) for all states



with Nπ = N π̃, [15, 16]. (Recall that we denote by N =PL
i=0 Ni the total number of users.) In a queueing context

this condition is rather strong. For example, for the linear
network we consider in this paper, we need for states with
�Nπ = (0, 1, . . . , 1) and �N π̃ = (L, 0, . . . , 0) that

PL
i=1 μi ≤

μ0, but for states with �Nπ = (1, 0, . . . , 0) and �N π̃ = (0, . . . , 0,
1, 0, . . . , 0) we need μ0 ≤ μi, i = 1, . . . , L. Hence, we see
that there does not exist any combination of the variables
μ0, . . . , μL, for which these conditions are satisfied, and a
stochastic ordering relation on the total number of users as
in the framework of [15, 16] does not hold.

A natural objective in queueing networks is to minimize
the total/weighted number of users in the system. Clas-
sical results for a single-server system indicate that giving
preference to “small” users is beneficial in terms of the to-
tal/weighted number of users present in the system [23,
25, 21, 22]. For exponentially distributed service require-
ments, the cμ-rule, i.e. giving priority to the class with the
maximum instantaneous weighted departure rate ciμi, min-
imizes the weighted mean number of users among all non-
anticipating policies [21]. The problem of how to allocate
the capacity of the nodes among the various users in a lin-
ear network is more complex. Besides trying to maximize
the weighted departure rate, we must take into account that
giving more preference to class 0 makes better use of the
available capacity.

When
PL

i=1 ciμi > c0μ0, it can be the case that the max-
imum total instantaneous weighted departure rate is ob-
tained when class 0 is not served. However, this does not
necessarily make full use of the available resources. Some
care has to be taken in allocating the available capacity.
More information on the structure of the optimal policy for
this case can be found in [27].

When
PL

i=1 ciμi ≤ c0μ0, there is no conflict between these
two objectives. The maximum total instantaneous weighted
departure rate is obtained when class 0 is served at its max-
imum possible rate, i.e. mini Ci(t), and the other classes
obtain what is left. At the same time, this makes maxi-
mum use of the available capacity. Intuitively it is clear
that the policy that gives preference to class 0 minimizes
the weighted mean number of users present in the system.
Using Proposition 3.6 it can be proved that this is indeed
the case.

Corollary 3.9. Consider an asymmetric linear network
with time-varying capacities. Assume the service require-
ments are exponentially distributed. Let policy π∗ be the
policy that serves class 0 at maximum rate, i.e. sπ∗

0 ( �N) =

mini Ci(t) if N0 > 0 and sπ∗

0 ( �N) = 0 otherwise. Classes

1, . . . , L obtain what is left, i.e. sπ∗

i ( �N) = Ci(t) − sπ∗

0 ( �N)

if Ni > 0 and sπ∗

i ( �N) = 0 otherwise. If
PL

i=1 ciμi ≤ c0μ0,
then policy π∗ minimizes the weighted mean number of usersPL

i=0 ciE(Ni(t)), for all t ≥ 0, among all non-anticipating
policies.

Proof. Note that sπ∗

0 ( �N) is constant with respect to Ni,

i 	= 0. In addition, sπ∗

0 ( �N) ≥ sπ
0 ( �N) for any policy π. Hence,

Property 3.1’ is satisfied and from Proposition 3.6 we obtainPL
i=0 ciE(Nπ

i (t)) ≥ PL
i=0 ciE(Nπ∗

i (t)) for all t ≥ 0 and any
policy π.

In [27] it was proved that for a symmetric linear network,
policy π∗, as defined in Corollary 3.9, is in fact stochastically

optimal in terms of the total number of users. That is, for
every t ≥ 0 and for any non-anticipating policy π we have
Nπ(t) ≥st Nπ∗

(t) given that �Nπ(0) = �Nπ∗

(0).

4. WEIGHTEDα-FAIR POLICIES

Weighted α-fair policies are an important family of poli-
cies that have received a lot of attention in recent years. The
weighted-α fair allocation is the solution to the following op-
timization problem:

max�s∈R(t)

PL
i=0 wiNi

“
si

Ni

”1−α

/(1 − α) if α 	= 1

max�s∈R(t)

PL
i=0 wiNi log si if α = 1.

(7)

Denote the weighted α-fair discipline with weights w = (w0,
w1, . . . , wL) and parameter α by πα,w and the correspond-

ing allocation vector by �s(α,w)( �N). The allocated capacity
to class i is shared equally among all class-i users, hence the
intra-class policy is PS. Recall that in the model description
we assumed that the intra-class policy is FCFS. Through-
out this section we assume exponentially distributed service
requirement. Thus, the results we obtain will also be valid
if the intra-class policy is PS, see Remark 2.2.

In order to compare two α-fair policies we only need to
check whether Property 3.1’ holds. In [2] it was shown that
for a symmetric linear network with unit capacity for all
nodes the weighted α-fair allocation is given by

s
(α,w)
0 ( �N) =

(w0N
α
0 )1/α

(w0Nα
0 )1/α + (

PL
i=1 wiNα

i )1/α
(8)

and s
(α,w)
i ( �N) = 1 − s

(α,w)
0 ( �N) for all i with Ni > 0. Us-

ing (8), it can be checked that Property 3.1’ is satisfied for a
symmetric linear network when comparing policies πβ,w and
πγ,w̃ with β ≤ γ and w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L (see also [12,

Proposition 6.1]). For an asymmetric network we have no
expression for the weighted α-fair allocation available. How-
ever, the optimization problem (7) allows us to prove that
Property 3.1’ is satisfied then as well. The proof may be
found in the technical report [26].

Lemma 4.1. The following results hold in an asymmetric
linear network:

(i) s
(α,w)
0 ( �N) is non-increasing in Ni, i = 1, ..., L.

(ii) If β ≤ γ, then s
(β,w)
0 ( �N) ≤ s

(γ,w)
0 ( �N) for all �N .

(iii) If w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L, then s

(α,w)
0 ( �N) ≤ s

(α,w̃)
0 ( �N)

for all �N .

Since Property 3.1’ holds for weighted α-fair policies, our
framework allows us to gain insights into the performance
of such policies in linear networks, see Sections 4.1 and 4.2
below.

Note that the stochastic comparison results in [15, Theo-
rem 2] and [16, Theorem 5.3] are not applicable here. As we
already saw in Remark 3.8, there is no stochastic ordering
possible for any ordered initial states on the total number
of users present in the system. Also, an ordering on the
number of class-0 users for any ordered initial states is not
possible, since equation (3) is not satisfied for the class of
weighted α-fair policies in linear networks. Consider for ex-
ample a symmetric linear network and choose states such
that Nπ

0 = N π̃
0 , Nπ

1 = 1 and N π̃
1 = M with π and π̃ two



α-fair policies. From (8) we see that if M tends to ∞ then

sπ̃
0 ( �N π̃) tends to 0. Hence (3) cannot hold for any pair of

α-fair policies.
In [3] the authors obtain stochastic bounds for the number

of users present in any queue for policies that satisfy the
monotonicity property (removing a user from any queue,
increases the capacity allocated to any user). This property
fails to hold for a linear network under α-fair policies. For
example, removing a class-1 user implies that class 1 gets
less capacity and class 0 gets more. This however implies
that classes i = 2, . . . , L obtain less capacity as well and
hence a class-i user gets less capacity, i = 2, . . . , L. The
only requirement in Property 3.1’ is that removing a class-i
user, i 	= 0, increases the capacity allocated to the class-0
users. As shown in Lemma 4.1, this holds under natural
conditions on the parameters of weighted α-fair policies.

Remark 4.2. Note that from Lemma 4.1 and Corollary 3.4
we obtain that under a weighted α-fair policy, the number of
class-0 users in a linear network with L nodes is larger than
in a linear network with L − 1 nodes.

4.1 Stability
In [2] it is proved that for Poisson arrivals and exponen-

tially distributed service requirements, any weighted α-fair
allocation in a bandwidth-sharing network with fixed capac-
ity, gives a stable system, in the sense that the queue length
process is positive-recurrent, under the necessary stability
conditions that the load in each node is smaller than the
available capacity. For example, in the case of a linear net-
work the necessary stability conditions are ρ0 + ρi < Ci,
i = 1, . . . , L. Corollary 3.5 and Lemma 4.1 allow us to de-
rive stability results for a linear network with time-varying
capacities.

Corollary 4.3. Assume β ≤ γ and w0

wi
≤ w̃0

w̃i
, i =

1, . . . , L. Let the service requirements be exponentially dis-
tributed. If policy πβ,w gives a stable system, then policy
πγ,w̃ gives a stable system as well.

Proof. Note that α-fair policies have PS as an intra-class
policy. However, since we assume that the service require-
ments are exponentially distributed, the stochastic behavior
of the network does not depend on which non-anticipating
intra-class policy is being used. Therefore, we can take
FCFS as intra-class policy. From Lemma 4.1 we obtain that
Property 3.1 is satisfied, hence the result in Corollary 3.5
applies.

In [13] the authors consider the stability conditions for sys-
tems with a time-varying general rate region under an α-fair
policy with unit weights. They assume that the rate region
can be in a finite number of states according to a station-
ary and ergodic process. In addition, in every state the rate
region is convex. The authors characterize the stability con-
ditions and show that the stability region is non-increasing
in the value of α. Interestingly, Corollary 4.3 indicates that
the stability region is in fact also non-decreasing in the value
of α in the setting of a linear network. We obtain the fol-
lowing result.

Corollary 4.4. Assume Poisson arrivals and exponen-
tially distributed service requirements. Consider an asym-
metric linear network and assume the set of all the possible
capacity vectors (C1(t), . . . , CL(t)) can be in a finite number

of states and evolves as a stationary and ergodic process. Let
Ci be the average of the process Ci(t).

Then the policy πα,w with wi ≤ w0, i = 1, . . . , L gives a
stable system whenever possible. The stability conditions are
given by ρ0 + ρi < Ci, i = 1, . . . , L.

Proof. In [13] it is shown that for α-fair policies with
unit weights (wj = 1, j = 0, . . . , L) the necessary stability
conditions are given by ρ0 + ρi < Ci, i = 1, . . . , L. More-
over, it is established that these conditions are sufficient as

well for the policy πα,�1 when α ↓ 0. On the other hand,
Corollary 4.3 states that the stability conditions become less

strict when α increases. This proves that πα,�1 is stable un-
der the necessary stability conditions. From Corollary 4.3
we can then conclude that the same holds for policy πα,w

with wi ≤ w0, i = 1, . . . , L.

4.2 Mean number of users
We are now ready to derive a monotonicity result for

the mean number of users for weighted α-fair policies in a
time-varying asymmetric linear network. When

PL
i=1 ciμi ≤

c0μ0, the instantaneous weighted departure rate of class 0
is relatively large, hence, it will be attractive to give prefer-
ence to class-0 users, either by increasing the relative weight
given to class 0, w0/wi, or by increasing the parameter α,
see Lemma 4.1. At the same time this makes better use
of the available capacity of the nodes, see Proposition 3.2
(iv). In the next corollary we prove that the weighted mean
number of users indeed decreases when more preference is
given to class 0. More precisely, the weighted mean number
of users is non-increasing in α and in w0

wi
, i = 1, . . . , L.

Corollary 4.5. Assume exponentially distributed service
requirements with

PL
i=1 ciμi ≤ c0μ0. If β ≤ γ and w0

wi
≤ w̃0

w̃i
,

i = 1, . . . , L, then

LX
i=0

ciE(Nπβ,w

i (t)) ≥
LX

i=0

ciE(Nπγ,w̃

i (t)), ∀ t ≥ 0.

Proof. From Lemma 4.1 we obtain that πβ,w and πγ,w̃

satisfy Property 3.1’. The result then follows from Proposi-
tion 3.6.

When
PL

i=1 ciμi > c0μ0, a trade-off arises between the
above-described effects. In the next section we will investi-
gate this further.

5. MONOTONICITY RESULTS FOR
α-FAIR POLICIES

In the previous section, monotonicity results of the weighted
mean number of users were derived for the family of α-fair
policies and exponentially distributed service requirements
with

PL
i=1 ciμi ≤ c0μ0. In this section we will explore

the case
PL

i=1 ciμi > c0μ0 for a two-node linear network
(L = 2).

When c1μ1+c2μ2 > c0μ0, it is beneficial to give more pref-
erence to classes 1 and 2 (and hence less preference to class 0)
since that will maximize the total instantaneous weighted
departure rate. From Lemma 4.1 we see that this can be
done by choosing α small. However, at the same time this
uses the available capacity in each node less efficiently, as
proved in Proposition 3.2 (iv). Thus a trade-off arises be-
tween the two effects, which makes the analysis difficult. In



Section 5.1 we will consider a heavy-traffic regime and estab-
lish (over the whole range of μ0) monotonicity results in α
for the weighted mean scaled number of users. In Section 5.2
we perform numerical experiments for a normally loaded sys-
tem and observe in particular that when μ1 + μ2 > μ0, the
total mean number of users is not necessarily monotone in
α when α < 1.

5.1 Heavy-traffic regime
In this section we study the monotonicity in a heavy-traffic

scenario for a two-node linear network with fixed capacities
C1 and C2. Throughout this section we consider α-fair poli-
cies with unit weights wj = 1, j = 0, . . . , L.

We consider the setting of [7, 8, 10], where a general
bandwidth-sharing network under weighted α-fair alloca-
tions is considered with Poisson arrivals and exponentially
distributed service requirements. Below we briefly state the
results specialized to the two-node linear network under α-
fair policies with unit weights, see [7, 8] for full details.

Assume a heavy-traffic setting ρi + ρ0 = Ci for i = 1, 2.
Define the diffusion scaled processes as follows:

n̂
k,(α)
i (t) :=

Nπα,�1

i (kt)√
k

, i = 0, 1, 2, and

v̂
k,(α)
i (t) :=

Nπα,�1

0 (kt)/μ0 + Nπα,�1

i (kt)/μi√
k

= n̂
k,(α)
0 (t)/μ0 + n̂

k,(α)
i (t)/μi, i = 1, 2.

Here v̂
k,(α)
i (t) can be seen as the total workload in node i

under the diffusion scaling. In [8, Conjecture 5.1] it is con-
jectured that for an arbitrary bandwidth-sharing network,

the diffusion scaled workload process �̂vk,(α)(t) converges in

distribution as k → ∞ to �̂v(α)(t), where �̂v(α)(t) is a semi-
martingale reflecting Brownian motion (with a covariance
matrix independent of α) living in a workload cone. For α
equal to 1 this conjecture is proved in [7, 8] for an arbitrary
bandwidth-sharing network. In addition, it is mentioned
that for the case of a two-node linear network, this result
can be extended to α 	= 1. The workload cone for a two-
node linear network under an α-fair policy with unit weights
is given by

{�v : vi =
ρ0

μ0
(q1 + q2)

1

α +
ρi

μi
q

1

α
i , q1, q2 ≥ 0, i = 1, 2}

= {�v : v1 ≥ 0, v1
ρ0/μ0

(C1 − ρ0)/μ1 + ρ0/μ0
≤ v2,

v2 ≤ v1
(C2 − ρ0)/μ2 + ρ0/μ0

ρ0/μ0
},

which is independent of the parameter α. Hence, the process
�̂v(α)(t) is independent of α as well. The diffusion scaled

number of users, �̂n
k,(α)

(t), converges in distribution as k →
∞ to some process �̂n

(α)
(t) which does depend on α (this

process is specified in [7]).
Since the process of the total workload in a node does

not depend on α, we can derive monotonicity results for the
weighted mean number of users present in the system over
the whole range of the parameter μ0. We can express the

weighted number of users in the system as follows:

LX
i=0

cin̂
(α)
i (t) =

c0μ0 −
P2

i=1 ciμi

μ0
n̂

(α)
0 (t)

+
2X

i=1

ciμi · ( 1

μ0
n̂

(α)
0 (t) +

1

μi
n̂

(α)
i (t))

d
=

c0μ0 −
P2

i=1 ciμi

μ0
n̂

(α)
0 (t) +

2X
i=1

ciμiv̂
(α)
i (t).

(9)

From Proposition 3.2 we know that Nπα

0 (t) is decreasing in

α, and hence n̂
(α)
0 (t) is decreasing in α as well. Together

with the fact that v̂
(α)
i (t) is independent of α and by taking

expectations in (9), we have that if c1μ1 + c2μ2 ≤ c0μ0 or

c1μ1+c2μ2 ≥ c0μ0, then E(
P2

i=0 cin̂
(α)
i (t)) is non-increasing

or non-decreasing in α respectively. In fact, when in addition

we use the characterization of �̂n(α)(t), we are able to derive
a stronger monotonicity result. The proof may be found in
the technical report [26].

Proposition 5.1. Assume ρi + ρ0 = Ci, i = 1, 2.

• If c1μ1 + c2μ2 < c0μ0, then E(
P2

i=0 n̂
(α)
i (t)) is strictly

decreasing in α.

• If c1μ1+c2μ2 = c0μ0, then E(
P2

i=0 n̂
(α)
i (t)) is constant

in α.

• If c1μ1 + c2μ2 > c0μ0, then E(
P2

i=0 n̂
(α)
i (t)) is strictly

increasing in α.

5.2 Numerical results
In this section we present numerical experiments to pro-

vide further insight into the performance of α-fair policies.
We simulate a two-node linear network where both nodes
have unit capacity. We assume Poisson arrivals and ex-
ponentially distributed service requirements and fix μ1 =
1, μ2 = 0.5, ρ1 = ρ2 and wj = cj = 1, j = 0, 1, 2.

In Figures 3 a) and b) and Figure 4 a) we let α vary on
the horizontal axis and plot the corresponding total mean
number of users for various values of μ0. As expected from
Corollary 4.5, we observe that for μ0 ≥ μ1 + μ2 = 1.5 the
total mean number of users is decreasing with respect to the
value of α. When μ0 < μ1 + μ2 = 1.5, we observe that the
total mean number of users is monotone (either decreasing
or increasing) in α as well in the range α ∈ [1,∞). However,
when α ∈ (0, 1) and μ0 < μ1 + μ2 = 1.5, it is possible that
the total mean number of users is not monotone in α. This
fact may be explained as follows. Since μ0 < μ1+μ2 = 1.5, it
is attractive to give more preference to classes 1 and 2 when
they are both present (hence less preference to class 0). This
corresponds to a small value for α. However, an α-fair policy
with a small α uses the available capacity less efficiently,
see Proposition 3.2 (iv) and Lemma 4.1 (ii). These two
opposite effects might cause that the total mean number of
users is not monotone in α. Note that for the heavy-traffic
regime as considered in Section 5.1, the workload in a node
is independent of the parameter α. Hence, there was no
trade-off and we were able to prove the monotonicity result
for μ0 < μ1 + μ2 as well.

In Figure 4 b) we let μ0 vary on the horizontal axis and
plot the corresponding total mean number of users for var-
ious values of α. We observe that, with exception of a few
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Figure 3: Total mean number of users under α-fair policies in a two-node linear network with a) ρ0 = 0.7, ρ1 = 0.2
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Figure 4: Total mean number of users under α-fair policies in a two-node linear network with ρ0 = 0.3, ρ1 = 0.2
and ρ2 = 0.2.

points, the total mean number of users is increasing in μ0

when α < 1 and decreasing in μ0 when α > 1, respec-
tively. Intuitively, the monotonicity can be explained as fol-
lows. Note that if α = 1, the policy reduces to PF. For PF
with unit weights, the mean total number of users is exactly
known ([17]) and equals

E(Nπ1,�1

) =
ρ1

1 − ρ0 − ρ1
+

ρ2

1 − ρ0 − ρ2

+
ρ0

1 − ρ0

“
1 +

ρ1

1 − ρ0 − ρ1
+

ρ2

1 − ρ0 − ρ2

”
.

This is independent of the parameters μ0, μ1 and μ2 for
given values of ρ0, ρ1 and ρ2. When α > 1, we observe from
Lemma 4.1 (ii) that class 0 is treated preferentially over
classes 1 and 2 (compared to PF). Under an α-fair policy
that gives preference to class 0, it is likely that the total
mean number of users decreases when the class-0 users be-
come smaller, i.e. when μ0 increases (while μ1, μ2, ρ0, ρ1

and ρ2 are kept fixed). Similarly, when α < 1, classes 1 and
2 are treated preferentially over class 0 (compared to PF).

When μ0 becomes larger (while μ1, μ2, ρ0, ρ1 and ρ2 are kept
fixed), class-1 and 2 users become relatively larger. Under
an α-fair policy that gives preference to classes 1 and 2, it
is likely that the total mean number of users increases when
μ0 increases.

6. CONCLUSION AND FUTUREWORK
In this paper we studied linear bandwidth-sharing net-

works and obtained comparison results for the performance
under two different policies in terms of both stability and the
weighted mean number of users. The results were obtained
by using a natural coupling, namely by choosing the same
realization of inter-arrival times and service requirements for
both processes. Sample-path comparisons were obtained for
the workload and the number of users in certain classes.

We proved monotonicity results for the weighted mean
number of users under α-fair policies when c0μ0 ≥ PL

i=1 ciμi.
In the numerical section, we demonstrated additional mono-
tonicity properties. For instance we have strong evidence to
believe that the total mean number of users in the system is



monotone in α ∈ [1,∞) when the other parameters are kept
fixed. Another interesting observation from the numerical
section is that the total mean number of users is monotone
in μ0 for given load ρ0, when the other parameters are kept
fixed, see Figure 4 b). Similar monotonicity results have
been discussed for a single-server queue in [3, 11], but to the
best of our knowledge there does not exist any proof. There
is no hope that this monotonicity property can be proved
using sample-path arguments, since this requires the same
realizations for the service requirements. When we compare
the two stochastic processes for different values of μ0, this
can no longer be done.

In future work, it might be interesting to consider differ-
ent types of networks, like a star or a grid network. Also a
multi-class single-server queue is worth studying. In the case
of two classes, the single-server system is a linear network
with one node (L = 1). For this case, the results devel-
oped in this paper can be used to derive that the weighted
mean number of users is monotone with respect to the ra-
tio of the weights for both Discriminatory Processor Sharing
(DPS) and Generalized Processor Sharing (GPS). In [26] we
extend our sample-path approach to a single-server system
with more than two classes.
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