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SUMMARY 

This work compares a discrete and analytical adjoint equation method with respect to bonnda.ry­
condition treatments applied to the quasi-ID Euler equations. Flux evaluation of the primal problem 
is done by a either a Godunov-type scheme or a central scheme. For our future goal, solving fluid­
structure problems, the discrete approach seems preferable. Copyright © 2000 John Wiley & Sons, 
Ltd. 
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l. INTRODUCTION 

For efficient computation of large-scale fluid-flow problems, an efficient error estimation and 
grid adaptation algorithm is desirable. Traditional error estimation or grid adaptation may 
not suffice, since they are insufficiently related to relevant engineering quantities. The dual 
formulation can be used as a.n efficient a-posteriori error estimation in the quantity of interest. 
However, derivation of the dual problem, especially the accompanying boundary conditions, is 
not a trivial task. 

Two ways of formulating the dual problem exi'lt: analytical [l, 2] and discrete [5, 6]. 
This paper gives an outline of the boundary-condition derivation for both methods. For 
the analytical method, carefully crafted boundary conditions are needed. For the numerical 
method, imposing strong or weak boundary conditions to the primal problem has a great 
influence on the implicitly given boundary conditions for the numerical dual problem. Also, 
the dependence of the dual solution on the chosen flux evaluator in the primal solution will be 
discussed. 

Several techniques exist to evaluate the Jacobian needed for setting up the dual problem. 
For the analytical dual formulation, differentiation is done by hand or by means of a symbolic 
mathematical software program .. for the discrete dual problem, differentiation can be done 
by divided derivatives or with automatic differentiation. The different methods will be briefly 
discussed. 

Copyright © 2000 John Wiley & Sons, Ltd. 
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2. FLOW EQUATIONS AND OUTPUT FUNCTIONAL 

To illustrate different ways to implement and use the adjoint method, an inviscid, compressible 
gas flow through a convergent-divergent channel will be modelled by the quasi- lD Euler 
equations: 

l a~q dfl + An AF(q)dafl - l ~ J(q)dfl = o, 

with 

with A the height of the channel [2, 5]. The output functional considered is 

I= 111 p(q)dfl, 

where x = -1 and x = 1 are the coordinates of the inlet and outlet, respectively. 

(1) 

(2) 

(3) 

For solving the primal problem, a structured-grid, cell-centred finite-volume solver has been 
developed. We consider Lax, linearised Godunov, Osher or Jameson flux evaluators at the cell 
faces. Depending on the chosen flux evaluator, finding the steady state solution of the non­
linear system of equations is done either directly for the steady equations by a global Newton 
iteration method, or indirectly, via time marching the unsteady equations to steady state with 
forward Euler or four-stage Runge-Kutta. 

3. CONTINUOUS ADJOINT APPROACH 

With the method, described in [2], the analytical adjoint equations will be discretised on 
the same grid as the primal flow equations. First, the quasi-lD Euler equations have to be 
linearised: 

L , = (aAF(q) ') _ dA aJ(q) , _ , 
q a q dx a q-r. q X q 

(4) 

The change in the output functional due to small perturbations in the flow solution can be 
written as 

I'= { op q'dx. 
lo aq 

(5) 

The influence of the change in solution on the functional can be determined by the adjoint 
equation, which can be analytically derived by partial integration: 

11 v ((aAF(q) q') _ dA aJ(q\,) dx = 
-1 aq x dx aq 

[ aAF(q) '] 1 11 aAF(q) , dA aJ(q) 'dx 
V ,:, q - Vx ,:, q + V dx -,:,-q = 

uq _1 -1 uq uq 

[ aAF(q) '] 1 -f 1 ' ( [&AF(q)] T [dA &J(q)] T ) dx -f 1 'dx v O q q O V:,; + dx O v - vr . 
q -1 -1 q q -1 

(6) 

Copyright © 2000 John Wiley & Sons, Ltd. 
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From the derivation of the adjoint equations, shown in (6), it follows that the adjoint variables 
may be defined in such a way that 

IT[8AF(q)]T -0 q --- V- ' 8q 
(7) 

so that the dependence of q has been removed. Then, the adjoint equation corresponding to 
(4) is 

L* = _ [8AF(q)] T _ [dA 8J(q)] T = 8p 
V - 8q Vx dx [}q V 8q. (8) 

Equation (8) can be written by using Jacobians based on the non-conservative flow variables 
q = (p, u,pf, so that the adjoint equation becomes 

(9) 

For this system of adjoint o.d.e's, complementary boundary conditions have to be defined. 
As an illustration, the derivation of boundary conditions for the subsonic case will be given. 
Analogous to [2], suppose H = E + ~ = i1:I ~ + ½u2 = Hin, Pt = Pt,n at the inflow and p = Pout 
at the outflow. Hence, rewritten in terms of q, one gets 

'Y qa+lq2-H } ,-1 qi" 2 2 - in 

+ 1 2 ' q3 2qlq2 = Ptin 
x=-1, 

q3 = Pout, X = 1. 

At the boundaries, perturbations in the prescribed states are not permitted: 

:f-I ( ~ - :q~) + q2q2 = 0 } 
q; + ½q~q~ + q1q2q2 = 0 ' 

q3 = 0, 

Equation (12) written in matrix notation read..q: 

W1q' = 0, q2 :t-I"t) 
q1q2 1 1 

W2 = (0 0 1) 1 

x=-1, 

X = 1. 

x=-1, 

X = 1. 

(11) 

(12a) 

(12b) 

(13) 

(14) 

This result leaves us with one degree of freedom at the inflow boundary and two degrees of 
freedom at the outflow boundary. In other words, we are looking for the null spaces to find 
the missing vectors in order to comply with (7). With A= &A~{q), suppose that at x = -1 

't:/w E Null(w1). 

The rank of w1 is 2 and the kernel has dimension 1: 

Null(w1) = Span{w1,} = c1 (-~ (~q3 + q~) ) , 
-½b - l)q~ + 7q3 

(15) 

(16) 

Copyright © 2000 John Wiley & Sons, Ltd. 
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with c1 a constant. 
Likewise, suppose that at x = 1 

Vw E Null(w2)­

The rank of w2 is 1 and the kernel has dimension 2: 

Null(w2)=Span{w21 ,1.1122 }=c2(1 0 of+c3(0 1 o)T, 
with c2 and c3 constants. Multiplying the Null vectors with the Jacobian gives 

(q2 q~ ½q~) 

= (q1 2q1q2 ¢fq3 + Jqiq~). 

Summarising, the adjoint problem can be seen as a new problem with 

AT dv - BT v = 8p 
dx aq 

in the internal domain and 

(17) 

(18) 

(19a) 

(19b) 

(20) 

(21) 

at the boundaries, where for the subsonic case WL is a 1 x 3 matrix and WR a 2 x 3 matrix. 

4. DISCRETE ADJOINT APPROACH 

Whether the residual and output functional are linearised around a given design variable [1) 
or around a given mesh [5], the Jacobian of the discrete residual written a..<; 

1 aAq [ ] dAi 
0 &td0. = - (AF)i+½ - (AF\_½ + h dx J(qi) = -R1i(q1i) (22) 

is needed in order to set up and solve the discrete adjoint equations. Derivation of adjoint 
equations from discrete primal equations has the advantage of not having to worry about 
adjoint boundary conditions. The Jacobian of the residual operator contains the influence of 
the primal boundary conditions. When taking the transposed Jacobian for computation of the 
adjoint solution, the adjoint boundary conditions are automatically included in the system of 
equations. This can be illustrated in the following way. Writing out the residual operator (22) 
for volume ni reads 

Ai+-21 (~F (qi,qi+i)q; + /F (qi,qi+1)q~+1)-
uqi uqi+l 

A ( aF ( ) , aF ( ) ') dAi 8J ( ) , , .n.,;_1 -n-- qi-1, qi qi-1 + ~ qi-1, qi qi - -dx ~ Qi qi= ri, 
2 UQi-1 uqi uqi 

(23) 

where q~_ 1, q~ and <J~+l are the local solution perturbations, and where r~ is the residual due to 
linearisation. This equation gives 3 sub-Jacobians around the main diagonal of~, denoted 
by R;,i-1, R;,i, and ~,i+l· At the boundaries, only 2 sub-Jacobians exist, in which R 1,1 and 
RN,N contain contributions due to implied boundary conditions, e.g. through the outflow flux 

Copyright © 2000 John Wiley & Sons, Ltd. 
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at the right side of the dormiin: F'I/.. = F'I/ .. i (qs .... 
H:v re,1<l-, 

The nlliidual Ofl€rator for volumt_' 

iJF 
l-,- -.-. rJq.v l, i/.V ) 

However, there is a catch. Strong enfornmtent of the boundary conditions in the primal 
residual Opt_'rator. imply corresponding re,,trictions for the dual rolution space. However, a 
boundary treatment that yields the correct primal boundary conditions does not automatically 
yield the correct dual boundary conditions. This diffieulty can he avoidt'<i by imposing the 
boundary <xmditions of the primal reo.sidual operator in weak form. The advantage is that 
no additional restrictions to the solution space are necessary and the resulting d1ml problem 
L~ automatically well-posed problem. Thi.., property makes implementation of the numerical 
adjoint method in a general purpose flow solver attrw.·tive. The user of the software takes full 
advitntage of adjoint ba..•,ed grid adaptation, without being burdened by setting up a well-posed 
dual problem. 

To evaluate the adjoint solution in a fully numerical way, the Jacobian matrix: fl~ is 
evaluated with a technique, called Automatic Differentiation or Algorithmic Differentiation 
(AD) [3]. A common way of obtaining approximate numerical derivatives of a given function 
is the divided difference approach, but the ma.in disadvantage of obtaining derivatives in this 
way is that the method suffers from truncation errors and is prone to reduce the number of 
significant digits by a factor 1.5 or 2. In contrast, AD returns derivatives e.x:act. 

5. RESULTS AND CONCLUSIONS 

As an example, numerical results for a subsonic channel flow a.re given. Corresponding dual 
solutions are shown in figure l and 2. Computation of the primal problem with strong 
boundary conditions leads to significant layers near the boundaries ( figure 1). The layers have 
(almost) disappear when using weak boundary conditions (figure 2). Using different schemes 
for solving the primal problem, results in different discrete adjoint solutions. for instance. the 
corresponding primal problems of the dual solutions in figure 2 have been e,-omputed with the 
Lax AC'heme (left) and the Osher scheme (right). 

The rna.in conclusions are listed below: 

• In contrast to the numerical adjoint method, the analytical adjoint method requires 
derivation of adjoint boundary conditions. 

• When using the numerical adjoint method, use of weak: boundary conditions for the 
primal problem is advi.'lable in order to prevent erroneous values of the dual solution 
near the boundaries. 

• In contrast to the analytical adjoint method, the numerical adjoint method includes 
information of the flu.x evaluation scheme. 

• fbr maximum accuracy, derivatives evaluated by AD are recommended. 

For use within general purpose flow solvers, the nunl€rical adjoint method combined with AD 
techniques i.s recommended. 

C-0p)Tight © 2000 John Wiley & Sons, Ltd. 
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Figure L Discrete adjoint solution with explicit boundary conditions, Lax scheme. with (Jin, U;n, Pout 

andh=k, 
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Figure 2. Discrete adjoint solution with implicit boundary conditions for the Lax scheme (left) and 
Osher scheme (right) with Pin, Uin, Pout and h = -k, 
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