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ABSTRACT
Syllogistics reduces to only two rules of inference: monotonicity and symmetry, plus a third if
one wants to take existential import into account. We give an implementation that uses only the
monotonicity and symmetry rules, with an addendum for the treatment of existential import.
Soundness follows from the monotonicity properties and symmetry properties of the
Aristotelean quantifiers, while completeness for syllogistic theory is proved by direct inspection
of the valid syllogisms. Next, the valid syllogisms are decomposed in terms of the rules they
involve. The implementation uses Haskell, and is given in ‘literate programming’ style.
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Abstract

Syllogistics reduces to only two rules of inference: monotonicity and symmetry, plus a third if
one wants to take existential import into account. We give an implementation that uses only
the monotonicity and symmetry rules, with an addendum for the treatment of existential
import. Soundness follows from the monotonicity properties and symmetry properties of the
Aristotelean quantifiers, while completeness for syllogistic theory is proved by direct inspec-
tion of the valid syllogisms. Next, the valid syllogisms are decomposed in terms of the rules
they involve. The implementation uses Haskell [8], and is given in ‘literate programming’
style [9].
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1 Introduction

Monotonicity reasoning with a binary quantifier Q that is monotonicity preserving (or: upward
monotone) in its first argument uses the following rule of inference:

Quant(P,Q) P ⊆ R

Quant(R,Q)
Quant(↑, )

The monotonicity rule for a binary quantifier that is monotonicity preserving in its second
argument is similar:

Quant(P,Q) Q ⊆ R

Quant(P,R)
Quant( , ↑)

And here are the monotonicity rules for binary quantifiers that are monotonicity reversing:
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Quant(P,Q) R ⊆ P

Quant(R,Q)
Quant(↓, )

Quant(P,Q) R ⊆ Q

Quant(P,R)
Quant( , ↓)

Symmetry reasoning is the rule that infers Quant(Q,P ) from Quant(P,Q) for symmetric quan-
tifiers. In this paper, we will show that this is all one needs for the implementation of a system
for syllogistic reasoning.

2 The Basic System

Declare a module, and define three terms, for the minor, major and middle term of a syllogistic
judgement, respectively. The minor premise of a syllogistic judgement is the premise in which
the subject term of the conclusion occurs, the major premise the one in which the predicate
term of the conclusion occurs. For syllogistic terminology, see e.g. [11].

module Syllogic where

import List

data Term = A | B | C deriving (Eq,Show)

Propositions are expressed using the four quantifiers from the square of opposition:

data Proposition = All Term Term
| Some Term Term
| No Term Term
| NotAll Term Term
deriving (Eq,Show)

The monotonicity properties of the Aristotelean quantifiers are given by:

All(↓, ↑) No(↓, ↓)y y
Some(↑, ↑) NotAll(↑, ↓)
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There are two ways to trigger a monotonicity inference: by means of a premise ‘All P Q’,
interpreted as P ⊆ Q, or by means of a premise ‘No P Q’, interpreted as P ⊆ Q. If a trigger of
the form ‘No P Q’ is used, we have to take into account that the inferences from P ⊆ Q have a
negated term.

infer :: Proposition -> Proposition -> [Proposition]
infer (All p q) prop = monAll prop p q
infer prop (All p q) = monAll prop p q
infer (No p q) prop = monNo prop p q
infer prop (No p q) = monNo prop p q
infer _ _ = []

Triggers of the form ‘All R T’ give rise to monotonicity premise R ⊆ T . The following function
deals with the monotonicity rule with premises of the form Quant(P,Q) and R ⊆ T . This covers
the case where there are two premises Quant(P,Q) and All(R, T ), where these premises may
have been presented in either order.

The second and third argument are for the terms R and T , respectively, of which it is assumed
that the first is related by set inclusion to the second.

monAll :: Proposition -> Term -> Term -> [Proposition]

Since terms range over the three element set {A,B,C}, the arguments P , Q, R, T in the premises
Quant(P,Q) and R ⊆ T cannot all be different. We do assume, however, that P and Q denote
different terms and that R and T denote different terms. Thus there are the following four
possibilities for what is the middle term in the inference:

1. if P = R then P is the middle terms, and the two premises are Quant(P,Q) and P ⊆ T ,

2. if P = T then P is the middle term, and the two premises are Quant(P,Q) and R ⊆ P ,

3. if Q = R then Q is the middle terms, and the two premises are Quant(P,Q) and Q ⊆ T ,

4. if Q = T then Q is the middle term, and the two premises are Quant(P,Q) and R ⊆ Q.

The code for monAll treats the four possible values for Quant in the premise of the form
Quant(P,Q) one by one, and for each case gives the list of possible monotonicity conclusions,
for each of the four ways of identifying terms.

If the quantifier Quant(P,Q) equals ‘All P Q’, we can draw a monotonicity consequence if P = T
(employing the downward monotonicity of ‘All’ in the first argument), or if Q = R (employing
the upward monotonicity of ‘All’ in the second argument):
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monAll (All p q) r t
| p == t = [All r q]
| q == r = [All p t]
| otherwise = []

If the quantifier Quant(P,Q) equals ‘Some P Q’, we can draw a monotonicity consequence if
P = R (employing the upward monotonicity of ‘Some’ in the first argument), or if Q = R
(employing the upward monotonicity of ‘Some’ in the second argument). Note that the rule also
takes the symmetry of ‘Some’ into account:

monAll (Some p q) r t
| p == r = [Some t q, Some q t]
| q == r = [Some p t, Some t p]
| otherwise = []

If the quantifier Quant(P,Q) equals ‘No P Q’, we can draw a monotonicity consequence if P = T
(employing the downward monotonicity of ‘No’ in the first argument), or if Q = T (employing
the downward monotonicity of ‘No’ in the second argument): Again, the rule takes the symmetry
of ‘No’ into account.

monAll (No p q) r t
| p == t = [No q r, No r q]
| q == t = [No p r, No r p]
| otherwise = []

If the quantifier Quant(P,Q) equals ‘NotAll P Q’, we can draw a monotonicity consequence if
P = R (employing the upward monotonicity of ‘NotAll’ in the first argument), or if Q = T
(employing the downward monotonicity of ‘NotAll’ in the second argument):

monAll (NotAll p q) r t
| p == r = [NotAll t q]
| q == t = [NotAll p r]
| otherwise = []

From the monotonicity inferences with trigger ‘No R T’, we do not need to cover those with a
second premise of the form ‘All ’, for these are already covered by the trigger ‘All’. Of the
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other ones, only those with a second premise of the form ‘Some ’ yield new conclusions by
monotonicity. This is due to the restricted expressive power of our syllogistic format, where we
can only deal with patterns of the form Quant(P,Q) in conclusions in the case where ‘Quant’
equals ‘Some’. Since the term in the trigger is negated, in the conclusions the ‘Some’ has to be
replaced by its subcontrary ‘Not All’. Again, if we have two premises of the forms Some(P,Q)
and R ⊆ T , where we assume P to be different from Q and R to be different from T , it follows
from the fact that there are just three terms that there are the following four possibilities:

1. if P = R, we can employ the upward monotonicity of ‘Some’ in the first argument, and
conclude Some(T ,Q), or, by symmetry, Some(Q,T ), i.e., NotAll(Q,T ).

2. if P = T , we can use the contraposition T ⊆ R of R ⊆ T (or, in other words, use the
symmetry of ‘No’), plus the upward monotonicity of ‘Some’ in the first argument, and
conclude Some(R,Q), or, by symmetry, Some(Q,R), i.e., NotAll(Q,R).

3. if Q = R, we can employ the upward monotonicity of ‘Some’ in the second argument, and
conclude Some(P, T ), i.e., NotAll(P, T ).

4. if Q = T , we can can use the contraposition T ⊆ R of R ⊆ T (or, in other words, use the
symmetry of ‘No’), plus the upward monotonicity of ‘Some’ in the second argument, and
conclude Some(P,R), i.e., NotAll(P,R).

monNo :: Proposition -> Term -> Term -> [Proposition]
monNo (Some p q) r t

| p == r = [NotAll q t]
| p == t = [NotAll q r]
| q == r = [NotAll p t]
| q == t = [NotAll p r]
| otherwise = []

In all other cases, i.e., in the cases where the quantifier has one of the forms All p q, No p q
or Some p q, there are no new consequences:

monNo _ _ _ = []

3 Existential Import

If we want to take existential import into account (everything that follows from the fact that
all terms and their complements are assumed to have non-empty denotations), then we have to
close off premises and consequences under the following rules:
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P ⊆ Q

P ∩Q 6= ∅

P ⊆ Q

P ∩Q 6= ∅

Here is the implementation (note that, again, we take care of the symmetry of ‘Some’):

existentialImport :: Proposition -> [Proposition]
existentialImport (All p q) = [Some p q, Some q p]
existentialImport (No p q) = [NotAll p q]
existentialImport _ = []

Expanding a list of propositions with their existential imports:

withEI :: [Proposition] -> [Proposition]
withEI [] = []
withEI (p:ps) = (p: existentialImport p) ++ withEI ps

Inference with existential import is just a matter of applying existential import expansion to the
syllogistic inference results, and to the syllogistic inference premises. Inference with existential
import expansion of the conclusions:

inferCEI :: Proposition -> Proposition -> [Proposition]
inferCEI p1 p2 = withEI (infer p1 p2)

Inference with existential import expansion of the premises:

inferPEI :: Proposition -> Proposition -> [Proposition]
inferPEI p1 p2 =

nub (concat
[ infer p1’ p2’ |

p1’ <- withEI [p1],
p2’ <- withEI [p2] ])
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4 Soundness and Completeness

The syllogistic interpretation of the syllogistic propositions is the interpretation where the terms
denote proper and non-empty subsets of a domain of discourse. The first order interpretation
of the syllogistic propositions is the interpretation where the terms denote arbitrary subsets of
a domain of discourse.

Soundness of the monotonicity and symmetry rules, for both the syllogistic and the first order
interpretation, follows from the monotonicity properties of the quantifier denotations, plus the
fact that the denotations of ‘Some’ and ‘No’ are indeed symmetric. The existential import rules
are obviously sound for the syllogistic interpretation of terms. The soundness of the monotonicity
and symmetry rules implies that no syllogism that is invalid for first order logic can be derived by
means of monotonicity and symmetry alone. The soundness of the full calculus for the syllogistic
interpretation implies that no invalid syllogism is derivable in the full system.

For completeness, we have to inspect the valid syllogistic patterns. We do this by exhaustion
of the list. To understand the mnemonics, recall that the affirmative quantifiers All and Some
take their names a and i from latin affirmo (‘I affirm’), while the negating quantifiers No and
NotAll derive their names e and o from latin nego (‘I deny’). Thus, celarent is the mnemonic
for the syllogism that has a No quantifier in its major premise, an All quantifier in its minor
premise, and a No quantifier in its conclusion.

The syllogisms are classified according to the position of the middle term (the term that occurs
in both premises but does not occur in the conclusion) in the minor and the major premise.
The first figure has the middle term as subject in the major premise, as predicate in the minor
premise, the second figure has the middle term as predicate in both premises, the third figure
has the middle term as subject in both premises, and the fourth figure has the middle term as
predicate in the major premise and as subject in the minor one.

Here are the valid syllogisms of the first figure:

barbara = infer (All B C) (All A B)
celarent = infer (No B C) (All A B)
darii = infer (All B C) (Some A B)
ferio = infer (No B C) (Some A B)

Of these, the ones with a universal or universal negative conclusion can also yield particular
conclusions by existential import:

barbari = inferCEI (All B C) (All A B)
celaront = inferCEI (No B C) (All A B)

The valid syllogisms of the second figure:
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cesare = infer (No C B) (All A B)
camestres = infer (All C B) (No A B)
festino = infer (No C B) (Some A B)
baroco = infer (All C B) (NotAll A B)

Again, the ones with a universal negative conclusion also yield particular conclusions by exis-
tential import:

cesaro = inferCEI (No C B) (All A B)
camestrop = inferCEI (All C B) (No A B)

The valid syllogisms of the third figure:

darapti = inferPEI (All B C) (All B A)
disamis = infer (Some B C) (All B A)
datisi = infer (All B C) (Some B A)
felapton = inferPEI (No B C) (All B A)
bocardo = infer (NotAll B C) (All B A)
ferison = infer (No B C) (Some B A)

Note that the validity of darapti and felapton hinges on the existential import of their premises.

The valid syllogisms of the fourth figure:

bramantip = inferPEI (All C B) (All B A)
camenes = infer (All C B) (No B A)
dimaris = infer (Some C B) (All B A)
fesapo = inferPEI (No C B) (All B A)
fresison = infer (No C B) (Some B A)

The validity of bramantip and fesapo hinges on existential import.

Camenes can also yield a particular conclusion, by existential import of the universal negative
conclusion:

camenop = inferCEI (All C B) (No B A)
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These are all the valid syllogistic inference forms. Inspection of the yield of the above functions
for the syllogistic figures makes clear that monotonicity, symmetry and existential import are
indeed a complete inference system for syllogistics.

5 Syllogism Decomposition

Every valid syllogism involves exactly one application of the monotonicity rule, either triggered
by ‘All’ or by ‘No’. Arguably, the syllogisms that just involve monotonicity are the simplest
ones. A syllogism may or may not involve an application of the following rules:

1. symmetry of a premise,

2. symmetry of the conclusion,

3. existential import of a premise

4. existential import of the conclusion.

Existential import of premise and conclusion was already treated above. Below we give a new
version that leaves a mark of the rule application.

First we implement a modification of the inference engine that lists whether monotonicity was
triggered by ‘All’ or by ‘No’, and that also keeps track of whether ‘symmetry of a premise’
or ‘symmetry of the conclusion’ was used in an inference. The marks for indicating the rule
applications are kept in a string.

infer’ :: Proposition -> Proposition -> [(Proposition,String)]
infer’ p1 p2 = infr (p1,"") (p2,"")

infr :: (Proposition,String) -> (Proposition,String)
-> [(Proposition,String)]

infr (All p q,str1) (prop,str2) = monAll’ (prop,str1 ++ str2) p q
infr (prop,str1) (All p q,str2) = monAll’ (prop,str1 ++ str2) p q
infr (No p q,str1) (prop,str2) = monNo’ (prop,str1 ++ str2) p q
infr (prop,str1) (No p q,str2) = monNo’ (prop,str1 ++ str2) p q
infr _ _ = []

monAll’ :: (Proposition,String) -> Term -> Term -> [(Proposition,String)]
monAll’ (All p q, str) r t

| p == t = [(All r q, str ++ "Ma")]
| q == r = [(All p t, str ++ "Ma")]
| otherwise = []
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monAll’ (Some p q, str) r t
| p == r = [(Some t q, str ++ "Ma"), (Some q t, str ++ "MaSs")]
| q == r = [(Some p t, str ++ "Ma"), (Some t p, str ++ "MaSs")]
| otherwise = []

monAll’ (No p q, str) r t
| p == t = [(No q r, str ++ "Ma"), (No r q, str ++ "MaSn")]
| q == t = [(No p r, str ++ "Ma"), (No r p, str ++ "MaSn")]
| otherwise = []

monAll’ (NotAll p q, str) r t
| p == r = [(NotAll t q, str ++ "Ma")]
| q == t = [(NotAll p r, str ++ "Ma")]
| otherwise = []

monNo’ :: (Proposition,String) -> Term -> Term -> [(Proposition,String)]
monNo’ (Some p q, str) r t

| p == r = [(NotAll q t, str ++ "MnSs")]
| p == t = [(NotAll q r, str ++ "SnMnSs")]
| q == r = [(NotAll p t, str ++ "Mn")]
| q == t = [(NotAll p r, str ++ "SnMn")]
| otherwise = []

monNo’ _ _ _ = []

Next, we program annotated versions of the existential import rules, distinguishing between
existential import triggered by ‘All’ and existential import triggered by ‘No’.
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existentialImport’ :: (Proposition,String) -> [(Proposition,String)]
existentialImport’ (All p q,str) =

[(Some p q,str ++ "Ea"),(Some q p, str ++ "EaSs")]
existentialImport’ (No p q,str) =

[(NotAll p q, str ++ "En")]
existentialImport’ _ =

[]

withEI’ :: [(Proposition,String)] -> [(Proposition,String)]
withEI’ [] = []
withEI’ (p:ps) = (p : existentialImport’ p) ++ withEI’ ps

inferCEI’ :: Proposition -> Proposition -> [(Proposition,String)]
inferCEI’ p1 p2 = withEI’ (infer’ p1 p2)

inferPEI’ :: Proposition -> Proposition -> [(Proposition,String)]
inferPEI’ p1 p2 =

nub (concat
[ infr p1’ p2’ |

p1’ <- withEI’ [(p1,"")],
p2’ <- withEI’ [(p2,"")] ])

Here are some examples of the generation of rule annotatations:

Syllogic> infer’ (No B C) (All A B)
[(No C A,"Ma"),(No A C,"MaSn")]
Syllogic> inferCEI’ (All B C) (All A B)
[(All A C,"Ma"),(Some A C,"MaEa"),(Some C A,"MaEaSs")]

Applying this to further example syllogisms we find that fesapo is the most complex syllogism, in
the sense that it involves two applications of symmetry (either to a premise and to a conclusion,
or twice to a premise) and existential import of a premise.
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Syllogic> infer’ (No C B) (All B A)
[]
Syllogic> inferPEI’ (No C B) (All B A)
[(NotAll A C,"EaSnMnSs"),(NotAll A C,"EaSsSnMn")]

This shows that we can decompose the syllogism fesapo in two ways:

No C B
No B C

Sn

All B A
Some B A

Ea

Some A B
Ss

Some A C
Mn

No C B
No B C

Sn All B A
Some B A

Ea

Some C A
Mn

Some A C
Ss

In an empirical set-up of [4], the inference

No B C, All B A, therefore NotAll A C

is only recognized as valid in 8 percent of the cases, while in a staggering 61 percent of the cases,
subjects think, erroneously, that the conclusion No A C follows from the premises. The only
cases where the scores are still lower for endorsement of a valid conclusion are cases where the
conclusion follows by existential import from a universal negative conclusion that is also valid,
and that is recognized in a majority of cases as being valid.

The annotated versions of the valid syllogisms of the first figure:

barbara’ = infer’ (All B C) (All A B)
celarent’ = infer’ (No B C) (All A B)
darii’ = infer’ (All B C) (Some A B)
ferio’ = infer’ (No B C) (Some A B)
barbari’ = inferCEI’ (All B C) (All A B)
celaront’ = inferCEI’ (No B C) (All A B)

The annotated versions of the valid syllogisms of the second figure:
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cesare’ = infer’ (No C B) (All A B)
camestres’ = infer’ (All C B) (No A B)
festino’ = infer’ (No C B) (Some A B)
baroco’ = infer’ (All C B) (NotAll A B)
cesaro’ = inferCEI’ (No C B) (All A B)
camestrop’ = inferCEI’ (All C B) (No A B)

The annotated versions of the valid syllogisms of the third figure:

darapti’ = inferPEI’ (All B C) (All B A)
disamis’ = infer’ (Some B C) (All B A)
datisi’ = infer’ (All B C) (Some B A)
felapton’ = inferPEI’ (No B C) (All B A)
bocardo’ = infer’ (NotAll B C) (All B A)
ferison’ = infer’ (No B C) (Some B A)

The annotated versions of the valid syllogisms of the fourth figure:

bramantip’ = inferPEI’ (All C B) (All B A)
camenes’ = infer’ (All C B) (No B A)
dimaris’ = infer’ (Some C B) (All B A)
fesapo’ = inferPEI’ (No C B) (All B A)
fresison’ = infer’ (No C B) (Some B A)
camenop’ = inferCEI’ (All C B) (No B A)

6 Related Work

Smiley [13] gives a rational reconstruction of syllogistics where there are four rules of inference:
(i) From All P Q and All Q R infer All P Q, (ii) from All P Q and No Q R infer No P Q, (iii)
from No Q P infer No P Q, (iv) from All Q P infer Some P Q, and where outermost negation is
treated in the metatheory. He then shows that his system derives precisely the valid Aristotelean
syllogisms.

An important heuristics in traditional logic is the doctrine of distribution, consisting of the
following two rules:

1. the middle term of a valid syllogism has to be distributed in at least one of the premises,
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2. if a term of a valid syllogism is distributed in the conclusion it has to be distributed in at
least one of the premises.

Prior [11] gives the following explanation of what ‘distributed’ means in these rules:

It is often said [. . . ] that a distibuted term refers to all, and an undistributed term
to only a part, of its extension. But in what way does “Some men are mortal”, for
example, refer to only a part of the class of men? Any man whatever will do to
verify it: if any man whatever turns out to be mortal, “Some men are mortal” is
true. What the traditional writers were trying to express seems to be something of
the following sort: a term t is distributed in a proposition f(t) if and only if it is
replaceable in f(t), without loss of truth, by any term “falling under it” in the way
that a species falls under a genus.

This suggestion of a modern version of the doctrine of distribution is taken up in Van Benthem
[3]. In Van Eijck [5] the relations between traditional logic (syllogistic theory) and generalized
quantifier theory [10, 1, 2] are worked out further, with due attention to the role of monotonicity
in syllogistic reasoning, and with the observation that the square of opposition generalizes to
quantifiers defined from At least n.

Sanchez [12] is an extensive study of the role of monotonicity in ‘natural reasoning’, with as main
contribution an algorithm for monotonicity marking, and a system for monotonicity reasoning
in terms of monotonicity markings.

Hodges [7] relates the doctrine of distribution to monotonicity (just as [11, 3, 5] had done before),
and gives a semantic argument to show that the correctness of the two rules of distribution follows
from the interpretation of ‘distributed term’ as ‘term in a downward monotone position’. The
doctrine of distribution also follows from our completeness result. Consider the first rule of
distribution, saying that the middle term has to be distributed in at least one of the premises. If
the trigger of the monotonicity rule is ‘No P Q’, then this condition is always fulfilled, for both
P and Q are in downward position. If the trigger of the monotonicity rule is ‘All P Q’, then the
condition is fulfilled if P is the middle term, for P is in a downward position in ‘All P Q’, and
it is also fulfilled if Q is the middle term, for the monotonicity rule allows substitution of Q by
P in the other premise only if Q is in downward position in that premise. Hodges shows that
the second rule of distribution follows from the first rule, as follows. Let ϕ and ψ be the two
premises, and assume P is in downward position in χ(P ), where

ϕ, ψ, therefore χ(P )

is a valid syllogism. Assume, without loss of generality, that P is a term in ϕ, and suppose that
P is in upward position in ϕ(P ). Then

ϕ(P ), χ(P ), therefore ψ

is also a valid syllogism. But in this syllogism P is the middle term. Moreover, the effect of
wide scope negation is that P is in upward position in χ(P ), and we have a contradiction with
the first rule of distribution.
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In Geurts [6] a monotonicity based system of reasoning for syllogistics is sketched, in terms
of Sanchez-style monotonicity markings. The claim is made that monotonicity, symmetry and
existential import account for all syllogistic inference, but the presentation of the rules is too
informal to admit a proof of this. Geurts’ intention is to explain empirical findings about
accomplishment in syllogistic reasoning tasks in terms of complexity of inference in his reasoning
system.

Code The Haskell code in this paper can be downloaded from http://www.cwi.nl/~jve/
papers/05/syllogic/.

Acknowledgement Thanks to Fabian Battaglini for his help in improving the presentation.
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