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1. Introduction 

Numerical analysis of laminar flows of incompressible fluid for large Reynolds and/or Peclet 
numbers often leads to the consideration of boundary value problems for boundary layer equa­
tions. These quasilinear equations are singularly perturbed, with two perturbation parameters 
£Rand £p defined by £R = Re-1 and £p = Pe-1, where Re and Pe are the Reynolds and Peclet 
numbers; Pe = Re Pr, Pr is the Prandtl number. Parabolic and regular layers are typical for 
such problems (1, 2]. Singularities of the same type occur in problems modelling heat transfer 
processes for flow past surfaces in the case of boundary layers controlled by suction of some 
amount of the flowing fluid (see, for example, (1, Chapter 14]). 

The presence of parabolic boundary and/or interior layers in such problems results in large 
errors (for small values of the perturbation parameters £1, £2 multiplying the space derivatives 
involved in the equations) if we apply classical methods for finding numerical solutions. Thus, 
it necessarily requires to develop special numerical methods whose errors do not depend on the 
value of the vector-parameter £ = (£1, £2), i.e. methods which converge £-uniformly. Possible 
approaches to constructing such methods and also some special schemes are given, for example, 
in (3-9]; see also references therein). 

In the present paper we consider a boundary value problem on a semiaxis (0, oo) for a singu­
larly perturbed parabolic equation with the two perturbation parameters £1 and £2 multiplying 
the derivatives with respect to the space variable. Depending on the value of the parameter £2 
multiplying the first derivative in x, the differential equation can be either of reaction-diffusion 
type (for £2 < ci12) or of convection-diffusion type (for £2 » ci12). Correspondingly, the 
boundary layer can be either parabolic or regular. Model problems of such type appear in the 
mathematical modeling of heat transfer processes for flow past a flat plate with continuous suc­
tion of fluid out of the boundary layer (see, for example, Section 3). Errors of classical numerical 
methods applied to the problem in question can be unsatisfactorily large for small values of the 
parameter £1 . Standard methods allow one to obtain satisfactory numerical approximations to 
the solution only under the very restrictive condition imposed on the number of mesh points 
N-1 «: £1 (ci/2 +c~)-1 , where N defines the number of nodes in the space mesh on a unit interval 
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(see condition (4.6) in Section 4). At the same time, the technique for constructing e-uniformly 
convergent schemes based on a fitted operator method turns out to be inapplicable to such 
problems due to the presence of parabolic boundary layers in the solution (see Remark 1 in Sec­
tion 4). For the problem under consideration we construct a monotone finite difference scheme 
( on piecewise uniform meshes) which converges e-uniformly with the rate CJ (N-1 lnN + N01 ), 

where No defines the number of nodes in the time mesh. We present the results of numerical 
experiments illustrating the efficiency of the constructed scheme. 

Note that special difference schemes for the problem studied in this paper, which converge 
e-uniformly (in the maximum norm), are unknown in the literature. 

2. Problem formulation. Aim of research 

1. On the set G, where 

G = G U S, G = D x (0, T], D = (0, oo), (2.1) 

we consider the following boundary value problem for the singularly perturbed parabolic equa­
tion 

{ a2 a a} Lu(x, t) = €1a(x, t) ax2 + c2b(x, t) ax - c(x, t) - p(x, t) at u(x, t) = f(x, t), 

u(x, t) = ~(x, t), (x, t) E S. 

(x, t) E G, 

(2.2) 

Here the parameters e1 and c2, which are the components of the vector-parameter€ (or, shortly, 
of the parameter e), take arbitrary values from the half-interval (0, 1] and the segment [O, 1] 
respectively. The coefficients a(x, t), b(x, t), c(x, t), p(x, t) and the right-hand side f (x, t) are 
sufficiently smooth functions on G satisfying the condition 1 

(2.3a) 

I/ (x, t) I :'.S M, (x, t) E G, ao, bo, Po > O, 

the boundary function ~(x, t) = ~(x, t; e) for a fixed value of the parameter e is sufficiently 
-L 

smooth on the sets S and So and continuous on S, moreover, 

I ~(x, t) I :'.SM, (x, t) E S; (2.3b) 

S = SL U So, SL and S0 are the lateral and bottom parts of the boundary S; SL = I' x (0, T], 
So = D x { t = 0 }, I' = D \ D. 

The solution of the boundary value problem is regarded as a function u E C2•1 (G) n C(G) 
(bounded on G) satisfying the differential equation on G and the boundary condition on S. 

For simplicity, we suppose that on the set sc = _SL n So, i.e. at the "corner" points, the 
compatibility conditions (see, e.g., [10]) are satisfied which ensure the required smoothness of 
the solution of the problem for each fixed value of the parameter e. 

2. We now discuss more precise conditions imposed on the function IP(x, t). 
In the case when the following condition holds: 

I ::k IP(x, t)I :'.SM, (x, t) E So, 

-L 
(x, t) E S , k ~ K, ko ::; Ko, 

(2.4) 

1 Here and below M, M, (or m) denote sufficiently large (small) positive constants which do not depend on 
e and on the discretization parameters. Throughout the paper, the notation Lc;.k) (Mc;.1c), Gh(j.1c)) means that 
these operators (constants, meshes) are introduced in equation (j.k). 
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where K, Ko > 0 are sufficiently large numbers, a boundary layer appears in a neighbourhood of 
the set SL as the parameter 1:1 tends to zero. This layer is parabolic if the condition 1:2 = CJ ( ci/2 ) 

holds, and regular under the condition c1 = o(c~). 
If the data of the problem are sufficiently smooth (when the derivatives of the function <I>(x, t) 

are c:-uniformly bounded, for example, in the case (2.4) for K = 7, Ko= 2), the solution of the 
problem can be decomposed into a sum of its regular and singular components 

u(x, t) = U(x, t) + V(x, t), (x, t) E G. (2.5) 

Suppose the function <I>(x, t) fort= 0 can also be written as a sum of the regular and singular 
components 

<I>(x, t) = <I>u(x, t) + <Pv(x, t), (x, t) E So. (2.6a) 

The singular component <Pv(x, t) has the same singularities as the component V(x, t) for the 
case of boundary value problem (2.2), (2.1), (2.4) with K 2: 7, Ko ~ 2. In this case the singular 
component V(x,t) of the solution of problem (2.2), (2.1) retains the character of the singularity 
(see, e.g., the estimates of theorem 3 and Remark 3). This decomposition of the solution into 
its regular and singular components in a number of cases allows us to construct and to study 
c:-uniform numerical methods (see, e.g., [6, 7) in the case of regular initial conditions). 

We assume throughout that the function <P(x, t) and its components from (2.6a) satisfy the 
condition 

I ::k <I>u(x, t) I ~ M, (2.6b) 

I::. Wv(x,t)I,; M { } , (x, t) E So; 

I :::0 <I>(x, t) I ~ M, (x, t) Es\ k ~ K, ko ~ Ko, 

where m 1 is any constant, m2 is a constant from the interval (0, m 0), mo= min0 [a-1 (x, t) b(x, t)], 
and where K, Ko are sufficiently large numbers. 

3. Our goal is to construct a finite difference scheme which is c:-uniformly convergent for the 
singularly perturbed boundary value problem (2.2), (2.1) with the singularly perturbed initial 
function satisfying condition (2.6). 

Note that, for problem (2.2), (2.1) corresponding to the heat transfer problem (3.3) in the 
case of flow past a flat plate with suction of the boundary layer [1), we have c1 = cT and 
c:2 = c~2 + vo, where cT = Pe-1, cR = Re-1, vo 2: 0 is the intensity of suction. 

3. Motivation of the research 

In this section we consider a boundary value problem for boundary layer equations in the case 
of a bounded domain, which describes heat transfer for the flow of a viscous fluid past a flat 
plate. Let a semi-infinite flat plate be disposed on the semiaxis P = {(x, y): x 2: 0, y = O}. 
The problem is symmetric with respect to the plane y = O; we examine the steady fl.ow of an 
incompressible fluid on both sides of P, which is laminar and parallel to the plate. We consider 
the solution of this problem on the bounded set 

G, where G = {(x, y): x E (di, d2J, y E (0, do)}, d1 > 0. (3.1) 

-0 - -
Let G0 = {(x,y): x E [d1,d2], y E (O,do]}; G = G. Assume S = G \ G, S = USj, j = 0, 1, 2, 
where S0 = {(x,y): x E [d1,d2l, y = O}, S1 = {(x,y): x = d1, y E (0,do]}, S2 = {(x,y): x E 
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(di, d2], y = do}, So= S0 ; s0 = C \ c0 = S0 . On the set C, it is necessary to find the solution 
U(x, y) = (u(x, y), v(x, y)) of the following Prandtl problem: 

2 _a a ( )-L U(x,y) = ax u(x,y) + {)y v x,y - 0, 

u(x,y) = cp(x,y), (x,y) ES, 

v(x,y) = '1/J(x,y), (x,y) E s0 • 

(x,y) E G, 

(x,y) E C0 , 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

Here eR is the viscosity in the case when U(x, y) and x, y are dimensional quantities, and 
eR = Re-1 when U(x, y) and x, y are dimensionless ones. The parameter eR takes arbitrary 
values from (0, 1]. 

The solution of problem (3.2), (3.1) exists and is sufficiently smooth if the functions r.p(x, y) 
and '1/J(x, y) are sufficiently smooth and satisfy appropriate compatibility conditions respectively 
on the sets S* = 81 n {So U 8 2 } (i.e. at the corner points adjoining to the side 81) and 
S0* =Sin s0 [2]. 

In the case of heat transfer between the plate and the fluid (under the assumption that 
the Archimedean body force is equal to zero, and that the viscosity is independent of the 
temperature), in addition to the system of equations (3.2), we have the following heat equation 
with appropriate boundary conditions [1] 

T(x, y) = <pr(x, y), (x, y) ES. 

(3.3a) 

(3.3b) 

Here eT is the temperature conduction coefficient if the problem is considered in dimensional 
variables, and er = Pe-1 in the case of dimensionless variables; Pe is the Peclet number, 
Pe= Pr Re. 

The solution of this problem in an infinite domain (including also the leading edge of the 
plate) for large Re and/or Pe has singularities of the boundary layer kind in a neighbourhood 
of the plate (for x > 0), and also an additional singularity in a neighbourhood of the leading 
edge due to the incompatibility of the problem data at the leading edge. 

Since we are interested first of all in finding approximations to the solution of the problem in 
the neighbourhood of the boundary layer, we consider the heat transfer problem for flow around 
the flat plate in a bounded subdomain which adjoins the plate and contains the boundary layer, 
but outside some neighbourhood of the leading edge. 

In the absence of suction and blowing the solutions of problem (3.2), (3.1) and (3.2), (3.3), 
(3.1) have such typical singularity as a parabolic boundary layer. For example, in the case of a 
self-similar solution of the Prandtl problem on flow past an infinite plate (see [1]) the function 
v(x, y) satisfies the estimate 

in this case the thickness of the boundary layer is of order eU2• The estimate for the function 
v(x, y) in such a form allows us to use the technique of constructing e-uniformly convergent 
schemes developed in [6, 7] for the case of problem (3.2), (3.1) (see, e.g., [9]). It seems that the 
same technique is also applicable for problem (3.2), (3.3), (3.1) provided that Pr~ l. 
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However, in the case of the problem of flow past a plate with the boundary layer controllable 
by means of suction, the function v(x, y) may essentially exceed the quantity .s-~2• For example, 
if suction with the intensity vo(x) = const > 0 occurs, we obtain the following estimate for the 
function u(x, y): 

I u(x, y) - Uoo I S M exp(-mvo .s-R1 y), (x, y) E G 

where U00 is the flow velocity at infinity. Thus, the thickness of the boundary layer becomes of 
order v01 eR, that is, much less (for vo » e~2) than above in the ~e of the passive plate. The 
boundary layer in this case becomes regular. 

A similar behaviour of the controllable boundary layers is observed also in the case of problem 
(3.3), (3.1) under the condition 

1/2 -1 
Er « v 0 ER. 

Therefore, it is of urgent interest to construct €-uniformly convergent numerical methods in 
the case of boundary layers which can be ( depending on the parameter v0 ) both parabolic and 
regular. 

4. Classical difference schemes 

We first introduce a classical difference scheme for problem (2.2), (2.1) and discuss problems 
arising in the numerical solution for small values of the parameter e. 

On the set G we introduce the mesh 

(4.1) 

where w and wo are meshes on the sets D and [O, T] respectively; w and w0 are meshes with 
any distribution of the nodes satisfying only the condition h s MN-1, ht s MN01, where 
h - m,;iv, hi hi - xi+1 - xi xi xi+1 E -w h - max· hj hj - tj+l - tj tj td+1 E -wo Here 

- -~ ' - ' ' ' t - J t, t - ' ' . 
N + 1 and No + 1 are the minimal number of nodes on an interval of unit length on the set D 
and the number of nodes in the mesh wo respectively. It is of interest to consider schemes on 
the simplest meshes 

= Gh, 

where wand wo are uniform meshes with the step-sizes h = N-1 and ht= TN01• 

Problem (2.2), (2.1) is approximated by the implicit difference scheme [11] 

(4.2) 

A z(x, t) = { £1a(x, t)c5-xx + £2b(x, t)c5x - c(x, t) - p(x, t)c5t} z(x, t) = f (x, t), (x, t) E Gh, 

z(x, t) = <P(x, t), (x, t) E Sh. (4.3) 

Here Oxx z(x, t) and c5:c z(x, t), c5t z(x, t) are the second and first (forward and backward) difference 

derivatives; 8-xx z(x, t) = 2 (hi + hi-I )-1 { c5x - 8-x} z(x, t), x =xi. 

For the difference scheme (4.3), (4.1) the maximum principle is valid [11]. 
Taking into account a priori estimates of the solution of problem (2.2), (2.1) (see Section 6), 

we find the following estimate for the solution of scheme (4.3), (4.1) 

I u(x, t) - z(x, t) I S 

{ 
[ (ci/2 + N-1 )-1 N-1 +Nol] 

<M 
- [ £~€12 N-1 +Nol] 
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On the mesh (4.2) we have the estimate 

I u(x, t) - z(x, t) I ~ 

{ 
[ (ci/2 + N-1rl N-1 +Nol] 

<M 
- [ (c22c1 + N-1)-1 N-1 +Nol] 

estimate (4.5) is unimprovable with respect to the entering values of N, No, c1, c2. 
Thus, the condition 

N -1 ( . [ 1/2 -2 ] ) = 0 filln c 1 , c2 c1 

(4.5) 

(4.6) 

is necessary and sufficient for the convergence of scheme (4.3), (4.2); schemes (4.3), (4.1) and 
(4.3), (4.2) do not converge c-uniformly. 

Theorem 1 Let the data of the boundary value problem (2.2), (2.1) satisfy conditions (2.3), 
(2.6), and also a,b,c,p,f E Cli+ct(G), cpE C10+ct(SL) n Cli+ct(So), and let u E C3+ct,2+ct(G), 
K(2.6) = li = 7, Ko(2.6} = lo = 2, a > 0. Then the condition (4.6) is necessary {necessary 
and sufficient) for the convergence of the difference scheme (4.3) on the mesh (4.1) {on the 
mesh (4.2)). For the mesh solutions the estimates (4.4) and (4.5) are valid; estimate (4.5) is 
unimprovable with respect to the values of N, No, c1, c2. 

Remark 1 To construct c-uniformly convergent difference schemes for problem (2.2), (2.1), one 
could use a fitted operator method (see the description of this method, e.g., in [3, 5-7]). But 
in the case of the condition c2 = CJ (ci12 ) the solution of the problem has a singularity of the 
parabolic layer kind. Using the technique given in [6, 7, 12), we can show that there are no fitted 
operator schemes convergent c-uniformly under the above condition. 

5. Special difference scheme 

In order to construct schemes which are c-uniformly convergent, in this section we use meshes 
condensing in a neighbourhood of the boundary layer. 

On the set G we introduce the mesh 

(5.la) 

where w0 = Wo( 4.2), w* = w* (a) is a piecewise uniform mesh on D. The step-sizes of the mesh w* 
are constant on the sets [0, u] and [u, oo) and equal to h{l) = 2 u N-1 and h(2) = 2(1 - u)N-1 

respectively. The value of a is chosen to satisfy the condition 

for c2 ~ Mo ci12, 

for c2 > Mo ci12, 

where M1 = m1(1.6), M2 = m2(1.6r The mesh Gh has been constructed. 

(5.lb) 

Using the majorant function technique from [6, 7] and taking into account the a pnon 
estimates of the solution of problem (2.2), (2.1), we find the following estimate for the solution 
of scheme (4.3), (5.1): 

I u(x, t) - z(x, t) I ~ (5.2) 

[ N-1 min [ lnN, ct12] + N01 ] 

[ N-1 min [ lnN, c~ c11] + N01 ] 
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The following c-uniform estimate is also valid: 

(5.3) 

estimates (5.2) and (5.3) are unimprovable with respect to the entering values of N, No, e1 , c2 
and N, N0 respectively. 

Theorem 2 Let the hypothesis of Theorem 1 be fulfilled. Then the solution of the difference 
scheme (4.3), (5.1) converges e-uniformly. The mesh solutions satisfy the estimates (5.2) and 
(5.3), which are unimprovable with respect to the values N, No, e1, e:2 and N, No respectively. 

Remark 2 Although the solution of problem (2.2), (2.1) has the singularity only for c1 ➔ 0 
(the solution of the problem is regular for c1 ~ m; see, e.g., estimates (6.8), (6.10) below), the 
character of the boundary layer depends essentially on the vector-parameter c. Such behaviour of 
the singular component of the solution does not allow us to construct an €-uniformly convergent 
scheme in the case when the value of o-(5.1) is independent of the parameter c2. 

6. A-priori estimates 

In this section we give a-priori estimates used for the construction; the technique from [6, 10, 
13, 14] is applied for deriving the estimates. Using the comparison theorems, we find 

I u(x, t) I ~ M, (x, t) E G. (6.1) 

Let the condition 
~(x, t) = cp(x, t), (x, t) ES (6.2) 

be satisfied, where cp(x, t) is independent of the parameter. 
1. At first we find estimates of the solution in the case when 

e:2 < Me:1/2. 
- 1 ' 

(6.3) 

we use a-priori estimates up to the boundary [10]. The boundary value problem (2.2), (2.1) in 
the new variables e = c;112x transforms into the problem 

Lu(e, t) = l(e, t), (e, t) E a, 
u(e, t) = 0ce, t), (e, t) E s. 

(6.4a) 

(6.4b) 

Here v(e, t) = v(x(e), t), v(x, t) is one of the functions u(x, t), ... , cp(x, t); G0 = {(e, t) : e = 
e(x), (x, t) E G0}, G0 is one of the sets G, s. The differential equation (6.4a) in the domain G 
and the boundary condition (6.4b) on Sare regular with respect to the entering parameters e"i­

Using a-priori estimates up to the boundary, we find 

In the variables x, t we have 

I 0~:;::0 u(x, t) I ~ M c;k12 , (x, t) E G. (6.5) 

In fact we need a more accurate estimate than (6.5). We represent the solution of problem 
(2.2), (2.1) as a sum of the two functions 

u(x, t) = U(x, t) + V(x, t), (x, t) E G, (6.6) 
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where U(x, t) and V(x, t) are the regular Md singular parts of the solution. The function U(x, t) 
is the restriction on G of the function U*(x, t), (x, t} Ea*, where U*(x, t) is the solution of the 
problem 

L*U*(x,t) = f*(x,t), (x,t) E G*, U*(x,t} = ip*(x,t), (x,t} ES*. 

Here S* = S(G* ); the domain G* is the exten."!ion of G beyond the set S l, G* contains G 
together with its m-neighbourhood; the coefficients of the operator L * and the function /* (x, t) 
are smooth continuations of the corresponding data of problem (2.2); ip*(x, t) is some smooth 
function, where ip*(x, t) = .p(x, t), (x, t) E S0• The function V(x, t) is the solution of the problem 

LV(x, t) = 0, (x, t) E G, V(x, t) = .p(x, t) - U(x, t), (x, t) E S. 

The function U*(x, t), (x, t) E G* can be decomposed into a sum of the functions 

2 

U*(x,t) = I>;12Vi*(x,t) +vu(x,t), (x,t) E G". 
i=::O 

Here Ut (x, t) is the solution of the problem 

L *0U0(x, t) = {-c*(x, t) - p*(x, t) :t} U0(x, t) = f*(x, t), (x, t) E G* \ So, 

U0(x,t} = ip*(x,t), (x,t) E S0; 

L*0Ui*(x,t) = {c1a*(x,t)!2 -c2b*(x,t)!}ut-1(x,t), (x,t) E G*\So, 

Ut(x, t) = 0, (x, t) E S0, i = 1, 2. 

(6.7) 

Taking into account estimates for the components from (6.7), we find the estimates for the 
components from the representation (6.6) 

I l)k+ko I 
oxk&tko U(x,t) ~ M, 

where m 1 is any positive constant, K = 3, Ko = 2. 
2. Let 

c2 ~ mc!12. 

In this case we pass to the variables { = c11 c2 x, T = £11 c2, t. 
We represent the function U"(x, t), (x, t) E G* as a sum of the functions 

2 

U*(x, t) = I>i Ut(x, t) + vu(x, t), (x, t) Ea*. 
i:::::0 

where Ut(x, t) are the solutions of the problems 

(6.8) 

(6.9) 

L*1U0(x, t) = { £2b*(x, t) ! -c*(x, t) - p*(x, t) ! } U0(x, t) = f*(x, t), (x, t) E G* \ So, 

U0(x, t) = ip*(x, t), (x, t) E S0; 

L*1Ut(x,t) = -a*(x,t) ::2 Ut_1(x,t}, (x,t) E G* \ S0, 

Vi*(x, t) = 0, (x, t) E S0, k = 1, 2. 
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After having estimated the function U*(x, t), for the components from the representation 
(6.6) we obtain the estimates 

I a!:;::0 U(x,t)I S M, 
(6.10) 

I a!:;::0 V(x, t) I s M £~£1k exp(-m2c2t:11x), (x, t) E G, k + ko S K, ko S Ko, 

where m2 is an arbitrary constant from the interval (0, mo), mo= min0 [a-1(x, t) b(x, t)], K = 3, 
Ko= 2. 

When deducing estimates (6.8), (6.10), we supposed that the data of the boundary value 
problem satisfy the condition 

Moreover, the compatibility conditions [10] on the set scare satisfied which ensure the inclusion 

(6.12) 

for each fixed set of the parameters Ei. 

Theorem 3 Let the data of the boundary value problem (2.2), (2.1) satisfy conditions (2.3), 
(6.2), (6.11), and let the condition (6.12) be fulfilled for the solution of the problem. Then the 
solution of the problem and its components from the representation (6.6) satisfy the estimate 
(6.1) and also estimates (6.8) and (6.10) in the case of conditions (6.3) and (6.9) respectively. 

Remark 3 Let the function <I> ( x, t) have the singularity of the same type as the function u ( x, t). 
We consider that the function <I>(x, t) fort= 0 can be written as a sum of functions in the form 
(2.6a), moreover, this function itself and its components from (2.6a) satisfy condition (2.6b), 
where K = 7, Ko = 2. In this case the conclusion of Theorem 3 remains valid for the solution 
of problem (2.2), (2.1). 
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