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Abstract—Over the last few years, the use of large-scale and accuracy. A better solution is to exploit distributidrdata
multimedia data applications has been growing tremendously, and computation over a network over compute nodes. Consider
and this growth is not likely to slow down in the near future. 5 m1ti-media application using a surveillance camera. The

Many multimedia applications operate in a real-time environment . -
(e.g., surveillance cameras, iris scans), which must meet strict client sends image frames captured by the camera to therserve

time constraints, i.e. to analyze video frames at the same rate asfor content analysis. To meet time constraints, the anadyzi

a camera produces them. To meet this requirement, Grid comput- have to be done by several nodes in parallel. However, the
ing is rapidly becoming indispensable. However, the variabilities vyariabilities in the computation environment (e.g., nakwo

of the software and the hardware in grid environment cause characteristics, CPU power, memory, 1/0) cause the strong
the strong burstiness in the transmission delay of video frames. . S . . ’ .

Because the burstiness is unknown beforehand, it is difficult to burstlnesfs |r} serylce processing t'm? of video frames aed th
determine the right sending moments of video frames. If the COmmunication time between the client and the server. This
time interval between sending two sequential frames is too large, raises the need for the development of methods that redut to t
then the service utilization may be low. If use large buffer to continuously changing circumstances. In this contextemyis
guarantee the service utilization, then video frames may be out- fixed amount of computing capacity, it is essential to find an
of-date because of the long waiting time at buffer in the server . . ’

side. This problem is referred to as “Just-in-time” problem. To optimal yvay Of sgndmg the -frames to t-he server such that
solve this problem, it is essential to determine the right sending the service utilization is as high as possible on the one hand
moments of video frames, properly dealing with the trade-off and the frame processed by the server is kept up-to-date on
between the service utilization and the “up-to-date” of video the other hand. In our paper, this problem is referred to as
frames. “just-in-time” problem.

Motivated by this, in this paper we develop an adaptive control . .
method that react to the continuously changing circumstances in A simple method called back-to-back method (BBM) is to

grid system so as to obtain the highest service utilization on the arrange the sending moments to send a new frame exactly
one hand and to keep the video frame up-to-date on the other after it receives a result from the server. Figure 1 gives an

hand. Extensive experimental validation in our DAS-3 testbed j|lustration. Using BBM method, video frames processed by
apd the tracg—driven simulation show that our method is indeed the server is most up-to-date. However, the server is idienwh
highly effective. . . .
it has processed the frame and is waiting for the next frame.

In a bottleneck situation, the communication time to send a
frame from the client to the servel’¢;) and the time to send

Recently, multimedia data is rapidly gaining importanca result back Tc,) may be long. For simplicity, we assume
along with the deployment of publicly accessible digitdete Tc; = Tcy = Tc. Then, the service utilizationS{J) using
vision archives, surveillance cameras in public locatiamd BBM method is given by
automatic comparison of forensic video evidence. In a few Ts
years, the digital video may produce high data rates, and mul SU=——"—,
timedia archives steadily run into petabyté§'C) of storage Ts+2-Tec
space. To keep the pace with the demand of these applicatiomsereT's is denoted as the service processing time of a video
the storage space asks an explosive growth to accommodeaene. Obviously, if the the communication time is long,rthe
the data in the form of video and audio. Apart from theervice utilization becomes lower.
huge scale, it is necessary that the data is being autoriatica An alternative approach called buffer storage method (BSM)
processed within a desirable time frame. Recent resulta frds to establish a buffer at the server side. As long as thesbuff
image analysis show that access to the content of large dataot full, the client is allowed to keep sending frames te th
sets is a hard problem [1]. One way to deal with this is to appgerver. When the server is busy, the frames will be stored in
approximation algorithms, at the cost of losing useful tietathe buffer before being processed. See Figure 2. Using BSM,

I. INTRODUCTION


https://core.ac.uk/display/301657009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

et frame | send flame 1 || - get frame 2 send frame 2 [2], adapted median-based method [2], exponential smogthi

from camera to server from camera to server

method [3]-[6] and Robbins-Monro Stochastic Approximatio
client \—‘/ \ / method [7], are all able to generate an accurate trend line
}
/ \

1 based on the processing time of previous frames. However,
\ / \ / for just-in-time problem, these methods are not sufficientl
\ / \ / optimized considering particular cases. (1) This happemsw
z { ¥ { the processing time of some frames becomes suddenly much

servet ' H_/ ' longer (e.g. a peak) than the expectEs obtained by trend

line. The sudden changes break the rhythm of sending frames

start parallel send result 1 PROB_U_EM: . ae . .

caloulations to client server is idle! and cause accumulative waiting time for all coming frames.
That makes the performance suddenly worse even after the

Figure 1. BBM method for arrange sending moments processing time has back to expectgs. Figure 4 gives an

illustration. (2) Besides the random peak, we also observe

the service utilization can approach 100%. However, the
drawback is that the data in the buffer may be out-of-date
because of the long waiting time before being processed.

t t+E[Ts] t+2E[Ts]

client i , .

get frame 1 send frame 1 send frame 2 send frame 3
from camera to server to server to server server

E[Ts]

Figure 4. All frames are affected continuously by sudden Ipragess time

} { the processing time has periodic peaks from our experiment

server '
% results. If the service processing timeieth frame is predicted
d It 1 d It 2 . . .
start parallel buffer 50‘:0 crﬁselllltt Sc?o :ﬁselrlltt send result 3 asa peak’ then a Smart Way to Sémd_ 1)-th fra‘me IS lettlng
calculation 1 frame 2&3 start parallel start parallel to client the Send|ng '“me some tlme |ater to prevent the Iong Wa|t|ng
calculation 2 calculation 3

time in the buffer. However, none of the prediction models
mentioned above can deal with peaks very well and pay
attention to utilize the periodic characteristic of thegqassing

Based on the discussion of previous two methods, tkg&ne.
optimal strategy would be sending each1)-th frame with  In this paper, based on our experimental observations, we
a delay after sending théth frame. The delay is exactly propose two policies to amend the particular situationse Th
the processing time of theéth frame. For instance, if the first one, one-before-last-measurement (BLM) policy, is to
service processing time of the current frame is equal’'sg restore the rhythm of sending frames by vanish the extra
then sending the next fram@s; later than when sendingWwaiting time after a few frames. The second one, peak-
the current frame will give an optimal solution. With thisprediction (PP) policy, is to find the periodic charactécist
strategy, the server gets the most up-to-date frame and €idhe peaks in processing times and then to predict when the
service utilization is unity. This is illustrated in Figurg next peak takes place. A proposed prediction method inogudi
Unfortunately,T's; is unknown before the result of the currenBLM and PP policies provides a good solution for just-ingim
frame is return to the client side. Hence, a good prediction problem.

Figure 2. ALT method for arrange sending moments

the processing time of the frames is desired. The remainder of this paper is organized as follows. In Sec-
tion Il the method is formulated. In Section Il the experimse
client ITTSi setup and the application are described, and in SectiondV th

experimental results are discussed. Finally, in Section&/ w
address a number of topics for further research.

|
. , [I. METHOD FORMULATION
sever \/\ N /\/ In this section, the proposed methods are formulated based

Te Ts. Te on two important observations during experiment resulte T
! 1 ’ experiment setup is described in detail in Section Ill. Al+ea
Figure 3. An Optimal solution for sending video frames time multimedia application called “Object Recognitiors' i

run to generate data that are used in our trace-driven siioiila
In our experimental results (see Section 2 below), wfer validating the final model. The notations used in thisgrap
observe that predictive methods: adapted mean-based dnethie defined as follows.



o T's;: the processing time of theth frame. of previous measurements for the arithmetic average. The
o T'c;: the communication time of sending thd¢h frame parameterk is changed by—1, 0, or +1 over time based
from the client to the server. on the prediction error. In our experiments, the initialueabf
« t;: the time point when the client sends thth frame to K is set to 20. See [2] for more detalils.
the server. Adapted median-based methods, as described in [2], use a
« r;: the time point when the client receivesh frame from portion of the measurement history defined by the parameter
the server. K to calculate the median which is used for the prediction.
Like the previous method, the paramef€ris adapted in the
same way as before. Note that the prediction of this method
1) Trend line: As shown in Figure 3, if we can predictis not influenced much by asymmetric outliers (e.g., a peak
the service processing time of the current frame accurately the processing time), since this does not affect the nmedia
then sending the next frame after the predicted time umjteatly.
should provide an optimal solution. Therefore we inveséda In exponential smoothing, the previous measurements are
some conventional prediction methods, adapted mean-basetweighted equally as in the case of a mean-based method,
methods, adapted median-based methods, exponentiallsmootit with exponentially decreasing weights as the measure-
ing methods and Robbins-Monro Stochastic Approximatiaments get older. More specifically, denote byi) the weight
methods for predicting the service processing time. We douifor the i-th previous measurement. Then,is the following
out based on the previous service processing time, by usfio@ction
these prediction models, an accurate trend line can be gen- w(i) = a(l — ),
erated. Figure 5 gives an illustration of the predicted iserv o
processing time versus the measured value of running objséth « a parameter determining the rate of decay of the
recognition application on 1 compute node with one CPU. function. In our experiments, we set = 0.5. Like in the
2) Periodic of the peaks. Another important observation Previous methods, the parametk&r determines the number
from our experimental results is the occurrence of periodfff Previous measurements we want to use. In chse>
peaks using large number of compute nodes. Because our mifavailable previous measurementind in casek’ < oo we
timedia application [8] is implemented in Java, the mectiani Made sure, by scaling of the weights, that the sum of the
of java garbage collection [9] has influence in the serviceWeights used sum up to one. _ ,
processing time. In case of large service processing tinee, t "€ Robbins-Monro approximation method is a stochastic
effect ofjava garbage collection can be ignored. Therefore, theBPProximation method. If we denote 1¥s; the estimation
periodic peaks are not obvious. The measured data in Figur@fsthe i-th processing time, then the estimation is updated
is right this situation. However, when the service progegsi according to the following relation
time is_srr_lall compared to_ the java garbage (_:ollection ti_nje, Tsis1 = Ts; + ei(Ts; — TSZ,)’
the periodic peaks are obvious. We run the object recognitio
application on 64 compute node with one CPU per node Wheree; is a parameter possibly dependingioihe intuition
three different days. From these three different data se¢s, behind the update rule is the following. In case the observed
notice that there is a deterministic period of the occuresncprocessing time is larger than the one estimated, the pielic

A. Preliminary

of some peaks. See Figure 6. for the next processing time is increased by a small amount
of that difference, and vice verse. When= 1 for all 4, then
B. Method the prediction for the next processing time is equal to last o

Based on the experimental results above, we conclude thaserved. We set; = 0.5 for our experiments.
a method to obtain a good performance in our real-time 2) BLM Policy: Our first policy to deal with peaks is called
application must have the following characteristics: (l)si “one-before-last-measurement” (BLM) policy. This poliy-
able to generate an accurate trend line of the service inges lows the following steps.
time, (2) it should be able to deal with outliers in the observ (&) Thei-th job will not be sent until the result of thg —
processing time as soon as possible and (3) it can predist wig-th job becomes available to the client. Because we must
the next peak appears. In this section, we discuss the ficedictake care that the server has enough jobs to process, we can
models and our two policies to deal with peaks in detail. not use the info obtained by last measurement as a predictor
1) Prediction models: Among the predictive methods therementioned by Harchol-Balter and Downey [10]. Therefére
is a huge distinction between them in the way they handfeust be larger or equal to 2. Throughout this paper, we focus
previous data to make the prediction. In some cases one wamisthe case thaE[T'c] < E[ZTS]. In this case, we set = 2.
to adapt very quickly to observed changes in the data, whildéis implies that at most one job is waiting in the buffer & th
there are also cases in which this behavior is not desired. server side. As a result, the occurrence of cumulative mgiti
Adapted mean-based method uses arithmetic averages divee can be prevented. In the case tiiat> £ [2T sl we only
some portion of the measurement history to predict the nexted to enlarge the value bf Hence, fork = 2, we have the
measurement. In particular, the amount of history thatkerta following equation,
into account depends on a paramdterspecifying the number t; > ri_a. (1)




Service processing by using 1 CPU Service processing by using 1 CPU
1900 T T T 1900 T T T

1800 . - oL, 1 1800

[
3
o
=]
T
i
]
o
=]
T

1600 1600

1500 1500

Service processing time (ms)
Service processing time (ms)

1400 1400

1300F | 1300F |
H Measured value o + Measured value

Adapted mean—-based method| Adapted median—-based method|
n n n n

1200 - - -

1200 - - -
0

100 200 300 400 500 600 0 100 200 300 400 500 600
Job number Job number
(a) adapted mean-based method (b) adapted median-based method
Service processing by using 1 CPU Service processing by using 1 CPU

1900 T T T 1900 T T T

1800 1800
2 1700} 2 1700
(] ()
£ £
g 1600 g 1600
2 ]
8 8
2 1500 2 1500
o o
@ @
2 kel
5 5
8 1400 8 1400

1300 1 1300

Measured value o +  Measured value
Exponential smoothing method N Robbins-Monro approximation method|
1200 . . n n n 1200 . n n n n
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Job number Job number
(c) exponential smoothing method (d) Robbins-Monro approximation method

Figure 5. Trend line generated by different prediction msdel

This equation implies thatthe video frame is sent after thatthe variation of the communication time between the client

the result of(: —2)-th frame is received by the client. Figure 7and the server. Therefore, the assumptian = T'¢y is not

gives an illustration. necessary any more. Combining Equation 1, 2 and 3, the
(b) Obviously, if the result ofi — 1)-th frame is received, optimal sending time of-th frame is given by,

,-th frame must be sent immediately. Therefore, we have
! y t; = min(r;_1,max(ri—o, ti_1+E[Ts],ri—o+E[Ts]-2E[T(])).

ti < i1 2 (4)

(c) Consider the difference between the send timg ofl)- ) PP Policy: Our second method, peak policy, tries to
th frame and(i — 2)-th frame. Denote the expected servic@redict the next outlier based on historical observatiofs.
processing time and the communication time Bd's| and define an outlier, in part|cu_lar a peak, as S|gn|f|can_tlyei_5[fht
E[Tc| respectively. IfT's;_, > E[Ts], then it is optimal to from the average processing time if t.he observation is much
sendi-th frame atr;_» + E[Ts| — 2 x E[Tc|. Figure 7 gives larger than the average (;ay 1.2 times larger). Based on
an example. In case thdts;,_, < E[T's], the optimal sending the occurrences of peaks in the previous observations, we

moment is att;_; + E[T's]. See Figure 7(b). Hence we gel"y to predict when the next peak will occur. Motivated by
the following equation experiments, we observe that there is a deterministic gerio

_ of the occurrences of peaks. See Figures 6(a), 6(b), and 6(c)
b= {Tiz + E[Ts] —2x E[Tc] if ;1 —t;—2 <Tsi—2, for the experimental results. Denote By= {i|Ts; is peak
ti—1+ E[Ts] otherwise as the set of peaks and denotezythe j-th element ofP. Let
(3) K be aninteger number. ff; —p; 1 =--- = p;_y1) —Pj—k
Note using the receiving time d¢f — 2)-th frame to determine then we say that there is a deterministic period of length
the sending time of-th frame indirectly takes into accountd = p; — p;—1, and we expect the next peak to occur at

4
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Figure 6. Service processing time taken at different times.
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BLM Policy

job number; + d. Note thatk defines the number of previous
peaks that should have occurred equidistantly with length
such that we consider the peaks as periodical events. The
optimal & is not known beforehand. Therefore, we will start
with an arbitrary value and adjust it as time evolves. Suppos
that k = 3, and we observe three peaks each having distance
d, then the method predicts that the next peak occurs after
processing ofd frames. If it turns out that the prediction is
wrong, then we increask by 1, since probablyt = 3 was

too low. In case the prediction is correct, then we decréase
by 1, such as to try a smaller number. To prevent meaningless
values fork, we restrictk to be in[3, co).

Combining BLM and PP policies with one of the prediction
methods to predict service processing time, we achieve the
final method to deal with the just-in-time problem in reahéi
applications.

IIl. EXPERIMENTAL SETUP

In a grid environment, resources have different capacities
and many fluctuations exist in load and performance of



geographically distributed nodes [11]. As the availapilitf the object recognition application is run on 64 compute sode
resources and their load continuously vary with time, theith 1 CPU per node.
repeatability of the experimental results is hard to be guar First, we apply BBM method (See Figure 1) to our object
anteed under different scenarios in a real grid environmengcognition application for arranging the sending timesour
Also, the experimental results are very hard to collect amkperiment, it is shown that the average service processing
to observe. Hence, it is wise to perform our experiments ¢ime (E[7's]) and the average communication timg[{'c])
the test bed that contains the key characteristics of a ghdtween the client and the server are equal to 1431629
environment on the one hand, and that could be managetl 11.694ms respectively. In this case, the server utilization
easily on the other hand. To meet these requirements, iseabout 85%, and the average waiting time per frame is O.
perform our experiments on DAS-3 Grid test bed [12]. DASConsider that the service utilization using BBM method is
3 (The Distributed ASCI Supercomputer 3) is a wide-aregiven by E[T's]/(E[T's] + 2 - E[Tc]). That implies that when
distributed system designed by the Advanced School féic is negligible, the BBM method approaches the optimal
Computing and Imaging (ASCI [13]). It consists of 272 duadtrategy. However, in the bottleneck situation whéig'¢] is
AMD Opteron compute nodes. The compute nodes spreladg relative toF[T's], the BBM method will perform bad.
out over five clusters located at five locations: VU Universit The server utilization can be increased by sending the
Amsterdam (VU), Leiden University (LU), University of Am- frames faster after each other. However, if a sudden change
sterdam (UvA), Delft University of Technology (TUD) and thea peak) of service time takes place, all incoming frames are
MultimediaN Consortium (UvA-MN). Unlike its predecessoraffected. A worse situation is when a series of long service
DAS-2, DAS-3 is rather heterogeneous in design. Tabletime occur, the waiting time of the frames increase rapidly
provides an overview of all 5 clusters. because the time gaps can be accumulated. In our experiments
In our experiments, we use the VU-cluster to carry out owe used simulation to evaluate the impact of changing the
real-time application called “Object Recognition”. Thelfject time interval between sending two sequential frames. The ti
Recognition” application is implemented in a Robot Dog. linterval is reduced in 5 steps according to TableEl|T's] and
consists of the following operations: E[T¢] in Table Il are adjusted by one of the prediction models.

1) An object is held in front of the dog’s camera. The vide&ecause Figure 5 shows that all prediction models are able to
frames or images are captured by the camera and sggperate accurate trend line. Therefore, in this paper,nie o

to the servers. choose one of them: the exponential smoothing method, as
2) The video frames are processed in parallel on t}fe representative prediction model to use. In Figure 8, it is
available compute nodes. shown that the average waiting time increases enormously as

3) Based on the key characteristics calculated from tHa€ Service utilization approaches 100%. Hence, the pittedfic
video frames, a database of learned objects is searcH&@dels are not suficient for our just-in-time problem.
4) In case of recognition, the dog reacts accordingly. Table Il
Before the processing of video frames, the connection letwe  TIME INTERVAL BETWEEN SENDING TWO SEQUENTIAL FRAMES
the client (the application) and the communication serzer (
compute node) is established. As long as the link is condecte

Simulation index| Time interval

. : . . T
the client can send a video frame to this server. The received QEJ[B;CJ]VI+ E[T3]
video frame is scattered by this server into many pieces 15E[Td + E[T5]
according to the available compute nodes. Normally, each E[Tc] + E[Ts]

05E[Tc] + E|Ts]
0.375E[Td] + E[Ts]
0.25E[Td + E[Ts]
E[T's]

compute node gets one piece of data segment for processing.
The computations at all compute nodes take place in parallel
When the computations are completed, the partial results are
gathered by the communication server again and the final
result is returned to the client. The time to process a video = i . i ,
frame is defined as the service processing time. The indidy YSing our final model (one of prediction models in combi-

values of T's; are collected as data source for our tracéw_ation with BLM and PP policies), we can achieve high service

driven simulation. In our simulation, the service utilizatand Utilization on the one hand and keep the average waiting time
total waiting times are calculated by using different petign  1OW On the other hand. By using the exponential smoothing

models in combination with BLM policy and PP policy. method with our policie.s., we get the service utilization to
about 98%, average waiting time per frame to arounahs?

IV. NUMERICAL RESULTS Define the waiting time percentage (WP) as

O N| O U1 B W| N[

total waiting time
total waiting time + total service processing time

In this section we present the results of our experimentsy’ P =
done in the DAS-3 environment. The results are also used as
the input for our trace-driven simulation in order to vatiela Then we obtain WP around 3.5%. Because of lower value of
our final method for determining the sending moments &/P, we are allowed to compare the performace of our final
video frames from the client to the server. In our experimmgnimehtod to BBM method by looking at the service utilization.



Table |
OVERVIEW OF NODES

Cluster Nodes Type Speed Memory | Storage | Node HDDs Network

VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 x 250 GB | Myri-10G and GbE
LU 32 dual single-core | 2.6 GHz 4 GB 10 TB 32 x 400 GB | Myri-10G and GbE
UVA 41 dual dual-core 2.2 GHz 4 GB 5TB 41 x 250 GB | Myri-10G and GbE
TUD 68 dual single-core | 2.4 GHz 4 GB 5TB 68 x 250 GB | GbE (no Myri-10G)
UVA-MN 46 dual single-core | 2.4 GHz 4 GB 3TB 46 x 1.5 TB Myri-10G and GbE
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Figure 8. Average waiting time using 64 compute nodes
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Define the gain in service utilizatioGain(SU) as follows,

Gain(S

Figure 9 shows the gain of our final method related to BBM
method for different values o%. In this figure, we notice

service utilization using final model
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Gain in service utilization
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Figure 9. Gain in the service utilization

(®)

2- E[T¢]). Hence, Based on Equation 5, we have

1
Ts/(Ts+2-Tc)

Gain(SU)~

=1+ 2Ts'
Therefore, the gain in the service utilization is nearlyragas-
ing linearly with T'c/T's.

The last comparison is done to evaluate the benefit brought
by our policies. The prediction method is using the expaiaént
smoothing method. we compare the performance of our final
method to the prediction method by looking at the average
waiting time. Define the gain in the average waiting time
Gain(w) as follows,

average waiting time using final method

Gain(w) = — . - — .
W) average waiting time using the prediction model

We get the results shown in Figure 10. The reason why
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Figure 10. Gain in the average waiting time

the final model can gain so much, can be explained by the
following example. Assume during processing, only one peak
takes place and after that peak there are still 100 frames nee
to be processed, then the use of prediction models causes all
following 100 frames to be delayed by the peak. But using
our final model, there is only 1 following frame affected by

that the gain in utilization is almost linear @g This can be the peak. After that, the sending times of the next 99 frames
explained by the fact that the service utilization in the Ilfinare corrected. Thus no accumulative error happens. Thetefo
model is very close t@ and the service utilization belonging towe conclude that our policies are indispensable and efecti
the simply strategy can be approximated B{T's]/(E[T's] +

for just-in-time problem.



V. CONCLUSIONS AND FURTHER RESEARCH

In this paper we explored the just-in-time problem that
requires the high service utilization on the one hand, and
to keep the video frame up-to-date on the other hand. Using
BBM method, the waiting time is zero. However, the service
utilization will be worse if the communication time between
the client and server becomes longer. Applying the predic-
tion models to this problem, the service utilization can be
increased. However, at the same time, the increasing of the
average waiting time of a frame is even faster. That can be
explained by the fact that none of the prediction models pay
attention to dealing with the peaks of the service processin
time. Therefore we developed two policies, BLM policy and
PP policy. Using the first policy, the cumulative waiting &m
can be avoided by postponing the send time of the new job
when a peak is detected. The second policy is used to predict
the possible peaks. If we can predict the moment when a
peak occurs, then we can manage to send the new job in
the right time. Combining these two policies with any of the
prediction models, we achieve the final method to solve just-
in-time problem.

Our final method is validated in our experiments. We have
illustrated the experimental results above. Moreover, aeeh
extensively investigated the gain of our final model reldated
the BBM model and the prediction methods without using our
policies. From our experimental results, it is shown that ou
final method outperforms those methods.
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