
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Isolating crosscutting concerns in system software

M. Bruntink, A. van Deursen, T. Tourwé

REPORT SEN-R0504 FEBRUARY 2005

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Isolating crosscutting concerns in system software

ABSTRACT
This paper reports upon our experience in automatically migrating the crosscutting concerns of
a large-scale software system, written in C, to an aspect-oriented implementation. We zoom in
on one particular crosscutting concern, and show how detailed information about it is extracted
from the source code, and how this information enables us to characterise this code and define
an appropriate aspect automatically. Additionally, we compare the already existing solution to
the aspect-oriented solution, and discuss advantages as well as disadvantages of both in terms
of selected quality attributes. Our results show that automated migration is feasible, and can
lead to significant improvements in source code quality.

1998 ACM Computing Classification System: D.2.7 Distribution, Maintenance, and Enhancement
Keywords and Phrases: aspect-oriented software development; reverse engineering; refactoring

Isolating Crosscutting Concerns in System Software

Magiel Bruntink
Centrum voor Wiskunde en

Informatica
P.O. Box 94079

1090 GB Amsterdam, NL

Magiel.Bruntink@cwi.nl

Arie van Deursen
∗

Centrum voor Wiskunde en
Informatica

P.O. Box 94079
1090 GB Amsterdam, NL

Arie.van.Deursen@cwi.nl

Tom Tourwé
Centrum voor Wiskunde en

Informatica
P.O. Box 94079

1090 GB Amsterdam, NL

Tom.Tourwe@cwi.nl

ABSTRACT
This paper reports upon our experience in automatically migrating
the crosscutting concerns of a large-scale software system, writ-
ten in C, to an aspect-oriented implementation. We zoom in on one
particular crosscutting concern, and show how detailed information
about it is extracted from the source code, and how this information
enables us to characterise this code and define an appropriate aspect
automatically. Additionally, we compare the already existing solu-
tion to the aspect-oriented solution, and discuss advantages as well
as disadvantages of both in terms of selected quality attributes. Our
results show that automated migration is feasible, and can lead to
significant improvements in source code quality.

1. INTRODUCTION
Aspect-oriented software development (AOSD) [18] aims at im-

proving the modularity of software systems, by capturing crosscut-
ting concerns in a well-modularised way. In order to achieve this,
aspect-oriented programming languages add an extra abstraction
mechanism, anaspect, on top of already existing modularisation
mechanisms such as functions, classes and methods.

In the absence of such a mechanism, crosscutting concerns are
implemented explicitly using more primitive means, such as nam-
ing conventions and coding idioms (an approach we will refer to as
theidioms-based approachthroughout this paper). The primary ad-
vantage of such techniques is that they are lightweight, i.e. they do
not require special-purpose tools, are easy to use, and allow devel-
opers to readily recognise the concerns in the code. The downside
however is that these techniques require a lot of discipline, are par-
ticularly prone to errors, make concern code evolution extremely
time consuming and often lead to code size explosion.

In this paper, we report on an experiment involving a large-scale,
embedded software system written in the C programming language,

∗Also affiliated with Delft University, Software Evolution Research
Laboratory (SWERL), Faculty of Electrical Engineering, Mathe-
matics and Computer Science (EEMCS), Mekelweg 4, 2628 CD
Delft, The Netherlands.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD2005, Chicago, USA. Submitted
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

that features a number of typical crosscutting concerns implemen-
ted using naming conventions and coding idioms. Our first aim
is to investigate how this idioms-based approach can be turned
into a full-fledged aspect-oriented approach automatically. In other
words, our goal is to provide tool support for identifying the con-
cern in the code, implementing it in the appropriate aspect(s), and
removing all its traces from the code. Our second aim is then to
evaluate the benefits as well as the penalties of the aspect-oriented
approach over the idioms-based approach. We do this by compar-
ing the quality of both approaches in terms of the amount of tan-
gling, scattering and code duplication, the lines of code devoted to
the concern and the correctness and consistency of its implementa-
tion.

1.1 Approach
Our approach to achieving our goals is to zoom in on one partic-

ular crosscutting concern, theparameter checkingconcern. Based
on the existing source code and the requirements extracted from
the manuals, we implement aconcern verifierfor the parameter
checking concern. Its primary task is to reason about the current
implementation of the concern in order to “characterise” it: the
verifier reports where the code deviates from the standard idioms,
which allows developers to correct the code when necessary. Man-
ual inspection may also reveal that a particular deviation is in fact
on purpose, in which case it will be marked asintended. Addition-
ally, the verifier also recovers the specific locations where particular
parameters are checked.

The information recovered by the concern verifier is used by the
aspect extractorand theconcern eliminator. The former defines an
appropriate aspect for the parameter checking concern. This aspect
will add parameter checks to the source code wherever necessary,
and will make sure this code is not added for the intended devia-
tions. The latter will remove the parameter checking concern from
the original source code.

The aspect extractor outputs the aspect in a special-purpose as-
pect language. This definition is then translated automatically by
our AspectC translatorto an already-existing, general-purpose as-
pect language, that can weave the parameter checking concern back
into the source code.

Once the correct aspect has been constructed, we can assess
the quality of the aspect-oriented solution and compare that to the
idioms-based solution.

1.2 Contributions
The contributions of this paper are the following:

• we evaluate the benefits of an aspect-oriented approach over

1

an idioms-based approach, in terms of selected quality at-
tributes;

• we show how to verify the idioms-based implementation of
crosscutting concerns in the source code;

• we show how crosscutting concerns can be extracted from
the source code automatically, based on the information gath-
ered by the concern verifier;

• we define a special-purpose aspect language, that can be used
to implement aspects involving function parameters.

1.3 Outline
The remainder of the paper is structured as follows. The next

section introduces the parameter checking concern, its requirements
and the idioms used to implement it. Section 3 discusses the con-
cern verifier, its implementation, and the results of running it on
our case study.. Section 4 presents the domain-specific aspect lan-
guage we implemented for the parameter checking concern, dis-
cusses its implementation in terms of an already-existing aspect
weaver, and compares this solution to the idioms-based solution.
Section 5 then discusses the (conservative) migration of the idioms-
based approach to the aspect-oriented approach. Section 6 shows in
detail how the evolvability of the system improves thanks to using
aspects, while Section 7 considers additional quality attributes to
compare the aspect-oriented solution to the idioms-based solution.
Finally, Section 8 discusses related work, and Section 9 presents
our conclusions and future work.

2. CURRENT PARAMETER CHECKING ID-
IOM

2.1 Background
The subject system upon which we perform our experiments is

an embedded system developed at ASML, the world market leader
in lithography systems. The entire system consists of more than
10 million lines of C code. Our experiment, however, is based on
a relatively small, but representative, software component (which
we will call theCC component in this paper), consisting of about
19.000 lines of code.

Because the C language lacks explicit support for crosscutting
concerns, ASML uses an idiomatic approach for implementing such
concerns, based on coding idioms. As a consequence, a large a-
mount of the code of each component is “boiler plate” code. A
code template is typically reused and adapted slightly to the con-
text.

The implementation of the parameter checking concern in the
CC component consists of 961 lines of code, scattered across the
many different functions, which amounts to 5% of the total number
of lines of code of the component.

2.2 Parameter Checking Requirements
ASML operates in the embedded systems domain, in which re-

liability and maintainability are key quality attributes. For that rea-
son, ASML has adopted a number of coding conventions. One of
them is the parameter checking concern, which is responsible for
implementing pointer checks for function parameters and raising
warnings whenever such a pointer contains a non-expected (NULL)
value. The purpose of such checks it to improve the reliability and
the error reporting of the software system. The requirement for the
concern is that each parameter that has type pointer and is defined
by a public (i.e. notstatic) function should be checked against

NULLvalues. If aNULLvalue occurs, an error variable should be
assigned, and an error should be logged in the global log file. Note
that the requirement does not specify where exactly a parameter
should be checked. This can be done in the function itself, or al-
ternatively anywhere in the call graph of the function. As long as
the parameter is checked before its value is used, the requirement is
met. Additionally, some exceptions to this requirement exist, as a
limited number of functions can explicitly deal withNULLvalues,
so the corresponding parameters should not be checked.

The implementation of a check depends on thekind of parame-
ter. The ASML code distinguishes between three different kinds:
input, outputand the special case ofoutput pointerparameters. In-
put parameters are used to pass a value to a function, and can be
pointers or values. Output parameters are used to return values
from a function, and are represented as pointers to locations that
will contain the result value. The actual values returned can be ref-
erences themselves, giving rise to a double pointer. The latter kind
of output parameters are calledoutput pointerparameters. Note
that the set of output pointer parameters is a subset of the set of
output parameters. Since output and output pointer parameters are
always of type pointer, they should always be checked, but only
input parameters that are passed as pointers should be checked.

2.3 Idioms Used
Parameter checks occur at the beginning of a function and always

look as follows:

if(queue == (CC_queue *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,("%s: Input parameter %s error (NULL)",

"CC_queue_empty", "queue"));
}

where the type cast of course depends on the type of the variable
(queue in this case). The second line sets the error that should
be logged, and the third line reports that error in the global log
file. It is not strictly specified which string should be passed to the
CCLOGfunction. Checks for output parameters look exactly the
same, except for the string that is logged.

Since output pointer parameters are output parameters as well,
they should also be checked for null values. Additionally, one extra
check is required to prevent memory leaks. The requirement at
ASML is that output pointer parameters may not point to a location
that already contains a value, because the function will overwrite
the pointer to that value. Since the original value is then never
freed, a memory leak could occur. In order to avoid such leaks, the
following test is added for each output pointer parameter:

if(*item_data != (void *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,("%s: Output parameter %s may already "

"contain data (!NULL). This data will "
"be overwritten, which may lead to memory "
"leaks.", "queue_extract", "item_data"));

}

The only difference with the previous test lies in the condition
of the if , that now checks whether the dereferenced parameter
already contains some data (!= NULL), and in the string that is
written to the log file.

3. CONCERN VERIFIER
The concern verifier is an automated tool that reasons about the

idioms-based implementation of the parameter checking concern.
This section motivates why we need such an automated tool, ex-
plains the information that it recovers from the source code, the

2

coding idioms used, as well as the implementation of the algorithm
that verifies these idioms, and the results of running this algorithm
on our case study.

3.1 Motivation
The idioms-based approach requires much effort and strict disci-

pline from the developers. Since the concern does not form part of
the core functionality they need to implement, it is not their primary
focus. Additionally, the idioms are often not documented explicitly,
or only in an informal way, and every developer may thus have his
own idea and interpretation of them. Consequently, if the idioms
are not strictly enforced in some automated way, developers will
inevitably write code that does not adhere to them. If we want to
transform the idioms-based approach into an aspect-oriented one,
we should thus first “characterise” the implementation. In other
words, we should first locate places where parameters checks occur
and mandatory parameter checks are missing, and identify param-
eters that do not need to be checked.

We achieve this characterisation by implementing aconcern ver-
ifier which checks the implementation of the concern with respect
to the coding idioms that hold for it. The verifier outputs a list
of locations, i.e. functions where parameter checks occur, and a
list of deviations, i.e. locations in the source code that lack a pa-
rameter check although it should be present according to the id-
ioms. This latter list is inspected by a domain expert, who iden-
tifies theintendedandunintendeddeviations. The intended devi-
ations indicate exceptional cases (e.g, parameters that are allowed
to be NULL), whereas unintended deviations indicate parameters
for which a check was forgotten and should be implemented. As
we will see later on, our concern verifier is able to identify some
intended deviations automatically. In those cases, these deviations
are not reported, but simply registered as exceptions.

Thus the following important information is recovered from this
code:

• the list of intended deviations informs us which parameters
form an exception to the rule. As such, this important in-
formation becomes explicitly available, whereas it was not
before;

• the number of unintended deviations is a measure for the
quality of the idioms-based approach. The smaller this num-
ber, the better the quality of the implementation. We expect
this number to increase linearly with the size of the source
code;

• the verifier identifies the specific location in the code where a
particular parameter is checked. Remember that the require-
ment does not specify where the check should occur, as long
as it occurs before the parameter is used.

As we will see in the next sections, this information is vital to
our aspect extractor. The aspect it defines should add all neces-
sary parameter checks to the code, but should not insert checks for
exceptional parameters. Additionally, it should make sure that the
aspect preserves the behaviour of the original idioms-based imple-
mentation, which it does by simply implementing the checks at the
same locations.

We continue this section by explaining the implementation of
the concern verifier in more detail. First, we formalise the coding
idioms that need to be followed. Afterwards the algorithm that
verifies these idioms is presented.

3.2 Formalising the Concern Idioms

In order to verify the proper use of the parameter checking idiom,
we propose the following formalisation of the concern:

∀ f ∈ PublicFunctions(CC) :
∀p∈ parameters(f) : checksParameter(f , p)

checksParameter(f , p) ↔
implementsCheck(f , p)∨
∀ f1 ∈CalledFunctions(f) :
∀p1 ∈ parameters(f1)∧dataDepedent(p1, p) :

checksParameter(f1, p1)

wherePublicFunctionsis the set of all functions that are glob-
ally visible in the component (e.g. the set of functions not de-
finedstatic), parametersis the set of (input, output and output
pointer) parameters defined by a function,implementsCheckis a
predicate that returns true if its first argument checks the parameter
denoted by its second argument in the appropriate way (depending
on the kind of the parameter),CalledFunctionscomputes the set of
all functions that can be called by a functionf , anddataDependent
verifies whether its first argument is data dependent on its second
argument. Clearly, if this coding idiom is strictly adhered to, the
parameter checking requirement will be met.

3.3 Verifier Implementation
The concern verifier has been developed as aplugin in theCode-

Surfer source code analysis and navigation tool1. This tool pro-
vides us with programmable access to data structures such as sys-
tem- and program-dependence graphs, and defines advanced analy-
sis techniques over these structures, such as control- and data-flow
analysis and program slicing.

We used CodeSurfer to implement checks for thechecksParam-
eter predicate presented above. To that end, we need to consider
each public function and see if the necessary parameter checks oc-
cur in it or in the functions it calls. This requires knowledge about
the particular kind of a parameter: whether it is input, output or
output pointer. Our verifier first extracts this knowledge from the
source code in the following way:

1. for each function, it considers each formal parameter that has
pointer type;

2. for each of these parameters, it computes the list of (transi-
tively) called functions, and retains those functions from it
that are passed the formal parameter as an actual;

3. for each of the remaining functions, it checks whether the
functions assign some value to the parameter in some execu-
tion path.

If a formal parameter is assigned to by some function, it is con-
sidered to be an output parameter, otherwise it is an input parame-
ter. Output pointer parameters are then just output parameters that
have double pointer type.

The algorithm checks for assignments to a parameter by looking
for kill (or def) statements for that parameter inside a function’s
body. Since we only consider a single component in our experi-
ment, we do not have access to such information for external func-
tions, however. In order to deal with this, the signature of external
functions, together with an annotation of the kind of their param-
eters, is made available to the algorithm. Although this requires
developer intervention, it only concerns a limited number of func-
tions, and could be circumvented if we consider all source code.

1www.grammatech.com

3

required actually deviations unintended intended
checked detected deviations deviations

input 57 40 26 17 9
output 143 94 49 49 0

out pntr 45 15 35 30 5
total 245 149 110 96 14

Figure 1: Number of top level parameter checks found for the CC
component.

Once the particular kind of a parameter is determined, we can
verify whether the necessary checks for it occur in the implemen-
tation:

• for each input parameter of pointer type of a public function,
the function itself, or all its called functions that are passed
the parameter as an actual, should implement an input pa-
rameter check;

• for each output parameter of a public function, the function
itself, or all its called functions that are passed the parameter
as an actual, should implement an output parameter check;

• for each output pointer parameter of a public function, the
function itself or all its called functions that are passed the
parameter as an actual, should implement an output and an
output pointer parameter check.

If a parameter is not checked, the concern verifier tries to infer if
the function is robust for exceptional values, before it registers an
unintended deviation. for the parameter At the moment, it uses a
simple heuristic: if the function compares the value of a parameter
to NULLeach time before it uses that parameter, we assume it can
deal with aNULLvalue. This heuristic does not suffice for identi-
fying all exceptions, however. Distinguishing intended from unin-
tended deviations thus still requires a manual effort. More elaborate
heuristics are possible, but are considered future work.

As can be observed, the call graph of a function is used, both for
determining the kind of a parameter and for verifying whether the
parameter is checked in the appropriate way. Particular functions
that are called by many other functions, will thus be considered
multiple times by our algorithms. In order to improve performance,
both algorithms employ caching techniques to store and reuse val-
ues already computed.

3.4 Verification Results
Applying the verifier to the case at hand yields the data displayed

in Figure 1. The CC component implements 157 functions, with
386 parameters in total. 245 of these parameters must be checked,
since they are defined by public functions and have pointer type.
This is indicated in the first column of Figure 1, which also pro-
vides the distribution among the different kinds of parameters. The
locations obtained from the verifier tell us which of these 245 pa-
rameters are actually checked, as displayed in the second column.
It turns out that only 149 (i.e., 60%) of the parameters requiring a
check are in fact checked.

The deviations obtained from the verifier aim to help in identi-
fying the remaining 96 parameters that need to be checked. The
verifier reports a total of 110 deviations (column 3). Manual in-
spection of these deviations eliminated 14 intended deviations (for
9 input parameters and 5 output pointer parameters, cfr. column 5).

4. A DOMAIN-SPECIFIC LANGUAGE FOR
PARAMETER CHECKING

In order to arrive at a more rigorous treatment of parameter checks
(avoiding the situation that as many as 40% of them deviated from

the specifications), we propose a domain-specific language (DSL)
for representing the kind of parameter checks that are required. In
this section we describe the language and corresponding tool sup-
port — in the next we explain how existing components can be
migrated to this target solution.

4.1 Motivation
Different from general-purpose aspect languages, such as As-

pectJ or AspectC, our DSL is a special-purpose language, that can
only be used to specify aspects involving parameters. The spe-
cific reason we decided to implement our own language, is that
current general-purpose aspect languages lack the necessary means
and flexibility to express the parameter checking concern in an ade-
quate way. This has been reported in [5], and we will come back to
this issue in Section 7. It is also important to stress that the current
focus of our research is not language engineering. We thus imple-
mented a language that fulfils our requirements only, and we did
not consider other important issues such as interoperability with
other languages, for example. However, the language is not tied to
our specific case, and can be used in any other application where
parameters need to be considered in an aspect.

4.2 Specification
The idea underlying the language is that a developer annotates

a function’s signature, by documenting the specific kind of its pa-
rameters, i.e. either input or output. Output parameters that are of
output pointer kind can also be specified. When a parameter does
not require a check, for whatever reason, this can be annotated as
well. Additionally, the developer can specifyadvice code, i.e. the
code that will perform the actual check. Since this code can dif-
fer for the different kinds of parameters, we allow advice code for
input, output and output pointer parameters to be specified sepa-
rately. Although in this paper we do not need it, the DSL also has
provisions to express advice code for deviations.

As an example, consider the (partial) specification of the pa-
rameter checking aspect for the CC component as depicted in Fig-
ure 2. It states that the parametersCCqueue *queue andvoid
**queue data of the functionsCCqueue peek front and
CCqueue peek back are output and output pointer parameters,
respectively, and that parameterCCqueue *queue of function
CCqueue init is an output parameter, whereas parametervoid
*queue data does not need to be checked. Additionally, the ad-
vice code implements the required checks for input, output and out-
put pointer parameters. The special-purposethisParameter
variable denotes the parameter currently being considered by the
aspect, and exposes some context information, such as the name
and the type of the parameter and the function defining it. In this
respect, it is similar to thethisJoinPoint construct in AspectJ.
Due to the generality introduced by this variable, we only need to
provide three advice definitions in order to cover the implementa-
tion of the concern in the complete ASML source code.

The aspect only documents the public functions of the compo-
nent, since these are the only ones that need to have their param-
eters checked, according to the requirement. Of course, the actual
checks themselves can occur in non-public functions. The specific
location where the checks should be implemented is not specified in
the aspect, however. It abstracts from these implementation details,
and as such becomes a declarative and intentional specification, that
is as concise as possible.

4.3 Compilation and Weaving
The use of the DSL frees the developer of having to insert param-

eter checks manually. Instead, the checks specified in the DSL are

4

component CC {
CC_queue_peek_front(output CC_queue *queue, output output_pointer void **queue_data);
CC_queue_peek_back(output CC_queue *queue, output output_pointer void **queue_data);
CC_queue_empty(input CC_queue *queue, output bool *empty);
CC_queue_init(output CC_queue *queue, deviation void *queue_data);
...
input advice {

if(thisParameter.name == (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Input parameter %s error (NULL)",

thisParameter.function.name, thisParameter.name));
}

}
output advice {

if(thisParameter.name == (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Output parameter %s error (NULL)",

thisParameter.function.name, thisParameter.name));
}

}
output pointer advice {

if(*thisParameter.name != (thisParameter.type) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: "Output parameter %s may already contain a value. This value will be"

"overwritten, which may lead to a memory leak",
thisParameter.function.name, thisParameter.name));

}
}

}

Figure 2: DSL specification of the parameter checking concern

Plain
C

AspectC
Weaver

DSL
Compiler

C without
concerns

AspectC
Specification

DSL
Specification

Figure 3: Merging C and DSL code

autamatically woven into the pure C component that was written
without checks.

Rather than implementing our own aspect weaver for the param-
eter checking DSL, we translate it into an already-existing general-
purpose aspect language for the C programming language. As such,
we get the benefits of both worlds: we can use a special-purpose,
intuitive and concise DSL, for which we don not need to imple-
ment a sophisticated weaver ourself. This process is illustrated in
Figure 3.

The general-purpose aspect language is a stripped-down variant
of the AspectC language [6]. It has only one kind of joinpoint,
function exection, and allows us to specify around advice only. Of
course, before and after advice can be simulated easily using such
around advice. Figure 6 contains some examples, which show how
theadvice on keyword is used to specify advice code for a par-
ticular function.

The translation process itself proceeds as follows: the transla-
tor considers each parameter of each function in the original DSL
specification, looks at its kind(s), retrieves the corresponding ad-
vice code, expands that code into the actual check that should be

performed, and inserts the expanded code in the function where the
parameter is defined. The expansion phase is responsible for as-
sembling and retrieving the necessary context information (i.e. set-
ting up thethisParameter variable), and substituting it in the
advice code where appropriate. At the end, this advice code will
call the original function by calling the specialproceed func-
tion, but only if none of the parameters contain an illegal value
(i.e. the error variable is still equal to theOKconstant). Note that,
two checks are implemented for a parameter of output and output
pointer kind, since both the output and output pointer advices are
substituted for such parameters.

4.4 Application in Case Study
The parameter checking concern in the original CC implemen-

tation required 961 lines of C code (see Figure 5). Using the pa-
rameter checking DSL, only 133 lines are needed instead: One line
for each of the 109 functions that require one their parameters to
be checked,(2∗7)+8 lines for the three different kinds of advice
required, and a start and an end line.

It is noteworthy that the equivalent solution in the general as-
pect language consists of 1200 lines of code (this is the AspectC
code generated by the DSL compiler). In particular, observe that
the solution in the general aspect language requires more lines of
code then the idioms-based approach. In other words, although the
solution in the general aspect language removes the scattering, it
requires an extra amount of effort to implement, and contains just
as much duplication as the idioms-based approach (as shown in
Figure 6). This observation is confirmed by [5], where we tried to
extract the same parameter checking aspect into the AspectC lan-
guage as defined in [6]. It illustrates that simply using an aspect-
oriented solution does not necessarily improve the maintainability
and reusability of the code. Additionally, it shows that both the As-
pectC language and the stripped-down variant we use in this paper

5

Aspect
Extractor

Concern
Eliminator

Source
Code

Concern
Verifier

Locations Plain
C

AspectC
Weaver

DSL
Compiler

C without
concerns

DSL
Specification

AspectC
Specification

Figure 4: Migrating Existing Components to the DSL

Lines of code
Original C code 961
DSL representation 132
AspectC code 1200

Figure 5: Lines of code figures for various parameter checking rep-
resentations

lack the necessary features and flexibility to define aspects involv-
ing function parameters in a concise way. This problem is apparent
in most general-purpose aspect languages.

5. MIGRATION

5.1 Motivation
The DSL and compiler as described in the previous section can

be used in a greenfield engineering setting when new components
are built. However, the majority of the software development ac-
tivities at ASML (and, in fact, at many companies) is devoted to
evolution: adjusting existing components. In order to free the de-
veloper from having to deal with the parameter checking concern
when evolving the component, we describe how this component
can be migrated to a DSL solution automatically.

The steps involved in migration are depicted in Figure 4. The
key steps involved are the extraction of aspect code from the source
code, and the elimination of the parameter checking code from the
original sources. As we will see, for both steps, the locations ob-
tained by the verifier discussed in Section 3 provides essential in-
formation. Moreover, these locations will play a role in the DSL
compiler, which can use them in order to regenerate code that is as
close as possible to the original code.

5.2 Aspect Extraction
When developing new code, a developer can use the DSL to

specify parameter checking aspects, instead of implementing the
checks manually. In a migration setting, however, we don’t want
developers to wade trough millions of lines of already existing source
code to annotate function signatures and define an appropriate as-
pect. Rather, we want to extract such an aspect definition from the
existing code automatically. The information required to perform
this extraction consists of just (i) thekind of each parameter; (ii)
whether it requires a check or not; and (iii) if so, the code that needs
to be executed for such a check (i.e. the advice code). Apart from

this advice code, all this information has already been computed
by the concern verifier. Recall from Section 3 that the verifier au-
tomatically identifies input, output and output pointer parameters,
and that the list of deviations is split into intended and unintended
deviations. Our aspect extractor thus merely reuses this informa-
tion. The advice code, on the other hand, is not considered by our
concern verifier. As explained in Section 2, the advice code for
input, output and output pointer parameters always consists of an
if-test, an assignment and a call to a log function. Our aspect ex-
tractor simply constructs this code as the advice code definition.

Note that the verifier cannot recoverintended deviations, and
hence the aspects for such parameter checks cannot be extracted
either. Intended deviations should be recorded in a separate DSL
specification, which is then taken into account in the subsequent
code generation process as well.

5.3 Concern Elimination
Besides extracting the aspect specification, the code originally

implementing the concern has to be removed from the source code
as well. The locations obtained by the verifier indicate where the
checks occur, and can be used for these purposes.

The verifier obtains the locations through CodeSurfer, based on
abstract syntax tree and program dependence graph information.
Although line numbers for relevant statements can be obtained in
this manner, the precise start and end points of the checking code
is not always available (for example, brackets of compound state-
ments are not visible in CodeSurfer). We currently use a fairly sim-
ple solution to deal with these issues, based on a prototype imple-
mentation in Perl. This is possible because the parameter checking
concern is not tangled with the other code, and is easy to recognise
and remove. This works well enough for the cases under study at
the moment. On the long term, we expect to implement a more
rigorous concern eliminator based on program transformation tools
such as ASF+SDF [3].

5.4 Conservative Translation
The DSL code recovered can be used directly to generate inter-

mediate AspectC code, which then in turn can be woven with the C
code from which we eliminated the concern code.

However, when adopting the generated C code in a production
environment, we would like to eliminate as many risks as possible.
In other words, it is preferable to make the compiler as conservative
as possible, trying to stay very close to the original C code. For
that reason, the DSL compiler offers the possibility to re-introduce

6

int advice on (CC_queue_empty) {
int r = OK;
if(queue == (CC_queue *) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0, "%s: Input parameter %s error (NULL)", "CC_queue_empty", "queue");

}
if(empty == (bool *) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0," %s: Output parameter %s error (NULL)", "CC_queue_empty", "empty");

}
if (r == OK)

r = proceed ();
return r

}
int advice on (queue_extract) {

int r = OK;
if(queue == (CC_queue *) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s: " Output parameter %s error (NULL)", "queue_extract", "queue"));

}
if(item_data == (void **) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s:" Output parameter %s error (NULL)", "queue_extract", "item_data"));

}
if(item_data != (void **) NULL) {

r = CC_PARAMETER_ERR;
CC_LOG(r,0,(%s:"Output paramater %s may already contain data (!NULL). This data will be"

"overwritten which may lead to memory leaks", "queue_extract", "item_data"));
}
if (r == OK)

r = proceed ();
return r;

}

Figure 6: AspectC specification of the parameter checking concern

the parameter checks at exactly the same locations as where they
were found originally. To that end, it uses information obtained
from the verifier (as indicated by the dashed arrow in Figure 4).
Naturally, this is only possible for parameters that were already
checked correctly, and not for newly introduced checks.

An illustration of the translation of the specification of Fig-
ure 2 is given in Figure 6. The first example adds an input and
an output parameter check to theCCqueue empty function for
its queue andempty parameters, respectively. Since this func-
tion originally returned some value, the advice code returns the
value obtained by calling theproceed function. The second
example states that thequeue extract function should im-
plement two output parameter checks and one output pointer pa-
rameter checks. This function is a non-public function, and a
specification for it did thus not appear in the DSL specification.
The reason it is included in the AspectC specification is that both
theCCqueue peek front andCCqueue peek back func-
tions call thequeue extract function, and both parameters of
those former functions are checked in thequeue extract func-
tion in the original code. When translating the specification of
theCCqueue peek front andCCqueue peek back func-
tions, the translator consults the verifier to see where their parame-
ters are checked, and generates advice code correspondingly.

6. UNIFYING EVOLVABILITY & PARAM-
ETER CHECK CONSISTENCY

Before comparing the idioms-based solution to the aspect-orien-
ted solution in the next section, we first illustrate how the latter
solution improves the evolvability of the system. In particular, we

show how the aspect-oriented solution allows us to determine the
ideal locations for parameter checks automatically. Consequently,
a developer can evolve the system, without worrying about the pa-
rameter checking concern at all. Additionally, we will show that
automatically determining the locations will reduce the total num-
ber of implemented checks, reducing the run-time overhead of pa-
rameter checking.

6.1 Motivation
Recall from Section 2 that the requirements for the parameter

checking concern do not specifically state where a particular pa-
rameter check should be implemented. A developer will try to in-
sert the check at the best possible location, by taking into account
two important considerations. First of all, he will try to reduce
the amount of implementation effort required, by reusing checks as
much as possible. To this extent, it is desirable to implement these
checks in functions that are called by many other functions. Sec-
ond, he will try to reduce the number of redundant checks, i.e. a
single parameter that is checked multiple times by different func-
tions that are called from one single function.

Determining the best location for a check requires good knowl-
edge of the implementation of the system. The developer needs to
know the internal details of the functions, in particular their call
graph and the dependencies between formal and actual parameters.
Such information is rather volatile, like all global system informa-
tion, since it changes every time the system evolves. Consequently,
the concern’s implementation needs to be revised after every evo-
lution, in order to ensure the checks are still at the best possible
locations. Given the fact that the concern code is scattered all over
the system, this is problematic.

7

According to the parameter checking requirement, for allpublic
functions, the value of a formal parameter of type pointer should
be checked againstNULL before it is referenced, but the specific
location of the check is not specified. As long as a check occurs
before the first reference, the requirement is met. It may therefore
be possible for our AspectC translator to improve upon the simple
solution of implementing a check for every pointer formal in every
public function.

The aspect-oriented solution allows us to automate this approach,
because it makes the concern explicitly available and implements
it in a modular way. As such, we can reason about the concern in
order to determine the best possible location for a particular check
automatically. In other words, we will improve upon the simple
solution of our AspectC translator that implements a check for ev-
ery pointer formal in every public function. As we will see, this
only requires information about the call graph of the current imple-
mentation, the parameters that need to be checked, and where these
parameters are used. For example, consider two public functions
f (∗a) andg(∗a) that both do not use their parametera, but pass it
on to a functionh(∗a), which does reference its parametera. In this
case it is safe to implement a check just for the formala in h, since
the values of the formals of bothf andg will be checked before
reference. A real-world example in our case study was shown at
the end of Section 5.4.

As an additional benefit, the algorithm can also be used by the
concern verifier, when dealing with unintended deviations. Instead
of providing the developer with a list of all parameters that are not
checked but should be, a list of locations is returned that identifies
only those places where checks need to be inserted, sufficient to
cover all deviations.

6.2 Algorithms
In the general case, it is required that each (interprocedural) ex-

ecution path that leads to a pointer reference that is (indirectly)
data dependent on a formal of a public function should encounter
an appropriateNULL check prior to the reference. Given that all
such paths are known, we can determine a minimal set of locations
whereNULLchecks should be implemented such that the require-
ment is met. The algorithm described in the remainder of this sec-
tion calculates such a minimal set of locations.NULLcheck elimi-
nation has been researched previously in the context of optimizing
(Java) compilers [17].

The set of locations where checks can be implemented is given
by the set of functions in the system; it is assumed that we can
insert checks in each function for all its pointer formals, prior to
any pointer reference occurring in the function.

For each formalx1 of each public function we find those (inter-
procedural) execution paths that lead to a pointer reference that is
(indirectly) data dependent onx1. Given such an execution path, we
derive achain. A chain is a sequence of formals that is terminated
by a pointer reference node. The first formal in the chain is given
by x1. Formals are then added to the chain if the execution path
enters other functions, and data dependences exist between the last
formal in the chain and formals of the called functions. Finally, a
node which represents the pointer reference that is data dependent
on the last formal in the chain is added to terminate the chain. The
pointer reference is thus data dependent onx1 via the other formals
in the chain. The following definitions initialize the sets which are
used in Algorithm 1:

Chains := {C1,C2, . . . ,Cn},
Formals := { f | f is a formal of type pointer in any function},
Checks := ∅

of checks + # total %
extra reduced reduced

input 34 + 16 = 50 44 12
output 93 + 45 = 138 110 20
output pointer 12 + 24 = 36 32 11
total 139 + 85 = 224 186 17

Table 1: Reduced number of checks

where eachC = 〈x1,x2, . . . ,xn〉 ∈ Chainsadheres to the following
properties:

• x1 is a formal that represents a parameter of type pointer of a
public function,

• xn is a node that is data dependent onx1 and that represents
a pointer reference,

• x2, . . . ,xn−1 are formals which are data dependent onx1 and
which belong to a execution path fromx1 to xn in the inter-
procedural CFG,

• C = 〈x1,x2, . . . ,xn〉 contains no duplicates, i.e. the chain is
acyclic.

The main idea of Algorithm 1 is to place a minimal number of
checks such that each chain has a check for at least one of its for-
mals. The procedure FINDCHECKLOCATIONS first iterates over
the set of chains (lines 1–3), and calls IMPLEMENTCHECK to put
a check for each formal that is used as a pointer reference in its
declaring function. In these cases it is not possible to delay the
checking of the formal’s value to a function down the call chain,
since its value will be referenced in the current function. IMPLE-
MENTCHECK stores the formal in theChecksset (line 1), which
indicates that a check has to be implemented for the specified for-
mal in its declaring function. In lines 2–4 any chains that include
the now-checked formal are eliminated, in particular the chains that
start at the now-checked formal. It is safe to consider these chains
to be accounted for, since it is now guaranteed that for each chain
the value of its first formal is checked againstNULLbefore it is ref-
erenced. Furthermore, since it makes little sense to check the same
formal twice in the same function, the now-checked formal is not
considered during the remainder of the algorithm (line 5).

The algorithm will continue to eliminate chains by implementing
checks for the remaining formal by a simple greedy strategy (lines
4–6 in FINDCHECKLOCATIONS). The formal that is included in
the largest number of chains that are still remaining is assigned a
check, and all those chains are then eliminated. This process is
guaranteed to terminate, since each chain can always be eliminated
by placing a check for the first formal in the chain. After termina-
tion, the result of the algorithm is represented by theChecksset.

6.3 Results
Table 1 shows the results of applying the algorithm on the CC

component. As can be seen, 186 checks in total suffice for checking
all parameters. If we compare that to the number of checks that are
present in the current implementation, augmented with the number
of checks that should be inserted in order to reduce the unintended
deviations (second column in the table), we observe a reduction of
17%.

Two conclusions can be drawn from these results. First of all,
they clearly show that an automated approach is to be preferred
over a manual approach when determining the best possible loca-
tion for a check. Clearly, a developer is not able to adequately study
the call graph and the dependencies between functions. Moreover,

8

Algorithm 1: Find optimal parameter check locations.

FINDCHECKLOCATIONS()
(1) foreach 〈x1,x2, . . . ,xn〉 ∈ Chains
(2) if Function(x1) = Function(xn)
(3) ImplementCheck(x1)
(4) while Chains6= ∅
(5) f := FindCandidateFormal(Chains,Formals)
(6) ImplementCheck(f)

IMPLEMENTCHECK(f : formal)
(1) Checks:= Checks+ f
(2) foreachc = 〈x1,x2, . . . ,xn〉 ∈ Chains
(3) if f ∈ c
(4) Chains:= Chains−c
(5) Formals:= Formals− f

FUNCTION(n : CFG node)
Description: Returns the function that contains the specified CFG
node.
FINDCANDIDATE FORMAL(Chains: set,Formals: set)
Description: Returns a formal fromFormals that is included in
the most chains fromChains. A formal x is included in a chain
C = 〈x1,x2, . . . ,xn〉 iff x∈ 〈x1,x2, . . . ,xn〉.

if the system evolves and the dependencies change, the developer
will need to reconsider the situation. Second, it is only because we
first transformed the original solution into an aspect-oriented solu-
tion that we were able to perform this optimisation. If we did not
have information about the parameters that need to be checked, the
coding idioms followed, how the checks should be implemented,
etc. we would not have been able to perform this evolution. In our
view, this strengthens the common belief that AOSD improves the
evolvability of a system.

7. DISCUSSION
What do we gain from actually adopting the parameter checking

DSL as proposed in the previous sections? What adoption scenar-
ios exist? In this section we discuss the pros and cons of the DSL
approach for the parameter checking concern.

7.1 Adoption Strategies
The different kind of tools discussed in the preceding sections

can be adopted in several ways:

No automated weaving: The tools are used for analysis purposes
only. The tools assist the developer in verifying that his pa-
rameter checks are consistent with the idiom. The tools may
produce C code that the developer can copy-paste into the
sources if he chooses so.

The great benefit of this approach is that it is low risk: the
developers do what they always did, but now are supported a
little more by a concern verifier and an example code gener-
ator.

Full automation: All parameter checking is specified using the
DSL. All parameter checking code is eliminated from the
existing code base, automatically transformed into the DSL,
and then woven back into the C code. New applications di-
rectly use the DSL.

This will generally be considered a high risk endeavor, since
it implies making modifications to the full code base.

Figure 7: Parameter checking code in the CC component

Hybrid: Aspect-oriented parameter checking is adopted for some
components, and hand-coded checking for others.

This is possible since the code produced by the aspect-orien-
ted weaver is 100% compatible with the original idiom.

We expect that the adoption of our techniques will start with a
non-weaving approach. Once developers and managers get famil-
iar with the use of the DSL and the concern verifier, we expect
that they will get interested in using automated weaving for certain
components, thus adopting the hybrid approach. After this has been
succesful for a significant number of components, we anticipate a
migration effort to the fully automated approach, thus eliminating
the need for any hand-written parameter checks.

7.2 Code Quality Considerations

Code SizeThe aspect-oriented solution reduces the code size of the
component by 7%, since the DSL allows us to specify the parame-
ter checking concern in a concise way. The complete aspect defini-
tion is specified in only 132 lines, whereas the parameter checking
concern in the original component comprised a total of 961 lines.

Naturally, reduced code size alone is an insufficient indicator for
increased code quality. However, less code does give the benefits
of fewer chances of error, fewer lines to write or understand, and,
following Boehm’s maintenance cost prediction model [2],, lower
maintenance costs.

Scattering and Tangling Figure 7 (generated using the Aspect-
Browser [13]) shows how the parameter checking concern, imple-
mented using the idioms-based approach, is distributed over the
code of the CC component. Each column in the figure represents
a particular source file of the component, and each horizontal line
shows the occurrence of a parameter check. Thicker lines denote
locations where multiple checks occur. As is clear, the code is scat-
tered over many different functions in all except two source files.

The aspect-oriented solution cleanly captures the concern in a
modular and centralised way, and thus removes the scattering all
together. This does not only make the concern more explicit and
tangible in the source code, but also improves its reusability, un-
derstandability and maintainability The code is easier to under-
stand, possible errors will be easier to spot and correct and the
same checking code does not need to be implemented over and
over again.

Removing the scattering also eliminates thetanglingthat is present
in the C solution: without the DSL, many functions start with ap-
proximately seven lines per parameter. This code is unrelated to the
key concern to be handled by the function, and causes unnecessary
distraction for the developer.

Code Duplication A consequence of code scattering can be code
duplication. Duplication is generally considered undesirable, not

9

of reduced
deviations # of %

deviations reduced
input 26 19 27
output 49 45 8
output pointer 35 30 14
total 110 94 15

Table 2: Reduced deviations

only because it increases the code size, but also because it increases
the chance of inconsistencies.

In a separate experiment [4], we evaluated the amount of code
duplication in a number of crosscutting concerns present in the CC
component, among which the parameter checking concern. As was
observed, sevenclone classes(groups of code fragments that are
all clones of each other) cover over 80% of the parameter check-
ing code. 523 lines of concern code are captured by the largest
clone class of the concern alone. Clearly, the idioms-based ap-
proach leads to a large amount of duplication.

The specific reason for the duplication is that, due to the cross-
cutting nature of the code, reuse of that code is not possible in
ordinary programming languages. By using aspect-oriented tech-
niques, however, reuse becomes possible again. This is reflected
by the fact that in our DSL specification of the parameter checking
concern, the advice code for each kind of parameter is specified
only once and can be reused.

Evolvability Due to the scattering and the code duplication, evolv-
ing the system and thereby ensuring the parameter checking con-
cern’s consistency is notoriously hard. As explained in the pre-
vious section, developers take into account the call-graph of the
component in order to determine where checks need to be imple-
mented. As the call graph will most probably change when the
component changes, the implementation of the parameter checking
concern has to be revised every time as well. The aspect-oriented
solution on the other hand can determine the best possible location
without developer intervention. As such, when the system evolves
and the aspect is rewoven, it will make sure all necessary parameter
checks are present. Of course, this requires the aspect specification
to evolve when the system evolves, for example to add descriptions
for new functions, or change existing descriptions. Such evolution
is of course significantly easier then reconsidering the parameter
checking implementation as a whole.

7.3 Concern Quality Considerations
Apart from system-wide benefits, the adoption of the DSL has

consequences for the quality of the parameter checking concern
implementation as well.

Unintended DeviationsIn Section 3 we have seen that as many as
40% of the parameters that ought to be checked are in fact never
checked.

It is not immediately clear why so many parameters are left un-
checked. One reason is probably that the punishment or reward for
the developer is uncertain, and much later in time, happening only
when another developer starts using the component in a wrong way
that could have been prevented by a proper null pointer warning.
Moreover, this figure seems to indicate that developers consider
implementing this concern for each parameter too much effort.

With the tools we propopse, this effort will be reduced. This will
even be the case in the adoption scenario in which no automated
weaving is used: our tools will just report the locations where
checks should be inserted in order to cover all parameter checks.

As can be seen from the second column in Table 2, the number of
reported deviations is reduced by 15% in this way.

Intended Deviations13% of the reported deviations are intended
deviations, i.e. parameters that need not be checked. Although
we are presently investigating this issue, we do not see many op-
portunities to further refine our verifier in order to reduce this fig-
ure. These checks are simply “exceptions to the rule” to which the
code should adhere. Note however, that it is important to identify
these exceptions, because the aspect extractor relies on this infor-
mation. Moreover, it can improve the understandability of the code.
For example, we observed that most intended deviations for output
pointer parameters are due to the parameter being used as acursor
when iterating over a composite data structure. Since the parame-
ter points to an item in the list, it doesn’t matter that it’s value is
overwritten, and hence, no output pointer check is needed.

DSL/C Code ConsistencyA potential risk of separating the pa-
rameter checking code from the C code is that the two get out of
sync. A remedy against this is to include sanity checks in the DSL
compiler, which can warn about non-existing functions, parame-
ters, or non-matching signatures. The result will certainly be more
consistent than the current practice, which is to include parameter
kind declarations in comments that are not automatically processed.
In addition to that, we do believe developers will be motivated to
keep the aspect specification in sync with the current implemen-
tation, as this helps them to achieve a correct parameter checking
concern in a rather easy way.

Uniform Parameter Checking The advice code specifies how a
parameter should be checked, and this code is specified only once
and reused afterwards. Consequently, all parameters are checked
and logged in the same way. This was not the case for the idioms-
based implementation, where the logged strings often differ, or
checks are implemented in slightly different ways. For example, all
functions except one implement the checks according to the format
explained in Section 2. When logging a possible error, 7 different
strings are logged for an input parameter error, 4 different strings
for an output parameter error and 4 for an output pointer parameter
error.

The uniformity of the log file is important for automated tools
that reason about the logged errors in order to identify and correct
the primary cause of a particular error.

DocumentationOne of the benefits of using a declarative DSL, is
that it can be used for additional purposes than compilation to C
[7]. In particular, the parameter checking aspect acts as documen-
tation of the component’s functions, or it can be used as input to
a documentation generator. In the current implementation of the
component, the kind of the parameter is documented inside com-
ments. These comments are often not consistent with the source
code however, and are sometimes outdated (e.g. a function de-
fines new parameters that are not document, or vice versa). More-
over, such documentation does not include information about the
exceptional parameters that do not need to be checked. The aspect
however, makes all this information explicit, and thus improves the
understandability of the concern. Additionally, since the aspect is
extracted from the source code automatically, it is up to date, and as
already explained, we believe it will remain so because developers
profit from it.

Note that information about the exceptional parameters is not
even present in the general-purpose aspect language specification
of the concern. This shows one more limitation of general-purpose
aspect languages as opposed to domain-specific aspect languages.

Scalability Although our tools and approach show promising re-

10

sults when applied on the CC component, it remains to be investi-
gated whether they scale up to other components of the ASML code
base. In particular, the question can be raised whether our results
can be generalised to larger components, developed by other devel-
opers. This may have an effect on the way the parameter checking
concern is implemented, for example.

In order to investigate this issue, we are currently experiment-
ing with another component, consisting of 110,000 lines of code.
The component consists of 1516 functions, with 3132 parameters
in total. 705 of these parameters need to be checked (505 input,
188 output and 12 output pointer parameters). When running our
verifier over this component, 218 deviations are reported: 98 input
pointer parameter deviations, 108 output parameter deviations, and
12 output pointer parameter deviations. We currently have not yet
investigated which of these deviations are actually intended. With
respect to the number of lines of code, we observe that express-
ing the concern in the parameter checking DSL involves 774 lines,
whereas the number of lines in the component devoted to parameter
checking amounts to approximately 2500 lines of code.

Thus, compared to the CC component, we see that percentage
of parameters requiring a check is smaller (705 out of 3132, (22%)
versus 245 out of 386 (64%) for CC). This is explained by the fact
that parameter checking is required for theinterfacesonly: large
components will hide more behind their interface. As another com-
parison, we see that there are 218 deviations on 705 parameters
(30%) whereas we had 110 out of 245 (44%) deviations for CC.

8. RELATED WORK
Our concern verifier resembles tools that verify the quality of

the source code. A number of tools for this purpose have been de-
veloped over the years, [15, 1, 22]. Most of them are only able
to detect basic coding errors, such as using= instead of==, and
are incapable of enforcing domain-specific coding rules. More ad-
vanced tools exist [16, 10, 20, 26], but these are restricted to detect-
ing higher-level design flaws in object-oriented code. Tools which
are capable of checking custom (domain-specific) coding rules are
described by [9] and [11].

The work described in this paper has some similarities with work
done by Coady et. al. [6]. They consider a single concern (prefetch-
ing) within a large C program, the FreeBSD OS kernel. The code
implementing the concern is shown to be scattered across the lay-
ers that make up the architecture of FreeBSD. Furthermore, the
prefetching code is heterogeneous and tangled with other code,
which makes it both hard to identify and change. Coady et. al.
describe how they (manually) identified the prefetching code, and
propose a new (manually obtained) solution in terms of AspectC.

A number of other studies have investigated the applicability of
aspect-oriented techniques to various (domain specific) crosscut-
ting concerns. [21] shows the impact of refactoring several small
crosscutting concerns on the code structure of two Java applica-
tions. [19] targets exception detection and handling code in a large
Java framework, and shows how AspectJ can be used to improve
its implementation.

An approach to refactoring which specifically deals with tan-
gling is presented by Ettinger and Verbaere [12]. Their work shows
how slicing techniques can help automate refactorings of tangled
(Java) code. [14] provides a more general discussion of both refac-
toring in the presence of aspects, and refactoring of object-oriented
systems toward aspect-oriented systems.

Another area of related work is the field ofplan recognition,
which originated from the work on the Programmer’s Apprentice
conducted at MIT [23]. This line of research aims at codifying
programming knowledge in a library ofplans. In a forward engi-

neering setting, the developer can use the plans, whereas in a re-
verse engineering setting code can be analyzed in order to discover
known plans [27]. As an example, we have applied this plan recog-
nition approach to the detection of leap year computations in Cobol
code [8]. Future research is needed in order to analyze the applica-
bility of plan recognition techniques for the purpose of identifying
dedicated crosscutting concerns.

There has been some work in the area of representing crosscut-
ting concerns in existing software systems, for example [24] de-
scribes how concern graphs can be used for this purpose in a Java
setting. Similar to plans, concern graphs can be used to codify pro-
grammer knowledge. In [25], the authors show how code relevant
to a concern can be identified by means of processing transcripts
of program investigation activities. Subsequently the authors detail
how to represent the identified code using concern graphs.

9. CONCLUDING REMARKS

Contributions
In this paper, we have shown how a idioms-based solution to cross-
cutting concerns as occurring in systems software can be migrated
automatically into a domain-specific aspect-oriented solution. The
approach is illustrated by zooming in on a particular concern, namely
parameter checking. Our approach includes a number of different
elements:

• Characterization of the idioms-based approach, resulting in a
concern verifierthat can check the way the concern is coded;

• Representation of the concern in an aspect-oriented domain-
specific language, which can be mapped to a dialect of the
general purpopse AspectC language;

• A migration strategy for existing components, including an
aspect extractor and a conservative translator.

We also discussed the advantages of the aspect-oriented solution
compared to the idioms-based solution. Our results indicate that in-
troducing aspects significantly reduces the code size, removes the
scattering and code duplication, and improves the correctness and
consistency of the concern implementation as well as the under-
standability of the application. Additionally, we showed how the
explicit aspect-oriented solution ensures the evolvability of the ap-
plication, while maintaining the consistency of the concern.

As main causes for the success of aspects, we identified that im-
plementing the concern via coding idioms requires effort and strict
discipline, and that aspects make explicit the important information
otherwise only implicitly present in the code.

Future Work
The focus of this paper is on a specific concern (parameter check-
ing) in two components from ASML. We are presently extending
the scope of our work in various directions:

• We are in the process of applying this approach to a larger
number of components within ASML. The results so far show
similar benefits in terms of maintainability and reliability im-
provements.

• Parameter checking is a concern that is interesting outside
ASML as well. Our approach is mostly generally applicable.
The only ASML-specific elements are in localized (1) the
places in the verifier where existing checks are recognized;
and (2) the specific advice specified in the DSL. Both can
be easily changed, making the approach applicable to, for

11

example, open source systems in which parameter checking
advice should consist of C assert statements.

• The next concern on our list iserror handling. This concern
is significantly more complicated than parameter checking
(its implementation being much more tangled). However, it
turns out that exactly the same approach (albeit it with dif-
ferent underlying algorithms and analysis techniques) can be
applied, including a verifier, DSL, and migration tools.

Acknowledgements
We would like to thank Remco van Engelen from ASML for dis-
cussing the results of the case study and for proofreading drafts
of this paper, and all members of the Ideals project team, for in-
put about the topic. Thanks to Kris De Schutter for providing us
with his yerna-lindale aspect weaver. This work has been carried
out as part of the Ideals project under the auspices of the Embedded
Systems Institute. This project is partially supported by the Nether-
lands Ministry of Economic Affairs under the Senter program.

10. REFERENCES
[1] Alfred V. Aho, Brian W. Kernigan, and Peter J. Weinberger. Awk - A

Pattern Scanning and Processing Language, 1980.
[2] B. W. Boehm.Software Engineering Economics. Prentice-Hall, 1981.
[3] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M.

de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder,
J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment:
a Component-Based Language Development Environment. In R. Wil-
helm, editor,Compiler Construction (CC ’01), volume 2027 ofLec-
ture Notes in Computer Science, pages 365–370. Springer-Verlag,
2001.

[4] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom
Tourwé. An Evaluation of Clone Detection Techniques for Identify-
ing Crosscutting Concerns. InProceedings of the International Con-
ference on Software Maintenance (ICSM). IEEE Computer Society,
2004.

[5] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. An Initial Ex-
periment in Reverse Engineering Aspects. InProceedings of the Work-
ing Conference on Reverse Engineering (WCRE). IEEE Computer So-
ciety, 2004.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Us-
ing AspectC to Improve the Modularity of Path-Specific Customiza-
tion in Operating System Code. InProceedings of the Joint European
Software Engineering Conference (ESEC) and 9th ACM SIGSOFT In-
ternational Symposium on the Foundations of Software Engineering
(FSE-9), pages 88–98. ACM Press, 2001.

[7] A. van Deursen and P. Klint. Little languages: Little maintenance?
Journal of Software Maintenance, 10:75–92, 1998.

[8] A. van Deursen, S. Woods, and A. Quilici. Program plan recognition
for year 2000 tools. InProceedings 4th Working Conference on Re-
verse Engineering; WCRE’97, pages 124–133. IEEE Computer Soci-
ety, 1997.

[9] Michael Eichberg, Mira Mezini, Thorsten Schfer, Claus Beringer,
and Karl Matthias Hamel. Enforcing system–wide properties. InPro-
ceedings of the 2004 Australian Software Engineering Conference
(ASWEC’04). IEEE Society Press, April 2004.

[10] Eva van Emden and Leon Moonen. Java quality assurance by detect-
ing code smells. InProceedings of the 9th Working Conference on
Reverse Engineering (WCRE). IEEE Computer Society Press, 2002.

[11] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
Proceedings of the Fourth Symposium on Operating Systems Design
and Implementation, San Diego, CA, October 2000.

[12] Ran Ettinger and Mathieu Verbaere. Untangling: A Slice Extraction
Refactoring. InProceedings of the Aspect-Oriented Software Devel-
opment Conference (AOSD), pages 93–101. ACM Press, 2004.

[13] William G. Griswold, Yoshikiyo Kato, and Jimmy J. Yuan. Aspect-
Browser: Tool Support for Managing Dispersed Aspects. Technical
Report CS1999-0640, University Of California, San Diego, 3, 2000.

[14] Stefan Hanenberg, Christian Oberschulte, and Rainer Unland.
Refactoring of Aspect-Oriented Software. In4th Annual Interna-
tional Conference on Object-Oriented and Internet-based Tech-
nologies,Concepts, and Applications for a Networked World
(Net.ObjectDays), pages 19–35. Springer Verlag, 2003.

[15] Stephen Johnson. Lint, a C Program Checker, 1978.
[16] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David

Notkin. Automated Support for Program Refactoring using Invariants.
In Proceedings of the International Conference on Software Mainte-
nance (ICSM), pages 736–743. IEEE Computer Society, 2001.

[17] M. Kawahito, H. Komatsu, and T. Nakatani. Effective null pointer
check elimination utilizing hardware trap. InProceedings of the 9th
international conference on Architectural support for programming
languages and operating systems (ASPLOS-IX), pages 118–127, New
York, NY, USA, November 2000. ACM Press.

[18] Gregor Kiczales, John Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J-M. Loingtier, and J. Irwin. Aspect-oriented programming. InPro-
ceedings of the Europeen Conference on Object-Oriented Program-
ming (ECOOP), volume 1241 ofLNCS, pages 220–242. Springer Ver-
lag, 1997.

[19] Martin Lippert and Christina Videira Lopes. A study on exception de-
tection and handling using aspect-oriented programming. InProceed-
ings of the 22nd International Conference on Software Engineering
(ICSE), pages 418–427. IEEE Computer Society Press, 2000.

[20] Radu Marinescu.Measurement and Quality in Object-Oriented De-
sign. PhD thesis, University of Timisoara, 2002.

[21] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robil-
lard. Separating Features in Source Code: An Exploratory Study. In
Proceedings of the International Conference on Software Engineering
(ICSE), pages 275–284. IEEE Computer Society Press, 2001.

[22] Santanu Paul and Atul Prakash. A Framework for Source Code Search
using Program Patterns.IEEE Transactions on Software Engineering,
20(6), 1994.

[23] C. Rich and R. Waters.The Programmer’s Apprentice. Frontier Series.
ACM Press, Addison-Wesley, 1990.

[24] M.P. Robillard and G.C. Murphy. Concern graphs: Finding and de-
scribing concerns. InProceedings of the International Conference on
Software Engineering (ICSE). IEEE, IEEE Computer Society Press,
May 2002.

[25] M.P. Robillard and G.C. Murphy. Automatically inferring concern
code from program investigation activities. InProceedings of the 18th
International Conference on Automated Software Engineering, pages
225–234. IEEE, IEEE Computer Society Press, October 2003.

[26] Tom Tourẃe and Tom Mens. Identifying Refactoring Opportunities
Using Logic Meta Programming. InProceedings of the 7th European
Conference on Software Maintenance and Reengineering (CSMR),
pages 91 – 100. IEEE Computer Society, 2003.

[27] L. M. Wills. Automated Program Recognition by Graph Parsing. PhD
thesis, MIT, 1992.

12

