
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Identifying aspects using fan-in analysis

A.M. Marin, A. van Deursen, L.M.F. Moonen

REPORT SEN-R0413 SEPTEMBER 2004

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Identifying aspects using fan-in analysis

ABSTRACT
The issues of code scattering and tangling, thus of achieving a better modularity for a system's
concerns, are addressed by the paradigm of aspect orientation. Aspect mining is a reverse
engineering process that aims at finding crosscutting concerns in existing systems. This paper
describes a technique based on determining methods that are called from many different places
(and hence have a high 'fan-in') to identify candidate aspects in a number of open-source Java
systems. The most interesting aspects identified are discussed in detail, which includes several
concerns not previously discussed in the aspect-oriented literature. The results show that a
significant number of aspects can be recognized using fan-in analysis, and that the technique is
suitable for a high degree of automation.

1998 ACM Computing Classification System: D2.8, D2.3, D2.13
Keywords and Phrases: reverse engineering, aspect-oriented software development, software metrics
Note: Also appeared (without appendices) in the proceedings of the Working Conference on Reverse Engineering 2004
(WCRE), IEEE Computer Society Press, 2004.

Identifying Aspects using Fan-In Analysis

Marius Marin
Software Evolution Research Lab

Delft University of Technology
The Netherlands

A.M.Marin@ewi.tudelft.nl

Arie van Deursen∗

Software Evolution Research Lab
CWI & Delft Univ. of Technology

The Netherlands
Arie.van.Deursen@cwi.nl

Leon Moonen
Software Evolution Research Lab
Delft Univ. of Technology & CWI

The Netherlands
Leon.Moonen@computer.org

Abstract

The issues of code scattering and tangling, thus of achieving
a better modularity for a system’s concerns, are addressed
by the paradigm of aspect orientation. Aspect mining is a
reverse engineering process that aims at finding crosscutting
concerns in existing systems. This paper describes a tech-
nique based on determining methods that are called from
many different places (and hence have a high fan-in) to iden-
tify candidate aspects in a number of open-source Java sys-
tems. The most interesting aspects identified are discussed in
detail, which includes several concerns not previously dis-
cussed in the aspect-oriented literature. The results show
that a significant number of aspects can be recognized using
fan-in analysis, and that the technique is suitable for a high
degree of automation.
Note: To appear in the proceedings of the 11th Working
Conference on Reverse Engineering (WCRE), IEEE Com-
puter Society, 2004.

1. Introduction

Aspect-oriented programming (AOP) is a programming
paradigm that addresses crosscutting concerns: features of
a software system that are hard to isolate, and whose imple-
mentation is spread across many different modules. Well-
known examples include logging, persistence, and error han-
dling. AOP captures such crosscutting behavior in a new
modularization unit, the aspect, and offers (compile time)
code generation facilities to weave aspect code into the rest
of the system.

Aspect mining is an upcoming research direction aimed at
finding aspect opportunities in existing, non-aspect oriented
code. Once candidate aspects have been reverse engineered,
they can be used for program understanding or reengineer-
ing purposes. Moreover, aspect mining techniques can be
used by aspect novices to help them spot opportunities for
using AOP techniques. Last but not least, an interesting side

∗A. van Deursen received partial support from SENTER, project Ideals,
hosted by the Embedded Systems Institute, Eindhoven, The Netherlands.

effect of aspect mining research is that it increases our un-
derstanding of the nature of crosscutting concerns: it forces
us to think about what good aspect opportunities are, and it
helps us to find aspects that are beyond the canonical ones
such as logging and error handling.

Aspect mining research, however, faces a number of chal-
lenges:

1. Which techniques can actually help us to find aspects in
an automated way?

2. How can we decide that certain functionality should be
implemented using an aspect? Since introducing an as-
pect is a design decision, this is likely to involve a trade
off between alternatives. How can we make this trade
off and how can we distinguish “good” aspect candi-
dates from “bad” ones?

3. How can we evaluate the quality of an aspect mining
technique, in terms of, e.g., precision and recall?

There are no simple answers to these questions. In or-
der to obtain a better understanding of the problem domain,
we decided to start out with an, in our opinion, simple and
intuitive approach. The analysis we propose involves look-
ing for methods that are called from many different call sites
and whose functionality is needed across different methods,
classes, and packages. Our approach aims at finding such
methods by computing the fan-in metric for each method us-
ing the system’s static call graph. It relies on the observation
that scattered, crosscutting functionality that largely affects
the code modularity is likely to generate high fan-in values
for key methods implementing this functionality.

We adopt a systematic approach which consists of several
steps suitable for a high degree of automation. The technique
has turned out to be flexible and easy to combine with other
techniques such as clone detection or slicing.

The analysis is focused on three open source systems so
that the mined results can be shared and opened to a public
debate. We report on the aspects found and explicitly dis-
cuss them, including several ones that were not previously
investigated in the literature.

The rest of the paper is structured as follows: In the next
section we discuss related work. Section 3 describes our ap-
proach and illustrates the steps followed for one of the case
studies. The most interesting concerns are reported for each
case study in Sections 4–6. We discuss our results and the fu-
ture work in Sections 7–8 and conclude in Section 9. More
details on the case studies, a list of the selected concerns and
a discussion of the methods that led to their identification are
contained in the publicly available technical report [17].

2. Related Work

Although the topic of aspect mining is in its early stage of
development, it is addressed by several research groups.

The identification of a crosscutting concern typically
starts from a so-called seed: a method, interface or group of
statements part of the concern’s implementation. Once seeds
have been identified, these can be expanded to full concern
implementations by means of manual exploration, slicing,
or other techniques. The various aspect mining approaches
available to date differ in the techniques used for generating
seeds and for extending seeds to full concerns, and in the
level of automation provided in these steps.

Shepherd et al. [20] use clone detection based on the pro-
gram dependence graph and the comparison of individual
statement’s abstract syntax tree representations, for mining
aspects in Java source code. The tool built on this technique
aims at a fully automatic mining process and is applied to
two of the case-studies considered in this paper. Unfortu-
nately, the list of the mined aspects is not reported.

Two clone detection tools implementing matching on to-
kens and abstract syntax trees respectively, are evaluated by
[3] on an industrial C component. In this component, four
dedicated crosscutting concerns were manually identified.
The objective is to measure the concern coverage and to as-
sess the suitability of clone detection for reconstructing these
annotated aspects automatically.

Interfaces of which implementations are likely to be
crosscutting are investigated in [22]. Their technique relies
on string matching for the interface name, package member-
ship and call relationships between the methods of the class
implementing the interface.

The fan-in of modules was first defined by Henry and Ka-
fura as number of locations from which control is passed into
the module (e.g., calls to the module being studied) plus the
number of global data accesses [11].

A number of frameworks and tools like Eclipse1 or FEAT
[19] offer code navigation and understanding support, in-
cluding the determination of a method’s callers. Similar re-
sults, exposing relationships such as method calls, can be ob-
tained using JQuery[12], an exploration tool with an under-
lying functional query language. Several mining dedicated

1 http://www.eclipse.org/

tools, like AspectBrowser[8], Aspect Mining Tool [9] and
AMTEX2 , largely rely on lexical analysis - textual pattern
matching. The latter two add a complementary type-based
mining. All these tools need a starting seed from which the
code to be explored further and based on this paper we be-
lieve fan-in analysis can provide such seeds. To the authors’
knowledge there is no earlier work applying fan-in analysis
for generating aspect mining seeds.

The suitability of several techniques, such as clone detec-
tion, slicing, dynamic analysis and concept and cluster anal-
ysis for the purpose of reverse engineering crosscutting con-
cerns are discussed in [4]. We refer to [3, 4] for more detailed
discussions of other aspect mining approaches.

3. Aspect Identification Method

Aspect mining can be conducted in two ways. The first is
to take a top down approach, and search for code that im-
plements well-known crosscutting concerns such as logging,
persistence, error handling, etc. This calls for a catalog of
typical aspects, collected from, e.g., text books or papers dis-
cussing aspect solutions to general design problems. Aspect
mining research can then provide reconstruction approaches
for each of the aspects in the catalog.

The second approach can be considered bottom up, and
aims at analyzing the code for the symptoms resulting from
a lack of proper aspect support in the language used. These
symptoms are code scattering (the code for one concern is
spread across the system) and code tangling (in order to
implement one concern, the programmer needs to address
other (crosscutting) concerns as well). Suitable techniques
for identifying such symptoms may be clone detection (for
scattering) or slicing (for untangling functionality), as dis-
cussed by [4]. Observe that the bottom up approach may be
able to discover crosscutting concerns previously not recog-
nized as suitable for an aspect solution.

In practice, aspect mining will be an opportunistic combi-
nation of these two approaches. The aspect mining method
we propose here also combines both approaches, and origi-
nated from an (ongoing) attempt to create an explicit aspect
catalog. Aspects in this catalog include generic ones such
as logging and profiling [2, 7], as well as exception han-
dling [16]. In addition, many design pattern implementations
are candidates for an aspect implementation, as discussed by
[10]. Finally, our catalogue contains aspect candidates that
are tailored towards business applications such as transaction
management, security [15], and J2EE design patterns.

The intuition gained from this study was that many known
crosscutting concerns are implemented using one or more
methods that exhibit a relatively high fan-in. In terms of As-
pectJ [2], the method would constitute (part of) the advice,
and the call site would provide the context that would need to

2 http://www.eecg.utoronto.ca/˜czhang/amtex/

interface A {
public void m();

}
class B implements A {

public void m() {};
}
class C1 extends B {

public void m() {};
}
class C2 extends B {

public void m() { super.m();};
}
class D {

void f1(A a) { a.m(); }
void f2(B b) { b.m(); }
void f3(C1 c) { c.m(); }

}

Figure 1. Various (polymorphic) method calls

Method Caller set Fan-In
A.m { D.f1, D.f2, D.f3 } 3
B.m { D.f1, D.f2, D.f3, C2.m } 4
C1.m { D.f1, D.f2, D.f3 } 3
C2.m { D.f1, D.f2 } 2

Figure 2. Fan-in values for code in Figure 1

be captured using a point cut. Based on this observation, we
decided to explore in depth how an analysis of methods with
a high fan-in could lead us to candidate aspects in a number
of open source Java case studies.

3.1. The Fan-In Metric

We define the fan-in of a method m as the number of dis-
tinct method bodies that can invoke m. Because of polymor-
phism, one method call can affect the fan-in of several other
methods. A call to method m contributes to the fan-in of all
methods refined by m as well as to all methods that are refin-
ing m. Since this metric is fairly simple, except perhaps for
the case of polymorphism, we do not provide a formal defi-
nition, but illustrate it using an example shown in Figure 1.
Three different calls to polymorphic method m are contained
in class D. The resulting sets of callers and corresponding
fan-in values are shown in Figure 2. Observe that the call in
f2 to B’s m contributes to the fan-in of m in B’s supertypes
(A) as well as its subclasses (C1 and C2).

We have implemented the fan-in metric as a plug-in for
the Eclipse Java IDE3. The plug-in makes use of standard
Eclipse functionality — the search for references feature.
Our plug-in computes the Fan-In metrics and reports the list
of the callers for all the methods in the selected source code
— project, package, class, etc. The output allows visualiza-
tion of the callers and statistical reports.

3 http://www.eclipse.org/jdt/

3.2. Identification Steps

The analysis follows three consecutive steps:

Step 1. Automatic computation of the fan-in metric for all
the methods in the targeted source code. The result is stored
as a set of “method-callers” structures that can be sorted by
fan-in value. This structure can be used to inspect the call
sites and calling contexts of selected high fan-in methods.

Step 2. Filtering of the results of the first step:

• Restrict the set of methods to those having a fan-in
above a certain threshold. We typically use a thresh-
old of 10, which tends to correspond to around 5% of
the total number of methods.

• Filter getters and setters from this restricted set, based
on the method’s signature, in a first iteration, and its
implementation, in a second iteration.

G(s-)etters on static fields are not eliminated because
(as we shall see for example in the PETSTORE case in
Section 4) these can be used in the Singleton design pat-
tern, which may be a good candidate for an aspect rep-
resentation [10].

• Filter utility methods, like toString(), collections
manipulation methods, etc., from the remaining set.

Step 3. (Largely manual) Analysis of the remaining set of
methods. The elements considered at this step are the callers
and the call sites, the method’s name and implementation,
and the comments in the source code.

3.3. Example

In this section, we will describe the process of applying these
steps to one of the case studies (PETSTORE) to illustrate the
systematic approach. In later sections, we will discuss each
of the case studies in more detail, putting more emphasis on
the aspects that were discovered.

Java Pet Store Demo is a sample J2EE e-business appli-
cation developed by SUN.4 It is intended as a demonstration
of a real life Web application which allows customers to pur-
chase via a web browser. In addition, it includes modules to
perform administration tasks like sales statistics, orders and
shipping management, etc.

Pet-store consists of approximately 17,000 non-comment
lines of code. Our analysis shows a number of 1855 methods,
including the abstract ones. The first step computes the fan-
in for each of these methods and distinguishes those having a
high fan-in. Considering the results of the other case-studies
as well as the ones for the present case, we have decided
to analyze the methods with a fan-in value greater than 10,

4 http://java.sun.com/blueprints/, PETSTORE version
1.3.2.

1.08% 2.16% 1.46%

95.31%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Java Pet Store Demo

fan-in>=10
6< fan-in < 10
5 <= fan-in <= 6
fan-in<5

Figure 3. Fan-in distribution for PETSTORE.

seeds non seeds g(s-)etter utility Total

Fan-in∈ [10,∞)
no. 7 1 7 5 20
% 35.0 5.0 35.0 25.0 100.0

Fan-in∈ [8,10)
no. 2 16 2 8 28
% 7.1 57.2 7.1 28.6 100.0

Figure 4. High fan-in methods in PETSTORE

which represents around 1% of the total (1.08% - fig. 3). The
chosen reference value, of 10, indicates a significant use of
the method in terms of the number of calling methods, and
also reduces substantially the number of subjects to be in-
vestigated. In a second iteration, we looked at the methods
with a fan-in of 8 and 9, which represent another 1.5% of the
total. Statistics for the two fan-in sets are shown in Figure 4.

The second step performs a rough filtering of the high
fan-in candidates. We were interested in both eliminating
those methods likely to provide little information for the last
step and in making sure that future automation of the filter-
ing was possible. The filters for g(s-)etters (35%) and utility
methods (25%) together eliminated 60% of the candidates
from the first step. Most of the getters are still related to as-
pects to be identified later on. The “utility” subset consist
of toString() methods and methods belonging to “util”
classes, e.g. XMLDocumentUtils for building XML doc-
uments.

The remaining subset of 40% represents seed (35%) and
non-seed (5%) candidates to be processed in the last step.
Apart from one case which we decided not to include in the
aspects category, all the other methods could be divided into
several types of aspects: exception wrapping and business
delegates, the Service Locator design pattern, contract en-
forcement and debugging functionality. All these concerns
are discussed in detail in the PETSTORE section.

Applying the same steps to the methods with a fan-in of
8 and 9, we discovered only two new aspect seeds, one of
them related to a new type – the Singleton design pattern.

public class InvoiceTD implements TransitionDelegate {

/** sets up all the resources that will be needed to do
* a transition
*/

public void setup() throws TransitionException {
try {
ServiceLocator serviceLocator = new ServiceLocator();
qFactory = serviceLocator.getQueueConnectionFactory

(JNDINames.QUEUE_CONNECTION_FACTORY);
q = serviceLocator.getQueue

(JNDINames.CR_MAIL_COMPLETED_ORDER_MDB_QUEUE);
queueHelper = new QueueHelper(qFactory, q);

} catch(ServiceLocatorException se) {
throw new TransitionException(se);

}
}

/** Send an order approval to the OrderApproval Queue...
*/

public void doTransition(TransitionInfo info)
throws TransitionException {

String xmlCompletedOrder = info.getXMLMessage();
try {
queueHelper.sendMessage(xmlCompletedOrder);

} catch (JMSException je) {
throw new TransitionException(je);

}
}}

Figure 5. Error handling in PETSTORE

Two other methods, setup() and doTransition(..),
that occur several times because of the polymorphical mech-
anism in the search procedure, were considered non-aspects
as later discussed in the paper. The 15 instances reported for
them cover around 50% of the second set of candidates. The
utility methods have largely the same characteristics as the
ones already outlined.

4. Aspects Candidates in Pet Store

Our analysis of the methods with fan-in above 10 and of 8
and 9 revealed the following cross cutting concerns.

Exception Wrapping and Business Delegates The ma-
jority of the aspect seeds are constructors for PETSTORE ex-
ceptions, with fan-in values ranging between 11 and 22. Fig-
ure 5 shows the example for the TransitionException
case, which is thrown from 15 catch blocks in different
classes and packages.

As in the InvoiceTD class in the figure, most
of the methods throwing the exception implement
doTransition(..) and setup() declared by
the TransitionDelegate interface. All the transition
delegates handle exceptions related to the particular func-
tionality and re-throw TransitionException. This
mechanism is in fact part of the Business Delegate pattern
[1], which aims at hiding the implementation details of a
business service. The issue hidden in this case is the sort of
exception that can be thrown by the actual implementation.

This mechanism is spread over many places, and a refac-
toring to aspects is in place. As discussed by Laddad [14],

aspects can be used to isolate the exception handling and to
wrap the original exception thrown by the underlying im-
plementation in the new exception. This will result in im-
provements in code size, localization and clarity. Studies
of exception handling refactoring [16] show a reduction of
catch statements when using AOP of up to 95%.

Service locators The method with highest fan-in value
(30) belongs to the ServiceLocator class, which imple-
ments the J2EE pattern of the same name [1]. The intent of
the pattern is to provide a single point of control to clients
that need to locate and access a component or service in the
business or integration tier. The common solution is to have
a single instance of the service locator class for an applica-
tion or, at least, for a tier and thus to have it implemented as
a singleton.5 The delegates previously discussed are part of
the locator’s clients. They determine a high fan-in value for
the locator access methods.

An analysis of the crosscutting nature of the J2EE pat-
terns, including Service Locator and Business Delegate, was
performed by [18]. The authors present a refactoring solu-
tion and analyze the advantages of an aspect-oriented imple-
mentation.

Contract Enforcement A method with a fan-in value of
27 is a constructor for the XMLDocumentException
class. This exception is raised if the structure of the XML
document does not comply with the expected structure. By
examining the call sites, we were able to observe that 9 of
them are fromDOM(Node) methods, all throwing the ex-
ception if a certain compound condition fails. It turns out
that all complex conditions share a common check, which
can be easily factored out as an aspect by means of before
advice – giving rise to the contract enforcement concern as
discussed in [2]. In this manner, the code will be better lo-
calized and new methods will be prevented from omitting the
required checks.

Debug Information The XMLDocumentException
class has a second constructor with a high fan-in. This con-
structor is (like for the business delegates) used as an excep-
tion wrapper. In addition to that, before being wrapped the
exception at hand is written on the error output stream. This
additional behavior (on top of the wrapping) can be added as
another aspect, which indicates which exception should be
printed before being wrapped. The aspectization of printing
such debugging information is desirable to ensure a common
debugging strategy and to isolate the concern that otherwise
is crosscutting.

5 PETSTORE contains two different service locators, one for JMS and
one for EJB components. The former is indeed a singleton (as required in
[1]), but the other is not. It does contain a private static field, but this is not
used. The fact that this service locator is not implemented as a singleton
is an error in the PETSTORE implementation — an error that can be easily
fixed by superimposing the AOP singleton solution on top of it.

Total number of methods in the pckg

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ap
ple

t

ap
pli

ca
tio

n

co
nt

rib

fig
ur

es

fra
m

ew
or

k

sa
m

ple
s

sta
nd

ar
d ut

il

Package

F
an

-i
n

 d
is

tr
ib

u
ti

o
n

fan-in<5
5<=fan-in<=6
6<fan-in<10
fan-in>10

45 84 805 404 233 806 445

Figure 6. Fan-in statistics for JHOTDRAW.

False Alarm The one case considered as non-aspect in
the first set of candidates is an XMLDBHandler construc-
tor with a fan-in value of 10. The callers are setup(..)
methods in classes that populate the associated database ta-
bles with data from XML files. The setup(..) imple-
mentations are only slightly different: return an instance of
an anonymous inner class extending XMLDBHandler that
is an XML filter. Because all the callers are well localized
in a single package and there is only one populate(..)
method that triggers the whole process at a client’s request,
we decided to ignore the candidate.

Lower Fan-In Values The set for the fan-in values of 8
and 9 comprises, because polymorphism, 15 instances of the
same two methods, doTransition(..) and setup(),
declared in the TransitionDelegate interface. As all
transition delegates implement this only interface as their pri-
mary concern, the two methods were not considered aspect
seeds.

Singleton Two of the interesting methods with fan-in of
8 and 9 are related to the Singleton pattern, which is
used for one of the ServiceLocator classes and the
StatusBar. The high fan-in method is getInstance()
which yields the reference to the unique instance. Aspect ori-
ented refactorings for the design patterns from [5] have been
proposed by [10] and showed improvements in terms of the
modularity properties for most of the cases, including Sin-
gleton.

5. JHotDraw

JHotDraw6 is an application framework for two-dimensional
graphics. It was designed as an exercise to show a good use
of design patterns [5]. The version analyzed is JHotDraw
5.4b1 of approximately 18,000 non-comment lines of code.

Figure 6 shows how the fan-in values for methods are
distributed across the various packages of JHOTDRAW. In
terms of methods with high fan-in values, above 10, two

6 http://jhotdraw.org/, version 5.4b1

<interface>
Undoable

undo()

Figure
*

 affectedFigures

ConcreteUndoable

<interface>
Activity

execute()
 undoActivity

ConcreteActivity
 has nested class

UndoManager

*

DrawingEditor

Figure 7. Participants for undo in JHOTDRAW.

packages show the top relative and absolute values, respec-
tively: “framework”, which contains the classes and the in-
terfaces that define the project’s framework, and “standard”,
which provides the default implementation for the frame-
work classes. The latter is the project’s largest package.

For each of the two packages, our filters eliminated
around half of the methods with top fan-in values. We were
rather cautious not to eliminate too many methods. The only
methods designated as “utility” are enumerations manipula-
tors (e.g., FigureEnumerator.hasNextFigure()/nextFigure()).

5.1. The Undo Concern

In the top of the list of methods with highest fan-in, there are
several methods that contain the word “undo” in their names,
or that are part of a class whose name contains “undo”. An
undo in a graphical editor is clearly a concern that cuts across
many features and activities.

A (somewhat simplified) representation of the participat-
ing classes in the JHOTDRAW undo implementation is given
in Figure 7. JHOTDRAW offers various sorts of activities,
which are contained in a class hierarchy. Examples of con-
crete activities include handling font sizes, triangle rotation,
or image rotation.

The interface Undoable encapsulates the notion of undo-
ing an action, for which it provides the undo method. Each
class implementing a concrete activity that can be undone,
defines a static nested class conforming to this Undoable in-
terface. The nested class knows how to undo the given activ-
ity, and has access to all the details of the activity that may
be needed for this. Whenever the activity modifies its state,
it also updates fields in its associated undo-activity needed
to actually perform the undo. In addition to that, a list of
affected figures is maintained, whose state is also affected if
the activity must be undone.

In JHOTDRAW, there are 22 activities that can be undone,

causing the undo concern to be spread over these classes.
This, in turn, leads to a high fan-in for the methods of, for
example, Undoable, which helped us to identify this cross-
cutting concern.

Refactoring undo using aspects takes a number of steps.
First, the existing activities can be extended with an associ-
ation to their undoables by means of a separate introduction
(through an AspectJ intertype declaration). Second, exist-
ing operations should be extended with functionality to keep
track of the old state so that the action can be undone. These
existing operations can be captured using a pointcut, and then
the updates can be contained in advice code. The various
nested classes containing the undoable activities can also be
added by means of introductions / intertype declarations.7

The overall effect of this aspectization is that the key func-
tionality remains separated from maintaining the undo state,
making both easier to comprehend and modify.

In spite of the fact that “Undo” is a concern that is a nat-
ural candidate for an aspect-oriented solution, textbooks on
AOP (such as [7, 2, 15]) do not discuss using aspects for
undo functionality. On the Codehaus electronic forum, Jon
Tirsen provides an interesting generic solution for the undo
problem [21]. Tirsen defines a Command class, and provides
a point cut capturing any field access occurring in the com-
mand’s context. He then uses reflection to store the field’s
old values in the command, so that a generic undo is made
possible.

5.2. Persistence

Another cross cutting concern that pops out clearly through a
high fan-in is persistence. Persistence and resurrection of fig-
ures is performed by methods inherited from the Storable
interface. The two are pair concerns: the Figure classes
implement the methods to write/read themselves to/from a
StorableOutput/Input object, which is basically a
specialized output/input stream. We will discuss only the
persistence concern, resurrection being just similar.

Persistence is a crosscutting concern spread over 36
classes. The concrete figures implement the Storable inter-
face that encapsulates the concern. The Storable is what
we call a secondary interface – an interface that does not
define the primary role of the implementing class but only
adds some functionality. The methods ensuring the persis-
tent behavior create a high fan-in for several members of the
StorableOutput class.

A refactoring solution, using the features of the AspectJ
language, would use introduction to isolate the persistence
concern from the figure classes. Better modularity properties
can be achieved by having all the code relating to the storable
functionality in the aspect construct. The figures will imple-
ment no persistence-specific code but will be extended with

7 The present version of AspectJ does not yet support introducing inner
and static nested classes.

public void execute() {
// perform check whether view() isn’t null.
super.execute();

// prepare for undo
setUndoActivity(createUndoActivity());
getUndoActivity().

setAffectedFigures(view().selection());

// key logic: cut == copy + delete.
copyFigures(view().selection(),

view().selectionCount());
deleteFigures(view().selection());

// refresh view if necessary.
view().checkDamage();

}

Figure 8. (Simplified) execute method in JHOTDRAW

exhibiting tangling.

this functionality through inter-type declarations.

5.3. Observers in JHotDraw

The Observer is well known as a good candidate for aspect
refactoring, due to the roles defined in the pattern’s context
that crosscut the participant classes’ logic. The elements in-
dicative of the Observer design pattern are the methods used
to at(de-)tach the observers to the subject participant, to no-
tify the observer participants of the subject’s changes and to
update them accordingly. We expect the pattern to be suit-
able for fan-in recognition through these key-elements. Ob-
servers that register themselves as listeners to the subject’s
changes increase the metric’s value for the attach method. In
turn, the notify method will be called by every subject’s mod-
ifier in order to trigger an update operation for the observers.

After these key methods of the Observer pattern have
been identified by means of fan-in analysis, existing ex-
ploration tools and methods can be used to understand the
pattern-aspect implementation and its extent. Although the
result of this identification method depends on the number
of the registered observers and subject changers, our exper-
iments show good results in finding Observer’s elements by
applying the fan-in metrics.

The set of the methods with high fan-in values com-
prises a number of seeds for Observer instances such
as the changed() and add/removeFigureChange-
Listener(..) methods in Figure classes. The value
for the changed() method is as high as 37. Once defined
the Figure’s subject role in the pattern context, an analysis
of the call sites will lead to the identification of the other
participants.

Matching on the naming conventions used in the identi-
fied Observer led to another instance of the pattern (with a
somewhat lower fan-in). Thus, fan-in analysis provides ini-
tial seeds and application understanding, which then can be
used by complementary techniques to identify further cross
cutting concerns.

5.4. Other Concerns

JHOTDRAW being an exercise in the use of design patterns,
it is not surprising that JHOTDRAW has a high pattern den-
sity. Here we analyze which patterns have a cross cutting
nature in JHOTDRAW, and how they can be found through
fan-in analysis. Hannemann et al. provide a general dis-
cussion how a number of the classical design patterns could
benefit from an AOP implementation [10].

The structure of several design patterns and the associated
collaborations can support their fan-in identification. It is yet
difficult to turn this identification into a general rule because,
most of the time, it is project size and context dependent -
whether the design pattern has a key role in the design or just
provides an isolated solution.

With high fan-in values reported for Composites’ chil-
dren manipulation methods (e.g., add(Figure) and
figures() for standard drawings and thus, for composite
figures, and abstract figures) the pattern was readily recog-
nizable.

Singleton classes have been found through the instance()-
like methods, returning the unique instance of the class (see
also Section 4).

Command’s execute() operation is invoked by multiple
clients: The execute() method in the AbstractCom-
mand class is reported with a fan-in value of 24. There are
10 implementations of this method: An example implemen-
tation is provided in Figure 8. The execute method is a
seed for multiple aspects:

• Each execute implementations starts by checking a
common pre-condition, throwing an exception if it does
not hold. This is a contract enforcement aspect as dis-
cussed in [2].

• Most execute implementations conclude with a check
if the figure has been changed and a corresponding re-
fresh. This is a Providing consistent behavior aspect as
discussed in [2].

Factoring these (as well as the undo functionality) out of the
code in Figure 8 would leave the execute method with just
its core functionality, which is an implementation of the cut
operation by means of a copy and a delete operation.

The instances of the Decorator and Adapter are more dif-
ficult to recognize, mainly because unlike the other patterns
already discussed, there is not a key method that strongly
connotes the link with the pattern. The manual analysis re-
lied more in these cases on the information obtained from
naming conventions and the comments in the source code.
However, the request forwarding from the decorator/adapter
object to the component/adaptee participants could also be
considered (e.g., containsPoint(),includes(), etc.
in DecoratorFigure all with fan-in values greater than
10).

The Providing consistent behavior concern discussed in
[2] aims at ensuring that certain functionality is imple-
mented uniformly across a large set of operations. In the
StorableOutput class, the various printing operations to
the PrintWriter object are followed by a call to the space()
method which simply prints a space to the same object. The
method has a high fan-in value, all the calls being from in-
side the class. It is a good example of crosscutting at class
level and also an easy-to-imagine refactoring that will add
the space() call after the print(..)’s execution.

Among the other reported candidates the
displayBox() method for Figure and Handle
is worth mentioning. It returns the object’s display box and
is overloaded for figures for changing a figure’s display
box. The examination of the call sites showed many
draw(Graphics) callers in handle classes and in similar
calling contexts. Despite that, we could not see much
benefits from a refactoring. Although the method is reported
in several instances, we think it supports the class’s main
functionality and is not crosscutting.

6. Tomcat/Catalina

TOMCAT is a free, open-source implementation of Java
Servlet and JavaServer Pages technologies developed un-
der the Jakarta project at the Apache Software Foundation.
Catalina is the servlet container portion of Tomcat.8 Our
analysis is concentrated on the Catalina component. It con-
sists of approximately 90,000 non-commented lines of code.

6.1. Overview of the results

Among the candidates mined, logging is one of the cross-
cutting concerns which is often acknowledged to exist in the
Tomcat implementation. The detection of logging by means
of fan-in analysis is also not surprising since it is often im-
plemented by means of calls to a commmon method.

The other results found include context passing and con-
tract enforcement as well as design patterns, such as Ob-
server, Composite, Chain of responsibility, Command, Sin-
gleton or Adapter. These candidate aspects all have charac-
teristics similar to those discussed for the other case-studies
so we will omit them for conciseness.

The next section describes the new Lifecycle concern that
we discovered in TOMCAT. We are not aware of any previ-
ous discussion of this concern in (AOP) literature.

6.2. Lifecycle

Lifecycle is a common interface for the life cycle meth-
ods of Catalina components. The documentation states that
is intended to provide consistent start and stop mechanisms

8 http://jakarta.apache.org/tomcat/tomcat-5.
0-doc/catalina/docs/api/index.html, v. 5.0.24

and should be implemented apart from the interfaces that de-
fine the functionality supported by each of the components.
This makes Lifecycle a secondary interface — it adds new,
supplementary capabilities to the core logic of the imple-
menting classes. In the case investigated, the Lifecycle in-
terface is implemented by about 20 classes.

Implementors of the Lifecycle interface are subjects in the
context of the Observer design pattern and the start()
and stop() methods have to provide the notifying func-
tionality. In addition, these two methods are part of a con-
tract enforcement scheme: The start() operation has to
be called before any public method of the component, while
stop() terminates the object’s use and should be the last
call for a component’s instance.

The Lifecycle concern can be seen as a generalization of
the use of stop() methods to remediate Java’s expensive fi-
nalization mechanism [23, 6]. Those methods take care of
cleaning up the object’s resources inside the program code
to avoid the overhead of having finalizers but will result in
crosscutting for the object’s clients.

The Lifecycle concern is complex and although aspect
oriented solutions have been presented for some parts of it, a
complete refactoring solution remains an open issue. One of
the problems with proposing a full solution is that the type
of contract enforcement needed by the concern cannot be
expressed in a pointcut based aspect language like AspectJ
(because it requires specifying “before accessing any public
methods of class” and “after last use of class”).

7. Discussion

The statistical results show that more than one third of the
methods with high fan-in are seeds that lead to aspects. Us-
ing filtering, we can automatically remove 60% of the re-
maining two thirds, leaving almost only seeds of interest.

We can distinguish three situations in which a high fan-in
value indicates the presence of crosscutting concerns (in no
particular order):

1. The high fan-in method is a key element of the aspect
implementation, such as the output method for logging,
tracing or debugging functionalities. In such a case, the
refactoring to aspects will be driven by the presence of
the seed-method calls.

2. The crosscutting implementation is spread over the sys-
tem and relies on common functionality and the high
fan-in method is part of this functionality. In this case,
the call sites give the insight into the aspect, e.g., the
persistence aspect previously discussed.

3. Some design patterns with a crosscutting structure can
lead to high fan-in values when they are given a cen-
tral role in the project design. This can, for example,

happen to the observer manipulation methods that are
associated with the subject role in the Observer design
pattern. When such methods are found, it strongly im-
plies that the pattern was applied.

We can make a number of observations concerning the
results of our fan-in based analysis:

The type of concerns identified - The fact that we were
able to find similar aspects in various case studies suggests
that their identification is not accidental. The results contains
various crosscutting concerns that are discussed in the liter-
ature, including those that stood at the origins of AOSD. In
addition, we have identified a number of new aspects, such
as Undo and Lifecycle. Given the variety in the case studies,
we feel that these results can also be achieved for other cases.

False positives and negatives - We feel that fan-in based
analysis is especially good at identifying crosscutting con-
cerns that have a relatively large “footprint” in the source
code (since that generally results in higher fan-in). There are
both positive and negative sides to this: On the one hand, the
aspects identified this way are likely to be those that signif-
icantly influence the modularity of the source code and thus
most appropriate for refactoring. On the other hand, aspects
with a smaller footprint, such as a design pattern providing
an isolated solution, could be missed because the number of
calls is below the threshold. In any case, the (unfiltered) set
of results of fan-in analysis can provide useful information
for other mining techniques. Once aware of the potential
presence of an aspect, other approaches can be followed to
assure or refute it’s existence.

It is difficult to discuss false negatives in more detail since
it would require a report of all the aspects that could be found
in the case studies considered. Such reports are not avail-
able at the moment, and we consider our work to be a first
step towards a common benchmark for various aspect min-
ing techniques being developed. To promote such a common
benchmark, we are in the process of setting up a (wiki-based)
web forum9 where aspect mining researchers can exchange
and discuss aspect candidates found in (open source) soft-
ware systems. We will populate this forum with the results
discussed in this paper.

Steps towards automation - The three steps followed in
our approach can be automated to a large extend: The first
step (Fan-In computation) is already automated as an Eclipse
plugin. However, because of the influence of polymorphism
during the search for references, in our current implementa-
tion the same method could be reported as having high fan-in
for different instances. We do not consider this a major is-
sue as it could be repaired by a more in-depth analysis. A
more serious limitation could be fan-in aggregation — two
methods with a relatively high fan-in, but not enough to be
individually reported, both calling a third method for which
will create a high aggregate fan-in. None of these methods

9 http://swerl.tudelft.nl/amr/

will be reported. An experiment that considers the aggrega-
tion would be interesting to perform.

The second (filtering) step is this initial investigation can
both be further automated and improved. We generally only
filter the simple g(s-)etters (returning or setting a member
field value) as they are not likely to offer enough informa-
tion for further exploration. However, the filtering based on
methods’ signatures, although substantially reducing the set
to be manually investigated, could result in false negatives.

The automation of the last step will mainly consist in ap-
plying complementary techniques such as clone detection
and concept analysis and use their results to both augment
and reinforce our own results.

Language independence - An additional case study with
fan-in based aspect mining on the 19 KLOC industrial C
component that was used in [3] to evaluate clone detection
based aspect mining, performed encouragingly well. The
main methods in the implementation of the tracing and log-
ging crosscutting concerns have reported fan-in values of 200
and 400, respectively. The metric’s value was lower than 10
for the other methods.

8. Future work

One of our goals is achieving a considerable degree of au-
tomation. To that end, we are going to extend our mining
process as previously discussed. A longer term plan is an
aspect mining tool that combines several analysis techniques
to achieve a higher degree of completeness and precision.

Fan-in based analysis turns out to be flexible and very
suitable for combination with other techniques, such as clone
detection or concept analysis. We have just finished a study
were we applied the CCFinder [13] clone detection tool to
the JHotDraw case study. The clone classes reported in this
study as aspect candidates pointed to the same persistence
and resurrection aspects identified by fan-in analysis. This
result gives us the anecdotal evidence to further explore the
combination of these two techniques.

The call site of a high fan-in method can represent a cross
cutting concern, but typically the concern is larger than just
the call itself, involving setting up appropriate objects and
checking relevant conditions. We are investigating how slic-
ing like techniques can be used to find more complete con-
cerns based on initial seeds identified.

Finally, there is a relation that needs to be investigated
between the aspectizable interfaces as described in [22] and
the methods with a high fan-in value declared by such in-
terfaces. A starting point for such an investigation could be
the Undoable interface of JHOTDRAW where a number of
methods have reported a high fan-in.

9. Concluding Remarks

In this paper we analyzed three open source Java systems in
significant detail, searching for opportunities to use aspect
oriented techniques in them. Our search was guided by the
fan-in value for each method, following the simple rule that a
method with a high fan-in is likely to represent functionality
that is required across the application. The key contributions
of this paper are the systematic approach used to identify
the aspects (described in Section 3) and the discussion of the
aspects actually found (in Sections 4–6).

The primary objective of our analysis was to explore the
feasibility of reverse engineering aspects from object ori-
ented code. The results of our analysis can be used in the
following ways:

• The various examples of candidate aspects can be used
to come up with new techniques that can reverse engi-
neer these aspects (semi)automatically.

• The aspects we identified manually can be used in or-
der to validate the effectiveness of new aspect mining
techniques.

• The technique can be either used stand-alone or in com-
bination with other techniques.

An interesting side effect of our analysis is that we found
a number of opportunities for using aspect oriented tech-
niques, such as the undo and life cycle functionality discov-
ered in JHOTDRAW and TOMCAT, that were not previously
described in the aspect-oriented literature.

Last but not least, the nature of the case studies considered
provide an assessment that crosscutting is a problem even in
the well designed projects. The number of aspects we were
able to find enforces the claims that cross cutting is inherent
in an OO system. The fan-in analysis, besides of identifying
them can give a measure of their impact.

References

[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Sun
Microsystems, Inc., USA, 2003.

[2] The AspectJ Team. The AspectJ Programming Guide. Palo
Alto Research Center, 2003. Version 1.2.

[3] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé.
An evaluation of clone detection techniques for identifying
cross-cutting concerns. In Proceedings International Confer-
ence on Software Maintenance (ICSM 2004). IEEE Computer
Society, 2004.

[4] A. van Deursen, M. Marin, and L. Moonen. Aspect mining
and refactoring. In Proceedings of the First International
Workshop on REFactoring: Achievements, Challenges, Ef-
fects (REFACE03). University of Waterloo, Canada, 2003.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[6] B. Goetz. Garbage collection and performance. IBM devel-
opersWorks articles, January 2004. www-136.ibm.com/
developerworks/java/.

[7] J. D. Gradecki and N. Lesiecki. Mastering AspectJ - Aspect
Oriented Programmingin Java. Wiley Publishing, Inc., Indi-
anapolis, Indiana, 2003.

[8] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspectbrowser: Tool
support for managing dispersed aspects. Technical Report
CS99-0640, University of California, San Diego, 3, 2000.

[9] J. Hannemann and G. Kiczales. Overcoming the prevalent de-
composition of legacy code. In Proc. Workshop on Advanced
Separation of Concerns. IEEE, 2001.

[10] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. In Proceedings of the 17th An-
nual ACM conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 161–
173. ACM Press, 2002.

[11] S Henry and K Kafura. Software structure metrics based on
information flow. IEEE Transactions on Software Engineer-
ing, 7(5):510–518, 1981.

[12] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. In Proc. 2nd Int. Conf. on Aspect-
Oriented Software Development (AOSD), pages 178–187.
ACM Press, March 2003.

[13] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw. Eng.,
28(7):654–670, 2002.

[14] R. Laddad. Aspect-oriented refactoring. www.
theserverside.com, December 2003.

[15] R. Laddad. AspectJ in Action - Practical Aspect Oriented Pro-
gramming. Manning Publications Co., 2003.

[16] M. Lippert and C.V. Lopes. A study on exception detection
and handling using aspect-oriented programming. In Proceed-
ings of the 22nd international conference on Software engi-
neering, pages 418–427. ACM Press, 2000.

[17] M. Marin, A. van Deursen, and L. Moonen. Identify-
ing aspects using fan-in analysis. Technical Report SEN-
R0413, CWI, 2004. www.cwi.nl/ftp/CWIreports/
SEN/SEN-R0413.pdf.

[18] T. Murali, R. Pawlak, , and H. Younessi. Applying aspect
orientation to J2EE business tier patterns. In Proc. of the 3rd
AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software. University of Lancaster, UK, 2004.

[19] M.P. Robillard and G.C. Murphy. Concern graphs: Finding
and describing concerns using structural program dependen-
cies. In 24th International Conference on Software Engineer-
ing (ICSE). ACM press, 2002.

[20] D. Shepherd, E. Gibson, and L. Pollock. Design and eval-
uation of an automated aspect mining tool. In Proceedings
Mid-Atlantic Student Workshop on Programming Languages
and Systems, 2004.

[21] J. Tirsen. Undo in AspectJ. Codehause Jutopia discussion
forum, April 25 2004. blogs.codehause.org.

[22] P. Tonella and M. Ceccato. Migrating interface implementa-
tion to aspect oriented programming. In Proceedings Inter-
national Conference on Software Maintenance (ICSM 2004).
IEEE Computer Society, 2004.

[23] P. Vickers. Why finalizers should (and can) be avoided. IBM
developersWorks articles, March 25 2002. www-136.ibm.
com/developerworks/java/.

A. Case Studies Overview

Project name version url NCLOC #methods
JHotDraw 5.4b1 http://jhotdraw.org 18,000 2822
PetStore 1.3.2 http://java.sun.com/blueprints 17,000 1855

Tomcat 5.0.24

http://jakarta.apache.org/tomcat
/tomcat-5.0-

doc/catalina/docs/api/ 90,000 4166

B. Statistics for JHotDraw

Package seeds non seeds g(s-)etter utility Total
applet no. 1 0 1 0 2

% 50.00% 0.00% 50.00% 0.00% 100.00%
application no. 1 0 1 0 2

% 50.00% 0.00% 50.00% 0.00% 100.00%
contrib no. 0 13 6 0 19

% 0.00% 68.42% 31.58% 0.00% 100.00%
figures no. 2 14 6 0 22

% 9.09% 63.64% 27.27% 0.00% 100.00%
framework no. 12 8 14 2 36

% 33.33% 22.22% 38.89% 5.56% 100.00%
standard no. 25 12 26 11 74

% 33.78% 16.22% 35.14% 14.86% 100.00%
util no. 11 1 18 12 42

% 26.19% 2.38% 42.86% 28.57% 100.00%

Total no. 52 48 72 25 197
% 26.40% 24.37% 36.55% 12.69% 100.00%

The statics of the methods with a fan-in value greater than 10, organized by
package

C. Concerns and Fan-In Values for JHOTDRAW

List of the seed methods for JHotDraw

Qualified name (CH.ifa.draw.*) Fan-in val. Concern
applet.DrawApplet.toolDone() 16 Consistent behavior

application.DrawApplication.toolDone() 18 Consistent behavior
figures.NullFigure.includes(Figure) 13 Composite

figures.TextFigure.changed() 36 Observer
framework.DrawingEditor.toolDone() 20 Consistent behavior
framework.DrawingView.add(Figure) 10 Composite

framework.DrawingView.checkDamage() 28 Change monitoring
framework.DrawingView.selectionCount() 16 Consistent behavior

framework.Figure.addFigureChangeListener(
FigureChangeListener) 11 Observer

framework.Figure.changed() 36 Observer
framework.Figure.figures() 24 Composite

framework.Figure.includes(Figure) 14 Composite
framework.Figure.listener() 21 Observer

framework.Figure.removeFigureChangeListener(
FigureChangeListener) 10 Observer

framework.Figure.willChange() 25 Observer
framework.Handle.owner() 37 Adapter

standard.AbstractCommand.execute() 24
Command

+ Contract enforcement
standard.AbstractFigure.addFigureChangeListener(

FigureChangeListener) 11 Observer
standard.AbstractFigure.changed() 37 Observer
standard.AbstractFigure.figures() 24 Composite

standard.AbstractFigure.includes(Figure) 14 Composite
standard.AbstractFigure.removeFigureChangeListener(

FigureChangeListener) 10 Observer
standard.AbstractFigure.willChange() 25 Observer

standard.AbstractTool.AbstractTool(DrawingEditor) 15
Consistent behavior/
Contract enforcement

standard.AbstractTool.activate() 10
Consistent behavior/
Contract enforcement

standard.AbstractTool.deactivate() 14
Consistent behavior/
Contract enforcement

standard.AbstractTool.mouseDown(MouseEvent, int, int) 15 Consistent behavior
standard.CompositeFigure.includes(Figure) 14 Composite

standard.DecoratorFigure.containsPoint(int, int) 15 Decorator
standard.DecoratorFigure.displayBox() 50 Decorator

standard.DecoratorFigure.includes(Figure) 13 Composite + Decorator
standard.DecoratorFigure.moveBy(int, int) 13 Decorator

standard.DeleteCommand.DeleteCommand(
String, DrawingEditor) 12 Command

standard.NullDrawingView.checkDamage() 23 Change monitoring

Note: In some cases it was difficult to make explicit the difference between the "contract
enforcement" and "providing consistent behavior" aspects, as described in [2]. For this reason, the
two generic aspects are both indicated for some of the seeds in the list.

D. Concerns and Fan-In Values for JHOTDRAW- cont.

Qualified name (CH.ifa.draw.*) Fan-in val. Concern

standard.NullDrawingView.clearSelection() 30
Consistent behaviour/
Contract enforcement

standard.NullDrawingView.selectionCount() 13 Consistent behavior
standard.StandardDrawing.add(Figure) 13 Composite

standard.StandardDrawingView.add(Figure) 10 Composite

standard.StandardDrawingView.checkDamage() 28
Change monitoring
+ Observer-notifier

standard.StandardDrawingView.clearSelection() 31
Consistent behaviour/
Contract enforcement

standard.StandardDrawingView.selectionCount() 16 Consistent behavior
util.StorableInput.readInt() 22 Persistence

util.StorableInput.readStorable() 20 Persistence
util.StorableInput.readString() 10 Persistence
util.StorableOutput.writeInt(int) 21 Persistence

util.StorableOutput.writeStorable(Storable) 18 Persistence
util.StorableOutput.writeString(String) 10 Persistence

util.Undoable.isRedoable() 26 Undo
util.Undoable.isUndoable() 11 Undo

util.UndoableAdapter.undo() 24 Undo
util.UndoableAdapter.UndoableAdapter(DrawingView) 26 Undo

util.UndoableCommand.UndoableCommand(Command) 10 Command + Undo
util.StorableOutput.space() 8 Consistent behavior

E. Non-seed methods for JHOTDRAW

List of the non-seed methods for JHotDraw

Note: Several methods in this list could be considered aspect seeds.
For instance, the "moveBy(..)" method could be considered a seed for
the "move figure" concern. The analysis of such methods is an ongoing work.

Qualified name (CH.ifa.draw.*) Fan-in
 contrib.ComponentFigure.displayBox 48

 contrib.CustomToolBar.add 16
 contrib.DiamondFigure.containsPoint 15

 contrib.GraphicalCompositeFigure.displayBox 49
 contrib.html.HTMLTextAreaFigure.containsPoint 15

 contrib.html.HTMLTextAreaFigure.moveBy 12
 contrib.PolygonFigure.containsPoint 15

 contrib.PolygonFigure.displayBox 48
 contrib.PolygonFigure.pointCount 12
 contrib.TextAreaFigure.displayBox 53

 contrib.TextAreaFigure.moveBy 12
 contrib.TriangleFigure.containsPoint 15

 contrib.zoom.ScalingGraphics.fillRect 11
 figures.BorderDecorator.displayBox 48

 figures.ElbowConnection.updateConnection 11
 figures.EllipseFigure.displayBox 50
 figures.GroupFigure.displayBox 47
 figures.ImageFigure.displayBox 47

 figures.LineConnection.updateConnection 12
 figures.NullFigure.displayBox 47

 figures.PolyLineFigure.containsPoint 15
 figures.PolyLineFigure.displayBox 48

 figures.PolyLineFigure.pointAt 15
 figures.RectangleFigure.displayBox 53

 figures.RoundRectangleFigure.displayBox 52
 figures.TextFigure.displayBox 53

 figures.TextFigure.moveBy 12
 framework.ConnectionFigure.updateConnection 11

 framework.DrawingView.addToSelection 11
 framework.DrawingView.clearSelection 31

 framework.DrawingView.selection 17
 framework.Figure.containsPoint 15

 framework.Figure.moveBy 13
 framework.Figure.size 10

 framework.Handle.displayBox 12
 standard.AbstractCommand.view 46

 standard.AbstractFigure.containsPoint 16
 standard.AbstractFigure.moveBy 13

 standard.AbstractFigure.size 10
 standard.AbstractHandle.displayBox 12

 standard.AbstractTool.drawing 19
 standard.NullDrawingView.selection 14

 standard.NullHandle.NullHandle 11
 standard.RelativeLocator.RelativeLocator 10

 standard.StandardDrawing.displayBox 51
 standard.StandardDrawingView.addToSelection 11

 standard.StandardDrawingView.selection 16
 util.CommandMenu.CommandMenu 15

F. Utility methods for JHOTDRAW

List of the utility methods for JHotDraw

Qualified name (CH.ifa.draw.*) Fan-in
 framework.FigureEnumeration.hasNextFigure 96

 framework.FigureEnumeration.nextFigure 92
 standard.FigureAndEnumerator.hasNextFigure 96

 standard.FigureAndEnumerator.nextFigure 92
 standard.FigureEnumerator.FigureEnumerator 26

 standard.FigureEnumerator.hasNextFigure 96
 standard.FigureEnumerator.nextFigure 92

 standard.HandleEnumerator.HandleEnumerator 21
 standard.ReverseFigureEnumerator.hasNextFigure 96

 standard.ReverseFigureEnumerator.nextFigure 92
 standard.SingleFigureEnumerator.hasNextFigure 96

 standard.SingleFigureEnumerator.nextFigure 92
 standard.SingleFigureEnumerator.SingleFigureEnumerator 20
 util.collections.jdk11.CollectionsFactoryJDK11.createList 26

 util.collections.jdk11.IteratorWrapper.hasNext 39
 util.collections.jdk11.IteratorWrapper.next 39
 util.collections.jdk11.ListWrapper.contains 12
 util.collections.jdk11.ListWrapper.iterator 31

 util.collections.jdk11.ListWrapper.size 38
 util.collections.jdk11.SetWrapper.iterator 10

 util.collections.jdk12.CollectionsFactoryJDK12.createList 26
 util.CollectionsFactory.createList 26

 util.CollectionsFactory.current 81
 util.ReverseListEnumerator.hasNext 39

 util.ReverseListEnumerator.next 39

G. Selected seed methods for TOMCAT

List of the selected seed methods for Tomcat/Catalina

Qualified name (org.apache.*) Fan-in Aspect

catalina.ant.AbstractCatalinaTask.execute() 14
Contract enforcement

+ Command

catalina.ant.AbstractCatalinaTask.execute(String) 14
Contract enforcement

+ Command
catalina.authenticator.AuthenticatorBase.stop() 27 Lifecycle

catalina.authenticator.SingleSignOn.stop() 26 Lifecycle
catalina.authenticator.AuthenticatorBase.start() 26 Lifecycle

 catalina.authenticator.SingleSignOn.start() 25 Lifecycle
 catalina.authenticator.SSLAuthenticator.stop() 26 Lifecycle
 catalina.authenticator.SSLAuthenticator.start() 25 Lifecycle

catalina.connector.ResponseFacade.isCommitted() 55

Contract enforcement/consistent
behavior
+ Façade

catalina.connector.HttpResponseFacade.sendError(..)
 - overloaded 19/24 Façade

catalina.connector.ResponseWriter.println(..)
 - overlaoded 88 Wrapper

 catalina.connector.ResponseWriter.flush() 12 Wrapper
catalina.connector.HttpResponseFacade.addHeader

(String, String) 10 Façade
catalina.connector.ResponseWriter.print(..)

 - overloaded 29 Wrapper
catalina.core.ContainerBase.fireContainerEvent

(String, Object) 69 Observer
 catalina.core.ContainerBase.stop() 33 Lifecycle

 catalina.core.StandardContext.stop() 30 Lifecycle
 catalina.core.ContainerBase.start() 30 Lifecycle

 catalina.core.StandardService.stop() 29 Lifecycle
 catalina.core.StandardContext.start() 27 Lifecycle
 catalina.core.StandardEngine.stop() 27 Lifecycle

 catalina.core.StandardWrapper.stop() 27 Lifecycle
 catalina.core.StandardServer.stop() 26 Lifecycle
 catalina.core.StandardService.start() 26 Lifecycle
 catalina.core.StandardPipeline.stop() 26 Lifecycle
 catalina.core.StandardServer.start() 25 Lifecycle

 catalina.core.StandardWrapper.start() 25 Lifecycle
 catalina.core.StandardPipeline.start() 25 Lifecycle
 catalina.core.StandardEngine.start() 25 Lifecycle

 catalina.core.ContainerBase.findChild(String) 23 Composite
 catalina.core.ContainerBase.findChildren() 21 Composite

 catalina.core.ContainerBase.removeChild(Container) 11 Composite
 catalina.core.ContainerBase.addLifecycleListener

(LifecycleListener) 11 Observer + Lifecycle
 catalina.core.StandardValveContext.invokeNext

(Request, Response) 10 Chain of responsibility
 catalina.core.ApplicationContext.log(String, Throwable) 10 Logging (for exception handling)
 catalina.core.StandardContext.removeChild(Container) 10 Composite

 catalina.realm.RealmBase.stop() 32 Lifecycle
 catalina.realm.RealmBase.start() 31 Lifecycle

Note: The analysis of the Tomcat/Catalina case-study is an ongoing work.
This list is not intended to be exhaustive or definitive but it is the result of a preliminary investigation.

H. Selected seed methods for TOMCAT- cont.

Qualified name (org.apache.*) Fan-in Aspect

 catalina.realm.JAASRealm.stop() 26

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.JDBCRealm.stop() 26

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.UserDatabaseRealm.stop() 26

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.JNDIRealm.stop() 26

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.MemoryRealm.stop() 26

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.DataSourceRealm.stop() 26

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.UserDatabaseRealm.start() 25

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.JDBCRealm.start() 25

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.JNDIRealm.start() 25

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.DataSourceRealm.start() 25

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.MemoryRealm.start() 25

Lifecycle +
contract enforcement/consistent

behavior

 catalina.realm.JAASRealm.start() 25

Lifecycle +
contract enforcement/consistent

behavior
 catalina.realm.RealmBase.log(..) - overloaded 16/11 Logging

 catalina.logger.FileLogger.log(String) 29 Logging
 catalina.logger.SystemOutLogger.log(String) 29 Logging
 catalina.logger.SystemErrLogger.log(String) 29 Logging

 catalina.logger.LoggerBase.stop() 27 Lifecycle
 catalina.logger.FileLogger.stop() 26 Lifecycle

 catalina.logger.LoggerBase.start() 26 Lifecycle
 catalina.logger.FileLogger.start() 25 Lifecycle

 catalina.loader.WebappClassLoader.stop() 26 Lifecycle
 catalina.loader.WebappLoader.stop() 26 Lifecycle
 catalina.loader.WebappLoader.start() 25 Lifecycle

 catalina.loader.WebappClassLoader.start() 25 Lifecycle
 catalina.valves.ExtendedAccessLogValve.stop() 26 Lifecycle

 catalina.valves.JDBCAccessLogValve.stop() 26 Lifecycle
 catalina.valves.AccessLogValve.stop() 26 Lifecycle
 catalina.valves.AccessLogValve.start() 25 Lifecycle

 catalina.valves.ExtendedAccessLogValve.start() 25 Lifecycle
 catalina.valves.JDBCAccessLogValve.start() 25 Lifecycle

I. Selected seed methods for TOMCAT- cont.

Qualified name (org.apache.*) Fan-in Aspect
 catalina.util.LifecycleSupport.fireLifecycleEvent

(String, Object) 43 Observer (+ Lifecycle)
 catalina.util.LifecycleSupport.addLifecycleListener

(LifecycleListener) 20 Observer (+ Lifecycle)
 catalina.util.LifecycleSupport.removeLifecycleListener

(LifecycleListener) 20 Observer (+ Lifecycle)
 catalina.util.LifecycleSupport.findLifecycleListeners() 16 Observer (+ Lifecycle)

 catalina.startup.Catalina.stop() 29 Lifecycle
 catalina.startup.Embedded.stop() 29 Lifecycle
 catalina.startup.Catalina.start() 26 Lifecycle

 catalina.startup.Embedded.start() 26 Lifecycle
 catalina.session.StoreBase.stop() 27 Lifecycle
 catalina.session.JDBCStore.stop() 26 Lifecycle

 catalina.session.PersistentManagerBase.stop() 26 Lifecycle
 catalina.session.StandardManager.stop() 26 Lifecycle

 catalina.session.StoreBase.start() 26 Lifecycle
 catalina.session.PersistentManagerBase.start() 25 Lifecycle

 catalina.session.StandardManager.start() 25 Lifecycle
 catalina.session.JDBCStore.start() 25 Lifecycle

 catalina.session.StoreBase.log(String) 13 Logging
 catalina.Lifecycle.stop() 34 Lifecycle (secondary interface)
 catalina.Lifecycle.start() 28 Lifecycle (secondary interface)

 catalina.Session.isValid() 26 Session management
 catalina.session.StandardSession.isValid() 26 Session management

 catalina.Container.findChild(String) 23 Composite
 catalina.Container.findChildren() 21 Composite

 catalina.Lifecycle.addLifecycleListener(LifecycleListener) 12 Observer (+ Lifecycle)
 catalina.ServerFactory.getServer() 11 Singleton

 catalina.Container.removeChild(Container) 10 Composite
 catalina.ValveContext.invokeNext(Request, Response) 10 Chain of responsibility

 ajp.tomcat4.Ajp13Connector.stop() 26 Lifecycle
 ajp.tomcat4.Ajp13Processor.stop() 26 Lifecycle
 ajp.tomcat4.Ajp13Processor.start() 25 Lifecycle
 ajp.tomcat4.Ajp13Connector.start() 25 Lifecycle

 ajp.tomcat4.config.BaseJkConfig.log(String) 13 Logging
 coyote.tomcat5.CoyoteResponseFacade.isCommitted() 39 Consistent behavior (+ façade)
 coyote.tomcat4.CoyoteResponseFacade.isCommitted() 39 Consistent behavior (+ façade)

 coyote.tomcat5.CoyoteConnector.stop() 27 Lifecycle
 coyote.tomcat4.CoyoteConnector.stop() 26 Lifecycle
 coyote.tomcat5.CoyoteConnector.start() 25 Lifecycle
 coyote.tomcat4.CoyoteConnector.start() 25 Lifecycle

 coyote.tomcat4.CoyoteResponseFacade.sendError(..)
 - overloaded 24 Façade

 coyote.tomcat5.CoyoteResponseFacade.sendError(..)
 - overloaded 24 Façade

 coyote.tomcat4.CoyoteResponse.isCommitted() 23 Consistent behavior

 jk.config.BaseJkConfig.log(String) 13
Logging

(debugging, exception handling)
 naming.resources.ResourceAttributes.put(String, Object) 10 Consistent behavior

 tomcat.util.log.Log.isDebugEnabled() 173 Logging
 tomcat.util.log.Log.error(..) - overloaded 128 Logging

 tomcat.util.compat.JdkCompat.chainException
(Throwable, Throwable) 34

Exception handling
(consistent behavior/contract

enforcement)

J. Selected seed methods for TOMCAT- cont.

Qualified name (org.apache.*) Fan-in Aspect

 tomcat.util.compat.Jdk14Compat.chainException
(Throwable, Throwable) 34

Exception handling
(consistent behavior/contract

enforcement)
 tomcat.util.log.Log.isTraceEnabled() 28 Logging

 tomcat.util.log.Log.info(..) - overloaded 24 Logging
 tomcat.util.log.Log.debug(..) - overloaded 18 Logging - debugging
 tomcat.util.log.Log.warn(..) - overloaded 12 Logging - warning

