Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

Software ENgineering

SEN Release and deployment at Planon: a case study

R.L. Jansen, G. Ballintijn, S. Brinkkemper

Report SEN-E0504 MARrRcH 2005

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)
Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

Release and deployment at Planon: a case study

ABSTRACT

This case study report describes the research results of a case study at Planon into the
processes of development, release, and deployment. The research was done to document the
release and deployment processes at Planon, to uncover strengths and weaknesses in these
processes, and to compare Planon to other product software vendors. The case study was
performed by doing interviews and examining development documentation, Planon software,
and internally used tools. The results of the case study are organizational descriptions, Planon
software descriptions, and the descriptions of the development, release, and deployment
processes. The main conclusions of the case study are twofold. First the case study shows that
striving for more integrated software knowledge management can relieve the processes of
release and deployment. Secondly, the case study displays that extensive variation
management can effectively increase the customer base for a software vendor.

2000 Mathematics Subject Classification: 68N99

1998 ACM Computing Classification System: D.2.7

Keywords and Phrases: Planon, release, deployment, software development, software configuration management,
product data management

Note: This work was carried out under project SEN1 - Deliver.

Release and Deployment at Planon: A Case Study

Slinger Jansen
Center for Mathematics and Computer Science
r.l.jansen@cwi.nl

Gerco Ballintijn Sjaak Brinkkemper
Center for Mathematics and Computer Science Utrecht University
g.ballintijn@cwi.nl sjaak@cs.uu.nl

March 7, 2005

Abstract

This case study report describes the research results of a case study at Planon into the processes of
development, release, and deployment. The research was done to document the release and deployment
processes at Planon, to uncover strengths and weaknesses in these processes, and to compare Planon
to other product software vendors. The case study was performed by doing interviews and examining
development documentation, Planon software, and internally used tools. The results of the case study
are organizational descriptions, Planon software descriptions, and the descriptions of the development,
release, and deployment processes. The main conclusions of the case study are twofold. First the case
study shows that striving for more integrated software knowledge management can relieve the processes
of release and deployment. Secondly, the case study displays that extensive variation management can
effectively increase the customer base for a software vendor.

1 Introduction

For vendors of product software it is becoming more and more difficult to manage and control the software
configurations of all its users at the customer’s site. It is labour intensive and error-prone to (semi)automatically
register detailed lists of the software artefacts in use by each customer. To alleviate this problem the Deliver
project proposes an Intelligent Software Knowledge Base that contains all facts about all artefacts together
with their relevant attributes, relations and constraints. In this way, high-quality software configurations
can be calculated automatically from a small set of key parameters. It also becomes possible to pose ‘what-
if’ questions about necessary or future upgrades of a customer’s configuration. This document describes a
case study performed at Planon into the processes of release and deployment. The results of the case study
are presented, existing of process descriptions of the development, release and deployment processes at
Planon, a comparison to the Intelligent Software Knowledge Base, and an analysis of the results.

To study and define the scope of these problems in more detail we have performed a number of case
studies at software developers and vendors to uncover the problems in the areas of software release and
deployment. To find these problems we focus on the processes of development, release, and deployment,
and the tools that support these processes. From these case studies we gather problems from the field and
knowledge about tools used to support the afore mentioned processes [1]. The problem and process de-
scriptions found during the case studies enable further research into the processes of development, release,
and deployment of product software.

The contribution of this report is threefold. First, it describes the case study performed at Planon, an
international software house that produces Facility Management and Real Estate management software for
organisations. It describes the processes of development, release, and deployment for two product versions
of Planons flagship product and the tools that support these processes. Secondly, this report displays the
strengths and weaknesses of Planon in the area of release and deployment. Thirdly, this report displays
what problems in the area of release and deployment have not yet been solved by Planon.

The report is built up as follows. Section 2 describes the aims of the Deliver research project in general,
the aims of this case study, and describes the validity of the case study. Section 3 describes the organiza-
tional structure of Planon, its products, and gives a broad outline of the development processes at Planon.
Sections 4 and 5 provide detailed descriptions of the development, release, and deployment processes for
Planon 4 and Planon 5, from hereon referred to as P4 and P5. Finally, Section 6 discusses the processes
Planon implements, the strengths and weaknesses of these processes, and the results of the case study.

2 Research Approach to the Case Study

This section describes the aims and validity of the case study at Planon. The case study, performed by
the Deliver research group, attempts to uncover problems in the field of software release and deployment,
by researching those fields at Planon. Planon is a rapidly expanding company that produces software to
support facility management. This section first describes the conceptual model around which the case study
is centered, and how it relates to the Deliver aims. The section continues by describing the aims of the case
study and the actual research in more detail. To conclude this section describes the validity of the case
study.

2.1 Deliver

The Deliver project studies the delivery, deployment and maintenance phases of software products. The
research project is funded by NWO Jacquard and is based at the Centrum voor Wiskunde en Informatica
(CWI). The focus of the project is as follows [2]:

“For vendors of product software it is becoming more and more difficult to manage and control the
software configurations of all their users at the customer’s site. It is labour intensive and error prone to
(semi) automatically register detailed lists of the software artefacts in use by each customer. To alleviate
this problem the Deliver group proposes an Intelligent Software Knowledge Base (ISKB) that contains
all facts about all artefacts together with their relevant attributes, relations, and constraints. In this way,
high quality software configurations can be calculated automatically from a small set of key parameters.
It also becomes possible to pose ‘what-if’ questions about necessary or desired upgrades of a customer’s
configuration.

Managing software configurations is, however, only part of the story. They still have to be delivered
to customers. To facilitate this delivery, the Deliver project studies how the computed difference between
an existing configuration and a desired configuration can be used for the Web based Delivery of upgrades,
furthermore, delivery protocols and implementation are studied. The results of the project are scientific
publications, case studies and, in collaboration with industry, prototype tools.”

The main aim of Deliver is to ease software release and deployment effort by managing software knowl-
edge explicitly. The main areas of research for the Deliver project are configuration management, software
products, and software deployment. The main focus of the Deliver group lies on large component based
product software, such as ERP (Enterprise Resource Planning) systems. To manage this kind of software
effectively, it is essential to carefully administrate the specific combination of standard components, tai-
lored components, and customer specific components. The Deliver group offers an external assessment
of release and deployment processes within the Software industry. These case studies supply the Deliver
research project with knowledge about the problems in the industrial fields of release and deployment of
software.

2.2 Definitions and Conceptual Model

Figure 1 displays part of the Deliver view of software delivery. At present software is delivered to the
customer through some media (CD, floppy, Internet, etc) and then deployed at the customer site. The soft-
ware vendors often do not have any knowledge about the customers’ installed situation. Deliver sees the
process of software delivery differently. Figure 1 shows the customer and vendor sharing knowledge about
software artefacts by keeping a vendor and a customer knowledge base. The customer software knowl-
edge base contains information on all deployed software artefacts at the customer site, whereas the vendor
software knowledge base contains information on all deployable software available from that vendor. This
knowledge base holds information about components, deployment restrictions, configuration details, etc.

Web Based Deployment
i Local SKB

Customer 1

T Customer N

Central Software Knowledge Base

Figure 1: The Deliver View of Software Delivery

This knowledge can be used by the customer to deploy software, to ask ‘what-if’ questions, and to keep up
to date with the most recent versions of software.
Two characteristics of this architecture improve the delivery process:

e The use of the Intelligent Software Knowledge Base (ISKB) that contains exhaustive information
about all software artefacts and their constraints.

e A web based delivery process to deploy, upgrade, and replace software components based on the
information in the ISKB.

By implementing the ISKB, many tasks that are part of the processes of release and deployment will
be supported, so they can be done (semi-)automatically. Performing these tasks, such as consistent and
complete deployment of components, will alleviate the workload on the software vendor and reduce the
complexity of the release and deployment processes, thereby decreasing time-to-market. The release and
deployment processes are defined as follows:

e Release -Hoek et al. [3] defines software release as “to package and make a software system
available to a customer.” Looking at this definition, the process of releasing is not only the finishing
step of development, but also packaging customer-specific installations.

e Deployment - According to Hall et al. [4], the deployment process potentially contains the “deliv-
ery, assembly, and maintenance of a particular software system at a site.” The deployment process
description thus consists of detailed descriptions of the processes of delivery, assembly, and mainte-
nance.

The processes described above have been used to map and direct the research because these processes
are the prime focus of Deliver. Since all these processes are part of the software life cycle, the complete
life cycle has been studied as well.

2.3 Intelligent Software Knowledge Base

The Intelligent Software Knowledge Base (ISKB) [2] stores exhaustive information on software artefacts
and assists the software vendor in many ways during development. The focus of the Deliver group, how-
ever, lies in the areas of release and deployment. The ISKB implements features from product data manage-
ment (PDM), software updaters [1], software deployment tools, and software configuration management.
In this chapter the features implemented in our ISKB that are relevant to this case study are explained.

2.3.1 Structure

The ISKB supports and improves the processes of release and deployment. However, each of these pro-
cesses poses different challenges for an implementation of an ISKB. Support for the release process with

the ISKB is founded on the idea that the artefacts of every software system are stored in some kind of
repository for development. The ISKB assists developers performing development tasks, such as product
composition. These operations require knowledge about components and the relationships among them [5].
This software knowledge is stored in a versioned database and is accessible to all development personnel.

The knowledge stored in this development section of the ISKB can be published once a release is
performed. This knowledge is publicly available for the ISKB to assist the process of delivery and de-
ployment. The delivery process contains processes such as media creation, web delivery, and ‘what-if’
qguery handling. Finally, to assist and support the deployment of software at a customer site, a customer
side knowledge base holds all the information on deployed software. This part of the ISKB assists the cus-
tomer in finding out what components are required to get functionality not yet deployed on the customers’
machine.

2.3.2 Usage

The following list summarizes some features and processes that are improved by implementing an ISKB
as proposed by Deliver.

e \ersion Control System (VCS) -The Deliver project is not planning to implement yet another
VCS; Deliver assumes, however, that products are stored in some kind of repository. This repository
typically stores different versions of source code that can be extracted at will. Relevant to the Deliver
group is whether dependencies are administered between different versions of sources in a VCS. This
enables delivery of a component or software package with compatible sources, even if they are from
different released software versions. The same holds for inter-component dependencies. The ISKB
uses a feature description language (FDL) [6] that describes dependencies among components.

e Build Systems -The knowledge stored in the ISKB can be used to build products as well. When a
product is designed, it is useful to use the dependency relationships between source files to assure
consistency and completeness. The ISKB is able to provide dependency information to build systems
or implements its own build system.

e Customer Configuration and ‘what-if’ questions - The ISKB implements mechanisms to generate
an installation for a customer depending on the components the customer has installed. This means
that some kind of querying mechanism is needed to generate a list (or tree) of what components need
to be installed at the customer site to provide functionalities a customer has requested, or a list must
be generated stating the conflicting components.

e Customer Installation - When the software is delivered to the customer site, a tool that deploys,
configures and possibly builds the software is needed. Rollback functionality is a feature that is
required for configurability. One of the main features Deliver wishes to see in the ISKB is support
for web delivery. The ISKB should support all features mentioned here through some kind of web
interface.

e Software update and Installer Media Creation -The ISKB should enable some kind of mechanism
to do updates, and detect conflicting and inconsistent sets of components. There should also be some
kind of auto update facility, so the applications based on the ISKB should support push, automatic
pull, and pull mechanisms. The applications built around the ISKB should also support some kind of
installer creation. This installation package can then be transported, through some media. It should
be possible to create these installers automatically.

The list provided displays examples of process improvements and support by the implementation of an
ISKB. The list does not only serve the purpose to inform, but also to compare to the solutions of Planon.
The research will show that many of the concepts used by Planon are closely related or even similar to the
concepts of the ISKB.

2.4 Research Questions

The main aim of our case study is to see the techniques applied by Planon and position them in our broader
study of software release and deployment. To reach this aim we have the following research questions:

e What do the processes of Release and Deployment look like for PA®e want to see how P4 is
developed and whether the approach to P4 is reused for P5. The techniques used for P4, though less
advanced than those used for P5, supply a basis for studying P5 and the techniques used for release
and delivery.

e What do the processes of Release and Deployment look like for P&%e want to see how P5 is
developed and what the processes of release and deployment will look like upon release.

e Can these processes be improved by using an ISKB or applying Deliver concept&mally, we
want to see if Deliver concepts can be applied to the release and deployment of P5.

We have attempted to get answers to these questions as precise and complete as possible. To do so a
case study database and a case study protocol were created. To achieve correctness of the results we used
the technique of cross-referencing our results. As a final check the work was critically reviewed by Planon.
The case study results can widely be applied to other software vendors, because, even though Planon is
active in one problem domain, its techniques are similar to software vendors in other domains. The case
study protocol states that all information gained through interviews or document study should be double
checked. Direct observations were critically reviewed before entrance into the database.

2.5 Research Methods

During the case study facts have been collected to answer the research questions. The means through which
the Deliver group gathered these facts were:

¢ Interviews - The main research questions have been answered in part during the interviews with the
people responsible for the development and usage of the Planon product.

e Studying the software -During our research the tools used to support development, release, and
deployment were studied. Tools, such as the Release Wizard tool, were tested, evaluated, and docu-
mented.

e Document study -Planon provided us with guideline documents such as [7]. These documents were
studied and added to our case study database.

e Direct observations -Direct Observations were made during our presence at Planon. These direct
observations were later affirmed during the interviews.

3 Planon

Planon International is an international software vendor that produces Facility Management and Real Estate
management software for organisations. Planon, founded in 1984, currently has a customer base of over
900 and has shown an annual growth of between 30 percent and 50 percent in employees over the last
seven years. Planons products are marketed through four Planon subsidiaries and eight partners based
in the Netherlands, Belgium, Germany, UK, Switzerland, and Austria. Planon made approximately 1.2
million profit with a revenue of 12 million in 2003. At present Planon employs 160 full time employees
(see Figure 2).

Facility management is the discipline of ensuring functionality of the built environment by integrat-
ing people, place, process and technolog¥he complex process of facility management encompasses
activities such as long-range and annual facility planning, facility financial forecasting, real estate acquisi-
tion and/or disposal, work specifications, installation and space management, maintenance and operations
management, and telecommunications integration, security, and administrative services. Planon develops
client-server software (two- and three-tier architectures) with which it attempts to support the processes of
facility management. Finally, Planon has implemented a set of components that can be used to communi-
cate with other applications through XML interfaces.

Planon observes the following principles for its products. To begin with Planon uses the principle that
common data can be used among different processes. The common data is therefore only entered once into

Linternational Facility Management Organisation - www.ifma.org

Planon Software
168 Employees

International Development Services Financial Department,| | Internal Services
Sales (40) (48) CRM, And Sales (44)
(33) (13)

‘ England 8 ‘ ‘ Planon 4 (9) ‘ Advice and Sales (10) Facility w3
it (1

Implementation

‘ Belgium 8 ‘ ‘ Planon 5 (21) ‘ @9 ‘ Marketing (3) ‘
ICT projects (10)

‘ Germany 9 ‘ ‘ Database (4) ‘

‘ Services 8 ‘ ‘Documemation (3)‘

Quality Consultancy FM
Assurance (3) @)
Consultancy RE
@

Figure 2: Planon Organisational Chart

“anon Traine

Figure 3: Facility Management Tools developed by Planon

the data model that is central to all Planon software. Secondly, because so many of the facility management
processes are affected by Planon software products, Planon has developed its own implementation frame-
work. With this framework a specific implementation path can be designed for a customer. Finally, Planon
trains the application managers at customers on a regular basis, as to provide them with more competence
with the Planon products.

3.1 Planon Facility Management Software Products

The separate processes that make up the combined activities of facility management are interdependent and
consequently require an integral and coordinated management approach. According to Planon, significant
efficiency improvements can only be achieved if facility management is supported by software that enables
them to manage this integration and to respond faster and better to shifts in ‘customer’ requirements. To
support in this need, Planon has created the Planon FacilitySolution. The Planon FacilitySolution consists
of several product groups which together form a fully integrated facility management solution through a
single central database. Planon FacilitySolution includes the following module groups (see Figure 3):

e Planon FacilityOffice (FO) - Planon FacilityOffice is aimed at supporting facility management
personnel and management. The twentytwo Planon FacilityOffice modules have been designed to

streamline and optimize internal facility management processes. This applies to both front and back
office activities. Examples of the twentytwo modules are FO workorders, FO reservations, FO space
management, and FO property management.

e Planon FacilityNet (FN) - With Planon FacilityNet it is possible to offer a wide range of facil-
ity management services to customers through an intranet or the internet. The FacilityNet mod-
ules are aimed at improving communication with the facility management customer and making the
customer-oriented processes more efficient, by offering Planon functionality as a webservice.

e Planon FacilityTalk (FT) - Planon FacilityTalk is the generic solution for the creation of inter-
faces/links between Planon and other software systems/databases, such as financial, personnel and
access control systems.

¢ Planon FacilityMobile (FM) - Planon FacilityMobile, also referred to as FacilityTools, include sev-
eral specific programs which operate on mobile platforms, such as Palmtops and barcode registration
equipment. These applications can exchange data with the Planon database through a small server
built with the components from Facility Talk.

The product that is described here, is P4. P4 has a two-tier architecture, consists of around 600,000 lines
of code, is developed in Delphi, and works only under Windows. Planon has recently begun to develop P5,
with a three-tier architecture, developed using J2EE. The first release of P5, planned for 2005, will contain
a subset of the functionality of P4. Eight of the twenty two modules will be implemented by the time P5
is released. P4 and P5 use the same datamodel, to create interoperability during the transition period. The
first release of P5 will be accompanied by the last release of P4. Planon software products are available in
four languages. The software is delivered by a consultant that also performs the post installation tasks such
as configuration, connection to other external systems, and creating the first data entries.

3.2 Planon Customers

Planon has 900 medium to large customers that deal with facility management on a large scale. Example
customers are Achmea, ASML, Dutch Railways, KPN, Philips, and Shell. When a customer buys P4, the
customer gets to choose the modules and the number of licenses for each module. Licenses are floating
and user specific, i.e., a customer can have special roles for users of Planon software, of which a limited
number can be logged in at the same time. Planon manages its customer relationships through the Planon
Customer Information System (PCIS). PCIS stores, among the customer data, the modules and the number
of licenses purchased by a customer.

3.3 Planon Employees

Planon has been growing continuously since its establishment in 1995. Currently Planon employs 168
people in four countries, as can be found in Figure 2. The organisational chart shows the division of Planon
departments. There are three Planon locations, Zoetermeer, Nijmegen, and Wijchen, the Netherlands. The
development department is in Wijchen, whereas the Zoetermeer location is a base for sales personnel to
establish a larger customer base in the Randstad area of the Netherlands. The departments of interest to us
are the development department and the services departments, because these departments are responsible
for release and deployment of products.

3.4 Planon Research and Development

Planon development, as can be seen in Figure 2, is divided up into 5 teams. There are two Planon teams (4
+5), a database team, a quality assurance team, and a documentation team. There are more people working
on P5 at present, since that is the new version of Planon, whereas the others are performing maintenance and
development tasks on P4. Interestingly, there is only one database team to support these two development
teams. The reason for this is that the Planon products both need to work on the same database until all
required functionalities of P4 have been implemented in P5. The quality assurance team checks the daily
build version and strives to deliver a complete build each six weeks together with the documentation team,
who provide the right documentation for a release.

Specs Design

‘ Intake, evaluation and planning of specs

Increase
Release
Number

Implement

Disapprove

Testing by Specs Designer ‘

Testing by QA

Approve

Freeze Datamodel

Planon Development Cycle

Figure 4: Planon Development Cycle

Planon develops all its products according to the cycle depicted in Figure 4. The picture shows that
a designer starts by describing the requirements. These requirements are then implemented and tested by
the designer. Quality assurance will then check and approve or disapprove the changes. Once approved by
quality assurance, the product can be released. If the data model has changed for the new release the data
model is frozen for that release. Once frozen, it can only be changed by increasing the matchcode of the
data model (see Section 4.2). The cycle shown here is the cycle for a large release. For a smaller release,
called builds within Planon, the database model is frozen only when necessary, and the build number is
increased instead of the release number.

Planon uses Planon Facility Office to support its development team and two Facility Office environ-
ments have been implemented, being PCIS and DIS. DIS stands for Development Information System and
is used during development of a new release only. The DIS is used by quality assurance, developers, and
functional specs designers to supply them with information about bugs in the system. These groups also
use CaliberRM, a requirements management tool, to evaluate, gather, and share information about require-
ments. None of the systems contain any workflow and all are only used to share information among the
three groups that develop a product release.

The PCIS (Planon Customer Information System) environment is used throughout Planon. Develop-
ment uses PCIS when bugs are reported which cannot be solved by customer support. The bug report is
first evaluated by quality assurance to judge whether this is a design problem or a user problem. PCIS is
used to store all information about and interaction with a customer. For more information on PCIS, see
Section 4.3.1.

4 P4: Development, Release and Deployment

4.1 Development

This Section describes versioning, the software architecture, and the software structure of P4. P4 is devel-
oped using Delphi, a rapid application development system, based on the Pascal programming language.
Planon uses Visual Source Safe for software configuration management. Much of the version structure

used for P4 will also be used for P5 and shall be explained below.

4.1.1 \ersioning

P4 is released yearly. After a release, a new branch is started with a higher release number. For example,
when the new release 4.33 comes out, all new functionality has been added to 4.33 while all bug reports are
solved on version 4.32 and if necessary on 4.33 as well. Besides the yearly release, P4 is built and stored
in the release structure of Planon, as build numbers, e.g. 4.33.1.

While a new release is available, two of the previous major releases are still supported. There are three
types of changes that are still being done on previous releases:

e Bug fixes -When a customer experiences a standstill, Planon will attempt to fix the bug in an older
release. The reason for this is that the customer should not be forced to upgrade to a newer release.

¢ Availability of new components -If a new version of an important external component is released,
and customers indicate they wish to use that external component, Planon will test compatibility of
that component with the release used by that customer and, if necessary, changes are made to that
version.

¢ Small enhancements significantly increasing product quality 4n case an improvement is intro-
duced in a newer release of P4 and it can easily be applied to an earlier release, Planon might choose
to implement the improvement in an earlier release as well. This happens rarely, and usually at the
request of a customer.

Finally, once a release is not as widely used anymore the release becomes unsupported. In our example
in Figure 8, release 4.30 will soon no longer be supported. From then onward customers are required to
update when they wish to get support. P4 has seen new releases on a yearly basis, where the actual release
of 4.33 to customers, which is now in development, will be in 2005.

4.1.2 Software Architecture

P4 has been implemented using a two-tier architecture, displayed in Figure 5. The four components,
FacilityOffice, FacilityMobile, FacilityTalk, and FaciltiyNet all access the database directly. FacilityNet is
approached through a browser, whereas FacilityOffice represents the clients using the Planon executable.
FacilityTalk is a separately running application that can accept incoming requests by (a number of times per
minute) periodically reading all the files in a special folder with the use of XML interfaces. FacilityMobile

is also a separately running server and receives connections from mobile appliances.

A clear downside of this architecture is that each tool addresses the database directly. If the datamodel
changes even slightly, all clients and all servers (FacilityMobile, FacilityTalk, and FacilityNet) need to
be reprogrammed with new interfaces. One of the main requirements for P5 is to solve this problem by
building a three-tier architecture that decouples the database from the clients.

P4 is extensible through FacilityTalk. Other components can communicate with Planon products, for
instance to create user accounts through Microsoft Windows domains instead of the FacilityOffice user
manager. FacilityOffice is highly customisable and extensions are often required by customers. Facility-
Office can work with three different database engines, being Sybase, MS SQL, and Oracle.

4.1.3 Software Structure

A full installation of P4 consists of the following elements:

e License file -The license file is a coded file containing switches that activate modules in the Planon
executable. The license file is unique for each customer and is generated from a contract stored in
PCIS.

e Manuals - For a delivery of P4 there are manuals in each of the four language available.

e Planon.exe -The Planon executable contains all modules built for facility management by Planon.
The executable is delivered to all customers.

e Components

Web Clients
Browser;
Browser,

Browser,,

Back Office ERP ‘Clients’

Fileserver Clients T External ERP software,
Planon.exe FO,

! External ERP software,
ol o (K]

. : External ERP software,,

Mobile Clients

Mobile App,
Mobile App,

r\.ﬁobwle App,

Figure 5: P4 software architecture

— External Tools - External tools are components that are required for certain configurations, such
as viewers like the Inso extension. External components are delivered to the customer through
three channels. The component can be included in the Planon package, Planon functions as a
reseller of the external component, or the customer can buy the product separately from Planon.

— Incorporated tools - Incorporated tools are always included in the delivery, and are regularly
included in Planon.exe.

e Language File(s) -Finally, a language file is included to provide customers of the system with the
language they purchased.

The main variabilities are expressed by the license file, the external tools, and the language files. The
license file states what external components have also been activated for a customer and what languages are
available. At run-time the software will determine and set all the pointers to the right external components
and pick the right language files. If external components have been purchased by the customer separately
from Planon, the Planon deployment consultant can set the pointers to the right location for that component.

4.2 Release

Planon uses a versioned release structure to store all its deliverables. Once every six weeks the daily build
of P4, which is used for testing, is stored in the release structure by quality assurance personnel. These
builds get a number, such as 4.32.2 for the second build of version 4.32. Once these builds have been stored
in the release structure they can be packaged into a product by the Release Wizard tool.

During development the data model is constantly changing. Such changes are recorded in conversion
scripts. When changes are made to the data model that make it incompatible to previous versions of the
software, the data model is stored with a new matchcode. A matching code for a build within a release
and the data model means that they are compatible. For release 4.32 (see Figure 6), for instance, builds
10, 20, 21, and 22 have matchcode B. Builds 30, 40, and 41-43 have matchcode C. A customer using
build 4.32.30 can update to build 4.32.43 without changing the data model, whereas a customer using build
4.32.22 cannot update to a higher build without updating the data model.

In June of 2004 Planon appointed a delivery manager to control released components and establish and
test the relationships among them. The delivery manager has documented all compatibility relationships of
external tools and components (FM, FO, FN, and FT). This knowledge can later be used to check whether
a version of Planon can work with a version of an external component, such as AutoCAD.

4.2.1 Release Structure

Planon uses Visual Source Safe (VSS) as a configuration management system for source code. Besides
source code, VSS also stores all available and published deliverables. These deliverables are assembled by
the Release Wizard tool to create packages for customers. A portion of the total release structure can be
seen in Figure 6 for P4.32. The Release structure stores all artefacts for each separate build of a release.

10

Release Structure

Release

>

—> 4.32

| Build independent

German ——————————— Documentation, Reports, Release notes

Englnsh ————— Documentation, Reports, Release notes
ch —————— Documentation, Reporls Release notes

S — Documentation, Reports, Release notes

> FacilityTools

— Matchcode A

Database Build

— Matchcode B

— Database Build
':: Conversion SQL files
CreateScripts
E Oracle
Sybase
MS sql server

Duits ———————————— Language File, Patchlist
Engels —— > Language File, Patchlist
Frans ———————— Language File, Patchlist
Nederlands —————————— Language File, Patchlist

[— Build 4.32.2.1

—— Build ...

— Build 4.32.2.10

— Matchcode ..

Figure 6: P4 release structure

To begin with, the build independent deliverables are stored, such as documentation, release notes, and
reports. Secondly, the release structure stores all separate builds for release 4.32, which are categorised
per database version. Each version of the database has a release number and a matchcode. Each of these
matchcode categories contains a different datamodel and contains data conversion scripts to update from
any previous database version to the current one. Builds that belong together with one version of a data
model, cannot be used with other versions because the underlying datamodels are too different. The match-
code is compared on each connection of a client to the database, generating an error when the matchcodes
are different.

4.2.2 Release Wizard tool

The Release Wizard tool creates a full deployment package from an .ini file, a license file, and the release
structure in VSS. The license file specifies what languages are selected and what components have been
activated for the customer. The Release Wizard tool also selects and includes the right language files. A
full installation created by the Release Wizard tool consists of the parts described in 4.1.3. The Release
Wizard tool then offers to burn these files onto a CD. In the Release Wizard tool is hardcoded what exter-
nal components are required for which module, what modules are required for other modules, and what
integrated tools must be delivered.

4.3 Deployment

The deployment of P4 at a customer is done by a consultant. The consultant first installs all external
components. Then the consultant performs the installation and connects Planon software to other business
information systems, such as human resources management systems using FacilityTalk. The delivery and
deployment processes are shown in Figure 7. Figure 7 displays the complete deployment process. First, a
contract in entered into PCIS. Then, the order bureau will generate a license file using the Planon Software
Licenser. The license file and an accompanying .ini file tell the Release Wizard tool what components
are required to create a package for this customer. Then, a consultant takes the package to the client
and deploys it on a server with a setup utility. The server then contains a database, the Planon.exe, and
optionally required components. The Planon.exe can be started by clients who can connect to a shared
network drive on the server. Finally, Planon has also created a tool called Pclient, which puts a start-up link
on the desktop to the shared drive and performs a number of checks on a client workspace.

11

Process Step Tool used Responsible party

Contract is entered into PCIS

l PCIS Order bureau
Licensefileand .ini fileare
generated for Release Wizard PSL Order bureau
Release Wizard packages files Release Wizard Order bureau
Burn license file and package .
onto CD Release Wizard Order bureau
Deploy CD to customer server PAsetup Consultant
Customer clientsinstall Pdli c
application from server client ustomer
Customer clients use application Planon.exe Customer
and server

Figure 7: P4 Delivery and deployment process and tools

4.3.1 Contracts and Deployment

PCIS is the Customer Relationship Management system (CRM). PCIS stores all information about cus-
tomers, such as their components, their languages for the software, the customers support call data, and the
customers used database version. All the information on customers is later used to derive the right license
file for that customer, and thus the required components. The PCIS contains information on what modules
are mutually exclusive, which is used by sales personnel when drawing up the contract.

4.3.2 Product Deployment and Configuration

To install and configure a Planon software product, the following tools are used.

PAsetupis the deployment tool used to install Planon onto a customer server. PAsetup copies all files
to the server and stores the directories where deliverables are deployed. PAsetup does some checking of
the environment and deploys external tools with their own installer scripts as well.

ThePclientis the program used by clients to deploy an activation link (shortcut) to the local workspace
for Planon. The Pclient registers components and creates a shortcut to the Planon executable on the servers
shared network drive. Pclient performs a number of checks before deployment occurs. The Borland
Database Engine (BDE), which is supplied with Pclient, is only installed if it does not already exist in
the customer configuration. If the BDE is already installed, the BDE version supplied with the Pclient is
installed somewhere else than the standard location for BDE. The Pclient also looks for AutoCAD on the
client platform for the use of some modules.

Planon delivers all modules together in a 11 Megabyte file ndPteatbn.exe This executable does not
include external components such as viewers (see also Section 4.1.3 on the product structure of Planon).
The executable is executed locally on the client machine, yet the Planon executable remains on the server
site.

New fields can be added to each Planon screen. Such fields can be of any type, thereby enabling
maximum flexibility. Such extra fields are already part of the database and do not present any update
problems.

4.3.3 Updates and Upgrades

Since Planon knows what modules have been purchased by a customer, a Planon consultant who upgrades a
configuration at any customer site knows exactly what external components, if any, must also be upgraded.

12

@ Branch, release and freeze
datamodel

O Stop supporting

430 431 4.32 433

4.30 431 4.32

Figure 8: Planon version structure

When a new component is purchased by a customer a consultant needs to come by to reconfigure the
system.

Within Planon a distinction is made between updates and upgrades. The dotted lines in Figure 8 indicate
that bug fixes are still performed on the Planon executable of older releases. An update occurs when a
customer goes from one build of a release to another, such as from 4.32.1 to 4.32.3. An “upgrade” means
that a customer goes up to a newer release, such as from 4.30 to 4.33. Updates can be performed by
customers by downloading the Planon executable and the database conversion scripts from an ftp site.
Upgrades are usually performed manually with the assistance of a consultant. Also when a customer
wishes to purchase new components, oftentimes a consultant must come by to reconfigure the software.
The reason for the requirement of reconfiguration is that some external components might no longer work
with a newer version of Planon. Since the entire Planon.exe file is replaced during an update, there are no
internal dependency issues besides the database dependency. The database dependency is solved with the
conversion scripts, which are only required if the matchcode for the database has changed.

4.3.4 Licensing

PSL stands for Planon Software Licenser and generates license files for customers and .ini files for the
Release Wizard tool. The PSL downloads all customer information from the PCIS required to generate a
license, such as the components that customer has purchased and the database version that customer will
be using. Hard coded into the PSL are rules on what modules require other modules and what modules
should be kept separate from each other.

5 P5: Development, Release and Deployment

P5 is a new product developed by Planon. P5 is planned to replace P4 within a few years and is built on a
three-tier J2EE architecture. Planon has multiple reasons for introducing P5. To begin with Planon wants
to integrate its four components, FO, FM, FN, and FT, into one package. Secondly, Planon wants to work
with a three-tier instead of a two-tier architecture, to solve a number of version problems. If, for instance,
the database changes slightly for P4, all module groups need adjusting, whereas P5 can circumvent this
through the application server. Also, Planon wanted to reimplement many of the features, since they had
been developed with differing requirements.

At the time of this case study, P5 is an unfinished and unreleased product. Many of the processes
described for P4, such as updates, have not yet been implemented for P5.

13

Application Server

FacilityOffice
FacilityTools
FacilityMobile

Authorised services

Metadata Services

BOM Services Database
Filter Services

Proxy List Services

User Services

Search Criteria
Services

Clients Server offers Database for
consume services persistency

services

Figure 9: P5 software architecture

5.1 Development

P5 is developed using JBuilder and CVS. P5 is built on the J2EE platform. When Planon started designing
the architecture for P5, they considered .Net and J2EE. They chose for J2EE because J2EE had been around
longer and was well described and documented. At present there are no tools used to support developers
besides CVS and JBuilder. The plan is to implement similar tools for P5 as have been implemented for P4,
such as the Release Wizard tool and the PSL.

5.1.1 Software Architecture

The three-tier architecture of P5, as displayed in Figure 9, provides an application server, a database server,
and clients. Clients connect to the application server to perform their operations. The application server
handles these operations and connects to the database to store and provide the right data. Clients can be
of any shape or size, because the application server can regulate and control all communication to the
database.

For P4 the Planon executable contains all business logic. For P5 much of the business logic has been
moved to the application server, such as authorisation services and database access routines. The advan-
tages of moving this logic to the application server are threefold. First, the client is thinner (smaller) which
makes it quicker to deploy. Secondly, the server can control requests and perform tasks such as load dis-
tribution over different servers. Finally, since clients do not approach the database directly anymore, many
compatibility issues have been solved. For example, in case an older version of a client attempts to ap-
proach a newer version of the server, the server can handle that request safely. For P4 this would simply
resultin an error.

In P4 all four components were separately sold and delivered, whereas for P5 all components are
delivered together. This approach has many advantages, such as the fact that there will no longer be
version problems between these four components, assuming they are released consistently to begin with.

Extensibility for P5 is facilitated through FacilityTalk. The functionalities of FacilityTalk for P5, such
as XML interfaces, are at present the same as for FacilityTalk in P4.

5.2 Release

Where VSS was the software configuration management system for P4, P5 uses CVS. Planon is planning to
use CVS as the source code repository, but also as the configuration management system for deliverables.
These deliverables can then be packaged by a tool similar to the Release Wizard tool. To simplify the
process of release, Planon will store a full release with all components (internal and external) as a branch
of a release tree, much like the release structure modelled in Figure 6. Because P5 has not yet seen a
release, no release structure has been designed or implemented yet for P5. However, since the delivery

14

of all components (including the database) will be delivered in one large EAR file, the release structure is
expected to be less complex than the release structure for P4.

The Delivery Manager is at present not working on P5 yet, however, he is planned to be in charge of
designing the release structure and use the knowledge from the P4 release process.

5.2.1 Software Structure

A P5 package will look as follows:

e Planon Application Server classes A package containing all components of the Application
Server, of which services are later activated and deactivated by the license file. The components
providing these services are all stored in one large EAR file.

¢ Planon client files -The client files contain all files required for clients to run a client. The client
files are deployed by Jboss or webstart. At present there is only one client that can be deployed in
three different ways. However, future plans are to also have other clients, such as the clients running
on mobile devices.

e J2EE - J2EE is included in each package of P5. J2EE is used to deploy the client software on user
workspaces.

e Manuals - For a delivery of P5 there are manuals in each of the four languages available.
e Language Files -Language files are included in each package for internationalisation.

e External tools - External tools will also be included in a package of P5. Some of these external tools
are stored in the collective EAR file, whereas others are supplied to the customer on a separate CD.

Similarly to P4, the variabilities are bound at package time and runtime. At package time the right
external components are included in the package. At runtime the license file determines what components
and languages are activated and deactivated. The only difference between P4 and P5 is that languages for
P5 are all included in the delivery package instead of packaged separately by the Release Wizard tool, as
is done for P4.

5.3 Deployment

Planon is planning to use the same methods for release and deployment as used for P4. The deployment of
P5 is planned to follow the steps described in Figure 10. Similar to P4, a license file will still be generated
from PCIS, Planons contract and CRM database. A future version of the Release Wizard tool will package
the EAR file, language files, and external components from the concurrent versioning system.

A consultant can then deploy P5 at the customer site. The consultant will first install all external
components and prerequisite applications, such as the database server and the J2EE appserver. Then the
consultant will install all P5 components. Once installed, the consultant will start up the application server.
During the installation a client directory is created on the server. The client can be used in three different
ways:

e Server side start-up -Another option to start up a client is by going to the server and starting the
client from the server, thereby storing the client into the RAM of the client computer.

e Local installation - The previous option causes a lot of network traffic per client start-up. As an
alternative, Planon offers the option for clients to copy all files to a local harddisk. In this fashion the
clients do not always have the most recent version, but it causes a lot less traffic with large numbers
of clients.

e Webstart - Webstart starts the Planon client and checks for new versions from the application server.
Webstart enables Planon to supply clients with the right version of the Java Runtime Environment
(JRE) and the client software. Webstart has the advantage that it works on different platforms,
however, due to some recent problems with different versions of the JRE Planon is considering to
drop the use of Webstart altogether.

15

Process Step Tool used Responsible party

‘ Contract is entered into PCIS ‘ PCIS Order bureau
¥
Licensefileand .ini file are generated
for Release Wizard PsL Order bureau
¥
‘ Release Wizard packagesfiles ‘ Release Wizard Order bureau
¥
Burn license file and package onto
CDh Release Wizard Order bureau
Deploy CD to customer server(s) DB Installer
- With webserver? JBoss Consultant
- Distributed environment? Dist. Env. Installer
FacilityOffice ‘ FacilityNet ‘
J2EE System Administrators
lient
clien JZEE
Browser
Download and run ‘ Uss Braresn ‘
through Java Webstart

Figure 10: P5 release and deployment process and tools

5.3.1 Product Deployment and Configuration

One of the requirements for P5 is that it should be highly configurable to accomodate different problem do-
mains. To fulfil this requirement, Planon uses configurable user application forms, which can be connected
by a navigation structure. These configurable user views allow for different domain-specific solutions,
using the same datamodel, by defining new configurable user views and navigation structures. Planon is
planning to sell these sets of navigational structures and views as domain specific solutions. Customers can
also purchase an application that builds these navigational structures and views so they can fully configure
P5 themselves.

Configuration data is mainly stored in the database. Examples of such data are licensing information,
user specific data (language preferences, passwords, etc), the configurable user views, and navigational
structure. User data, such as language preferences and screen settings, is stored centrally in the database
to enable users to log in from any client. One exception to the configuration data are reports. Planon is
planning to use a third party report generator, which will access the application server to generate these
reports. They will be stored in some central location, such as the application server, to enable sharing.

P5 supports four languages, but no support is specifically built in for internationalisation besides curren-
cies and date formats. Currently the plan is to handle such variability with run-time variation mechanisms.
Should such mechanisms be insufficient, then Planon can perform customisation work on the source code
and deliver different releases to different countries. The last option is a worst case scenario for Planon and
Planon expects that run-time variation mechanisms and the configurable navigation structures and database
views are sufficient.

5.3.2 Updates and Upgrades

P5 will be upgraded by overwriting the previous version with the newest version of P5. This is the same
as P4, where they overwrite the Planon executable. In this fashion the database will remain a separate
component with its own version humber. The database still needs to be updated through database update
scripts.

6 Discussion

In the discussion of the Planon case study we will first compare Planons solutions to the ISKB techniques
(see Section 2.3). We will indicate the strengths and weaknesses of Planon and its development, release, and

16

deployment processes. Finally, we will show how Planon could, with the introduction of ISKB techniques,
use fewer resources and increase product quality.

6.1 Planon Strengths

Planon uses many techniques that are similar to the ISKB techniques. The release structure that is used
to store deliverables, which is stored in a configuration management system, is much along the lines of
an ISKB. The Release Wizard tool that packages these stored deliverables according to predefined logic
also ties in well with an ISKB. We also believe that integrating the CRM system and contract management
system into the delivery process enables Planon to deliver software with fewer resources.

Planons’ strengths can be found in the following:

e KISS - As seen in our previous work [8] the KISS (Keep It Short and Simple) perspective can
be effective in minimizing effort in the software development cycle. One application of the KISS
perspective by Planon can be found in the fact that they deliver the complete application and activate
the purchased functionality. Another example is the fact that the data model is seen as one component
for different products, which reduces cost of development. This generalization makes it possible
for different pieces of software to use the database. Another example of KISS is that all (user)
configuration data is stored in the database. This is a lot less complex than storing this information
locally, or on the application server in some file format.

e “Eat your own dogfood” - Planon, as well as for instance Microsoft [9] and Exact Software [8],
uses its own products internally. Planon uses its facility management tool internally for the manage-
ment of its internal planning, for facility management, for customer relationship management and to
distribute developer information among development teams. The internal use of these commercial
tools results in quick internal feedback.

e Deliverables stored in SCM System Planon stores its deliverables in the SCM system it is using.
These deliverables are versioned and enable Planon to review old releases and fix bugs in them.

Many of these strong points were also observed at other companies in the product software sector.

6.2 Weaknesses and Opportunities

With respect to the areas of release and deployment Planon can still improve many of its processes. Differ-
ent factors account for these weaknesses, which leave opportunities for improvement for Planon. We found
weaknesses in the areas of knowledge management and resource efficiency.

6.2.1 Knowledge Management

In the area of knowledge management Planon is trying to improve the processes of release and delivery.
Generally, Planon has found that knowledge about the software is too spread out. Knowledge about the
released and deployed software at Planon is present in human readable format and in application readable
format. To begin with, the application readable format is present in the release structure containing all the
required artefacts for each release, including database conversion scripts. Secondly, the Release Wizard
tool contains hardcoded information on what components are required to create a complete installation and
where to find these components in the release structure. Finally, the Planon Software Licenser can derive
a license from the license information stored in PCIS and contains knowledge on dependencies between
modules.

The human readable format is present in PCIS, which contains knowledge on what components are
mutually exclusive, and what components explicitly require each other. Secondly, the delivery manager
at Planon has created a document that contains all supported compatibilities between external components
and versions of Planon. Finally, the service department knows all about the procedures and problems
related to performing an update.

¢ Relationships too complex -The efforts of the delivery manager to manually document component
compatibility relationships have been fruitful, but will prove to be too complex and too extensive in
the future. The number of components and the relationships among them are already too numerous

17

for P4 to be managed manually. We would like to propose the use of a PDM system to automate and
solve the problems stated.

e Software development process knowledge too spread ouProduct and release planning informa-
tion is currently only in the heads of the Planon development department. Such information should
be centrally stored to inform all Planon employees of the status of a product and its state of develop-
ment [7].

e Development tools not managed explicitly Planon has developed many tools internally, and is
also using configured versions of external products to support development. These internally used
(development) tools are not managed explicitly. These tools should be seen as part of development
and should be managed in such a way that these tools are available to the people who need them, in
different versions. The same holds for responsibility for these tools, since often it is unclear who is
responsible for a certain development tool and who is not.

The problems stated above offer Planon opportunities for improvement. Clearly, the knowledge about
released software at Planon is too spread out. Much of the human readable information should be presentin
a centrally stored location, such as a website, and the application readable information is spread out among
different applications. The latter is a more serious problem because these tools are not explicitly managed,
and therefore the maintenance of the tools cannot be guaranteed.

6.2.2 Resource Efficiency

Planon can also improve its release and deployment processes to improve resource efficiency. Planon has
the following weaknesses in the area of resource efficency:

e Components can be packaged together without being compatible or completeThe release
wizard does not enforce correctness criteria when releasing a product, thus allowing the releasing
of a product which is incomplete or contains components that are incompatible. Such correctness
criteria should be centrally available to different applications.

e Workflow is not integrated with the SCM system - By integrating information from a workflow
system with an SCM system development becomes traceable. Such traceability makes the software
development process more reliable since each change can be traced back to a bug or request for
change.

e Customers get manual procedures for updates €ustomers get procedures for downloading and
deploying updates onto its configuration. Such steps are frequently cumbersome and error prone.

¢ Information about a Planon configuration can only be sent to Planon manually Planon support
uses a tool called Planon Inspector to gather information about a Planon configuration by gathering
all the files, file versions, and configuration options of Planon FacilityOffice in Windows. The Planon
Inspector report can then be sent to Planon by e-mail.

Each of the weaknesses stated above provide an opportunity for improvement at Planon. To begin
with correctness criteria can be enforced by centrally managing product compatibilities in a computer
readable format. Secondly, workflow and SCM can be coupled by attaching a label in the SCM when a
workflow step has been performed. Thirdly, a framework can be implemented to support the complete
update process. Finally, the Planon Inspector should be an integrated part of the software for Planon 5, thus
allowing automatic feedback upon a failure, when the client is connected to the internet.

6.3 Evaluation and Opportunities

Planon is a strong tool builder, and has developed many tools for the release and delivery of software,
such as the Software Licenser, the Release Wizard tool, and the Planon Facility Office DIS environment.
However, Planon would have preferred using external tools for these processes, had they been available,
since that could have reduced cost of development. Planon especially expresses the need for a universal
release and delivery framework, supported by various tools [1].

18

Planon could do many things to improve the processes of release and delivery. To begin with knowledge
about software products and tools should be available centrally, such as release notes and compatibility in-
formation. We would like to propose to Planon the use of a development tool such as?\iawéch,
alongside development support, can publish knowledge about the software on a weblocation. We would
also like to propose to Planon some form of a PDM tool, where workflow can be attached to deliverables,
such that work will be traceable. Finally we would like to propose an application that can assist in pub-
lishing and using information about component compatibilities. The current solution where compatibility
information is gathered manually is insufficient for Planon, because the number of components is always
growing, with an exponential number of dependencies.

Planon has chosen to start developing P5 to use state-of-the-art technology for development to en-
large its market share. Many choices Planon has made for the implementation of P5 will largely increase
the number of problem (sub)domains in which the software can operate. As an example, the usage of
configurable user screens and navigation structures will allow Planon to implement its software in more
(sub)domains. The use of these user screens and navigation structures require smart knowledge manage-
ment, however, in the form of a PDM system. The PDM system can support processes such as distribution
and evolution of the screens and navigation structures. These preconfigured domain specific solutions can
assist in implementing Planon quicker at a customer.

Planon is making some restricting choices when it comes to delivery of software. At present all software
is delivered to customers through a consultant. This makes the delivery process labour intensive. This is
no problem as long as Planon keeps delivering large implementations of its software to large customers
that require a lot of extra configuration options. However, if Planon wishes to deliver a “lite” version of
its software they need to largely improve the deployment process. The ISKB already suggests some kind
of webdelivery to customers, and in the case of Planon a web delivery could save the deliverer time, and
saves the cost of burning a new CD each time an installation is created.

At present Planon uses conventional channels, such as mail, customer days, and e-mail, to reach its
customers and inform them of new developments of Planon software. The same information, however,
could be spread by the application, if it connected to the internet regularly. Such information should of
course only be seen by the application manager(s). Once introduced to Planon, they coined the facility of
providing information through the application as the "Planon Customer Web”.

6.4 Conclusions and Outlook

We are planning to further define the problems found in the case studies [8], and build prototypes to support
the release and deployment processes. Such prototypes will enable distribution of software configurations
in distributed environments, enable filling of release structures and PDM tools, and support the deployment
of software on client sites.

Previously we have undertaken similar research at Exact Software [8] to uncover problems in the areas
of release and deployment. Other work, performed by Tiihonen et al [10], describes the state of the practice
of configuration management and the deployment process in the software industry of Finland. Jaring and
Bosch [11] have studied variability of MRI scanner software and is different from our work in that our
work focuses on enterprise resource planning software.

Planon is a successful software company in the area of facility management, considering they are cur-
rently the leading producer of facility management software in the Netherlands. Planon implements many
of the ISKB concepts. Planon stores and manages all released versions, Planon stores deployment in-
formation about each customer, and Planon has implemented its licensing mechanisms to be part of the
delivery process. Many of these implementations have already lead to more cost efficient delivery and
deployment of software. However, Planon can effectively decrease costs and improve product quality by
implementing some other concepts of the ISKB. Planon can decrease its cost by explicitly managing its
internal tools, by centrally storing software knowledge, and by automating more parts of the release and
deployment processes. Planon can increase its product quality by improving its software artefact manage-
ment and by automating the deployment process to include web delivery. Planon could also profit from the
implementation of the Planon Customer Web and explicit management of user configurable environments
in a PDM.

2maven.apache.org

19

This report describes the observations done by Deliver during a case study at Planon. The final con-
clusions are that Planon did not yet implement all the concepts of an Intelligent Software Knowledge Base
and can reduce costs and increase product quality by implementing more of these concepts.

References

[1] S.Jansen, S. Brinkkemper, and G. Ballintijn, “A process framework and typology for software product
updaters,” irEuropean Conference on Software Maintenance and Reuse (CSMR IERE, 2005.

[2] S. Brinkkemper and P. Klint, “Intelligent software knowledge management and delivery,” 2003.

[3] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf, “Software release management,” in
Proceedings of the Sixth European Software Engineering Conference (ESEC/E& 9@yayeri
and H. Schauer, Eds. Springer—Verlag, 1997, pp. 159-175.

[4] R. S. Hall, D. Heimbigner, and A. L. Wolf, “A cooperative approach to support software deployment
using the software dock,” imternational Conference on Software Engineerih§99, pp. 174-183.

[5] T.van der Storm, “Variability and component composition,I@EM, 2004.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented domain analysis (FODA)
feasibility study,” SEI, CMU, Pittsburgh, PA, Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[7] R. Traets, “Deliver management: Inventarisatie van wensen, ideeen en behoeften.” Planon, 2003.

[8] S.Jansen, G. Ballintijn, and S. Brinkkemper, “Software release and deployment at exact: a case study
report.” CWI technical report.

[9] M. A. Cusumano and R. W. Selby, “Microsoft secrets.” Free Press, 1995.

[10] J. Tiihonen, T. Soininen, T. Mannisto, and R. Sulonen, “State of the practice in product configuration
—asurvey of 10 cases in the finnish industry,Kinowledge Intensive CAD, First EditionChapman
et Hall.

[11] M. Jaring, R. L. Krikhaar, and J. Bosch, “Representing variability in a family of mri scanriogtv.
Pract. Exper.vol. 34, no. 1, pp. 69—-100, 2004.

Acknowledgements
We would like to thank Planon for enabling us to do the case study and present our results. We would

like to especially thank David Griffioen, Erik Jaspers, Bertin Kiekebosch, Wim Heutz, and all the other
interviewees. Finally, we would like to thank Tijs van der Storm for his helpful reviews and discussions.

20

