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Abstract

Sensors are increasingly part of our daily lives: motion detection, light-
ing control, and energy consumption all rely on sensors. Combining this
information into, for instance, simple and comprehensive graphs can be
quite challenging. Dimensionality reduction is often used to address this
problem, by decreasing the number of variables in the data and looking for
shorter representations. However, dimensionality reduction is often aimed
at normal daily data, and applying it to events deviating from this daily
data (so-called outliers) can affect such events negatively. In particular,
outliers might go unnoticed.In this paper we show that dimensionality re-
duction can indeed have a large impact on outliers. To that end we apply
three dimensionality reduction techniques to three real-world data sets,
and inspect how well they preserve outliers. We use several performance
measures to show how well these techniques are capable of preserving
outliers, and we discuss the results.
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1 Introduction

Recent technological developments have resulted in a broad range of cheap and
powerful sensors, enabling companies to use sensor networks in a cost-effective
way. Consequently, sensor networks will increasingly become part of our daily
life. One can for instance envision a house with sensors related to smoke de-
tection, lighting control, motion detection, environmental information, security
issues, and structural monitoring.

Combining all this information to actionable insights is a challenging problem.
For instance, in the event of a burglary in a house, the sensors involved in motion
detection, environmental monitoring, and security all yield useful information.
Providing a short insightful summary that helps users identify the event and
take appropriate action is essential. Dimensionality reduction (dr) is a family
of techniques aimed at reducing the number of variables (dimensions) in the
data and thus making the data set smaller. In essence, it helps identify what is
important, and what is not.

However, in practise dimensionality reduction often yields some loss of informa-
tion, and applications might be affected by this loss. For instance, the burglary
mentioned before is a (hopefully) rare event that is different from normal pat-
terns in the sensor data (i.e. a so-called outlier). Unfortunately, dr-methods
often lose outliers among the regular sensor data. Figure 1 illustrates this situ-
ation using a two-dimensional data set with an outlier near the top-left corner.
When dimensionality is reduced by projecting all points onto a line, the outlier
is mapped into the center of the reduced data set (the middle arrow in Figure
1), and is thus no longer an outlier. So dimensionality reduction might lose
outliers among regular points, causing problems for applications relying on the
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Figure 1. A two-dimensional data set reduced to one dimension, with an outlier
(middle arrow) mapped to the center of the reduced data set

detection of outliers. The example in Figure 1 illustrates one dr-technique, but
many others exists, each affecting outliers differently.

In this paper we show that dr-techniques affect outliers, by measuring their
capability to preserve outliers. For this purpose we describe three well-known
dr-techniques that are relevant for a broad audience, and apply them to several
real-world data sets from a sensor-related context. For each dr-technique we
capture its capability to preserve outliers in three performance measures, and
compare the results. From the three techniques we will identify the one with
the best performance, and discuss the intuitions behind the scores.

Research on both dimensionality reduction and outlier detection is abundant.
An overview of dimensionality reduction techniques can be obtained from Carreira-
Perpinán (1997); Fodor (2002); Gupta and Kapoor (2012); Kline and Galbraith
(2009); Onderwater (2010); Van der Maaten et al. (2009). For outlier detection,
we refer readers to, e.g., Agyemang et al. (2006); Hodge and Austin (2004);
Maalouf and Trafalis (2011); Zhang et al. (2010, 2007). Certain specific topics
such as intrusion detection Gogoi et al. (2011) and fraud detection Becker et al.
(2010); Phua et al. (2005) are closely related to outlier detection. In Muñoz and
Muruzábal (1998) the authors consider Kohonen’s Self Organizing Maps (som,
Kohonen (2001)) and how this dr-technique can be used to identify outliers.
Harmeling et al. (2006) illustrate the effect of outlier-removal on Isomap (Tenen-
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baum et al. (2000)), another dr-technique. Chakrabarti and Mehrotra (2000)
look at local dr, where reduction is applied to previously identified clusters.
Outlier detection occurs as part of the cluster-identification phase. Non of these
papers, however, look at outlier preservation by dr-techniques, as discussed in
this paper. In Escalante (2005), the authors compare multiple outlier detection
methods on various data sets, including one data set with its dimensionality
reduced. As in our paper, their analysis also suggests that outlier detection is
affected by dimensionality reduction, although they only use one dr-methods
and one performance measure. The paper by Nguyen et al. (2010) has a setup
that is close to our approach: four dr-methods (feature extraction methods in
their terminology) are applied to three data sets, and the performance (using
one score measure) is inspected for two outlier detection methods. However,
their dr-methods are selected from the Feature Extraction domain, and are not
well-known in the dr-community.

The structure of the paper is as follows: Section 2 describes the dr-techniques,
Section 3 contains the outlier detection method as well as the performance
measures. Then, in Section 4 we describe the data sets that we use in the
experiments. Section 5 shows the output of the experiments and discusses the
results, followed by conclusions, recommendations, and ideas for further research
in Section 6.

2 Dimensionality reduction techniques

Denote by n the number of measurements and by d the number of sensors
producing the measurements. The number of sensors is known as the dimen-
sion of the data, and dr-techniques aim to lower this dimension to a smaller
value. More formally, if the measurements are vectors x1, . . . ,xn ∈ Rd, then
dr-techniques try to find points y1, . . . ,yn ∈ Rd′ with d′ < d. Dimensionality
reduction is often used for, e.g., visualisation Li (1992);Tsai (2012), as a prepro-
cessing step for further analysis UmaMaheswari and Rajaram (2009); Garg and
Murty (2009); Ravi and Pramodh (2010), or for computational efficiency Hahn
et al. (2003); Dai et al. (2006).

This section describes three well-known and often used dr-techniques: Principal
Component Analysis (pca), Multidimensional Scaling (mds), and t-Stochastic
Neighbourhood Embedding (t-sne).
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2.1 Principal Component Analysis

Principal Component Analysis was initially proposed by Pearson (1901). It finds
a low dimensional representation of the data with minimal loss of variation in
the reduced data set. The first step in pca is a linear change of base from
x1, . . . ,xd ∈ Rd to u1, . . . ,ud ∈ Rd, where u1 is aligned with the direction
of maximum variance in the data. Vectors ui (2 ≤ i ≤ d) are also lined up
with the direction of maximum variance, but constrained to be perpendicular
to ui−1, . . . ,u1. The ui vectors are called Principal Components.

Suppose that the n data points are in the n× d matrix X, then the vectors ui
are found by calculating the eigenvectors of the correlation matrix (C) (Johnson
and Wichern (2002)). The eigenvalues of C correspond to the amount of vari-
ance explained by the corresponding eigenvectors. Dimensionality reduction is
achieved by omitting eigenvectors ud′+1, . . .ud once eigenvalues λ1, . . . , λd′ ex-
plain enough of the variance of the data set. Summarized, the process works as
follows:

• Construct the data matrix X.
• Compute the correlation matrix C.
• Find the eigenvalues and eigenvectors of C.
• Determine d′ such that λ1, . . . , λd′ explain enough of the variance of the

data.
• Construct matrix Û = [u1 . . .ud′ ].
• Reduce dimension by computing X̂ = XÛT .

More details on pca can be found in, e.g., Härdle and Simar (2012); Johnson
and Wichern (2002); Lattin et al. (2003); Tabachnick and Fidell (2001); Yoon
(2003).

2.2 Multidimensional Scaling

Multidimensional Scaling is the name for a family of dimensionality reduction
techniques based on preserving distances in the data set. The classical version
of Multidimensional Scaling finds points y1, . . . ,yn ∈ Rd′ in a low dimensional
space that minimize

min
y1,...,yn

n∑
i=1

n∑
j=1

(||xi − xj || − ||yi − yj ||)2 . (1)
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Here x1, . . . ,xn ∈ Rd are the high dimensional points, and || · || is the Euclidean
distance in the respective space. The classical version of mds is equivalent to
pca, see for instance Ghodsi (2006). Other members of the mds family use a
different distance measure or a different quantity to optimize than Eq. (1). We
use a version of mds with the so-called squared stress criterion

min
y1,...,yn

∑n
i=1

∑n
j=1

(
||xi − xj ||2 − ||yi − yj ||2

)2∑n
i=1

∑n
j=1 ||xi − xj ||4

. (2)

For the distance measure ||xi−xj || we do not use the Euclidean distance measure
as in the classical version of mds. To see why, note that mds with the Euclidean
distance is sensitive to natural variations in the data. Consider, for instance,
a data set consisting of two columns, one with values uniformly drawn from
[1000 − 2000) and one with values drawn from [0, 1). Clearly, all values in the
first column are several orders of magnitude larger than those in the second
column. When minimizing the quantity in Eq. (1) the procedure focuses on
the elements of the first column, since that brings it closest the minimum. In
essence, the second column is ignored and mds is biased towards the first column.

To overcome this problem the Euclidean distance is replaced by the Mahalanobis
distance (Mahalanobis (1936))

||xi − xj ||M =

√
(xi − xj)Σ−1(xi − xj)

T
, (3)

where Σ is the covariance matrix. By including the covariance matrix in the
distance measure, the natural variations in the data are removed and thus mds
is unbiased with respect to dimensions. Eq. (1) then becomes

min
y1,...,yn

∑n
i=1

∑n
j=1

(
||xi − xj ||2M − ||yi − yj ||2

)2∑n
i=1

∑n
j=1 ||xi − xj ||4M

. (4)

Note that the Mahalanobis distance is only used for the high-dimension points
xi, because the low-dimensional points yi are found by the minimization.
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2.3 t-Stochastic Neighbourhood Embedding

2.3.1 Stochastic Neighbourhood Embedding

t-Stochastic Neighbourhood Embedding is a variation on Stochastic Neighbour-
hood Embedding (SNE), first proposed by Hinton and Roweis (2002). SNE
presents the novel idea of defining a probability that two points are neighbours.
Mapping to low dimensional space is achieved by choosing points that preserve
these probabilities. They define Gaussian-inspired probabilities pi|j in high di-
mensional space, representing the probability of point xi being a neighbour of
a given point xj , as

pi|j =
e−||xi−xj ||2M/2σ2

i∑
k 6=i e

−||xi−xk||2M/2σ2
i

. (5)

The parameter σi is set by hand or determined with a special search algorithm.
Note how we again employ the Mahalanobis distance for the high-dimensional
points. In low dimensional space, probabilities similar to those in Eq. (5) are
defined as

qi|j =
e−||yi−yj ||2∑
k 6=i e

−||yi−yk||2
. (6)

The parameter σi is not necessary here, because it would only lead to a rescaling
of the resulting low dimensional points yi. The yi are then found by minimizing
the Kullback-Leibler divergence of these two probability distributions

min
y1,...,yn

∑
i

∑
j

pi|j log
pi|j

qi|j
. (7)

Minimization of Eq. (7) can be done with, e.g., the gradient descent algorithm,
or the scaled conjugate gradients procedure.

2.3.2 t-sne

In Van der Maaten and Hinton (2008) the authors propose t-sne, which differs
from SNE in two aspects. First, note that the probabilities in Eq. (5) are
not necessarily symmetric, i.e., pi|j and pj|i do not need to be equal. This
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complicates minimization of Eq. (7), because it has twice as many variables
as in the symmetric case. In t-sne, these probabilities are redefined to be
symmetric:

pij =
pi|j + pj|i

2n
.

Additionally, this ensures that
∑
jpij > 1/2n so that each point (including

outliers) have a significant contribution to the cost function. The second change
proposed for t-sne concerns the qij . Instead of using Gaussian-style probabilities
as in Eq. (6), t-sne uses probabilities inspired by the Student t-distribution
(with one degree of freedom):

qij =
(1 + ||yi − yj ||2)−1∑
k 6=i(1 + ||yi − yk||2)−1

.

This distribution has heavier tails than the Gaussian used by SNE, so should
map nearby high dimensional points less nearby in low dimensional space than
SNE. A justification for this approach comes from the so-called Crowding prob-
lem: there is much more room in high dimensional space for points, so in a low
dimensional representation data points tend to be ’squeezed’ together. By using
the Student t-distribution, these crowded points are placed just a bit further
apart. Low dimensional points are still found by optimizing the Kullback-Leibler
divergence

min
y1,...,yn

∑
i

∑
j

pij log
pij
qij
. (8)

3 Experimental setup

We adopt the following experimental setup when investigating dimensionality
reduction for outlier preservation:

1. Modify each data set so that it has zero mean and unit variance. This is
a common preprocessing step for experimental data.

2. Find outliers in the high-dimensional (centered and scaled) data set.

3. Reduce the data set to two dimensions.

4. Again look for outliers, this time in the low-dimensional data.
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5. Compute a score showing how each dr-methods performs on the data set.

We apply this setup to the dr-techniques from Section 2 and to a number of real-
world data sets, described later in Sections 4.1-4.3. The sections below describe
the technique that we use for outlier detection, and three performance measures
that we use to assess how well outliers are preserved. For the dr-techniques we
used Matlab implementations available in the Dimensionality Reduction Toolbox
by Van der Maaten (2009).

3.1 Onion Peeling

The idea of Onion Peeling, or Peeling in short, is to construct a convex hull
around all the points in the data set and then find the points that are on the
convex hull. These points form the first ‘peel’ and are removed from the data
set. Repeating the process gives more peels, each containing a number of points.

This technique can be modified for finding outliers. The largest outlier in the
data set is on the first peel, so by inspecting the total distance of each point on
the hull to all other points in the data set, we can find the one with the largest
total distance. Removing this point from the data set and repeating the process
gives new outliers. The decrease in volume of the convex hull after removing an
outlier is used as a stop criterion. Once the volume decreases by a fraction less
than α (0 ≤ α ≤ 1), we stop looking for outliers. Although with this criterion
there is no guarantee that all outliers are found, it does assure that all found
points are outliers. In our experiments we set α = 0.005. Peeling is outlined in
algorithm 1.

Algorithm 1: Peeling
1. Calculate the convex hull around all the points in the data set.
2. Find the point on the hull with the largest (Mahalanobis) distance

to all other points in the data set.
3. Remember the outlier and remove it from the data set.
4. Calculate the new convex hull, and check if the stop criterion

is reached. If so, stop, otherwise continue with step 2.

3.2 Measuring performance

After running the experiment for one data set and one dr-method, we need
to quantify the performance of this method with respect to the preservation of
outliers. In order to do so, we assign each point to one of four groups:
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• True Positive (tp). The point is an outlier both before and after dr.

• False Positive (fp). The point is not an outlier before dr, but is one after.

• False Negative (fn). The point is an outlier before dr, but not after.

• True Negative (tn). The point is not an outlier before dr, nor after.

We can summarize these quantities in a confusion matrix, as shown in Figure
2. In an ideal scenario the confusion matrix would be diagonal (i.e. 0 fps and
fns), indicating that all outliers and non-outliers were correctly retained by the
dr-methods. However, in practise the matrix will often contain some fps and
fns, and the performance of a dr-methods is judged by all four quantities.

Outlier
before dr?

Yes No

After dr? Yes tp fp
No fn tn

Figure 2. Confusion matrix showing what happened to outliers after dr

Confusion matrices are used in several research communities to asses the per-
formance of, e.g., binary classifiers and statistical tests. Often a single number
is needed to capture performance, which subsequently results in a combination
of the four quantities in the table. Several such combinations exist and are used
in various fields of research, see the overview in paper Powers (2011).

We intend to describe three performance measures that are often used in the
literature, but before we do so we highlight one complicating aspect of our
problem scenario. Since we deal with outliers, most practical data sets will
have a significantly larger number of non-outliers than outliers. Hence, in the
confusion matrix the tn will usually be the largest number. As an example of
a performance measure that is affected by this, we look at accuracy, defined as

accuracy =
tp+tn

tp+fp+fn+tn
.

Since tn is dominating number, accuracy will always be close to 1, making it
difficult to identify small differences in performance. Hence, the three perfor-
mance measures that are described below are selected because they are capable
of handling this issue.
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3.2.1 F1-score

The F1-score is a combination of recall and performance:

• Recall. The fraction of high-dimensional outliers retained by the dr-
methods (i.e. tp/(tp + fn)), which is maximized for fn = 0.

• Precision. The fraction of low-dimensional outliers that were also high-
dimensional outliers (i.e. tp/(tp + fp)), which is maximized for fp = 0.

The F1-score takes the harmonic mean of precision and recall, resulting in a
number between 0 (when tp=0) and 1 (when fp=fn=0):

F1 = 2 · precision · recall
precision + recall

= 2 · tp/(tp + fp) · tp/(tp + fn)

tp/(tp + fp) + tp/(tp + fn)

=
2tp

(2tp + fn + fp)
. (9)

If tp + fn = 0 or tp + fp = 0 then the F1-score is defined as 0. Note that the
element tn of the confusion table does not affect the score, and it is therefor
not affected by the sparsity of outliers. The F1-score is used in, e.g., Informa-
tion Retrieval Cao et al. (2009); Martins et al. (2010) and Machine Learning
Escalante (2005); Sha and Pereira (2003); Valstar et al. (2011).

3.2.2 Matthews Correlation

The Matthews Correlation (due to Matthews (1975)) computes a correlation
coefficient between the class labels (i.e. outlier or non-outlier) in high and
low dimension of each point in the data sets. It results in a number between
−1 (perfect anti-correlation) and 1 (perfect correlation), with 0 indicating the
absence of correlation. Below we will derive an expression for the Matthews
Correlation in terms of the elements of the confusion matrix. Define

hi =

{
1 if point i is an outlier in high dimension
0 otherwise,

and similarly
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li =

{
1 if point i is an outlier in low dimension
0 otherwise.

With the li and hi we can compute the correlation between the class labels
l1 · · · lN and h1 · · ·hN (N is the total number of points in the data set). The
correlation can be interpreted as a measure of how well outliers are preserved.

This correlation ρ is computed from

ρ =
1

N − 1

∑N
i=1(li − l̄)(hi − h̄)

σlσh

where

l̄ =
1

N

∑
i

li =
tp + fp
N

, h̄ =
1

N

∑
i

hi =
tp + fn

N
(10)

using notation from the confusion matrix. The σl is the standard deviation of
the li, i.e.,

σl =

√
1

N − 1

∑
i

(li − l̄)2

=

√
1

N − 1

√∑
i

(l2i − 2li l̄ + l̄2)

=

√
1

N − 1

√∑
i

(li − 2li l̄ + l̄2)

=

√
1

N − 1

√
Nl̄ − 2Nl̄2 +Nl̄2

=

√
N

N − 1

√
l̄(1− l̄).

(11)

Similarly, the standard deviation of the hi becomes σh =
√

N
N−1

√
h̄(1− h̄).

Substituting these quantities in the correlation yields
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ρ =

∑N
i=1(li − l̄)(hi − h̄)

σlσh

=

∑N
i=1(li − l̄)(hi − h̄)

N
√
l̄h̄
(
1− l̄

)(
1− h̄

)
=

∑N
i=1(lihi − l̄hi − lih̄+ l̄h̄)

N
√
l̄h̄
(
1− l̄

)(
1− h̄

)
=

∑N
i=1(lihi)−Nl̄h̄−Nl̄h̄+Nl̄h̄

N
√
l̄h̄
(
1− l̄

)(
1− h̄

)
=

∑N
i=1(lihi)−Nl̄h̄

N
√
l̄h̄
(
1− l̄

)(
1− h̄

) .
(12)

Using
∑N
i=1(lihi) = tp and Eq. (10), some algebra yields

ρ =
tp · tn− fp · fn√

(tp + fn)(tp + fp)(tn + fp)(tn + fn)
. (13)

If any of tp + fn,tp + fp,tn + fp, or tn + fn are 0, then ρ is defined as 0.
Note that, since ρ is a correlation, it is not affected by the large number of
non-outliers.

The Matthews Correlation is often used in Bioinformatics to assess the per-
formance of classifiers, see, e.g. Shen and Chou (2007); Mondal et al. (2006);
Kandaswamy et al. (2012).

3.2.3 Relative Information score

The Relative Information score was proposed by Kononenko and Bratko (1991)
and relies on ideas from the Information Theory field. In this section we derive
an expression for the Relative Information score based on the confusion matrix.
Suppose we consider one particular point, then a priori we can compute the
probability that it is an outlier from the confusion matrix

P(outlier in high dimension) =
tp+fn
N

.
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After dr, we can compute this same probability for the same point as

P(outlier in low dimension | outlier in high dimension) =
tp

tp + fn
.

Kononenko and Bratko (1991) argue that any well-performing classifier (dr-
methods) should at least result in a confusion table with tp

tp+fn > tp+fn
N ,

otherwise it has lost information from the original data. This forms the basis
for their Relative Information score.

We introduce some notation and denote by P(Ci = c) the probability that point
i in the data set has class c, with c = 1 indicating that it is an outlier in high
dimension, and c = 0 that it is a non-outlier. From the confusion matrix, we
know that

P(Ci = 1) =
tp+fn
N

(14)

P(Ci = 0) =
fp+tn
N

. (15)

(16)

After dr each point is again an outlier or non-outlier, but this time in low
dimension. We denote the probability that point i has class c, given that it also
had class c in high dimension, by P(C ′i = c|Ci = c). From the confusion matrix,
we find that

P(C ′i = 1|Ci = 1) =
tp

tp + fn
(17)

P(C ′i = 0|Ci = 0) =
tn

fp + tn
. (18)

(19)

Kononenko and Bratko (1991) measure the amount of information (as defined
by Shannon (1948)) necessary to correctly classify point i as

− log2(P(C ′i = c|Ci = c)).

They then give a positive score for a dr-methods that satisfies P(C ′i = c|Ci = c) > P(Ci = c):
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log2

(
P(C ′i = c|Ci = c)

)
− log2

(
P(Ci = c)

)
.

Some algebra shows that this is indeed a positive score. If P(C ′i = c|Ci = c) < P(Ci = c)
the score is

log2

(
1− P(Ci = c)

)
− log2

(
1− P(C ′i = c|Ci = c)

)
,

which is negative. When P(C ′i = c|Ci = c) = P(Ci = c) the score is defined as
0. The total score I of a dr-methods is then

I =

N∑
i=1

1{P(C′
i=c|Ci=c)>P(Ci=c)} ·

[
log2

(
P(C ′i = c|Ci = c)

)
− log2

(
P(Ci = c)

)]
+ 1{P(C′

i=c|Ci=c)<P(Ci=c)} ·
[

log2

(
1− P(Ci = c)

)
− log2

(
1− P(C ′i = c|Ci = c)

)]
.

Usually, when comparing classifiers I is reported relative to the expected infor-
mation E needed to correctly classify each point:

E = −
N∑
i=1

P(C ′i = c|Ci = c) · log2(P(C ′i = c|Ci = c)). (20)

The Relative Information score Ir is then

Ir =
I

E
· 100%. (21)

Note that Ir can become negative because I can also be negative. Inserting Eqs.
(14)-(18) into Eqs. (20) and (21) yields an expression in terms of the elements
of the confusion matrix.

4 Data sets

In the previous sections we described setup of our experiments, the dr-techniques,
and how we measure their performance. The experiments use three real-world
data sets which we describe here,
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Figure 3. Boxplots of the six sensors in the “Radiant light energy” data set

4.1 Radiant light energy measurements

The measurements in this data set are from sensors deployed in several office
buildings in New York City, as part of Columbia University’s EnHANTs project.
The sensors measure irradiance (radiant light energy), and this data set contains
values measured during about one year.

Figure 3 shows boxplots of each of the six sensors in this data set, with the
measurements centered and scaled as discussed in Section 3. Each boxplot
reflects the distribution of the 500 measurements by one sensor, and highlights
possible outliers. Each sensor contains 40-60 possible outliers, except for the
second sensor which has just one. The Peeling algorithm from Section 3.1 will
select which of these points we will use as outliers in our experiments. Note
also that the median of each sensor’s values (except sensor 4) is close to the
.25 quantile, indicating that those distributions are skewed towards the smaller
values.

More detailed information on the data set can be found in Gorlatova et al.
(2011), or from the CRAWDAD website (Gorlatova et al. (2011)) where the
data can be downloaded. For computational reasons, we do not use all the data
for the experiments in this paper, but select 500 random measurements from
each of the six sensors.
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Figure 4. Boxplots of the seven sensors in the “Signal strength” data set

4.2 Signal strength data

This data originates from a WSN deployed in a library building, where sensors
measure radio frequency energy level (RSSI) on all 802.15.4 channels in the 2.4
GHz ISM Band. In essence, RSSI is an indication of the power level of a signal
received by the antenna on the sensor node. The building has several collocated
Wi-Fi networks in normal operation that cause interference, so the WSN is used
to monitor the signal strengths on one location in this Wi-Fi network. The WSN
consists of 16 sensor nodes (each monitoring a single Wi-Fi channel) of which we
used only 7, because the performance of convex hull algorithm in Onion Peeling
decreases significantly for dimensions higher than 8 (see Barber et al. (1996)).
Again, we took 500 randomly selected measurements of each node to form this
data set.

The boxplots of the sensor values in this data set are shown in Figure 4. In
contrast to “Radiant light energy” data set, the measurements of the sensors
in the “Signal strength” data set contain fewer possible outliers and are more
evenly distributed. All possible outliers are positive values, corresponding to a
strong incoming Wi-Fi signal.

More details about the data can be found in Noda et al. (2011), or in the
CRAWDAD repository (Noda et al. (2012)).

17



−3

−2

−1

0

1

2

3

4

5

6

7

1 2 3 4 5
Sensor number

Boxplots of data set "Decibel levels"

C
en

te
re

d 
an

d 
sc

al
ed

 m
ea

su
re

m
en

ts

Figure 5. Boxplots of the five sensors in the “Decibel levels” data set

dr-technique Light Signal Decibel
pca 0.3333 0 0.3529
mds 0.9091 0.8750 0.8889
t-sne 0 0 0

Table 1. F1-score (∈ [0, 1]) of each combination of dr-technique and data set

4.3 Decibel levels

This data set consists of five sensors nodes deployed in a kindergarten, one
in each room of a single-story building, that are used to monitor the indoor
climate. Among other parameters, the nodes measure decibel levels, and report
these regularly to a central base station. We took 500 measurements from each
sensor on a day in May 2011 and included them in this data set.

Figure 5 shows that most sensors have fairly evenly distributed values, with
several outliers on both sides of the median. However, kindergartens tend to be
noisy rather than quiet, so most outliers are on the positive side of the median.
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dr-technique Light Signal Decibel
pca 0.3302 -0.0149 0.3477
mds 0.9119 0.8801 0.8926
t-sne -0.0045 -0.0061 -0.0064

Table 2. Matthews Correlation (∈ [−1, 1]) for each combination of dr-technique and
data set

dr-technique Light Signal Decibel
pca 0.7261 -0.1295 0.6398
mds 1.0509 0.9157 0.8971
t-sne -0.0404 -0.0244 -0.0226

Table 3. Relative Information Score (∈ [−∞,∞]) for each combination of dr-
technique and data set

5 Results and discussion

We apply the experimental setup of Section 3 to the dr-techniques of Section
2 and summarize the results in Tables 1-3. These tables contain the F1-score,
Matthews Correlation, and Relative Information score for each combination
of dr-technique and data set, where a high score implies that the technique
preserves outliers well on that data set. The F1-scores in Table 1 show that
mds achieves the highest scores, with values more than twice as large as those
of pca on the first and third data set. The lowest possible score on all data
sets is by t-sne: an F1-score of 0. With the Matthews Correlation and Relative
Information score in Tables 2 and 3 we see similar results: mds consequently
attains high scores, pca performs reasonably well on the first and third data
set, and t-sne has overall low scores.

Since we reduce each data set to two dimensions, we can plot the resulting low-
dimensional data set and inspect what happens with outliers after applying the
three dr-methods. In Figures 6-8 we plot the low-dimensional version of the
second data set “Signal strength” (in circles), with outliers in the original high-
dimensional data set marked with a triangle. Figure 6 shows that several of the
outliers are mapped to the interior of the reduced data set by pca. In contrast,
the low-dimensional data set created by mds shows all high-dimensional outliers
close to the boundary. Lastly, t-sne maps all outliers to the interior of the low-
dimensional data set, which illustrates its low scores.

By analysing the objective of the three dr-techniques, we can explain the ob-
served differences in performance. Firstly, pca is a technique that focuses on
preserving variance, so it will only preserve outliers if they happen to be in
a direction of high variance. Figure 1 from the introduction provides another
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illustration of what can happen to an outlier that is in a direction with low
variance. The figure corresponds to reducing a two-dimensional data set to one
dimension (the line) with pca, and clearly shows how the top-left outlier ends
up in the center of the reduced data set.

mds optimizes the squared stress optimization criterion in Eq. (4), which in-
cludes the term ||xi − xj ||M . This term is the distance between two points xi
and xj , which is typically very large when one of the points is an outlier. The
criterion uses these distances to the power 4, so the outliers have a large effect
on the squared stress criterion. Hence, minimizing these distances has a massive
positive effect when on this criterion and thus mds preserves outliers well.

t-sne optimizes the Kullback-Leibler divergence (8), which attaches high costs
to nearby points in high dimensional space (large pij) that are mapped to far
away points in low dimensional space (small qij). Hence, nearby points in high
dimensional space are kept nearby in low dimensional space. This does not hold
for points that are far away in high dimensional space – outliers, which have
low pij – as they are mapped to nearby points (with high qij) with very low
costs. So t-sne tries to keep nearby points nearby and is therefor more suitable
for preserving clusters than for preserving outliers.

Also, t-sne has some computational complexities. The Kullback-Leibler diver-
gence in Eq. (8) is a non-linear function of the low-dimensional points yi and
can have several local minimums. Minimizing Eq. (8) is done by choosing a
random starting point for the yi, followed by a number of optimization steps us-
ing, e.g., a Gradient Descent approach. The optimization stops when it reaches
a (possibly local) minimum, and returns its latest values for the yi. Hence, the
low-dimensional points depend on the starting point chosen for the optimization
algorithm, and thus its performance with respect to outlier preservation also de-
pend on the starting values of the yi. The last rows of Tables 1-3 show the score
for one particular starting point, but we repeated the experiments with t-sne
for various starting points. We discovered no correlation between the minimized
value of the Kullback-Leibler divergence and the achieved performance score,
so the results reported in Tables 1-3 are representative for the performance of
t-sne.

From the analysis above we see that from the three selected methods, mds
achieves the highest scores and is best capable of preserving outliers. However,
it is not necessarily the best dr-technique available, since many others exist
in literature. In particular, the class of supervised dr-techniques (pca, mds,
t-sne are unsupervised) might provide methods with better performance than
mds. These techniques aim to reduce dimensionality while simultaneously trying
to retain “sufficient information” for a classification task (which, in our case,
would be retaining outliers). Hence, they could be applied to the scenario in
this paper, and possibly have good performance. Nevertheless, supervised dr-
techniques are not included here, because we assume that the dr-techniques
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Figure 6. Data set “Decibel levels” after dimensionality reduction with pca (circles).
The triangles mark the outliers that were found in the original high-dimensional data
set

have no apriori knowledge about the outliers, and thus they are not suitable for
this paper. Readers interested in supervised dr-techniques are referred to, e.g.,
Shyr et al. (2010).

The performance measures in this paper are all based on the elements of the
confusion matrix, which do not contain information about whether a point is
a ‘large’ or ‘small’ outlier. Hence, with these scores we will not be able to,
e.g., find out which outlier has the large affect on a score. This ‘binary’ view
of an outlier is, however, important for the scenario in the current paper. Our
motivation comes from applications where it is of critical importance to correctly
identify an outlier after dr. If an outlier is no longer an outlier after dr, then
it is useless for the application. Nevertheless, if this ‘binary’ approach can be
relaxed from the point of view of the application, other scores might be more
appropriate (see, e.g., Bradley (1997)).

6 Conclusions and recommendations

In this paper we described three well-known Dimensionality Reduction tech-
niques (Principal Component Analysis, Multidimensional Scaling, and t-Stochastic
Neighbourhood Embedding) and analysed how well they are capable of preserv-
ing outliers. Based on three different scores (F1-score, Matthews Correlation,
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and Relative Information score), and using three real-world data sets, we as-
sessed the performance of each method on each data set.

The resulting analysis shows that, among the three described dr-methods, Mul-
tidimensional Scaling is best at preserving outliers. It consequently achieves the
highest scores, and performs significantly better than both Principal Compo-
nent Analysis and t-Stochastic Neighbourhood Embedding. In the discussion,
we explain that this difference in performance is caused by the specific objectives
of the techniques: pca tries to preserve variance, mds preserves large distances
(i.e. outliers), and t-sne preserves clusters. In general, we recommend that the
dimensionality reduction technique is chosen with the intended application in
mind. For outlier detection mds is a good choice, for preserving variance pca
is the best choice, and for preserving clusters t-sne is a good choice.

Future research includes investigating specific types of Dimensionality Reduc-
tion (e.g. supervised dr-methods, real-time dr-methods), and how they are
affected by outliers.
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