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Abstract 

This paper presents a study of the morphological slope transform in the complete lattice framework. It discusses in detail the 
interrelationships between the slope transform at one hand and the (Young-Fenchel) conjugate and Legendre transform, two 

well-known concepts from convex analysis, at the other. The operators and transforms of importance here (hull operations, 
slope transform, support function, polar, gauge, etc.) are complete lattice operators with interesting properties also known 
from theoretical morphology. For example, the slope transform and its 'inverse' fonn an adjunction. It is shown that the 

slope transform for sets (binary signals) coincides with the notion of support function, known from the theory of convex 
sets. Two applications are considered: the first application concerns an alternative approach to the distance transfonn. The 
second application deals with evolution equations for multiscale morphology using the theory of Hamilton--Jacobi equations. 
© 1997 Elsevier Science B. V. 

Zusammenfassung 

In diesern Beitrag wird eine Untersuchung der morphologischen Steigungstransformation (morphological slope transform) 

im Rahmen der vollstandigen /attice-Theorie priisentiert. Dabei werden die Zusammenhiinge zwischen der Steigungstransfor­
mation einerseits und dcr ( Y oung-F enchcl) konj ugierten Transfonnation sowie der Legendre Transformation andererseits, die 
zwei wohlbekannte Verfahren aus der konvexen Analyse darstellen, diskutiert. Die Operatoren und Transformationen, die hier 

von Bedeutung sind (hu/l-Operationen, Steigungstransformation, support-Funktion, polar, gauge, etc.) stellen vol!standige 
!attice-Operatoren mit interessanten Eigenschaften dar, die ebenfalls aus der theoretischen Morphologie bekannt sind. Die 
Steigungstransformation beispielsweise bildet zusammen mit ihrer lnversen ein adjungiertes Paar. Es wird gezeigt, daf3 die 
Steigungstransfommtion fi.ir Mengen ( binare Signale) mit der Kenntnis der support-Funktion einhergeht, die aus der Theo­

rie konvexer Mengcn bekannt ist. Es werden zwei Anwendungen betrachtet: die erstc betrifft einen altemativen Ansatz zur 
Distanz-Transforrnation. Bei der zwciten geht es um Evolutionsgleichungen in der multiscale-Morphologie unter Ausnutzung 
der Theorie der Hamilton-Jacobi Gleichungen. © 1997 Elsevier Science B.V. 

Resume 

Cet article presente une etude de la transformation de pente morphologique dans un cadre de structure en treil!is. 11 discute 
en detail Jes inter-relations entre la transformation de pente d'un cote et Jes transformations conjuguee (de Young-Fenchel) et 
de Legendre, deux concepts bien connus en analyse complexe, de l'autre. Les operateurs et Jes transformations d'importance 
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ici (operateurs d'enveloppe eonvexe, transtlm11ation de pente. fonction de support, polairc. jauge, etc.) sont des operateurs 
de treillis complets avee des proprietcs interessantcs eonnues aussi par le biais de la morphologie theorique. Par exemple. 
la transformation de pente et son ·inverse' forment une adjonction. II est montre que la transformation de pente pour des 
ensembles ( signaux binaires) co'incide avec la notion de fom:tion de support. provenant de la theorie des ensembles con vexes. 
Deux applications sont considcrees: la premiere est relative a une approche alternative de la transfonnation de distance. La 
dcuxiemc a trait aux equations d'cvolution pour la morphologie multi-eehclle par le biais de la theorie des equations de 
Hamilton Jacobi. © 1997 Elsevier Science B. V. 

Kl.',l'\l'ords: Morphological systems for signal analysis; Adjunctions; Convex sets; Supremal and infimal convolution; Upper 
and lower slope transform; Lipschitz continuous functions; Upper semi-continuous ( u.s.c.) and lower semi-continuous ( l.s.c.) 
functions: Convex functions; Conjugation; Distance transfonn; Morphological evolution equation 

1. Introduction 

Morphological signal analysis is becoming an im­
po1iant area of nonlinear functional analysis that has 
found many applications in image processing and non­
linear filtering. The morphological signal operators are 
parallel or serial interconnections of morphological di­
lations and erosions, respectively, defined as 

(/ g)(x) = V f(x - y) + y(y), ( 1.1) 
l'E~£.f 

(f ·. ?J)(x) = /\ f(x + y) - ?J(y), ( 1.2) 

where V denotes supremum and /\ denotes infimum. 
The theory of d.etem1inistic morphological operators 
is quite rich and has been based on set and lattice 
theo1y [ 11, 19, 25, 26]. In spite of their wide applica­
bility, so far their analysis has been done only in the 
time (or spatial) domain because oflack of transfom1s 
which enable us to also describe them in a transform 
domain. However, recently some nonlinear signal 
transfonnations have been introduced in [7, 17, 18], 
called 'slope transfonns', which endow morphological 
systems with eigenfunctions and a related transfer 
function in a slope domain. It turns out that the 
morphological slope transfonns, restricted on the 
class of concave or convex functions, are closely re­
lated to the conjugate functions of convex analysis 
[8, 13, 14,21,22]. 

Therefore, there are many interesting ideas in 
the overlapping among the areas of morphological 
systems, slope transforms, and convex analysis. In 
this paper, we show that an efficient methodology 
and mathematically elegant framework to study and 

further advance these interrelationships is lattice the­
ory as applied to mathematical morphology. Thus, 
although the slope transfom1s are intended for anal­
ysis of morphological systems, they can benefit from 
the already developed theory of conjugate functions 
in convex analysis. Thus one of the contributions of 
this paper is to use convex analysis to enrich the un­
derstanding of slope transforms. Further, both areas 
can benefit from using the framework of complete 
lattices for studying the signal classes and operations 
involved. Thus another contribution of the paper is 
to study slope transfonns in the context of complete 
lattices. Further, a rich class of signals used in mor­
phological image analysis is that of binary signals, 
which are viewed as indicator functions of sets. A 
goal of this paper is to study the slope transforms 
of binary signals, which tum out to be the support 
functions of the corresponding sets, a concept very 
frequently used in convex analysis. Finally, in con­
vex analysis, the use of conjugate functions for both 
multilevel and binary signals is constrained to the 
cases of convex or concave signals. In this paper we 
apply slope transfonns to arbitrary signals, even if 
the information in the original sib>nal is not always 
completely recoverable from its slope transform. Un­
less stated otherwise, the propositions and corollaries 
in this paper are new (to the best of our knowledge). 

We begin in Section 2 with some basic notions from 
the theory of morphological signal processing. First, 
we briefly describe the complete lattice framework 
of mathematical morphology. Next, we remind the 
reader of the classical linear theory of signal process­
ing and the corresponding Fourier approach. We show 
that there exist several analogies between the linear 
and the morphological approach. The emphasis is laid 
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llpon the slope transform which may be considered 
<=ls the morphological counterpart of the Fourier trans­
form. In Section 3 we study the morphological slope 
ti-ansfonn within the framework of complete lattices. 
Since the slope transform is closely related to conjuga­
tion, we can use concepts from convex analysis here. 
Section 4 focuses on the slope transform of the in­
dicator function of a set and its relationships to the 
Set's support function, again viewed in the context 
Of complete lattices. In Section 5 we discuss some 
applications of the ideas in this paper. Our first ex­
a111ple concerns the distance transfotm, the second 
ex.ample discusses nonlinear partial differential equa­
tions that describe multiscale morphological opera­
tions [6, 20, 29]. We show that the resulting PDEs can 
be reformulated as Hamilton-Jacobi equations which 
have been thoroughly studied in the literature. We end 
With some conclusions in Section 6. 

2. Morphological signal processing 

2.1. Mmplwlogy on complete lattices with appli­
cations to convex sets 

A set .':/' with a partial ordering ~ is called a com­
plete lattice if every subset Y( i;;: Y has a supremum 
(least upper bound) V ff and infimum (greatest lower 
bound) /\ .. Y(; refer e.g. to [4]. The oppositl' of Y, 
denoted by !!)', is the complete lattice with partial or­
dering X::::;: 'Y iff X ~ Y. A comprehensive discussion 
of the theory of morphological operators on complete 
lattices can be found in [I I]. 

Let Y, .It' be complete lattices. A pair of opera­
tors ( 1;, c5 ), where <: : !!' -+ . !t' and c5 : Jt' -+ !!', which 
obeys 

b(Y)::::;X {::?- Y::::;i;(X), XEY, YE.I!, (2.1) 

is called an adjunction between ff' and .It'. In that 
case, 1: and 1) distribute over infima and suprema, re­
spectively, 

r: ( /\ xi) = /\ 1;(Xi ), 
iE/ iEI 

(2.2) 

(2.3) 

for arbitrary collections { Xi I i E !} i;;: Y) and {Yi Ii E 

.!} i;;: .II. An operator c which satisfies (2.2) is called 
an erosion. An operator c5 which satisfies (2.3) is called 
a dilation. Erosions and dilations are increasing map­
pings: a mapping t/!: .ff -+ , II is called increasing if 
X 1 ::::;X2 implies that t/!(X1 )~t/!(X2), for X1,X2 E !!}. 
The range oft/! is Ran(t/t) = { t/f(X) IX E 2'}. 

With every erosion 1: : :£.) -+ JI there corresponds 
a unique dilation c5: .it' -+ !!:' such that (i::, c5) con­
stitutes an adj unction. Vice versa, with every dila­
tion c5 : .II -+ Y there corresponds a unique erosion 
<:: .!/' ---. .II such that (i:, c5) constitutes an adjunction. 
We say that c5 is the adjoint dilation of i;, and also that 
D is the adjoint erosion of ci. 

If (i;, 15) is an adjunction between 2' and .ii, then 

t:& = D and &il = c5. 

Also 

here id'.!'. id 11 represent the identity mappings on '71 
and .II, respectively. 

An operator t/! : ff -.. !!' is called an openiny if it 
is increasing, idempotent (i.e., tj;2 = 1/; ), and anti­
extensive (i.e., t/J::::;: id). It is called a closiny if it is 
increasing, idempotent, and extensive (i.e., t/J? id). If 
(t:,<5) is an adjunction between Y and.//, then c5s is 
an opening on ff' and f;() is a closing on .. II. Openings 
will be denoted by a and closings by {3. 

The following result will be used later on in this 
paper. 

Proposition 2.1. Let (i:, c5) bi' an adjunction between 

!P and JI. 
(a) JfXi E Ran( il) .flir i E 1, thm 

r. ( v X;) =Db (v <:(Xi)). 
1E/ 1EI 

(b) If Yi E Ran(i;) for j E .J, then 

b ( /\ Y;) = 68 ( /\ b( Y; )) . 
jEJ jEJ 

Proof. We prove only (a), for then (b) follows 
by duality. Let X; = c5( Y; ), then, using that c5i:c5 = c5, 
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we get 

r.<5(v1;(X;)) =<;() (v <:<5(Y,)) =i: (v ()1:6(Y,)) 
IE/ 1E/ 1E/ 

= i: (v <5(Y;)) = t. (v x,) · 
1E/ 1E/ 

This concludes the proof. D 

Remark 2.2. This result can be restated as follows. 
The subset 2'1 = Ran( i5) of .!P is a complete lattice 
with the same supremum as Y but with infimum 
Dt:( V EI X; ). The subset .ll' = Ran( i:) of . II is also a 
com6lete lattice with the same infimum as .It but with 
supremum u5CV;EJ 1j ). The pair (t, 6) yields an ad­
junction between .!/11 and JI', and for this restriction, 
i: and() are each other's inverses. 

The invariance domain of an operator tf; : .!f --> !£ 
is defined by 

Inv(l/J) = {X E !!) j ljJ(X) =X}. (2.4) 

The invariance domain of an opening (respectively 
closing) is closed under the fonnation of suprema (re­
spectively infima ), that is, if X; E Inv( tf;) for i EI, then 
V,E1 X1 (respectively Ae1 X1) lies in lnv(1/.t) as well. 
Conversely, if//{~!£ is closed under suprema, then 
there is a unique opening x on !:P with Inv(x) =Ye. 
Dually, if //f' ~ !!' is closed under infima, then there 
exists a unique closing f3 on Y with lnv(fJ) =:ft. Re­
fer to [ 11] for a proof of these results. 

Proposition 2.3. 
(a) Let r:t., x' be openings on Y such that x' xx' = r:t.r:t.', 

then xx' is an opening with invariance domain 
Inv( r:t.) n Inv(x' ). 

(b) Let f3, /J' be closings on Y such that fJ' fJfJ' = fJ/J', 
then /3/3' is a closing with invariance domain 
Inv(/3) U lnv(/J' ). 

Proof. To see that 11..x' is an opening, we only have 
to show that xx' is idempotent. But this is obvious 
since xr:x.' w:x.' = xxx' = ax'. Furthermore, one sees im­
mediately that xa' = x' tt.x' maps into Inv( r:t.) n Inv( r:t.' ). 
On the other hand, if X E lnv(r:t.) n Inv(r:t.'), then X = 
11..(Y)=a'(Y') for some Y,Y'E2'. Thus, 11..a'(X)= 

xx' x'( Y') = xx'(Y') = x(X) = r:t.x( Y) = :x( Y) =X. 
This proves the result. D 

We illustrate these abstract concepts by means of 
some concrete examples. Denote by Y( [Rd) the set 
of all subsets of [Rd; the empty set will be denoted 
by 0. Then 90(1Rd) is a complete lattice if we take set 
inclusion as partial ordering. Supremum and infimum 
are given by set union and intersection, respectively. 

Recall that Minkowski sum and difference of two 
sets X, A ~ !Rd are defined as 

X (-lA = nx-a. 
a EA 

a EA 

The pair ( t:A, bA ), where 6 A (X) = X rti A and 
t:A(X) =X GA, defines an adjunction on 2i'(!Rd). The 
set A is called structuring element. 

The mapping X ,_..., int(X) which maps a set X to 
its interior is an opening. Dually, the mapping fJc 
given by /3c(X) =X, where X is the closure of X, is a 
closing. 

Recall that a set X c;:; !Rd is convex if rx + (1 -
r)y EX for x,y EX and O<r< 1. A set X is called 
a cone if rx EX for x EX and r;,: 0. A cone which is 
convex is called a convex cone. See Fig. l for some 
illustrations. 

The collection of convex sets in IR" is denoted by 
2i' A(IR"). This is a complete lattice under the inclu­
sion relation with set intersection as infimum, but 
with a different supremum, an expression for which 
is given below. If X, Y ~ !Rd then X e.f! Y is convex, 
too. The convex hull co(X) of a set X is the inter­
section of all convex sets which contain X. Since 
an intersection of convex sets is convex, co(X) is a 
convex set, the smallest convex set which contains 
X. Now the supremum of the collection {X; Ii EI} 
in .07'A(IRd) is given by co(LJ,E1 X;). The map /JA on 
:?l(IR") given by /3A(X)=co(X) is a closing with 
invariance domain 2i' A (!Rd). 

It is a well-known fact [28] that the closure of 
a convex set is convex. In operator notation, 

(2.5) 

Now Proposition 2.3(b) gives that f3cf3A is a closing 
with invariance domain lnv(/3 A) n Inv(/3c ), the closed 
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convex set cone convex cone 

Fig. 1. From left to right: a convex set, a cone, and a convex cone. 

l 
x co(X) 

Fig. 2. A closed set X for which co(X) is not closed. 

convex sets. The set {JdJA(X)=co(X) is called the 

closed com•ex hull of X, also sometimes denoted by 

co(X). 
The example in Fig. 2 shows that the convex hull 

of a closed set need not be closed, i.e., 

The mapping c5 : .J>( IR") -? .J>( IR") given by 

c5(Y) = LJ rY 
r~O 

is a dilation. The corresponding erosion 1s given 

by 

D(X)= { 
0, 

nr>OrX, 

0 jtX, 

OEX. 

Both e(X) and b(X) are cones, for every X <;;:; !Rd. 

The set c:(X) is called asymptotic cone or reces­

sion cone if X is convex [ 13, Section III.2.2]. Note 

that 6 is also a closing, and, dually, that c: is an 

opening. 

2.2. Linear signal processing and Fourier analysis 

A signal operator P: f ~ P(f), defined on the 

space of complex-valued signals with domain !Rc1, is 

called a linear shift-invariant (LSI) system if 'P obeys 

the linear superposition principle, i.e., 

1P ( J; c;fi) = J; c;'P(.fi), 

where {j,:} is a finite signal collection and c; are con­

stants, and if l/' is horizontally shift-invariant: 

P(f;) = [ P(f )]y, 

where .fi· denotes the horizontal translate of the func­

tion f over the vector y, i.e., 

.fi(x) := f(x - y). 

The output from 1/1 can be found via the linear con­

volution 

P(f)(x)=(f*h)(x):= { f(y)h(x-y)dy 
1111.<1 

of the input signal f (x) and the impulse response 

h(x ), which is the system's output due to a Dirac delta 
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input The exponential signals exp(j(x. w)) are eigen­
functions of 'f'. because 

lf( exp(j (x. w))) = H ( w) exp(j (x, w) ). 

where (x. w) denotes the inner product of the vectors 
x=(x1, ...• xd) and w=(w 1 •... ,WJ) in ifl:": 

d 

(x. w) := 2.:x;w;. 
ioc\ 

Note that we use the 'loose notation· 'f' ( exp(j (x. w))) 
instead of 'f'(exp(j(-. w) )). 

The eigenvalue H(w), called the system's fre­
quency response, is the Fourier transform of h(x ): 

H(w)= ( h(x)exp(-j(x.oJ))dx. 
jlf/!., 

The frequency response provides a simple way to find 
the system· s output when the input is a weighted sum 
of sinusoids, because the output will also be a weighted 
sum of sinusoids with same frequencies and with am­
plitudes and phase offsets determined by H ( w ). In ad­
dition, the frequency response may often be a simpler 
description of the system, especially in the case of 
a frequency-selective (e.g .. low pass or band pass) fil­
ter, because signal convolution becomes multiplica­
tion of their Fourier transforms; thus, 

where F, G are the Fourier transforms of f. y. 

2.3. Morphological systems and supremal/infimal 
convolution 

In convex analysis and opt1m1zation [2, 13, 

14, 21, 22, 30], the nonlinear signal operation 
given by ( 1.1 ) is usually called supremal convolution. 
A dual operation is the so-called infimal convolution 
given by 

(fDg)(x)= (\ f(x-y)+g(y). 
yEIR" 

Note that D is closely related to the morphological 
erosion e, given by ( 1.2 ), because 

/8g=JD(-{J). 

where ?] is the reflection of y given by 

g(x) = q( -x). 

Henceforth, we shall refer to tD and D as the 
supremal and infimal convolution, respectively, to 
distinguish them from the concept of a dilation and 
erosion operator on a lattice. 

A mapping LI which sends a signal f to a trans­
formed signal Ll(f) is called a dilation translation­
invariant (DTI) system if it is a dilation, i.e., 
!J(Vi fi) = V, Ll(jj ), and if it is translation-invariant, 
i.e., Ll(/v + c) = Ll(f) 1, + c for any shift )'and any 
real constant c. It is easy to verify that a system is 
DTI if it is horizontally shift-invariant and obeys the 
morphological supremum superposition principle 

LI [v f(x)+ci] = V[Ll(.fj)(x)+c;], 
iE! iE/ 

where {fi} is any signal collection and c; E IR. 
Many important aspects of a DTI system can be 

determined in the time or spatial domain solely from 
knowledge of its output signal due to an elementary in­
put signal, the morphological lower impulse q A given 
by 

( ) { 
0, x = 0, 

qi\x:= - . ._1.0 
'.XJ, X r . 

The corresponding output of the DTI system LI when 
the input is the lower impulse is henceforth defined as 
its lower impulse response 

This uniquely characterizes a DTI system in the time 
domain, because any DTI system is equivalent to a 
supremal convolution (also called 'morphological di­
lation') by its lower impulse response: 

Ll(f) = .r (fj g. (2.7) 

Similarly, a signal operator 6': f 1--7 rff(f) is called 
an erosion translation invariant (ET!) system if it is 
horizontally shift-invariant and obeys the morpholog­
ical infimum superposition principle 

rff· [/\fi(x)+c;] = (\[rff(f;)(x)+c;], 
iE! iE! 
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where c; E R If we define the upper impulse response 
h of an ETI systems IS' as its response 

h := (f(qv) 

to the upper impulse 

( ) { 0, x =0, 
qv x := 

+oo, x =I- 0, 

then it follows that 

i!(f)=fDh. (2.8) 

When the ETI and DTI systems are related via an 
adjunction, then there is also a close relationship be­
tween their impulse responses. Namely, let 8 be an 
ETI system, and let ,1 be its adjoint dilation. It is easy 
to show that ,1 is a DTI system [ 11 ], and therefore 
..1(/) = f E& g, where g is the lower impulse response. 
Now 

C(f)= f 8 g. (2.9) 

Note that (2.9) and (2.8) become identical ifone puts 
h=-y. 

Remark 2.4. Since we are dealing with functions 
mapping into the extended reals, we have to provide 
some rules for addition and multiplication of such 
numbers; see also [13, Appendix 2]. Such rules have 
to be in correspondence with certain properties of dila­
tions and erosions on the complete lattice IR. From the 
fact that a dilation d: IR ~ IR satisfies d( -oo) = -oo 
(see [I I, Chapter 11]) we getthat -oo+( +oo) = -oo 
if it occurs in an expression like f@ g. However, in 
f 8 y we have to put -oo - ( -oo) = +oc. In many 
cases, however, y will be finite everywhere. Finally, 
we will put 0 · -oo =0 · +oo =0. 

2.4. Upper and lower slope transform 

To analyze morphological systems in a transform 
domain, the following two signal transforms were in­
troduced in [ 17, 18]. Given a signal /, its upper slope 
transform is defined as 

Yv(f)(v) := V f(x) - (x, v), v E !Rd, 
xEIR" 

and its lower slope tram:form is 

.Y'l\(f)(v):= /\ /(x)-(x,i·), vEIRd. 

xEIR" 

These slope transforms provide information about 
the slope content of signals and a description of 
morphological systems in a 'slope domain', with 
functionality similar to the use of Fourier or Laplace 
transforms in linear systems. Specifically, the hyper­
planes x 1-> (x, v) + b (or lines x 1-> vx + b for one­
dimensional systems) are eigenfunctions of any DTI 
system ,1 because 

..1( (x, v) + b) = (x, v) + b + gv (v), (2.10) 

if ,1 is given by (2.7) and yv = Y0(g). We call ?/ 
the upper slope response of the DTI system ..1. It 
measures the amount of shift in the intercept of the 
input lines with slope v. It is also conceptually sim­
ilar to the frequency response of L TI systems which 
is their multiplicative eigenvalue for input exponen­
tials, whereas ?Jv(v) is the additive eigenvalue ofDTI 
systems for input lines with slope v. Further, as the 
frequency response of an L TI system is equal to the 
Fourier transform of the system's impulse response, 
in a similar way the slope response of a DTI system 
is the upper slope transform of the system's lower 
impulse response. 

Perhaps the most important property of Fourier 
transforms in analyzing L TI systems is their ability to 
map a linear convolution of signals in the time/spatial 
domain to multiplication of their Fourier transfonns. 
Similarly, supremal convolution of two signals be­
comes addition of their upper slope transforms: 

(2.11) 

Similar ideas apply to ETI systems. Specifically, the 
above hyperplanes are also eigenfunctions of any ETI 
system given by (2.8): 

@'((x, v) + b) = (x, v) + b + hl\(v), (2.12) 

where hi\ = Y'I\ (h ). In the special case where the ET! 
system @' and the DTl system L1 form an adjunction, 
their slope responses are closely related since 

(2.13) 

In general, we note that 

(2.14) 
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Fig. 3. Slope-limiting (i.e., Lipschitz regularization) of a function 
via its supremal convolution with a cone. The dashed line shows 
the original signal /(x) = [l + 0.5 cos(21tX)] cos( lOrrx), x E [O, l]. 
The solid line is the supremal convolution of/ with K.,(x) = -alxl 
where a= -5. 

From (2.10 )-(2.13 ), one observes that the closing <ff L1 
and the opening Ll@' leave the hyperplanes x f---7 (x, v) + 
b invariant. For further properties as well as graphical 
illustrations, the reader may refer to Section 3. 

2.5. Slope-limited functions, Lipschitz regulariza­
tion, and slope filtering 

Define, for every a> 0, the concave conical function 

Ka(x) = -allxll· 

Here llxll denotes the length (or Euclidean norm) of 
the vector x, i.e., llxll =Clx11 2 + · · · + lxJl2 ) 112 . Define, 
for a function f : IRJ ----> IR the mapping 

depending on the slope parameter a. See Fig. 3 for 
an illustration of a one-dimensional signal f and its 
transformation 'Pa(.f). 

The family {'Pa I a> 0} has the semi group property 

This follows easily from Ka ED Kb= Kuf\b· This latter 
identity becomes obvious by using (2.11) and the ex­
pression for K;/ given below. 

Every 'Pa is a dilation and a closing at the same 
time. Since the slope transform of the conical function 
assumes only 0 and +oo values, 

Kv(v)= { 0, lvl ,,;;a, 
a +oo, lvl >a, 

and supremal convolution becomes addition in the 
slope domain, 

.C/'v('f'a(f))=.fv +K:, 

it follows that lf'a(/)v(v)=+oo for lvl>a. Hence 
it is 'upper slope-limited', where we call a function 
f: IR----> lR upper slope-limited if there exists some 
a> 0 such that jv ( v) = +oo for I vl >a. The constant 
a may then be called the upper slope bandwidth of 
f. The above discussion implies that a function f be­
comes upper slope-limited with bandwidth a after its 
supremal convolution with the cone Ka. 

Slope-limited functions are related to Lipschitz 
continuous functions. Consider functions f : ~d ----> IR. 
Recall that f is Lipschitz if there exists a con­
stant c>O such that lf(x) - f(y)l ,,;;cllx - Yll, for 
x, y E !Rd. If a function f is Lipschitz continuous 
with constant a, then lf'a(f) = f, hence f is an up­
per slope-limited function with bandwidth a. The 
converse is not true in general. For example, the 
quadratic function f(x) = llxll2 has upper slope trans­
form which is identically +oo, but f is obviously 
not Lipschitz continuous. However, as shown in [22, 
p.116], a proper concave function f is Lipschitz with 
constant a if and only if it is upper slope-limited with 
bandwidth a. Note the similarity with Fourier analy­
sis where a real-valued function f(x) is band-limited 
(i.e., frequency-limited) with bandwidth w0 if its 
Fourier transform is zero for frequencies lwl > wa. If a 
function is not originally band-limited, it can become 
so by linearly convolving it with the sine-function 
h(x) = sin(wox)/nx. Band-limiting causes a regular­
ization to the original function because it eliminates 
higher frequencies in the input. Thus, slope-limiting 
can be seen as a 'Lipschitz regularization'; see also 
[14, Example 3.4.4). 

Frequency band-limiting can be seen as frequency­
selective filtering in the frequency domain, where the 
input signal components whose frequencies are within 
the filter's pass band pass unchanged, whereas other 
frequency components are rejected. Similarly, slope 



H.J. A. M. Heijmans. P. Maragus / Siwwl Prucessi11~1 59 ! /Y97 J / 7 .. 42 

transforms have been used for designing and analyzing 

DT! or ETI systems that act as slope-selective filters 

[17, 18]. For example, the above supremal convolu­

tions_ with the conical functions Ka can be seen as sym­

metnc low-pass slope-selective filtering because if the 

input signal f contains any segments with slopes ab­
solutely greater than a, they will be rejected, whereas 

slopes absolutely smaller than a will pass unchanged. 

For a more general (asymmetric bandpass) slope filter, 
imagine a one-dimensional DTI system that passes 

all line components with slopes in the band [v 1, v2] 

unchanged, and rejects all the rest. Then its slope re­
sponse would be 

V1 ~V~l'2, 

else. 

This is a general ideal-cutoff slope band-pass filter. In 

the spatial domain, it acts as a supremal convolution 
by the impulse response 

() { v1x, x?:O, 
q x = 
• V2X, x ~0. 

The points on and below the graph of this function y, 
the so-called umbra (see Section 3.1 ), form a concave 

cone. Such a dilation by an infinite cone produces 

upper envelopes of the input signal, as shown in Fig. 3 

for the symmetric case v2 = -1· 1 =a>O. 
Lipschitz functions, and more generally, equicon­

tinuous functions play an important role in morpho­

logical sampling schemes for grey-scale images [27]. 
Readers who are interested in an abstract treatment of 

Lipschitz functions in the complete lattice framework 
for morphology should refer to [23). In this paper one 

find various results related to the ones above. 

3. The slope transform 

3.1. Complete lattice theory for .fimctions 

We denote by Fun( !Rd) the functions mapping 

!Rd into the extended reals IR = IR U { -oo, +oo }. It 
is evident that this defines a complete lattice under 

the partial ordering given by pointwise inequality: 

f1 ~.h if f1(x) ~fz(x) for every x E IR". By f = c, 

where c E IR, we mean that f (x) = c, for every x E !Rd. 
The function which equals c everywhere is denoted 

by'= c'. 

The upper and lmrer domain of a function f are 
defined as 

domv(/) = {xE IR" I f(x)> - x}, 

domA(f) = {x E IR" j /(x)< + x}, 

respectively. It is easy to show that 

domv ( V fi) = U domv(/i ), 
iEI iEI 

dom/\ (A.1;) =ndom,(/i), 
1E/ 1EI 

(3. l) 

{ 3.2) 

for an arbitrary collection {/; [ i E I} in Fun( IR" ). In 
other words, dom v ( · ) (respectively dom .·. (.) ) is a di la­
tion (respectively erosion) from Fun( [Rd) into :1'( IR" ). 

Furthermore. we define the epiyraph and hypoyraph 
of a function as 

In mathematical morphology, the set U1\ U) is usually 
called the umbra of f. Note that Uv (respectively Ur,) 

defines a dilation (respectively erosion) from Fun( [Rd) 

into Y( !Rd x IR ). For an illustration of these concepts 

we refer to Fig. 4. 

A function of the form x >--> (x, v) + b, where r E !Rd 

and b E lR is called an c{/fine jimction. If b = J:: .x 

then this function is identically ±oo, and it is called a 
deyenerate affine .fimction. 

Definition 3.1. Let f be an element of Fun( [Rd). 

(a) The function f is u.s.c. (upper semi-continuous) 
if, for every t E IR and x E [Rd, f(x) < t implies 
that f(y)<t, for every yin some neighborhood 

ofx. 
(b) The function f is l.s.c. (/oll'er semi-continuous) 

if, for every t E IR and x E [Rd, f(x) > t implies 
that f (y) > t, for every y in some neighborhood 
ofx. 

The collections of u.s.c. and 1.s.c. functions are 
denoted by Fun,,(IR") and Fun1(1R"), respectively. 

The following result is well-known; see e.g. 

[22, Section 7). 
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(U) (b) 

Fig. 4. (a) Upper domain and epigraph of a function; (b) lower domain and hypograph (or umbra) of a function. 

Proposition 3.2. 
(a) Ajimctionf isu.s.c. iffitshypograph U11 (f)is 

closed. 
(b) A function .f is l.s.c. if[ its epiyraph Uv(.f) is 

closed. 

The infimum of an arbitrary collection ofu.s.c. func­
tions is u.s.c. One can use a direct argument to prove 
this, but one can also exploit the fact that U 11 is an 
erosion. Assume that .fi is u.s.c. for every i in some 
index set /, then U A (/\;El jj) = niEI U A(/;), Which, 
being an intersection of closed sets, is closed. Now 
Proposition 3.2(a) yields that /\;Ef f; is u.s.c. Dually, 
it follows that the supremum of a given collection of 
1.s.c. functions is l.s.c. 

Let f be an arbitrary function. Define the upper 
closed hull fJu(f) = f off as the infimum of all u.s.c. 
functions which lie above/. Then 7 is u.s.c.; it is the 
smallest u.s.c. function above f. One can easily show 
that f (x) = Jim sup.r _ x f(y ), and that 

U11Cf)= U11(f). 

Dually, we define the lower dosed hull rt.r<f) = f of 
f as the supremum of all l.s.c. functions below f. 
The function f is the largest l.s.c. function below f, 
[(x)= liminri.-xf(y), and 

Uv([)= Uv(f). 

Now the following result is obvious. 

Proposition 3.3. 
(a) The mapping fJu defines a closing on Fun( [Rd) 

with invariance domain Funu(rR11 ). 

(b) The mapping rt.1 defines an opening on Fun( [Rd) 
with invariance domain Fun1( rR11 ). 

The next result is a straightforward consequence of 
the previous observations; cf. [ 11, Theorem 10.13]. 

Proposition 3.4. 
(a) The set Fun,,(rRd) is a complete lattice under 

the pointwise partial ordering with the pointwise 
infimum /\;Ef f;, and with supremum given by 
fJu(ViEI /; ). 

(b) The set Fun1( [Rd) is a complete lattice under 
the pointwise partial orderiny with the pointwise 
supremum ViE/ /;, and with injimum given by 
rx.1((\iEI f; ). 

3.2. Convex and concave .functions 

A function f is concave if its hypo graph U 11 (.f) is 
convex, i.e., 

f(rx+(l -r)y);;;,rf(x)+(l -r)f(y), 

for x, y E !Rd such that f (x ),f (y) > - oo and 
0 ~ r ~ 1. The function f is convex if its epigraph 
Uv(f) is convex, i.e., 

f(rx+(l -r)y)~rf(x)+(l -r)f(y), 
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concave function convex function 

Fig. 5. A concave and a convex function. 

for x, y E IR" such that f(x ), f(y) < + ex:; and 
0 o:;; r ~ 1. See Fig. 5 for an illustration. 

The concave and convex functions are denoted by 
Fun;JIRd) and Funv(IRd), respectively. Note that the 
subscript '/\' characterizes the shape of a concave 
function. The next two results are easy to prove. 

Proposition 3.5. 
(a) If f is concave, then domv(f) is a conrex set. 
(b) If f is convex, then domA(f) is a convex set. 

Proposition 3.6. 
(a) f is concave iff U 11 (.{) is a convex sl!l in IR" x IR. 
(b) f is convex (ff Uv(f) is a convex set in IR" x IR. 

Concavity and convexity are dual notions in the 
sense that f is concave iff - f is convex. There is 
a huge literature on convex functions; we refer in 
particular to the monographs of Rockafellar [22] and 
Van Tie! [30], and the two recent volumes by Hiriart­
U1TUty and Lemarechal [13, 14]. 

As grey-scale morphology is usually based on the 
notion of the hypograph (or umbra; this is convex if 

the underlying function is concave) we choose to con­
sider concave rather than convex functions. From the 
duality principle [ 11 ], it follows that both approaches 

are equivalent. 
The infimum of an arbitrary collection of concave 

functions is concave. This does not hold for the supre­
mum. Define the concave hull {l11 (f) of an arbitrary 
function f as the intimum of all concave functions 
which lie above f. This is a concave function, the 
smallest concave function above f. Dually, we define 
the convex hull r:t.v(f) as the supremum of all convex 
functions below f. In Fig. 6 we give an illustration of 

the concave hull. 

The next two results are very similar to Proposi­
tions 3.3-3.4. 

Proposition 3.7. 
(a) The mappinq ff!\ dt'fines a closing on Fun( [Rd) 

with invariancl! domain Fun.I\ ([Rd). 
(b) The mapping 'Y.v defines an opening on Fun(IR") 

with invariance domain Funv ( [R;d ). 

Proposition 3.8. 
(a) The set Fun"(!Rd) is a complete lattice under the 

pointwis<' orderiny, with the pointwise i1~fimum 

/\iE/ .Ii and with supremwn /311( V,E, .fi ). 
(b) The set Funv(IR:d) is a completl! latticl! under 

the pointwisl! ordainy, with the pointwise supre­

munz ViEI fj and With infimum 'Y.v(/\iEI f; ). 

The lower closed hull of a convex function is con­
vex [22]. This means that 

Now Proposition 2.3(a) gives that 'J.;'Y.v is an opening 
with invariance domain Fun1(1R:d) n Funv(IR:d), the 
l.s.c. convex functions. A dual result holds for the 
upper closed hull of concave functions, i.e. 

Proposition 3.9. 
(a) Thi! operator :x1 'J.v is an opening on Fun(IR") 

with invariance domain the l.s. c. convex fimc­

tions. 
(b) The operator f3u/3A is a closing on Fun(IR:d) with 

invariance domain the u.s. c. concave jimctions. 
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la) (b) 

Fig. 6. (a) A function and (h) its concave hull. 

One can find examples which show that 'YfY.vX; I= 
Xv'X; and that /lufl;JJu /= f3tJ3u; cf. (2.6). 

Remark 3.10. In Fig. 2 we have given an example of a 
closed set X for which co(X) is not closed. Similarly. 
we find that f u.s.c. does not necessarily imply that 
/311 (f) is u.s.c. One can show that, for every function f, 

co( U11(/)) = U11(/3u/11,(f) ). 

Refer to [ 13, Section IV.2.5] for similar results. 

In the previous section we have introduced some 
operations on functions such as supremal and infimal 
convolution. For these operations, one has to take into 
account the arithmetical conventions for extended re­
als as explained in Remark 2.4. This means in partic­
ular that 'lcf:i' and 'O' are not commutative in all cases. 

It is evident that, for eve1y function if, 
( i) / t:B if is convex, if f is convex; 

(ii) f g is concave, if f is concave; 
(iii) /Dy is concave, if/ is concave. 

But, more interestingly, one can also prove the fol­
lowing result. Refer to [22, Section 9] and [13, Sec­
tion. IV.2.3] for some closely related results. 

Proposition 3.11. 
(a) fl f, g are concave, then f 1.:& q is concave. 
(b) rr f, y are convex, then ID{) is convex. 

Proof. We prove (a); then (b) follows from a 
duality argument. We use the umbra transfom1 
discussed in [10] and [11, Section 11.6]. Re­
call that a set U t:;;; [Rd x IR is called an umbra if 

(x, t) E U B (x, s) E U for s < t; here x E [Rd. The set 
U is called a pre-umbra if (x, t) E U implies that 
(x,s)E U for s<t. For a set V t:;;; !Rd x IR we de­
note by U,( V) the smallest umbra which contains 
V. If Vis a pre-umbra, then Us(V)= nr>O vr. Here 
V'={(x,t + r)i(x,t)E V}. It is easy to show (see 
also [ 11, Section 11.6]) that 

1 f f, y are concave, then U 11 (f ), U 11 (g) arc convex 
sets. Therefore (see Section 2.1) their Minkowski sum 
U11(f) U11 (g) is convex, too. But now Us( U11 (/) 
U 11 ({}) ), being an intersection of convex sets, is con­
vex. This implies that U /\ (/ y) is convex, in other 
words, that f tf! y is concave. D 

3.3. Leyendre transfimn and conjuyation 

Consider a convex function f : !Rd __, IR which is 
continuously differentiable and finite. Refer to [22, 
Section 26] for conditions on f which are slightly 
more general, and under which the derivations below 
are still valid. 

Given a vector v E [Rd, we look for a point x0 E !Rd 

such that the hyperplane in !Rd x IR given by x __, (x -
xo, u) + f (xo) is tangent to the graph of f at the 
point x=xo. This amounts to solving the equation 
\lf(x)= u, where \lf is the gradient off. If this gradi­
ent mapping has an inverse cv.n- 1• then the solution 
is given by x=x(v) := (\lf)- 1(v). It turns out that 
x( ·) is a gradient mapping itself: x( v) =\IF( v ), where 
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Fis given by 

F(v) = (x(v),11) - f(x(v)) 

= ((V'f)~J(v),v) - f((V'/T'(r)). (3.3) 

The function Fis called the Leyendre tra11.1ji>rm off. 

lt is well-defined if f is convex and differentiable, and 

if V'/ is invertible. For a function f and its Legendre 

transfonn F, the following inverse relations hold: 

V'f(x)=v and V'F(v)=x. (3.4) 

Fig. 7. Concave signal f', its tangent with slope= i· and a line 
parallel to the tangent. 

SIGNAL 

-0.5 

Note, in particular, that these relations imply that .f 

is the Legendre transform of F. lf x, r are related by 
(3.4 ), then 

f(x) + F(r)= (x, r·!. ( 3.5) 

As shown in Fig. 7 for a one-dimensional differen­

tiable signal f, the quantity rx - f(x) is the negative 

of the intercept of a line that passes from the point 

(x,f(x)) on the graph off and has slope r. This inter­

cept becomes maximum (and equal to -F(r)) when 

the line with slope l' becomes tangent to the graph of 

f. In Fig. 8 we depict an example. 
I ft' docs not have an invertible gradient its Legen­

dre transfom1 cannot be defined as above. To treat such 

and other more general cases of non-differentiable 

functions, we now define F as 

F(r)= - /\ f(x) - (x, r) = V (x, rj --- f(x). 

The conjuyate f* of a function f is defined by 

f* ( i·) = V (x, r) - f(x ). (3.6) 

xElR>1 

We write /l(f)=f*. The operator /I is known un­

der different names, e.g. 'Fenchel conjugate', ·Young-­

Fenchel conjugate', or ·Legendre -Fenchel transform'; 

see e.g. [22, 13, 14]. 

ii: 
UJ 
() 
a: 
UJ 

~ 
(!) 
UJ z 

LEGENDRE TRANSFORM 
1.6 

1 4 

1 2 

-1L-__ o_L25~~~~~~--="'-:co-""-~~~~~~~o~.2~s~ 

TIME (I COSINE PERIOD) 

1L_1~~~~.-0_5~~~:::,,....~o~:::._~~~o.s=--~~~-:­

sLOPE (I COSINE FREQUENCY) 

I I ) ) (b)lt L d t nst.01·mF'(1·)- 11 (1·_,'w11)2+(1'·Wl1)arcsin(r"'11). Fig.8. (a)Signalf(x)=-cos(w11x), x ,,;rr/(-wo. s egcn re ra · -y -
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The definition in (3.6) is not restricted to convex 
functions but applies to all functions .f: !Rd ~ !R. Note 
that f* is identically +oo if f(x)= - oo for some 
x E IR". From (3.6) it follows readily that 

.f*(v)';3 (x, v) - f(x), (3.7) 

for every x E !Rd and v E !Rd. This inequality is known 
as Fenche/'s inequality, and is usually written as 
f(x) + .f* ( i•) ';3 (x, v). However, this latter inequality 
may differ from (3.7) if f(x) or .f*(v) equal ±oo. 

The next result can be found in [22] for the case 
where .f is a convex function. 

Proposition 3.12. For every f E Fun(IR"), the conju­
gate f* is l.s.c. and convex. 

Proof. Formula (3.6) shows that f* is the supremum 
of affine functions xr+(x,v) - f(x). From Proposi­
tion 3.4(b) we find that f* is l.s.c., and from Propo­
sition 3.8(b) we conclude that /* is convex. D 

At this point we might give a list of properties of 
the conjugation. However, this operation is closely 
related to the slope transforms discussed later. As we 
are primarily concerned with the slope transforms, we 
rather discuss properties of the latter. We mention only 
the property that conjugation transforms an intimal 

(!) 
z z 
w 

0 
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-5 

, , , 
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' ' ' ' ' ' 

' 

5 10 

1-

convolution into an addition: 

(/Dg)* = .f* + g*, 

for /,gEFun(!Rd). 

3.4. Upper slope transform 

(3.8) 

Recall the following definition of the upper slope 
transform from Section 2.4: 

/v(v)=Y'v(/}(v)= V .f(x)- (x,v), (3.9) 
xE~" 

for f E Fun( IR" ). See Fig. 9 for examples of slope 
transforms of differentiable and non-differentiable sig­
nals. 

There exists a simple relationship between this 
transform and the Young-Fenchel conjugate, namely, 

/v(v)=(- f)*(-v). (3.10) 

This relation, in combination with Proposition 3.12 
yields the following result. 

Proposition 3.13. For every f E Fun(IR"), its upper 
slope transform fv is l.s.c. and convex. 

We list a number of properties of the upper slope 
transform; see also [ 18]. Define for f E Fun( IR") and 

SLOPE TRANSFORM 
50 

40 

30 

fu 20 
(.) 
a: 
w 
~ 10 

0 

-10 

-2~ - 0 -5 

' , 
' ' 

... --- -... 

0 
SLOPE 
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Fig. 9. (a) Original parabola signal f(x)= -x2/2 (in dashed line) and its morphological opening (in solid line) by a flat structuring 
element [-5, 5]. (b) Upper slope transform of the parabola (in dashed line) and of its opening (in solid line). 
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f[wJ(x)= f(x) + (x, w). 

The notation f(r· ), where r E IR, stands for the func­
tion x 1---+ f(rx). 

If fv ( v) = b, then the function f is majorized by the 
affine functionx1-+ (x, v) +b. Therefore, if we compute 
the infimum of all affine functions x 1---+ (x, v) + fv ( v ), 
we obtain a function which majorizes the original 
function f. This motivates us to define 

.9",;-(g)(x) = /\ g(v) + (x, v), (3.11) 
vERd 

for a function g : !Rd -+ IR. 
The upper slope transform maps the affine function 

x 1---+ (x, vo) + b onto an upper impulse which equals b 
for v =Vo and +oo elsewhere. If we apply .9".,;- to this 
upper impulse, we retrieve the original input function 
X1-+ (x, vo) +b. 

We call .9".,;- the adjoint upper slope transform. 
This nomenclature is justified by our next result. 

Proposition 3.15. (.9".,;-, .9"v) is an adjunction on 
Fun(IRd). 

Proof. We must show that 

.9"v(f)~g {:} f ~.9",;-(g). 

We prove '=>';the other implication is proved simi­
larly. Assume that .9"v(f)~g; this means that 

f(x)- (x,v) ~g(v), xEIRd, v E !Rd. 

Therefore,f(x)~g(v)+(x,v) forxEIRd, vEIRd. This 
yields that f (x) ~ /\uE Rd g( v) + (x, v) for x E !Rd, i.e., 
f ~ .9",;-(g ). D 

Analogous to Proposition 3 .13 we can prove that the 
function Y;-(g) is u.s.c. and concave for an arbitrary 
function g. In fact, we can prove a much stronger 
result. 

Proposition 3.16. 
(a) Ran(Yv) consists of the l.s.c. convex functions. 
(b) Ran(Y;-) consists of the u.s.c. concave func-

tions. 

Proof. We prove (b ); the proof of (a) follows by sim­
ilar arguments. Assume that f is u.s.c. and concave; 
we show that f ERan(Y;-). Define g=Yv(/); we 
show that Y;-(g) =f. Put f' = Y;-(g ). Since Y;- .9"v 
is a closing we get that f' =Y;-Yv(/) ';;::;f. There­
fore, it remains to be shown that f ';;::; f 1• Since f is 
u.s.c. and concave, it follows that f is the infimum 
of all affine functions x1-+ (x, v) + b majorizing f; cf. 
[13, Proposition IV.1.2.8]. If t is such an affine func­
tion, then t=Y;-Yv(t) ~Y;-Yv(f)= f'. But this 
implies immediately that f ~ f'. D 

Combining the latter two propositions we arrive at 
the following result. 

Corollary 3.17. 
(a) Y;- Yv is a closing on Fun(!Rd) with invariance 

domain the u.s.c. concave functions, i.e., 

.9",;- Yv = f3uf3A· 

(b) .9"vY;- is an opening on Fun(!Rd) with invari­
ance domain the l.s.c. convex functions, i.e., 

.9"vY;- =r:l.tr:l.v. 

If we apply Proposition 2.1 (b) to the ad junction 
( Y;-, .9"v ), we find that 

.9"v ( /\ fj) = r:l.tr:l.v ( /\ Yv (/j )) , 
jEJ jEJ 

if fj is u.s.c. and concave for every j El. 
We now list a number of properties of Y;-; see 

also [18]. 

Proposition 3.18. (Properties of Y.,;-). For f,gE 
Fun(IRd),yE !Rd, wE !Rd, r>O, and c E !R: 
(a) Y;-(fw)=(Y;-(f))[w]• 
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(b) .v:;-urvi J=cY;;--un-.1, 
(c) .Y:;-(f + c)=Y:;-(f) + c, 
( d) .<1:;-(rf) = r.CJ:;-(f)(-/r ), 
( e) .v:;-(l(r·)) = y:;-cnur ), 
(f) .Y~:-(f( -·)) = Y:;-(f )( -· ), 
(g) Y:;-(JTJy)=Y:;-(f) + Y~:-(g). 

Further, it is easy to verify that 

Y:;-(- f)= - //(;(/); (3.12) 

in other words, .'!'.;- is the negative operator of//(;. 
However, we point out that (3.12) is, in a sense, 
meaningless. For, the upper slope transform acts on 
functions of the spatial variable x, whereas the adjoint 
upper slope transform acts on functions of the slope 
variable v. 

3.5. Lower slope transform 

Ifwe replace the supremum in (3.9) by an infimum 
we get the lower slope transfonn. It goes without say­
ing that all results for the upper slope transfonn stated 
in the previous section have a counterpart for the lower 
slope transfonn. For the sake of completeness we will 
state them briefly. 

Let f E Fun( !Rd), the lower slope transform off is 

f1'(v)=!.f'A(f)(v)= (\ f(x)- (x,v). (3.13) 
xE[l;!d 

There exists the following relationship with the upper 
slope transform and the Young-Fenchel conjugate: 

fA(v) = - f*(v) = -(-f)v(-u). (3.14) 

Proposition 3.19. For every f E Fun( [Rd), its lower 
slope transform JA is u.s.c. and concave. 

We list a number of properties of the lower slope 
transform; cf. [ 18]. 

Proposition 3.20. (Properties of !./'A). For f, g E 
Fun( [Rd), y E [Rd, w E !Rd, r > 0 and c E rR: 

(a) (/)')A =(JA)[-y], 
(b) (f [w] )A= (JA l>,., 
(c)(f+c)A=JA+c, 
(d) (r.f)A =rJA(·/r), 
(e) f(r· )A= JA(-/r), 

(f) f(-· )A= jA(-· ), 
(g) (f Og)A = fA+gA. 

Analogous to (3.11) we define 

Y;,:-(g)(x) = V g(v) + (x, v), 
vErr;!d 

(3.15) 

which we call the adjoint lower slope transform. We 
now state without proof the analogues of Proposi­
tions 3.15 and 3.16 and Corollary 3.17. 

Proposition 3.21. (!./'A, !.I';-) is an adjunction on 
Fun(IRd). 

Proposition 3.22. 
(a) Ran( ,I/A) consists of the u. s. c. concave functions. 
(b) Ran(Y;-) consists of the l.s. c. convex functions. 

Corollary 3.23. 
(a) .</';- 9"11 is an opening on Fun( !Rd) with invari­

ance domain the l. s. c. convex functions, i. e., 

!.!';-- .</11 = r:J.trt.v · 

(b) Y'A !.I';- is a closing on Fun( [Pld) with invariance 
domain the u. s. c. concave functions, i. e., 

We state some properties of Y;-; cf. [18]. 

Proposition 3.24. (Properties of !.!';--). For f, g E 
Fun(IRd), y E !Rd, w E !Rd, r>O, and c E IR: 
(a) .</';-(};,,) = (5P;-(f ))[w]' 

(b) !.f';-(f[yj) = (.Y';-CJ))-y, 
(c) Y;-(f + c) = Y;-(f) + c, 
(d) Y;-(rf)=r!.f';-(f)(-/r), 
(e) Y;-(f(r-))=,Y';-(.f)(-/r), 
(f) Y,-:-(f(-·)) = Y,-:-(f)(--), 
(g) Y;-(f EB g) = Y,-:-(f) + Y;-(g). 

4. Slope transform for sets 

4.1. Preparations 

In Section 2.1 we have summarized some basic 
facts about convex sets. In this preparatory section we 
present some additional notations. 
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We can embed the convex sets into the lattice of 

concave (respectively convex) functions. Thereto we 

need the following definitions. The upper and lml'cr 

indicator jimction conesponding to a set X arc defined 
as 

zv(X)(x) = { O, 
+oo, 

and 

11,(X)(x)= { ~x, 

xEX, 

:qt'X, 

xEX, 

x \t:'X, 

respectively. It is evident that 

x closed -R lv(X) l.s.c . .;:? IA(X) U.S.C. 

X convex 'i=? iv(X) convex -R IA(X) concave. 

We introduce some further notation; see [24]. We de­

note, for a E IR" and r E IR, by IHl(a, r) the hyperplane 

IHl(a,r)= {x E !Rd I (a,x) =r}. 

Note that IHI( a, r) = 0 if r = ±oc. Furthermore, 
IHl-(a,r) and IHJ+(a,r) are the closed lwlfspaces 

IHl- (a, r) = {x E !Rd I (a, x) :o( r}, 

W(a,r)= {xE IR" I (a,x)~r}. 

lfr=-oc then 1Hl-(a,r)=0 and IHJ+(a,r)=IRc/; du­

ally, if r = +oc then IHl-(a,r) = IR" and IHJ+(a, r) = 0. 
We say that the hyperplane IHl(a,r) supports the set 
X ~ IR" at h if h EX n IHl(a,r) and X ~ IHl-(a, r) or 
X ~ IHl+(a,r). 

4.2. Suh!incar fimctions 

We start with a definition. 

Definition 4.1. A function f: !Rd ____, iR is said to be 

positively ho111oycneous if f (rx) = 1f(x) for r > 0 and 
x E [Rd. It is suh!inear if it is both convex and posi­

tively homogeneous. 

For a comprehensive discussion on sublinear func­
tions the reader may refer to [13, Chapter V]. It 

is easy to see that any sublinear function satis­

fies /(0) = 0, -oc or +x. Note that f = -oo if 
f(O) = -oo. Furthermore, the epigraph Uv(/) is a 

convex cone. Every sublinear function satisfies the 
inequality 

f(x + y):o(f(x) + f(y); 

a function with this property is called subadditive. 

We give some examples. 

Examples 4.2. 
(a) If K ~ !Rd is a convex cone, then the upper indi­

cator function iv(K) is sublinear. 

(b) A function II · II : !Rd ----> IR+ = [O, +oo] is called a 
norm if 
(i) llxll=Oiffx=O; 
(ii) llrxll = lrl · llxll, r ER x E IR"; 
(iii) llx +.vii,;;; llxll + llYll, x,y E !Rd. 
Note that Jlxll is allowed to be +ex;. Every norm 
is a ( nonnegative) sub linear function. 

( c) Let X ~ !Rd be a convex set containing the origin. 

The function y(X) defined by 

'{'(X )(x) = inf { r > 0 I x E rX} ( 4.1) 

is called the gauye (function) ofX. It is a sub­

linear function. 

W c prove the following lemma. 

Lemma 4.3. If' f is positirel1· homoqeneous then its 

concex hull xv(f) is positively homoqeneous as well. 

Proof. Define, for a function f and a real number 

r > 0, JAx) = rf(x/r ). Thus, f is positively homoge­
neous iff f;. = f for every r > 0. The convex hull of a 
function f is given by 

Xv(/)= v q, 
<JE'f. 

where rr; consists of all convex functions g,;;; f. It fol­
lows immediately that y E rr, =;:.. y,. E <(, for every r > 0. 
But this implies that xv(/) is positively homogeneous, 

too. D 

We denote the family of all sublinear functions by 
Funs1( !Rd). It is easy to verity that the pointwise supre­

mum of an arbitrary collection fi, i E /,of sublinear 
functions is sublinear. Thus there exists an opening 
x81 on Fun( !Rd) with invariance domain Fun,1 ( IR" ). 

The pointwise infimurn of a collection of sub­

linear functions is positively homogeneous but not 
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subadditive in general. Let f E Fun81 ( IR") such that 
f ~ f; for i E /. Now xvU) = .f since f is con­
vex, and we find that f ~xv (/\;Ef fi ). Lemma 4.3 
says that xv(/\,E1 .Ji) is positively homogeneous, and 
hence it is sublinear. We conclude that Xv(/\;E1 .Ji) 
is the infimum in the complete lattice Fun81(1R"). 

Proposition 4.4. The set Fun,1(1Rd) with the point­
wise partial ordering is a complete lattice with 
the usual pointwise supremum and with infimwn 
a.v(A_,Ei fj). 

Remark 4.5. If/, g are sublinear and not identically 
±oo, then 

a.v(f /\g)=fDg. ( 4.2) 

To prove ~'observe that (fDg)(x)~f(x) + g(O) 
= f(x). Hence fOg :o;;f and similarly f Og~ g. This 
yields that f Og~f /\g. Since fOg is convex, we 
get fOg~xv(f Ag). 

To show that fDg?:-h :=xv(/ Ag), observe that 
h is the infimum off and g in Funs1 (!Rd), hence h ~ f 
and h:::;; y. This implies that h Oh :o;;f Og. Ash is sub­
additive, we find that h(x- y )+h(y) ?:-h(x ), and there­
fore hDh?:-h. This proves relation (4.2). 

Refer to [I 3, p. 206] for a different proof. 

4.3. Slope transform for sets: the support function 

For a set X ~ IR" its support function CT(X) is de­
fined by 

CT(X)(v)= V (x,v), vEIRd. ( 4.3) 
xEX 

Note that CT(X) = -oo if X = 0. Refer to Fig. 10 for 
an illustration. 

From the observation that the support function is the 
pointwise supremum of the affine functions v f-+ (x, v), 
x EX, and Propositions 3.4(b) and 4.4, the following 
result is clear. 

Proposition 4.6. The support function CT(X) of a set 
X ~!Rd is !.s.c. and sublinear. 

We call the operator CT : g'l( IR") f-+ Fun( !Rd), which 
maps a set X to the corresponding support function, 
the slope transform for sets. 

V, llvll=J 

Fig. 10. Support function. 

There is a simple correspondence between the slope 
transform for functions and that for sets, namely, 

Y\;(11\(X))(v) = V zl\(X)(x) - (x, v) 
xE~" 

= V -(x, v), 
xEX 

whence we derive 

Yv(z/\(X))(v)= CT(X)(-v) = CT(-X)(v). (4.4) 

We also have 

Yi\ (1v(X) )( v) = CT(X)( -v) = CT( -X )( v) ( 4.5) 

and 

(zv(X))* = CT(X). ( 4.6) 

Remark 4.7. Strictly speaking, we should refer to CT 
as the 'upper' slope transfonn. The lower slope trans­
form should then be defined as follows: 

CTl\(X)(v) = /\ (x, v). 
xEX 

Such a definition would only make sense if we would 
introduce the concept of 'concave sets', i.e., comple­
ments of convex sets. In order to keep new notation 
and terminology limited, we will not do so. 
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If O"(X)( v) = b, then (x, v) '-(_ b for x EX, that is, 
X <;;: IHl-( v, b ). We define the operator a~ : Fun( [R;d) 

-> ;]/'( [R;d) by 

a~(f) = n ll-0-(v,f(v)). ( 4.7) 
vEij;gd 

It is obvious that a~(.l) is a closed convex set for 
every function f. 

Lemma 4.8. Let X <;;: [R;d, v E [R;d, and b E IR, then 

X<;;: IHl-(v,b) {ff a(X)(v)'-(_b. 

Proof. 'only if': assume X<;;: IHJ-(v,b). Then 

a(X)(v)=sup{(x,v) fxEX}'-(_b. 

'if': assume tr(X)(v) '-(_b. If x EX, then (x, v) '-(_b, 
hence x E IHl-(v,b). 0 

Proposition 4.9. The pair ( <J~, <J) constitutes an ad­
junct ion between Fun([R;") and .J"([R;"). 

Proof. We must show that 

First we prove '=?'. Assume that <J(X)'-(_f and that 

x EX. We must show that x E IHI-( v, f ( v)) for r E [R;d. 

This follows from 

(x,v) :(a(X)(v)=::;f(v). 

'~':Assume thatX <;;: <J~(.l) = nE~" IHl(u,f(r)). 

Thus X <;;: IHl(v,f(v)) for v E [R;d. From the previ­

ous lemma we conclude that O"(X)(v)~.f(v), i.e., 

a(X) =::;f. 0 

Proposition 4.10. 
(a) Ran( a~) consists of the closed convex sets in 

!Rd. 
(b) Ran( <J) consists of the l.s. c. sub linear functions 

on !Kid. 

Proof. (a) It is evident that every set in Ran( O"~) is 

closed and convex. On the other hand, if X is closed 

and convex, then X can be represented as the inter­

section of all closed halfspaces which contain it. 

(b) We have seen that every support function is 

l.s.c. and sublinear. Assume, on the other hand, that 

f is l.s.c. and sublinear. Let X = <J._.(f), we show 

that <J()() =f. Note first that a(X) =<JO"··· U) ~ f, 
since cm··· is an opening. Thus it remains to be shown 

that a(X) ~f. The following proof is taken from 

Schneider [24, 2nd proofofTheorem I. 7.1 ]. Since f is 

sublinear and l.s.c. its epigraph L\(/) is a closed con­

vex cone in IR" x R Let c#O. then (r,f(t')l lies on 

the boundary of U, U ). There exists a support plane 
IHl((y.a),r), where yEIR"- 1 and aEIR: to U (!) 
through (r,f(r)) such that U.,.(/)c;_IHl-((y.a),r). 
This yields that for t E R w E !Rd: 

t~f(w) =? (y,w) +at~r. 

Since Uv(f) is a cone, the support plane must contain 

(0, 0 ), hence r = 0. Suppose that a~ 0, then w) ~ 0 

for all iv; this is impossible, hence a< 0. Without loss 

of generality, we can assume that a= - l. Thus, 

t?;f(w) =? (y.w)~t. 

Then (y,w)::;;;/(w) for all w. Thus yEX. that is 

X /= 0. Furthermore, (y,r) = f(r) (for (r.f(r)) E 
H((y.-1),0)). Then 

<J(X)(r)= sup{ (x, r) Ix EX}~ (y, t") = /(r). 

This holds for every r I 0. For r = 0 this inequality is 

obvious, and we conclude that <J(X) ~ f, which was 

to be proved. D 

Remark 4.11. We can give an alternative proof of 

Proposition 4.1 O(b) which uses the upper slope trans­

form for functions discussed in Section 3.4. 

Assume that f is l.s.c. and sublinear. and that 

f ?/= +XJ. We show that f = <J(X) for some (closed, 
convex) set X. Consider the function _q = Y~-:-( f ). 
Since f ?/= +x we have y(x) <+JG for all x. The 
sublinearity of f in combination with Proposi­

tion 3.18(d)-(e) implies that y(rx)=y(x) for 

r > 0, x E !Rd. We conclude therefore that g assumes 

only the values -:x and 0, and so 9 = 11\()() for 

some closed convex set X (note that y is u.s.c. and 

concave by Proposition 3.16(b )). Since f E Ran(Y~) 

by Proposition 3.16(a), we have 

f = :f1Y.;-cn = Y~(g) = Yv(z."(X )) = <J(-X), 

by ( 4.4 ). This concludes the proof. 
Schneider [24, Theorem 1.7.1] claims that every 

sublinear function is the support function of some 
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convex body. Apparently, he forgot to include the re­
quirement that this function is l.s.c. 

We have the following analogue of Corollary 3.17. 

Corollary 4.12. 
(a) a-a is a dosing on ,37J( IR") with invariance do­

main the closed convex sets in iR", i.e., 

a;-a(X) = /3c{i r-JX) = co(X ). 

(b) aa- is an openiny on Fun(IR") ll'ith invariance 
domain the l.s.c'. suhlinearjimctions, i.e., 

Proof. (a) follows from the previous results. 
To prove (b) we still have to show that r:t.t OCsJ 

is an opening with invariance domain Fun1( IR") n 
Fun81( lR" ), the \.s.c. sub linear functions. Exploit­
ing Proposition 2.3( a), it remains to show that 
IXsJ a1 ':l.sJ = ct1 IXsJ. We use the fact that the first term OC81 

at the left-hand side may be replaced by IJ.v (because 
of Lemma 4.3 ). Now 

(cf. Corollary 3.23) and this concludes the proof. D 

Many results in the literature follow easily if one 
uses Propostion 4.10 and Corollary 4.12. For example, 
in Satz 12.4, Leichtweiss [ 15] shows that 

a( co(X1 U · · · U X,11 )) = a(X1 ) V · · · V a(Xm ), 

if X1, X2, ... , Xm are compact and convex. From 
the fact that co(·)= a-a (hence a( co(X)) =aa­
a(X) = a(X)) and that a is a dilation, we find that 

a ( LJ X;) = a (co ( LJ X;)) = V O"(X; ), 
iE/ iE/ iE/ 

for a collection X;, i E /, of arbitrary subsets of IR". 
If one applies Proposition 2. l(b) to the adjunction 

( O'+-, a), one finds that 

a ( n X;) = IX;rl.v ( /\ a(X; )) , 
iE/ iE/ 

(4.8) 

if X; is closed and convex for every i E I; cf. 
[13, Theorem. V-3.3.3(iii)]. 

We list properties of a and its adjoint a-. For a 
set X <:;;; IR" and a vector h E [Rd we define X,, as the 
translate of X along h, i.e., X,, = {x + h Ix EX}. 

Proposition 4.13. (Properties of O' ). For X, Y <:;;; !Rd, h 
E [Rd, and r > 0: 
(a) a(Xh) = a(X)[hJ, 
(b) a(rX) = ra(X), 
(c) a(-X)=a(X)(--), 
(d) a(X EB Y)=a(X) + a(Y). 

Proposition 4.14. (Properties of a+-). For f Efun(IR"), 
h E [Rd, and r > 0: 
(a) a-u11i1) = a-c.n,, 
(b) a-er_n = ra-(.f), 
( c) a ..... (f (r·)) = ra-(f ), 
(d) a-(./'(-·))= -a ..... (f). 

We substitute f = a(X) and g = CT( Y) in ( 4.2) and get 

r:t.v(a(X) /\ a(Y)) = a(X)Da(Y). 

Applying 'Y.1 at both sides and using ( 4.8) yields 

a(X n Y)= r:t.1(a(X)Da(Y)). 

In [22, Corollary 16.4.1; 13, p. 227] similar results 
have been obtained. 

4.4. Polar, gauge, and support .function 

The polar X 0 of a set X ~ ~" is defined by 

X 0 = {y E iR" I (x,y)::;; I for all x EX}. 

We define the operator n by 

n(X)=X 0 . 

Let 3'' ( R") be the opposite of the complete Boolean 
lattice 2/'(~d) (see Section 2.1). 

Proposition 4.15. 
(a) (n, n) is an adjunction between 2/''(IR") and 

£3i'(R" ), in particular 

(LJx;)o = nxj0 , 

iEI iE/ 

for every collection X; <:;;;Rd, i E /. 
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(b) Ran( n) consists of the closed convex sets which 
contain the oriyin. 

Proof. (a) We must show that Yi::;: n(XH=?,\' i::::: rr(Y), 
for X, Y i::::: [Rd. Because of the symmetry of this as­

sertion, it suffices to prove ' =? '. Therefore, assume 

that Yi::::: n(X). We show that X i::;: n( Y). Take x EX; 

we must show that x En( Y), i.e., that (y,x) ~I for 

y E Y. Since Y c;;; n(X) we have that (y,x) ~ l for 

x EX, y E Y. This proves the result. 

(b) It is easy to show that a set in the range of n 

is closed, convex, and contains the origin. To prove 

the converse we observe that Ran( n) is closed under 

intersection. Every closed convex set containing the 

origin is the intersection of closed half planes contain­

ing the origin. A straightforward computation shows 

that n2 leaves such half planes invariant, which means 

in particular that they lie in Ran( n ). Now the result 
follows. D 

Corollary 4.16. n2 is a c/osinq on .;P( [R1d) and 
n 2(X) = co(X U {O} )Jor every X i::;: u;i;". 

Proof. The theory on adjunctions summarized in 

Section 2.1 gives that n2 is a closing. Fu1iherrnore, 

Proposition 4. l 5(b) yields that the invariance domain 

of n2 consists of the closed convex sets which contain 

the origin. Therefore, n2(X) is the smallest closed 

convex set containing the origin which is larger than 

X. This means that n2(X) =co(X u {O} ). D 

A similar result (though only for convex sets) can 

be found in [22, p.125]. 
In Example 4.2( c) we have introduced the gauge 

function of a convex set containing the origin. We 

extend this definition to arbitrary subsets of u;i;i1 and 

put 

i'(X)(x)= inf{r>O jxErX}. 

Thus, f' is a mapping from .Y'(R1) into Fun(IRd). Fur-

thennore, we define : Fun( IR") -7 .Y'( IR'1) by 

y~(f) = {x E [Rd j 'Vr > 0: f(rx) ~r}. 

Proposition 4.17. 
(a) (/, }'~) is an wljunction between d''(IR") and 

Fun( IR" ). 

(b) Ran(:') consists u/ all posi1ire/y !wmoyenco11s 
jimcl ions. 

(c) Ran(;·-) consists of all sets X:;: 1!~'1 irirh !he 

properly 1ha1 

x EX <=;> 'Vr E (0, I): rx EX. ( 4.9) 

Proof. (a) We must show that X:;: ;··· u) <=;> f ~ 
;·Cl.:'J. 

' => ': Assume X '.:;;; ;,-- (f ); we show that f ~ ;'(X ). 
Suppose that, for some x, f (x) > inf {r > 0 Ix E rX}. 
Then there is an r < f(x) such that x E rX. i.e., 

(I /r )x EX. Since .\:' ~ ;·- (f ), this means that 

(l1r)xE;'-(j). Then f((s•r)x):S;s for every s>O. 

Substituting s = r yields that f(x) ~ r, a contradiction. 

'{=': Assume that f ~ ·;'(X ); we show that 

X i::;: ;·-(().Suppose x E )(and r > 0. Then 

f(rx) :S; ','(X)(rx) = inf {s > 0 I rx E sX} ~r. 

This yields that x E ;··-en 
(b) It is easy to see that every function -,,(X) 

is positively homogeneous. We have to show 

that for every positively homogeneous function f 
there exists a set X such that ','(X) =f. Define 

X=;''-(/)= {xj'Vr>O:f(rx)~r}. We show that 

;·(X) =f. Since /'','·- is a closing, it follows immedi­

ately that i'(X) = ;';·-(f) ??- f. Thus, it remains to be 

shown that ; 1(X)~/. Assume that ';'(X)(y)>/(y) 

for some y. Chooser such that ";'(X)(y)>r>/(y). 

Then i'(X )(y) = inf {s >0 I y E sX} > r, meaning that 

y tj. rX. This yields that( 1/r)y \t'X = {x j 'Vs>O:/(sx) 
~ s}. Hence there exists an s > 0 such that 

f(s · (l/r)y)>s. As f is positively homogeneous 

this means that 

( I ) s 1· 
s<f s· -y =-f(y)<'.... ·r=s, 

r r r 

a contradiction. 
( c) It is rather easy to show that for every set 

X = 1--u) property ( 4.9) holds. To prove the con­

verse, assume that X # 0 is a set for which ( 4. 9) 

holds. Define f = /'(X) and .'<' = ,,·-ui. We show 

that)(' =X. The composition/'--)' is an opening on 

f.'' ( u;i;"), hence a closing on .Y'( IR" ). This yields that 

X c;;; i'~';'(X) = X'. Therefore, we must show that 

X' i::;: X. Suppose that y EX', that is, f(rv) :S; r for ev­

ery r > 0. This means in particular that f(y) ~ I. As 

f = 1·(X), this implies that inf{s >0 I y E sX} ~ I. 
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If y = 0 then y E X. Therefore, we may assume that 
y ¥- 0. We distinguish between two cases. 
1. yEsX for some O<s~l. Then (l/s)yEX, 

and (4.9) yields that yEX. 
2. y E s11 X for some sequence { s 11 } converging 

to I from above. This yields that (l/s11 )yEX. 
Now (4.9) implies that l)'EX for r< 1, hence 
yEX. D 

In particular, Proposition 4.17( c) gives that a set 
which lies in the range of~·~ and which contains the 
origin, is star-shaped with respect to the origin, i.e., 
if x EX then r x E X for 0 ~ r ~ I. 

From Proposition 4.17(a) we know that i-i' is 
a closing on Y( IR") and that ~·~·..... is a closing on 
Fun(IRd). We derive explicit expressions for these op­
erators. 

Let w : &(!Rd) __, Ji'( IR") be given by 

w(X)= n LJ rX, 
s>l O<r~s 

and let I': Fun(IR")-> Fun(IR") be given by 

I'(f)(x)= V ~ f(rx). 
r 

r>O 

Proposition 4.18. 
(a) y .... y = w, and this operutor defines a closiny on 

&([Rd). 

(b) yy .... = f, and this operator defines a closing on 
Fun(!Rd). 

Proof. (a) A straightforward computation shows that 

y .... y(X) = {x E !Rd I Vr>O: y(X)(rx)~r} 

= { x E IR" I Vr > 0 : 

inf{s>O I rx E sX} ~r} 

= {x E IR" I Vr > 0 : 

r · inf{s >0 Ix EsX} ~r} 

={xEIR"I inf{s>OlxEsX}~l}. 

Therefore, x E y._y(X) iff inf {s > 0IxEsX}~1. We 
show that y-y(X) = w(X). 

To prove '~' assume that x E y ..... y(X), that is, 
inf { s > 0 Ix E sX} ~ 1. There are two possibilities: 
1. x E sX for some 0 < s ~ l. In this case it is obvious 

that x E w(X). 

2. x Es 11 X for some sequence {s11 } converging to 1 
from above. Then x E Uo <,. "°s r X, for every s > 1, 
and it follows that x E w(X). 

To prove ';;;:i' assume that x E w(X ). This implies 
that inf {r > 0 Ix E rX} ~s for every s > 1. But then 
inf{r>O Ix E rX} ~ 1, yielding that x E ·y-y(X). 

(b) For yy .... we derive 

yy ..... (f) = inf{r>O Ix E ry ..... (f)} 

= inf{r>O Ix E r{x I Ys>O: f(sx)~s}} 

= inf{r>OIYs>O: f (~x) ~s} 

= inf{r>O I Ys>O: f(sx)~rs} 

= inf {r>O I Ys>O: ~ f(sx)~r} 
s· 

= inf{r>O ls'!o~f(sx)~r} 
1 

= V-J(sx) 
s 

s>O 

= I'(f)(x). 

This proves the result. D 

From the literature on convex sets [22, Thm.14.5] 
it is well-known that 

y(X 0 ) = a(X ), 

if X is closed, convex, and if 0 EX. Since n2(X) sat­
isfies these constraints for every X ~ !Rd ( cf. Corol­
lary 4.16) we get that yn3 = an2 . But n3 = n since 
(n, n) is an adjunction, hence yn = an2. This yields 
that yn2 = an3 =an. 

Proposition 4.19. yn = rrn2 and yn2 =an. 

5. Two applications 

In this section we outline the applicability of slope 
transforms for two different problems in nonlinear 
image analysis, distance computation and partial dif­
ferential equations of the evolution type that model 
morphological scale space. 
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5.1. Distance rran.1'/(1rms 

Let II · 11,, denote the norm on IR" given by 

11 \.I! --- ( Iv I" t I . I JI I. + I I 'I )I /I ·lip·- l·'I ... X2 --, ·· · Xd . 

Given a set ,:r c::: IR'.d. we define its distance transjimn 
(also known as its distance .fimct ion) with respect to 
11-norm hy 

D1,(X )(x J ·•· /\ llx -- Yll 1,. 

\• x 

The distance transform has various applications in im­

age analysis and computer vision. For example, its 

thresholds at levels r > 0 yield the multiscale dilations 

ofX by the halls rH1,, where 81, is the unit ball with re­

spect to the />-norm. Further (for p = 2 ). its local max­

ima providt: the points of the skeleton (medial) axis of 

X' . Then. if we consider the upper indicator function 
1 . ( .\· ). and thc convex conical structuring function 

it fol lows that 

( 1 1(.Y )I ly)(x); 

sec also 113. Example 2.3.5]. In other words, the dis­

tance transform of X can be obtained as the intimal 

convolution of the upper indicator function of X with 

the conical norm function. This infimal convolution 

is equivalent to passing the input signal. i.e., the set's 

upper indicator function h;(X ), through an ETI sys­

tem \vith slope rcsponse 

!/ (I') /\ llxll 1, - (x, 1·). 

It is evidcnt that 1/( r),,::; 0. Furthermore, by usmg 

lliilder's inc4uality we get 

whcre thc exponent q is determined by 

- ' L 
/I q 

Thus, we find that 

?/'( v)?: /\ llxll p( I - II vll,1 ). 
xEr~·1 

Therefore, r/' is equal to 

y'\v)= {~'.Xi, llvll" ~ l, 
llvll'l > l. 

That is, the distance transform is the output of an ideal­

cutoff slope-selective filter that rejects all input planes 

whose slope vector falls outside the unit ball with re­

spect to the II · II" norm, and passes all the others un­
changed. 

5.2. Hamilton ·lacohi equations ./(1r multiscale 

morpholom' 

Let K : rR" _, IR be a u.s.c, concave function. Con­

sider the parameterized family {K, It?: 0} given by 

{
Ko= q1, (i.e __ ., Ko(x) = 0 ifx = 0 

and - x elsewhere), 

K,(x) = tK(x/t), x E: IR", t >0. 

This family satisfies the semigroup property 

( 5.1) 

Let, for a given input f. the function u: [O, cc) x 
IR" --+ IR" be given by 

We have the following heuristic derivation of a PDE 
(partial differential equation) for u(t,x). First, we note 

that 

(JU 1 · I [ ) ( )] --;:-(1,x) = 1111 - u(t + s,x - u t,x . 
< '/ s I o s 

We use that u(t + s, ·) = u(t, ·) K_,.; 

i'u . I [ v -::;--_ (l,x)=l11_11- _ (u(l,x-h) 
I'( s[O S 

hEIP:'' 

+sK(h/s) - u(t,x))] 
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~ 'm; ~ [,,X '"u x "'1 

-11(U·) +sK(h))]. 

Presuming that u(t, x) is differentiable in x we may 
write 

11(/,X -sh) - ll(/,X) = - (sh, \Ju(t,X)J +o(s), S l 0, 

where s- 1 o(s) ~ 0 ass l 0. Here vu denotes the gra­
dient of 11. We get 

(I/ 
-:;-(t,x) = lim V [K(h) - (h, vu(t,x)) + o(s)] 
( I s J 11 

hE i<·1 

= V [K(h) - (h, \711(1.x))] 

= Kv ( \711(t,x }), 

where Kv is the upper slope transform of K. Writing 
111 = L111/1~1 we arrive at the evolution equation: 

(5.2) 

Before we solve this equation, we give a short treat­
ment of a class of PDEs known from mathemati­
cal physics, the so-called Hami!tun--Jacohi equation, 
given by 

w1 + H(vw) = 0, (5.3) 

where the Hamiltonian H : !Rd__, IR is a convex func­
tion which satisfies 

lim H(p) = +x. 
llPll·~:x, llPll 

(5.4) 

(A function which satisfies (5.4) is called coercit'e.) 
The Young-Fenchel conjugate L = H*, called the 
Lagranyian, is finitely-valued, convex, and coercive. 
If f is bounded and l.s.c., then the function w(I, ·) 
given by 

t = 0. 
w(t,·) = ·' { l 

fDLr. t > 0, 

where Lt(X) = t L(x/t ), has the following properties: 
- w(t, x)--+ f (x) as t l 0, for every x; 
- w is locally Lipschitz continuous (hence differen-

tiable almost everywhere); 

-·· at every (t,x) where w is differentiable, it satisfies 
the Hamilton-Jacobi equation (5.3 ). 

In the literature w is called the viscosity solution 
of the Hamilton--Jacobi equation; see [ 16] for a 
comprehensive account. For other literature on the 
Hamilton-Jacobi equation, see [3]. 

The relation between the Hamilton-Jacobi equation 
(5.3) and our morphological evolution equation (5.2) 
is as follows: if we substitute u =-win (5.2) we get 

With relation (3.10) this can be written as 

wt+ (-K)*(vw) = o. (5.5) 

If we assume that K is concave, u.s.c., and coercive, 
then the Hamiltonian H = ( -K )* is convex, l.s.c., and 
coercive, and the Lagrangian is given by 

L = H* = (-K)** = -K. 

The viscosity solution of ( 5.5) with w( 0) = - u( 0) = 
- f is given by 

w(t,·) = (-f)DL1 = (-f)D(-K)1. 

Therefore, the 'viscosity solution' of our morpholog­
ical evolution equation ( 5.2) is given by 

u(t,·) = -(-f)D(-K)t = f Kt. 

We summarize our findings in the following result. 

Proposition 5.1. Assume that the jimctiun K is 
cuncave, u.s.c., and coercive. If f is bounded and 
u.s. c. then the fimction u(t, ·) = f Kt satisfies 
- u(t,x)--> f(x) as t 10,jiJr erery x; 

- u is loca/(y Lipsclzit::. continuous (hence differen-
tiable almost everywhere); 

- at every (t,x) where u is d!fjerentiable, it satisfies 
the evolution equation (5.2). 

For example, if K(x) = - ~ llxll 2 , then Kv (v) = ~ llvf 
For some related results on multiscale morpho­

logical evolution equations, the reader may refer to 
[1,20,29]. 

If we take a flat structuring element, K = 11\A with 
A a closed convex set, we arrive at the equation 

lit= u(-A)(\7u). 
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If A is symmetric (A= - A) and contains the origin 
in its interior, then a( -A)= cr(A) equals the pauqe 

fimctional of the polar set 

A 0 = {x I \a,x)::::; !, for all a EA}. 

This gauge function is a norm with unit ball A0 . The 
examples treated in [5, 6] fall inside this class. 

6. Conclusions and discussion 

In recent studies in mathematical morphology 
[ l 7' 18, n the slope transfom1 has emerged as a 
transfom1 which has similar properties with respect 
to morphological signal processing as the Fourier 
transform does with respect to linear signal process­
ing. Its main property is that it transfom1s a supremal 
convolution (morphological dilation) into an addi­
tion, in the very same way as the Fourier transform 
transforms a linear convolution into a multiplication. 
At an earlier stage, Ghosh [9] built a computational 
framework for Minkowski addition and subtraction 
of convex and non-convex polygons based on the 
so-called slope diayram, a concept which is very 
closely related to the slope transform. 

There is, however, an important difference between 
the Fourier transform and its morphological counter­
part, the slope transform. The Fourier transfonn is 
invertible, whereas the slope transform only has an 
adjoint in the sense of adjunctions. This means that 
the "inverse' of the slope-transfonned signal is not the 
original signal but only an approximation within the 
subcollection of convex or concave signals. This is 
why convex analysis plays such a prominent role in 
the study of the slope transform. We have pointed out 
various relations with known concepts from the the­
ory of convex sets and functions, such as the Legendre 
transform, the (Young-Fenchel) conjugate, the sup­
port function, the gauge function, and set polarity. In 
particular, we have explained how such classical con­
cepts can be studied as complete lattice operators. This 
allows one to reformulate various known results, and 
even to extend a number of them. 

The complete lattices considered in this papers are 
either lattices of sets or of functions. For an abstract 
treatment of the slope transform on arbitrary complete 
lattices we refer to [12]. 
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