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1. Introduction

The electron–positron–ion plasma, characterized as a fully ionized gas containing electrons and
positrons having equal masses and charges with opposite polarity, is believed to exist in many
astrophysical objects such as active galactic nuclei [1], magnetospheres of pulsar [2], our early
universe [3], and the inner regions of the accretion disks surrounding the black hole [4]. There is
a possibility of the existence of astrophysical plasmas with a high concentration of positrons. From
the view of large-scale structures in the cosmological environments, the positrons may have a high
concentration and play an important role in the astrophysical plasmas. In the laboratory conditions, an
electron–positron beam–plasma experiment has been performedwith a large number of positrons [5]
and the instability leading to a large amplitude has been also observed in this experiment. In 2008,
physicists at the Lawrence LivermoreNational Laboratory in California producedmore than 100billion
positrons [6], which could be valuable for the further laboratory plasma experiments with a long time
existence and high concentration of positrons.

However, the dust grains (µm to sub-µm sizes) are ubiquitous in the laboratory and space
environments such as cometary surroundings, interstellar clouds and planetary rings [7,8]. When
the dust grains are immersed into a plasma, they are usually charged due to the absorption of the
charged particles. These charged dust grains could eithermodify the behavior of the normalwaves and
instabilities, or introduce new eigenmodes [9–11]. Therefore, the plasma may become an admixture
of electrons, positrons, ions and dust grains. In the electron–positron–ion–dust (EPID) plasmas, the
charge of the dust grains can be either negative or positive when the number of positrons depositing
on them is either smaller or larger than the number of electrons. Accordingly, it is interesting and
important to study ion-acoustic waves (IAWs) in the EPID plasmas [12,13].

It is well known that the properties of wavemotions in plasma depend on the velocity distribution
of the plasma particles. In the past few decades, the most commonly used distribution was the well-
known Maxwellian particle distribution. However, a number of space observations indicates the
presence of particles which depart from the Maxwellian distribution. For example, the nonthermal
and superthermal electrons have been observed in the Earth’s bow-shock, in the upper ionosphere of
Mars and in the vicinity of theMoon [14–17]. Also the non-Maxwellian electron velocity distributions
have been observed and measured in the laboratory experiments [18]. Motivated by these findings,
a nonextensive generalization of the Boltzmann–Gibbs–Shannon (BGS) entropy, first recognized by
Renyi [19] and subsequently proposed by Tsallis [20], can suitably extend the standard additivity of
the entropies to the nonextensive cases. In this context, the entropic index q characterizes the degree
of nonextensivity of the considered system. The q-nonextensive statistics can provide a powerful and
convenient frame for the analysis of many astrophysical phenomena, such as the head-on collision
of black holes, the dynamics of inflationary cosmologies and gravitational wave emission [21–23].
This distribution also presents a good fit to the experimental results. For electrostatic plane-wave
propagation in a collisionless thermal plasma, the dispersion relation in Tsallis formalism fits the
experimental data very well when q < 1 [24], while the standard Bohm–Gross relation based
on the classical Maxwellian distribution (q = 1) only provides a crude description. In Ref. [25],
the anomalous diffusion and non-Gaussian statistics fitting the Tsallis distribution were detected
experimentally in a two-dimensional driven-dissipative plasma system. It is necessary to point out
that the transformation κ = 1/(q−1)whichwas first provided by Leubner in Ref. [26] links q-statistic
and κ-distribution [27] (note that for q → 1, κ → ∞).

Two-electron temperature plasmas are very common in the space [28], as well as in laboratory
experiments [29]. For example, when out flows of the electron–positron plasma from pulsars enters
an interstellar cold, low-density electron–ion plasma, the two-electron temperature plasma could be
formed [30]. R. Sabry et al. studied the ion-acoustic envelope solitons in electron–positron–ion plasma
with two-electron temperature distributions [31]. Also Mishra et al. investigated ion-acoustic double
layers in electron–positron–ion plasma with two-electron temperature distributions [32].

Due to the carrier wave self-interaction or intrinsic medium nonlinearity, the propagation of
nonlinear waves in a dispersive media is generally subject to amplitude modulation, which can be
studied via the nonlinear Schrödinger equation (NLSE) derived by the reductive perturbation method
(RPM) [33]. This method reduces the very complicated systems of equations modeling such complex
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behavior as wave propagation in the plasmas to one simple canonical forms and seeks to extract the
effect of dominant nonlinearities.

The aim of this paper is to investigate themodulational instability (MI) of the planar and nonplanar
IAWs in an EPID plasma with two-electron temperature distributions, whose components are either
negatively or positively charged dust grains, positive ions, q-nonextensive positrons and electrons.
For the planar case, the nonlinear evolution of the first- and second-order ion-acoustic rogue waves
are presented in the paper. Rogue waves (also known as freak waves, killer waves, giant waves, or
extremewaves), the singular, rare and high-energy phenomenawith amplitudemuch higher than the
averagewave crests around it, have appeared inmany physical systems such as oceans, Bose–Einstein
condensates, optics, and super-fluids [34–37]. The rogue waves have been successively reported by
numerous newsmedia, Nature News, BBCNews, Science Daily, PhysicsWorld, Scientific American, for
instance. Due to the MI, the rogue waves may arise from the instabilities of the initial conditions that
tend to grow exponentially and thus have the possibility of increasing up to very high amplitudes. It
has been shown that the experimental results on the study of first- and second-order rogue waves
[38–40] in a water tank which can be modeled by the NLSE are in good agreement with the theory.
It is necessary to point out that the rational solutions of NLSE play an important role in the study
of rogue waves. The first-order rational solution was given by Peregrine [41] as early as 1983. Based
on [42], the next-order one was presented in Ref. [43] as a possible explanation for rogue waves with
higher amplitude. In addition, this kind of rational solutions could resolve themystery of roguewaves
observed in optical fibers [44–46] and multicomponent plasma [47].

The paper is organized as follows: In Section 2, we present the basic equations of our theoretical
model. Then, the modified NLSE is derived via the RPM. In Section 3, the effects of the plasma
parameters on the MI and amplitudes of the first- and second-order ion-acoustic rogue waves are
discussed. Finally, conclusions are given in Section 4.

2. Basic equations and derivation of NLSE

Let us consider a one-dimensional, unmagnetized plasma composed of positive ions, q-non-
extensive positrons, negatively or positively fixed charged immobile dust grains, and two groups
of q-nonextensive electrons having densities nec and neh with temperatures Tc and Th, respectively.
Moreover, we assume that the phase velocity of the IAWs is much smaller than the electron and
positron thermal velocities and larger than the ion thermal velocity, and positron annihilation time
is larger than the inverse of the characteristic frequency of the IAWs. Overall charge neutrality
at equilibrium is ni0 + np0 + snd0Zd = nec0 + neh0, where nec0, neh0, np0, ni0, and nd0 are the
equilibrium densities of two-electron components, positron component, ion component, and dust
grain component, respectively. Either positive or negative dust charge can be accommodated in this
description by setting s = +1 or−1, respectively. The nonlinear behavior of IAWs in such EPID plasma
can be in general described by the following set of normalized continuity, momentum, and Poisson’s
equations:

∂ni

∂t
+

1
rν

∂

∂r
(rνniui) = 0, (1)

∂ui

∂t
+ ui

∂ui

∂r
= −

∂Φ

∂r
, (2)

1
rν

∂

∂r


rν ∂Φ

∂r


= nec + neh − np − ni − sα, (3)

where ν = 0, 1, 2 for planar, cylindrical and spherical geometries, respectively. Here, α = Zdnd0/ni0,
time and space coordinates t and r are in units of the ion plasma period ω−1

pi =

mi/(4πni0e2) and

Debye radius λD =

Teff/(4πni0e2), and e and mi are the magnitude of electronic charge and ion

mass, respectively. The dependent variables ni and ui are the ion number density and fluid velocity
normalized by equilibriumvalue ni0 and the effective ion acoustic velocity Ci =

√
Teff/mi, respectively.
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Fig. 1. Distribution function fec(vec) against vec for different values of q, with Tc = 0.00005 MeV, Φ̃ = 0.

To model the effects of electron nonextensivity with temperature Tc , we refer to the following
q-distribution function for one-dimensional case [48]:

fec(vec) = Cq


1 − (q − 1)


mev

2
ec

2Tc
−

eΦ̃
Tc

 1
q−1

. (4)

The constant Cq is given by

Cq =



nec0

0


1

1−q


0


1

1−q −
1
2

me(1 − q)
2πTc

, −1 < q < 1,

nec0


1 + q
2

 0


1

q−1 +
1
2


0


1

q−1

 
me(q − 1)

2πTc
, q > 1.

(5)

Here, vec, 0(·), Φ̃ , andme denote the speed of electrons, Gamma function, the electrostatic potential,
and themass of electron, respectively. It is easy to see that: (i) when q → 1, the above particle velocity
distribution function reduces to the Maxwell–Boltzmann distribution function. (ii) when q < −1, the
above distribution is unnormalizable. For q > 1, the above distribution function exhibits a thermal
cutoff on the maximum value allowed for the velocity of the particles, which is given by

vmax =


2Tc

me(q − 1)
−

2eΦ̃
me

. (6)

For a better understanding of the physical meaning of the parameter q, we illustrate the distribution
function fec(vec) for different values of q in Fig. 1. Form this figure, we can see that: (i) the height and
shape of the velocity distribution change remarkably for different q values. (ii) there is a velocity cutoff
beyond which no possible states exist when q > 1.
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Integrating the q-distribution function fec(vec) over all the velocity space and adopting the
normalization, we have the following normalized density

nec = µ


1 + (q − 1)

1
µ + ηβ

Φ

 q+1
2(q−1)

. (7)

Similarly, we have the following normalized electron density with temperature Th

neh = η


1 + (q − 1)

β

µ + ηβ
Φ

 q+1
2(q−1)

, (8)

for the positron we obtain the following normalized density

np = δ[1 − (q − 1)γΦ]
q+1

2(q−1) . (9)

In the above equations, µ = nec0/ni0, η = neh0/ni0, δ = np0/ni0, β = Tc/Th, γ = Teff/Tp, Teff =

Tc/(µ + ηβ), Φ = eΦ/Teff, Tp is the positron temperature. The charge-neutrality condition is
expressed as

µ + η = δ + sα + 1. (10)

To investigate themodulation of IAWs propagating in our nonextensive plasma, we apply the RPM
to Eqs. (1)–(3) and (7)–(9). The independent variables are stretched as

ξ = ϵ(r − Vt), τ = ϵ2t, (11)

where ϵ is a real small dimensionless expansion parameter and V is the wave group velocity to be
determined later.

The dependent variables are expanded as

ni = 1 +

∞
k=1

ϵk
+∞

l=−∞

n(k)
l (ξ , τ )eil(kr−ωt),

ui =

∞
k=1

ϵk
+∞

l=−∞

u(k)
l (ξ , τ )eil(kr−ωt), (12)

Φ =

∞
k=1

ϵk
+∞

l=−∞

Φ
(k)
l (ξ , τ )eil(kr−ωt).

Here, i =
√

−1, k andω are real variables representing the fundamental wave number and frequency,
respectively. Since ni, ui and Φ must be real, the coefficients in Eq. (12) satisfy the condition A(k)

−l =

A(k)∗
l , and the asterisk denotes complex conjugate.
Substituting Eqs. (11) and (12) into Eqs. (1)–(3) and (7)–(9), and collecting the terms in different

powers of ϵ, the first order (k = 1) equations with l = 1, give

n(1)
1 =

k2

ω2
Φ

(1)
1 , u(1)

1 =
k
ω

Φ
(1)
1 . (13)

Thus we obtain the following dispersion relation

ω2

k2
=

1
(c1δγ + c1Uµ + c1Wη + k2)

, (14)

where U =
1

µ+ηβ
,W =

β

µ+ηβ
, c1 =

(q+1)
2 .
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Using the first-order quantities, the second order (k = 2) equations with l = 1 are

n(2)
1 =

ik
ω3


(−2ω + 2kV )

∂Φ
(1)
1

∂ξ
− ikωΦ

(2)
1


, (15)

u(2)
1 =

i
ω2


(−ω + kV )

∂Φ
(1)
1

∂ξ
− ikωΦ

(2)
1


, (16)

with the compatibility condition

V =
∂ω

∂k
= (δγ + Uµ + Wη)c1

ω3

k3
. (17)

We recall that the above condition is the group velocity of the waves.
The second harmonic modes (k = l = 2) which arise from the nonlinear self-interaction of the

carrier waves, are obtained in terms of (Φ(1)
1 )2 as

n(2)
2 = ∆1(Φ

(1)
1 )2,

u(2)
2 = ∆2(Φ

(1)
1 )2, (18)

Φ
(2)
2 = ∆3(Φ

(1)
1 )2,

where ∆1, ∆2 and ∆3 are given in the Appendix.
The nonlinear self-interaction of the carrier waves also result in the creation of a zeroth harmonic.

Its strength is analytically determined by taking into account the l = 0 component of the third-order
expanded equations which can be expressed as

n(2)
0 = ∆4|Φ

(1)
1 |

2,

u(2)
0 = ∆5|Φ

(1)
1 |

2, (19)

Φ
(2)
0 = ∆6|Φ

(1)
1 |

2,

where ∆4, ∆5 and ∆6 are given in the Appendix.
Finally, with the aid the above derived equations (13)–(19), the third harmonic modes (k = 3 and

l = 1) give a system of equations which can be reduced to the following modified NLSE:

i
∂Φ

∂τ
+ P

∂2Φ

∂ξ 2
+ Q |Φ|

2Φ + i
ν

2τ
Φ = 0. (20)

Here, Φ(1)
1 is written as Φ for simplicity. The term i ν

2τ Φ appearing in Eq. (20) is due to the nonplanar
(cylindrical and spherical) geometry effects. The dispersion coefficient P and nonlinear coefficient Q
are

P =
1
2
dω2

dk2
=

−4Vωk − ω4
+ ω2

+ 3k2V 2

2k2ω
,

Q =
1
2k2


−k2ω(∆1 + ∆4) − 2k3(∆2 + ∆5) + c2(∆3 + ∆6)(2ω3ηW 2

− 2ω3δγ 2

+ 2ω3µU2) + c3(3ω3δγ 3
+ 3ω3ηW 3

+ 3ω3µU3)

, (21)

where U =
1

µ+ηβ
,W =

β

µ+ηβ
, c2 =

(q+1)(3−q)
8 , c3 =

(q+1)(q−3)(3q−5)
48 , ∆1–∆6 are given in the

Appendix.
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3. Results and discussions

3.1. Nonlinear dispersion relation

To study the MI of IAWs in our plasma, we consider the development of small modulation δϕ =

δϕ(τ , ξ) according to

Φ = (Φ0 + δϕ) exp


−i
 τ

τ0

∆(τ )dτ −
ν

2
ln τ


, (22)

where Φ0 is the constant (real) amplitude of pump carrier wave which is much larger than the
perturbation, i.e., Φ0 ≫ |δϕ|, ∆(τ ) is a nonlinear frequency shift produced by nonlinear reaction.

Substituting Eq. (22) into Eq. (20) and collecting the terms in the zeroth and first order, we have

∆(τ ) = −
Q |Φ0|

2

τ ν
, (23)

i
∂δϕ

∂τ
+ P

∂2δϕ

∂ξ 2
+

Q |Φ0|
2

τ ν
(δϕ + δϕ∗) = 0, (24)

where δϕ∗ is the complex conjugate of δϕ. Then, substituting δϕ(τ , ξ) = U(τ , ξ) + iV (τ , ξ),U =

Re[U0e
i(Kξ−

 τ
τ0

Ω(τ )dτ)
], V = Re[V0e

i(Kξ−
 τ
τ0

Ω(τ )dτ)
] into Eq. (24), we can get the following nonlinear

dispersion relation [31,49] for the amplitude modulation of the IAWs modes:

Ω2
= (PK 2)2


1 −

Q
P

2|Φ0|
2

τ ν

1
K 2


. (25)

Here, (Kξ −
 τ

τ0
Ω(τ )dτ) is the modulation phase with K (≪ k) and Ω (≪ ω) are the perturbation

wave number and frequency of the modulation, respectively. One can immediately see that the MI
condition will be satisfied if PQ > 0 and K 2

≤ K 2
c =

2|Φ0|
2Q

Pτν . It would be interesting to investigate the
dependence of MI growth rate on the nonextensive index q. From Eq. (25), we define the MI growth
rate 0 as

0 = aX

2

b
aτ ν

− X2
 1

2

, (26)

where a = |
P
P1

|, b = |
Q
Q1

|, X =
K

|Φ0|


P1
Q1

. Here, P1 and Q1 are the coefficients P and Q expressed by
Eq. (21) in the Maxwellian case (q → 1). Obviously, the growth rate 0 is significantly affected by the
variation in values of q.

From Eqs. (21) and (10), it is easy to see that the coefficients P and Q are the functions of the
plasma parameters k, q, µ, γ , δ, β and α, which means that these parameters could change the sign
of product PQ . Since the effects of parameters β, δ and γ on critical wave number threshold kc have
been discussed in a electron–positron–ion plasma in Ref. [31], we just investigate the effects of the
nonextensive index q, dust concentration α, wave number k and cold electron to positive ion density
ratio µ on the MI and rogue waves in this paper.

3.2. MI of planar excitations and rogue waves

When setting ν = 0 in Eqs. (20), (25) and (26), we can get the NLSE, nonlinear dispersion relation
and MI growth rate for the planar envelope excitations, respectively.

It is easy to see that IAWs are stable for PQ < 0 in the presence of a small perturbation and
the IAWs may propagate in the form of dark-type excitations [50], manifested as localized envelope
holes or voids in the center, amidst a uniform wave energy region. In other words, these excitations
may either reach a vanishing or finite amplitude in the center, corresponding to the dark or gray
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solitons, respectively. On the other hand, when P and Q have the same sign (PQ > 0), the carrier
wave is modulationally unstable, which may collapse or blow up due to the external perturbations,
or lead to the bright-type envelope modulated wave packets [50], i.e., the localized pulse-shaped
envelopes confining the fast carrier wave. For this unstable case, small amplitude waves may grow
to higher amplitudes and then the rogue waves may be generated in a relatively small region. It is
easy to see that the MI growth rate of the planar IAWs presents the maximum value 0max = b,

i.e. Im Ω = |Q | |Φ0|
2, at the point X =


b
a . Then, the instability window becomes the interval

[0,


2b
a ].

Based on the above findings, we can see that it is important to analyze how the plasma parameters
influence the sign of PQ which indicates where the stable (PQ < 0) and unstable (PQ > 0) regions set
in. Fig. 2 depicts the effects of the plasma parameters q, α andµ on the criticalwave number threshold
kc for which PQ changes its sign in the (q, k), (α, k), and (µ, k)-planes as follows:

(i) from plot (a), we can see that for s = −1 and−1 < q < 0.35, increasing the values of q leads to a
decrease of the critical wave number kc until q reaches a certain value q = qc ≈ 0.35, i.e. increase
the q value could change PQ < 0 (stable case) into PQ > 0 (unstable case) when q < qc . Then,
further increasing the values of q beyond qc could increase the values of kc , i.e. increase the values
of q > qc could change PQ > 0 (unstable case) into PQ < 0 (stable case). For s = +1, increasing
q value has the similar qualitative effect on kc , which is shown in plot (b). Comparing the plots
(a) and (b), it can be seen that the kc value at qc for the case s = −1 is smaller than that for the
case s = +1.

(ii) Plots (c) and (d) show the effects of parameterα on the stable/unstable regions of the EPID plasma
containing negative and positive dust, respectively. It is noticed that increasing the negative dust
concentration α leads to a decrease of the critical wave number kc , i.e. an increase in α could
change PQ < 0 (stable case) into PQ > 0 (unstable case). However, the effect of positive dust
concentration α is opposite to that of the negative case. In other words, an increase in positive
dust concentration α increases the kc value and change PQ > 0 (unstable case) into PQ < 0
(stable case), which means that the modulationally unstable region of the system containing
negative dust is bigger than that of the system containing positive dust.

(iii) Plot (e) shows that, for the case s = −1 increasing the values of µ leads to a decrease of the
critical wave number kc until µ reaches a certain value µ = µc ≈ 0.2, and further increasing
the values of µ beyond µc could increase the values of kc . In other words, an increase in µ < µc
could change PQ < 0 (stable case) into PQ > 0 (unstable case), while the effect of µ > µc on
the stable/unstable region is opposite to that of µ < µc . For the case s = +1, plot (f) shows that
the parameter µ has the similar qualitative effect on the stable/unstable regions. From these two
plots, we can see that the unstable (stable) region for s = −1 is bigger (smaller) than that for
s = +1.

In Fig. 3, we present the effect of nonextensive parameter q on the MI growth rate 0 of the EPID
plasma containing negative dust (s = −1). Obviously, the MI growth rate is significantly affected by
the variation in the values of q. From this figure, we can draw the conclusion that for a fixed value
of X , increasing the values of q in the interval −1 < q < qc could lead to an increase in the growth
rate 0; then, beyond a certain value q = qc , the influence of q on the growth rate is opposite to that
of q ∈ (−1, qc), i.e., the growth rate decreases as the values of q increase in the interval q > qc . For
s = +1, the parameter q has the same qualitative behavior on the MI growth rate 0 as Fig. 3. For
simplicity, we do not present the figure here.

Now, we will analyze how the plasma parameters k, µ, α and q affect the amplitude of the
following first-order ion-acoustic rogue wave (Peregrine breather) [41]

Φ(ξ , τ ) =


2P
Q


4 + 16iPτ

1 + 16(Pτ)2 + 4ξ 2
− 1


e(2iPτ), (27)

which can be understood as a limiting case of Kuznetsov–Ma breather [51,52] and Akhmediev
breather [53]. Fig. 4 shows that, the rational solution (27) breathes only once and describes a single
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Fig. 2. The contour of product PQ . The yellow color represents the modulationally unstable region (PQ > 0), and white color
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a b

Fig. 4. Wave propagation (a) and density plot (b) for the electrostatic potential |Φ|
2 of the first-order ion-acoustic rogue wave

solution (27). The parameters are: α = 0.2, β = 0.02, γ = 0.3, µ = 0.6, δ = 0.1, q = 1.6, k = 2.8, and s = +1.

wave that appears from nowhere and then disappears without a trace. In other words, this ion-
acoustic rogue wave solution is able to concentrate a significant amount of the IAWs energy in a
relatively small region. This property is typical for the rogue waves.

The effects of the dust concentration α and nonextensive distribution parameter q on the rational
solution (27) are depicted in Fig. 5 for both the cases s = −1 and s = +1. Clearly, increasing the values
of q leads to enhance the amplitude of the first-order ion-acoustic rogue waves for these two cases.
Plot (a) shows that an increase in negative dust concentration α could slightly shrink the nonlinearity
of the considered system andmake the pulses shorter, while plot (b) shows the pulses become slightly
taller for the higher values of positive dust concentration α.
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a b

Fig. 5. The contour of the first-order ion-acoustic rogue wave amplitude. The lighter-color regions correspond to the higher
values of amplitude. The parameters are: β = 0.1, γ = 0.01, µ = 0.5, δ = 0.01, k = 2.5, (a), s = −1, (b), s = +1.
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Fig. 6. The absolute values of the electrostatic potentialΦ represented by Eq. (27) for different values of wave number k (a) and
cold electron to positive ion density ratio µ (b). The parameters are: α = 0.3, β = 0.1, γ = 0.05, δ = 0.05, q = 0.7, s = −1,
(a) µ = 0.4, (b) k = 2.5.

To see how the parameters k (wave number) and µ (cold electron to positive ion density ratio)
affect the first-order ion-acoustic roguewaves, we present the variation of the absolute valuesΦ(ξ , 0)
for different values of these two parameters in Fig. 6. Plot (a) shows that, for the case s = −1 the
amplitudes of the ion-acoustic rogue waves decrease when the values of k increase. However, the
effect ofµ on the amplitudes of the ion-acoustic roguewaves is opposite to that of k, i.e. increasing the
values of µ could increase the rogue wave amplitude. This interesting phenomena may be explained
as follows: an increase in k (µ) could shrink (enhance) the nonlinearity of the plasma system and
disperse (concentrate) its energy, which makes the pulses shorter (taller). For the case s = +1, the
parameters k and µ have the same qualitative behavior on the ion-acoustic rogue waves as plots (a)
and (b), respectively. For simplicity, we do not include the figure here.

Since the actual wave dynamic consists of a nonlinear superposition of many simple solutions and
twoormore Peregrine solutions can be combined into amore complicated doubly-localized structures
with a higher amplitude, it is interesting and important to investigate the following second-order ion-
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a b

Fig. 7. Wave propagation (a) and density plot (b) for the electrostatic potential |Φ|
2 of the second-order ion-acoustic rogue

wave solution (28). The parameters are the same as that in Fig. 4.

acoustic rogue wave [54]:

Φ(ξ , τ ) =


P
Q


1 +

G2(ξ , τ ) + iK2(ξ , τ )

D2(ξ , τ )


e(iPτ), (28)

where

G2(ξ , τ ) = −
1
2
ξ 4

− 6(Pξτ)2 − 10(Pτ)4 −
3
2
ξ 2

− 9(Pτ)2 +
3
8
,

K2(ξ , τ ) = −Pτ


ξ 4

+ 4(Pξτ)2 + 4(Pτ)4 − 3ξ 2
+ 2(Pτ)2 −

15
4


,

D2(ξ , τ ) =
1
12

ξ 6
+

1
2
ξ 4(Pτ)2 + ξ 2(Pτ)4 +

2
3
(Pτ)6 +

1
8
ξ 4

+
9
2
(Pτ)4

−
3
2
(Pξτ)2 +

9
16

ξ 2
+

33
8

(Pτ)2 +
3
32

.

For a better understanding, we present the above second-order ion-acoustic rogue wave in Fig. 7. It
is easy to see that this rational solution is also localized both in τ and ξ directions and has a higher
amplitude than the first-order case.

Fig. 8 depicts that, the amplitude of the rogue wave is pronounced affected by the nonextensive
distribution parameter q and wave number k for s = −1. It is revealed that, for a fixed value of k,
increasing q could decrease the amplitude when −1 < q < qc . Then, beyond the critical value qc , a
further increase in q leads to an increase in the amplitude.We speculate this interesting phenomenon
could be explained as follows: increasing the values of nonextensive parameters q ∈ (−1, qc) could
not enhance the nonlinearity of the system and shrink its energy, then the pulses become shorter;
for q > qc , an increase in q would lead to an enhancement of the nonlinearity of the plasma and
concentrate a significant amount of energy,whichmakes the pulses taller. Furthermore, the amplitude
of the ion-acoustic rogue wave decreases with an increase in wave number k, which means that
increasing the k value reduces the nonlinearity and disperses the energy of the system. For s = +1,
the parameters q and k have same qualitative influence on the amplitude as Fig. 8, and therefore we
do not include the figure here.

Fig. 9 shows the effects of parametersµ andα on the amplitude of ion-acoustic roguewave for both
the cases s = −1 and s = +1. Here, we consider two possible ranges of the nonextensive parameter
q, viz., −1 < q < 0 and q > 0. It can be seen from this figure that:
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Fig. 8. The contour of the second-order ion-acoustic rogue wave amplitude. The lighter-color regions correspond to the higher
values of amplitude. The parameters are: α = 0.4, β = 0.1, γ = 0.01, µ = 0.6, δ = 0.01, and s = −1.

(i) for s = −1 and −1 < q < 0, increasing µ would lead to shrinking the rogue wave amplitude,
which is presented in plot (a). In otherwords, increasingµ reduces the nonlinearity of the system
and disperses its energy, so the pulses become shorter. Plot (b) shows that, increasing µ could
decrease the amplitude when µ < µc and q > 0; then, beyond the critical value µc , a further
increase in µ leads to an increase of the amplitude. This behavior may be explained as follows:
increasing the values of µ < µc would not enhance the nonlinearity of the plasma, then the
pulses become shorter; for µ > µc , an increase in µ could lead to an enhancement of the
nonlinearity of the system and concentrate a significant amount of energy, which makes the
pulses become taller.

(ii) From plots (c) and (d), it is clear to see that for s = +1, i.e., the plasma containing positive dust,
parameter µ has the same effect on the amplitude as the case s = −1.

(iii) For s = −1 and −1 < q < 0, increasing α could lead to an increase of the amplitude if the value
of µ is less than a certain value µc (Note that this value is different from the one in the above
discussion (i).); however, when µ > µc increasing α could lead to a decrease of the amplitude.
This interesting behavior is shown in plot (a), which means that when µ < µc (µ > µc)
increasing α value could enhance (shrink) the nonlinearity and concentrate (disperse) the energy
of the considered plasma, so the pulses become taller (shorter). For s = −1 and q > 0, the
amplitude of ion-acoustic roguewave shrinkswith an increase inα, which is presented in Plot (b).
We speculate that for this case, increasing α reduces the nonlinearity of the system and disperses
the energy of the rogue waves, which makes the pulses become shorter.

(iv) From plots (c) and (d) in Fig. 9, it is revealed the effect of α on the amplitude for s = +1, i.e. the
system containing positive dust, is opposite to that for s = −1, i.e. the system containing negative
dust.

We can also analyze the effects of other plasma parameters on the nonlinear structures of ion-
acoustic rogue wave (28) by the similar procedures, and therefore we omit them here for simplicity.

3.3. MI of cylindrical and spherical excitations

When setting ν = 1 and 2 in Eqs. (20), (25) and (26), we can get the modified NLSE, nonlinear
dispersion relation and MI growth rate for cylindrical and spherical excitations, respectively.
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From Eq. (26), it is clear that the MI growth will cease for ν = 1 (cylindrical geometry) when

τ ≥ τmax =
2b
aX2

, (29)

and for ν = 2 (spherical geometry) when

τ ≥ τmax =
1
X


2b
a

. (30)

We can see that there is a MI period for nonplanar (cylindrical and spherical geometries) wave
modulation, which does not exist in the planar case.

In Fig. 10, we present how the parameter q affects the MI growth rate 0 and the maximum period
τmax for the cylindrical excitation. From plots (a) and (b), we can see that: (i) for s = −1, both 0 and
τmax increase as the values of q ∈ (−1, qc) increase; then, beyond a certain value qc , increasing q value
leads to the decrease of both 0 and τmax. If the system contains positive dust (s = +1), the parameter
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q has the same qualitative influence on theMI growth rate 0 and themaximum period τmax. (ii) when
q < qc′ = 1, the values of0 and τmax for s = −1 are smaller than that for s = +1; however, both the0

and τmax values for s = −1 are bigger than that for s = +1 if q > qc′ . For the spherical excitation, the
nonextensive index q has the same qualitative behavior on the MI growth rate 0 and the maximum
period τmax as Fig. 10, so we do not include these figures here.

The growth Λ of the modulation during the unstable period is defined as

Λ = exp

 τmax

τ0

0(τ )dτ


= exp


Q

τ ν−1
0

f (R)


(31)

where R =
2b

aX2τν
0

> 1. From Eqs. (29) and (30), we can see that the condition of the modulational
instability growth will be satisfied if R > 1. Here,

f (R) =


f1(R) = arctan

√
R − 1 −

√
R − 1
R

, ν = 1,

f2(R) =
1
R


√
R ln

√
R +

√
R − 1

√
R −

√
R − 1

− 2
√
R − 1


, ν = 2.

Form the above equation, we can see that f1(R) is an increasing function of R, and f1(R) →
π
2 as

R → +∞, which means that the total modulation growth Λ increases as R does for cylindrical
excitation. But f2(R) has a maximum value f2(Rc) =

2
√
Rc−1
Rc

. Here, Rc is determined by 4
√
Rc − 1 =

√
Rc ln

√
Rc+

√
Rc−1

√
Rc−

√
Rc−1 . In other words, for 1 < R < Rc , the total modulation growth Λ is an increasing

function in R and then decreases as R increases further.
Fig. 11 showshow the parameter q affects the growthΛ. From this figure,we can see that: (i) for the

case s = −1, ν = 1, the growthΛ is a decreasing (an increasing) function in q if−1 < q < qc (q > qc).
For other cases, i.e. (s = −1, ν = 2), and (s = +1, ν = 1, 2), the parameter q has the similar
qualitative influence on the growthΛ. (ii) when s = −1, the growthΛ value for ν = 1 is smaller than
that for ν = 2 except that q → −1. It can be seen that this interesting phenomenon also appears in
the case s = +1. (iii) when ν = 1, the value of growth Λ for s = −1 is bigger than that for s = +1
except that q reaches the critical value. Also the same behavior appears in the case ν = 2.
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4. Conclusions

In summary, we investigated the modulational instability of the planar and nonplanar (cylindrical
and spherical) ion-acoustic waves in a multicomponent plasma consisting of positive ions,
nonextensive positrons and electrons with two temperature distributions, as well as charged dust
grains. Both negative and positive dust charge cases were considered. Via the RPM, a modified
nonlinear Schrödinger equation was derived for the wave amplitude.

For the planar excitations, the effects of the plasma parameters, especially the nonextensive index
q, dust concentration α and cold electron to positive ion density ratio µ on the critical wave number
threshold kc which determines where the stable (PQ < 0) and unstable (PQ > 0) regions set in, were
discussed in detail. The effect of the q on theMI growth ratewas also studied.Within themodulational
unstable envelope pulse region, the external perturbations may lead to the creation of ion-acoustic
roguewaves. Our results revealed that the parameter q plays a significant roles in changing the energy
of roguewaves. For different values of q, other plasmaparameters,µ andα, for example, have different
influences on the nonlinear structures of rogue waves. As far as we know, the second-order ion-
acoustic rogue waves were studied for the first time. In the real applications, we can control (and
in fact prevent) the energetic pulses of the rogue waves by changing the values of these parameters.

For the cylindrical and spherical wave modulation, we found that there is a modulation instability
period which does not exist in the planar geometry. We also analyzed how the nonextensive
parameter q affects the modulational instability growth rate 0, the maximum growth period τmax
and the total growth Λ.

Our investigation may provide a better understanding of the nonlinear wave phenomena in
laboratory experiments and in interstellar and spatial observations, where nonextensive plasma
distributions may be present.
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Appendix. Expressions of the coefficients

∆1 =
k2(2δc2γ 2ω2

− 2µc2U2ω2
− 2ηc2W 2ω2

+ 3k2µc1U + 3k2ηc1W + 3k2δc1γ + 12k4)
2ω2(−k2 + ω2µc1U + ω2ηc1W + ω2δc1γ + 4k2ω2)

,

∆2 =
1

2ω3(−k2 + ω2µc1U + ω2ηc1W + ω2δc1γ + 4k2ω2)

× [k(2k4 + 2δc2γ 2ω4
− 2µc2U2ω4

− 2ηc2W 2ω4

+ k2ω2µc1U + k2ω2ηc1W + k2ω2δc1γ + 4k4ω2)],

∆3 =
3k4 + 2δc2γ 2ω4

− 2µc2U2ω4
− 2ηc2W 2ω4

2ω2(−k2 + ω2µc1U + ω2ηc1W + ω2δc1γ + 4k2ω2)
,

∆4 =
1

ω3(c1V 2µU + c1V 2ηW + c1V 2δγ − 1)
× [2c1Vk3µU + 2c1Vk3ηW + 2c1Vk3δγ − 2ηc2W 2ω3

+ 2δc2γ 2ω3
− 2µc2U2ω3

+ ωc1k2µU + ωc1k2ηW + ωc1k2δγ ],

∆5 =
1

ω3(c1V 2µU + c1V 2ηW + c1V 2δγ − 1)
× [−2Vηc2W 2ω3

+ 2Vδc2γ 2ω3
− 2Vµc2U2ω3

+ Vωc1k2µU
+ Vωc1k2ηW + Vωc1k2δγ + 2k3],

∆6 =
−2V 2ηc2W 2ω3

+ 2V 2δc2γ 2ω3
− 2V 2µc2U2ω3

+ 2Vk3 + k2ω
ω3(c1V 2µU + c1V 2ηW + c1V 2δγ − 1)

.

Here,

V = (δγ + Uµ + Wη)c1
ω3

k3
, c1 =

(q + 1)
2

, c2 =
(q + 1)(3 − q)

8
,

U =
1

µ + ηβ
, W =

β

µ + ηβ
.
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