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Abstract
This paper describes a method for studying idioms-based imple-
mentations of crosscutting concerns, and our experiences with it
in the context of a real-world, large-scale embedded software sys-
tem. In particular, we analyse a seemingly simple concern, tracing,
and show that it exhibits significant variability, despite the use of
a prescribed idiom. We discuss the consequences of this variability
in terms of how aspect-oriented software development techniques
could help prevent it, how it paralyses (automated) migration ef-
forts, and which aspect language features are required in order to
obtain precise and concise aspects. Additionally, we elaborate on
the representativeness of our results and on the usefulness of our
proposed method.

Categories and Subject DescriptorsD.2.7 [Distribution, Mainte-
nance, and Enhancement]

General Terms Restructuring, reverse engineering, and reengi-
neering

Keywords Aspect-oriented programming, variability, idioms, cross-
cutting concerns, formal concept analysis

1. Introduction
The lack of certain languages features, such as aspects or exception
handling, can cause developers to resort to the use of idioms2 for
implementing crosscutting concerns. Idioms (informally) describe
an implementation of required functionality, and can often be found
in manuals, or reference code bodies. A well-known example is the
return-code idiomwe have studied in a realistic setting in [5]. It
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is used in languages such as C to implement exception handling.
It advocates the use of error codes that are returned by functions
when something irregular happens and caught whenever functions
are invoked. Idioms are also used purposefully as a means of design
reuse, for instance in the case of (design) patterns [7, 10].

Using idioms can result in various forms of code duplication [6].
Despite this duplication, idioms-based implementations are not
guaranteed to be consistent across the software, however. Several
factors may give rise to variability in the use of the idiom. Some
variability, which is essential, occurs if there is a deliberate devi-
ation from the idiom, for example in order to deal with specific
needs of a subsystem, or to deal with special cases not foreseen
in the idiom description. In addition to this, variability will occur
accidentally due to the lack of automated enforcement (compilers,
checking tools), programmer preference or skill, changing require-
ments and idiom descriptions, and implementation errors.

In this paper, we are interested in the answer to the following
question:

Is the idioms-based implementation of a crosscutting con-
cern sufficiently systematic such that it is suitable for an
aspect-oriented solution (with appropriate pointcuts and
advice)?

While answering this question is an endeavour too ambitious for
this paper, we do take an important step towards an answer by
addressing the following sub questions: First, can we analyse the
variability of the idioms-based implementation of a crosscutting
concern? And secondly, can we determine the aspect language
abstractions required for designing aspects that succintly express
the common part and the variability of a crosscutting concern?

We have encountered a number of examples of idiomatically
implemented crosscutting concerns [6, 4, 5]. Several more are
mentioned in the literature [9, 8]. The questions we ask in this paper
need to be answered in order to start migrating these crosscutting
concerns to aspect-oriented solutions.

We present a generally-applicable method for analysing the
occurrence of variability in the idioms-based implementation of
crosscutting concerns, that will help us answer these questions.
We show the results of applying this method in order to analyse
the tracing idiom in four selected components (ranging from 5
to 31 KLOC) of a 15 million line C software system that is fully
operational and under constant maintenance. Tracing is one of the
ubiquitous examples from aspect-oriented software development
(AOSD), and although it is a relatively simple idiom, we show that
it exhibits significant and unexpected variability.
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We also discuss the implications of this variability. We illus-
trate the limitations of idioms-based implementations and as such
provide a solid motivation, based on our experiences with a large
legacy system, for using aspect technology as a means to localise
implementations and avoid accidental variability. This should inter-
est the AOSD community as a whole. We also discuss how variabil-
ity complicates and even paralyses efforts to migrate legacy code
towards modern languages. Researchers investigating such (auto-
mated) migration of code can study our results and use them to
improve their methods and techniques, such that they can deal with
the significant variability we observed. Additionally, the results of
our method’s variability analysis can be used directly to determine
the required aspect language features, capable of expressing the id-
ioms with their essential variability. We discuss two such language
requirements for the tracing idiom under investigation.

The structure of the paper is as follows. The next section briefly
presents our method for analysing variability by describing each
individual step. Sections 3–7 then describe how we applied each
step on the selected components of our subject system in order to
analyse the tracing idiom’s variability. Section 8 then presents a
discussion of the repercussions of these results and an evaluation
of our method. Section 9 discusses related work and Section 10
presents our conclusions.

2. A Method for Analysing Idiom Variability
This section proposes the general approach we use to acquire a deep
understanding of the variability in the idioms-based implementa-
tion of a crosscutting concern, and explains how to use this under-
standing in subsequent aspect specification and design phases.

2.1 Idiom Definition

The aim of this step is to provide a definition that is as clear and
unambiguous as possible for the idiom that we want to study. The
input for this (manual) step is typically found in the documenta-
tion accompanying the software, by means of code inspections, or
by discussions with developers. In this respect, this step closely re-
sembles theSkim the Documentation, Read all the Code in One
Hour andChat with the Maintainerspatterns discussed in theFirst
Contactcluster of [11].

While this step may seem simple, in our experience idiom de-
scriptions in coding standard manuals often leave room for inter-
pretation. When presenting our results, it happened more than once
that developers started a heated debate on whether a particular use
of the idiom was valid or not.

2.2 Idiom Extraction

In this step, the code implementing the idiom is automatically ex-
tracted from the source code. This requires that the idiom code is
recognised, and hence the output of the previous step is used as in-
put for this step. The result of this step is similar to a slice [30],
albeit that the extracted code does not necessarily need to be exe-
cutable. Nevertheless, the extracted code can be compiled and anal-
ysed by standard tools, and it is much smaller than the original
code, allowing us to scale up to large systems.

Naturally, the complexity of this step is strongly dependent on
the idiom: idioms that are relatively independent of the code sur-
rounding them are easy to extract using simple program transfor-
mations, whereas idioms that are highly tangled with the other code
require much more work.

2.3 Variability Modelling

In this step, we describe which properties of the idiom can vary and
indicate which variability we will target in our analysis. It is impor-
tant to note that we do not require a description of variabilities that

actually occur in the source code. We only need to know where we
can expect variabilities, given the definition of the idiom. For exam-
ple, variability in the tracing idiom under investigation can occur in
the specific macro that is used to invoke the tracing functionality. In
practice, it might turn out that the same macro is used consistently
throughout the source code, or it might not.

Additionally, it is preferable to model different levels of vari-
ability separately in order to understand them fully, and subse-
quently to consider combinations. For example, in the tracing id-
iom there is the aforementioned variability in the way the tracing
functionality is invoked, but also variability in the way the function
parameters are converted to strings before being traced.

Finally, we do not require all possible variability to be modelled.
As we discuss later, we only study part of the variability of the
tracing idiom, while other parts are not considered. This is no
problem if this is taken into account when discussing the results
of the analysis. In other words, these results can be seen as a lower
bound of the amount of variability that occurs.

2.4 Variability Analysis

This step forms the core of our method, as it analyses the variabili-
ties actually present in the source code. This is achieved by taking
the extracted idiom code, and analysing it considering the variabil-
ities that were modelled in the previous step. We are particularly
interested in finding out how properties that can vary are typically
related. For example, is it the case that tracing macrom is always
invoked with either parameterc1 or c2, but never withc3? Answer-
ing such questions can help us in designing the simplest aspect that
captures all combinations as occurring in practice.

To analyse such relations between variable properties we use
formal concept analysis (FCA) [16]. FCA is a mathematical tech-
nique for analysing data which takes as input a so-calledcontext.
This context is basically a matrix containing a set ofobjectsand a
set ofattributesbelonging to these objects. The context specifies
a binary relation that signals whether or not a particular attribute
belongs to a particular object. Based on this relation, the technique
finds maximal groups of objects and attributes — called aconcept
— such that

• each object of the concept shares the attributes of the concept;

• every attribute of the concept holds for all of the concept’s
objects;

• no other object outside the concept has those same attributes,
nor does any attribute outside the concept hold for all objects in
the concept.

Intuitively, a concept corresponds to a maximal “rectangle” in
the context, after permutation of the relevant rows and columns.

The resulting concepts form a lattice and therefore we can
use relations between concepts, as well as characteristics of the
concepts themselves, to get statistics and interpret the results.

2.5 Aspect Design

If we assume that accidental variability in the implementation of an
idiom is ultimately removed, the next step is to design aspects that
replace the idiom implementation, taking into account its essential
variability. However, aspect design is constrained by the choice
of the target aspect-oriented programming language. Ideally the
selected language should provide abstractions for representing the
idiom’s common pattern and its variations, as defined in [15]. If
not, the common pattern has to be repeated for each variation,
which results in code duplicationin the aspect. Evidently, this
partly undermines the expected usefulness of the aspect-oriented
solution.



int f ( chuck_id∗ a , scan_component b ) {
int result = OK ;
char∗ func_name = "f" ;
. . .
trace ( CC , TRACE_INT , func_name , "> (b = %s)" , SCAN_COMPONENT2STR ( b ) ) ;
. . .
trace ( CC , TRACE_INT , func_name , "< (a = %s) = %d" , CHUCK_ID_ENUM2STR ( a ) , result ) ;
return result ;

}

Figure 1. Code fragment illustrating the tracing idiom at ASML.

In this step, we determine the required abstractions in aspect
languages, which can be nearly directly distilled from the results of
the variability analysis in the previous step. We discuss two such
requirements for the tracing idiom under investigation later on in
the paper.

3. Defining the Tracing Idiom
The idiom we study in the paper is the tracing idiom, as adopted by
ASML. ASML is the world market leader in lithography systems,
and their software controls wafer scanner machines used to produce
computer chips. It consists of 15 million lines of code, spread over
approximately 200 components, implemented almost entirely in the
C programming language.

As we have discussed in previous papers [4, 5, 6], the software
implements a number of crosscutting concerns, such as tracing,
parameter checking, memory handling and exception handling.
ASML uses idioms to implement these concerns, and in this paper,
we study one such idiom, tracing, and consider its implementation
in 4 different components.

Tracing is a seemingly simple idiom, used at development-time
to facilitate debugging or any other kind of analysis. The base
code is augmented with tracing code that logs interesting events
(such as function calls), such that a log file is generated at runtime.
The simplicity of the idiom is reflected in its simple definition:
“Each function should trace the values of its input parameters
before executing its body, and should trace the values of its output
parameters before returning”

The ASML documentation describes the basic implementation
version of the idiom, which looks as in Figure 1. Thetrace
function is used to implement tracing and is a variable-argument
function. The first four arguments are mandatory, and specify the
following information:

1. the component in which the function is defined;

2. whether the tracing is internal or external to that component;

3. the function for which the parameters are being traced;

4. aprintf-like format string that specifies the format in which
parameters should be traced.

The way in which each of these four parameters should be
passed on to thetrace function is described by the standard, but
not enforced. For example, some components follow the standard
and use theCC constant, which always holds the component’s
name, to specify the name, while others actually hardcode the name
with a string representing the name (as in"CC3"). Similarly, the
func name variable should be used to specify the name of the
function whose parameters are being traced. Sincefunc name is
a local variable, however, different functions might use different
names for that variable (f name, for instance). The structure of

the format string is also not fixed, and developers are thus free to
construct strings as they like.

The optional arguments fortrace are the input or output pa-
rameters that need to be traced. If these parameters are of a com-
plex type (as opposed to a basic type likeint or char), they need
to be converted to a string representation first. Often, a dedicated
function or macro is defined exactly for this purpose. In Figure 1,
SCAN COMPONENT2STR andCHUCK ID ENUM2STR are two such ex-
amples. Developers can choose to trace individual fields of struct
instead of using a converter function, however.

Although the idiom described above is the standard idiom, some
development teams define special-purpose tracing macro’s, as a
wrap around the basic idiom. These macro’s try to avoid code
duplication by filling in the parameters totrace in the standard
way beforehand. Typically, tracing implementations by means of
such macro’s thus require fewer parameters, although sometimes
extra parameters are added as well, for example to include the name
of the file where tracing is happening.

It should be clear from this presentation that the tracing idiom
precisely prescribes what information should be traced, but that the
way in which this information is provided is not specified. Hence,
we can expect a lot of variability, as we will discuss in Section 5.

4. Extracting the Tracing Idiom
Extraction of the tracing idiom out of the source code is achieved
by using a combination of a code analysis tool, called CodeSurfer,3

and a code transformation tool, called ASF+SDF [2]. The under-
lying idea is that the analysis tool is used to identify all idiom-
related code in the considered components and that this informa-
tion is passed on to the transformation tool that extracts the idiom
code from the base code. The end result is a combination of the
base code without the idiom-related code, and a representation of
the idiom code by itself.

5. Modelling Variability in the Tracing Idiom
Tracing is generally considered as a very simple example of a cross-
cutting concern that can be captured in an aspect easily. This is con-
firmed by the fact that we can express the requirements for tracing
in one single sentence, and hence we could expect an aspect to be
simple as well. However, the tracing idiom we consider here is sig-
nificantly more complex than the simple example often mentioned
and than the requirement would reveal. Rather, it represents a good
example of what such an at first sight simple idiom looks like in a
real-world setting.

The following characteristics of the tracing idiom distinguish it
from a simple logging concern:

3 www.grammatech.com



CC1 CC2 CC3 CC4 global
LOC 29,339 17,848 31,165 4,985 83,337
functions 328 134 174 68 704
parameter types 108 71 65 49 249
tracing macro’s 1 1 2 1 2
component names 2 3 1 2 6
function names 3 1 1 1 3

Table 1. Basic statistics of the analysed components.

• A simple logging aspect typically weaves in log calls at the
beginning and end of a function, and often only logs the fact that
the function has been entered and has been exited. The tracing
idiom described above also logs the values of actual parameters
and the module in which the function is defined. Moreover, it
differentiates between input and output parameters, which have
to be traced differently.

• Tracing the values of actual parameters passed to a C function
is a quite complex matter. Basic types such asint or bool can
be printed easily, but more complex types, such asstructs
andenums, are a different story. These should be converted to
a string-based representation first, which differs for different
structs andenums. Moreover, certain fields of a struct may
be relevant in the context of a particular function, but may not
be relevant elsewhere. Hence, the printed value depends on the
context in which the type is used, and not only on the type itself.

• The conversion of complex types to a string representation is
quite different in C than in Java, or any other modern pro-
gramming language. C does not provide a defaulttoString
function, as do all Java classes, for example. Consequently, a
special-purpose converter method for complex types needs to
be provided explicitly. Additionally, since C does not support
overloading of function names, each converter function needs
to have a unique name.

These issues, together with the way tracing is invoked as ex-
plained in Section 3, show that variability can occur at many dif-
ferent levels. In the remainder of this paper, however, we will fo-
cus onfunction-levelandparameter-levelvariability. The variabil-
ity present on those levels possibly has the biggest impact on the
definition of aspects for the tracing concern.

At the function-level, the variability occurs in the specific way
the tracing functionality is invoked. This depends on four different
properties: the name of the tracing function that is used (for exam-
pletrace), the way the component name and the function name are
specified (by usingCC andfunc name, for example), and whether
internal or external tracing is used. More properties are considered
when a different tracing idiom requires more parameters when it is
called, for example the name of the file in which the traced function
is defined.

At the parameter-level, the variability involves the different
ways in which a parameter of a particular kind is traced. As ex-
plained in Section 3, a parameter of a complex type can be traced by
first invoking a converter function that converts the complex type to
a string representation, or by tracing the fields of the complex type
individually. In this case, we are interested in verifying whether a
particular type of parameter is traced in a systematic and uniform
manner across the considered components, and if not, how much
variability occurs.

6. Analysing the Tracing Idiom’s Variability
As shown in Table 1, our experiments involve 4 different compo-
nents, comprising 83,000 lines of non-white lines of C code. These

components define 704 functions in total, which in turn define 249
different parameter types.4

The table also lists the different number of ways in which
tracing is invoked, i.e., the different tracing macros that are used,
as well as the different component names and function names that
are specified5 The numbers clearly show the variability present in
the idiom at the function level, since globally 2 different tracing
macro’s, 6 different ways to specify the component name and 3
different ways for specifying the function name are used.

The goal of our analysis is to identify, at the function level,
which functions invoke tracing in the same way, and at the pa-
rameter level, which parameter types are converted consistently.
Analysing this allows us to make headway into answering our key
question, since it shows us where the implementation is systematic
and what is variable. Since FCA, introduced in Section 2.4, is ca-
pable of identifying meaningful groupings of elements, we use it in
our variability analysis.

The FCA algorithm needs to be set up before it can be applied,
i.e., we need to define the objects and attributes of the input context.
The next subsection explains how this is achieved for our experi-
ment. Subsequent subsections then describe, for function-level and
parameter-level variability, the results of running FCA on each of
the components separately, as well as on all components together.
This will allow us to discuss the variability within a single compo-
nent, as well as the between different components.

6.1 Setting up FCA for Analysing Tracing

We first explain how objects and attributes are chosen for our
experiment, and how we run the FCA algorithm. Afterwards, we
explain how we interpret the results.

6.1.1 Objects and Attributes

For studying function-level variability, the objects and attributes
are chosen such that all functions that invoke tracing in the same
way are grouped. Hence, the objects we use in the FCA context are
the names of all functions defined in the components we consider.
The attributes are different instantiations of the four properties used
to invoke tracing, as discussed in Section 3. A sample context is
shown in the upper part of Table 2.

For the analysis at the parameter level, the objects are slightly
less obvious to choose. Our goal is to let the FCA algorithm group
functions that have a parameter of a certain type and convert that
parameter in the same way. The objects thus have to be unique
for a particular function that uses a particular parameter type. This
means that functions cannot serve as objects, since they may have
different parameters. Similarly, parameter types cannot serve as
objects, since they can be used by many different functions. Hence,
we form a combination of the parameter type and the function that
uses it.

The attributes we consider are, on the one hand, the types
used in the considered components, and on the other hand, the
particular converter functions that are used (if any) or the constant
no tracing when the parameter is not traced by that particular
function.

A sample of a corresponding context can be found in the
lower part of Table 2. The functionsf and h both define a for-
mal parameter of typeCC scan component and both use the
CC SCAN COMPONENT2STR converter function. Similarly, the func-

4 Note that types may be shared across components, hence the total number
of types is smaller than the sum of the numbers of types per component.
5 Due to space restrictions, we do not provide equivalent numbers for the
parameter-level variability. Such numbers would have to be specified for
each type defined by the four components, and the table would hence
contain more then 249 rows.



Figure 2. Function-level variability in the CC1 component

tions f, g andi define a formal of typeCC chuck id, but only
functionf uses a converter function, the other two functions do not
trace their parameter of that type.

6.1.2 Applying FCA

Once the context is set up, the algorithm can be applied. We use
Lindig’s Concepts tool to compute the actual concepts [21]. The
context is specified in a file in a specific format, which we generate
using ASF+SDF and the extracted tracing representation files. The
tool can output the resulting concepts in a user-defined way, and we
tune the results so that they can be read into a Scheme environment.
This allows us to reason about the results using Scheme scripts.

An alternative is to use the ConExp tool6, which requires a
slightly different input format, but that can visualise the concepts
(and the resulting lattice) so that it can be inspected easily. The
graphical representations of lattices in this paper are obtained by
this tool.

6.1.3 Interpreting the Results

From running the FCA algorithm, we obtain a concept lattice that
shows the different concepts identified and the relation between
them. An example lattice appears in Figure 2. Each dot in the lat-
tice represents a concept, and the lines connecting the dots rep-
resent concepts that are related because they share objects and/or
attributes.

While traversing a lattice from top to bottom, following the
edges that connect concepts, attributes are gradually added to the
concepts, and objects are removed from them. The top concept
contains all objects and all attributes shared by all objects (if any),
whereas the bottom concept contains all attributes and all objects
shared by all attributes (if any). At some point in the lattice, a
concept contains objects that are not contained within any of its
sub-concepts. Those objects are the concept’sown objects. The
attributes associated with the own objects of a concept are always
“complete”, in the sense that in the input context passed to the FCA
algorithm, the own objects precisely are related to precisely those
attributes.

A concept with own objects represents a single variant for
invoking tracing, or a single variant for converting a particular type.
In the first case, for example, the own objects are functions, all these

6http://conexp.sf.net

functions share the same (complete) set of attributes, an no other
attribute is shared by these functions. In Figure 2, the concepts with
own objects are denoted by nodes whose bottom half is coloured
black and whose size is proportional to the number of own objects
they contain. They also have white labels indicating the number
of own objects and the percentage of own objects with respect to
the total number of objects of the concept. The largest concepts
contains 190 own object, which are functions in this case.

We observe that a particular kind of variability occurs when
either input and output tracing in the same function are invoked
in a different way, or a single type is converted using two differ-
ent converter functions. Such situations, which are in most cases
clearly examples of accidental variability, immediately show up in
the concept lattice. They are embodied by concepts with own ob-
jects that have at least one parent concept with own objects. Indeed,
such concepts have more attributes than is necessary, hence some
of these attributes are different variations for the same property. As
an example, consider again Figure 2 and observe the two concepts
in the lower left part that contain 1 and 2 own objects, respectively.
From their positions in the lattice, it can be derived that the leftmost
concept uses bothFUNCTION andfunc name for specifying the
function name when tracing, and the other concept"CC1" andCC
for specifying the component name.

6.2 Function-level Variability

The upper half of Table 3 presents the results of analysing the
function-level variability in the four components we consider. The
first row of data contains the total number of concepts that are
found by the FCA algorithm. The second row lists the number of
different tracing invocations that are found (i.e., the total number
of concepts containing own objects). The third row then lists the
number of functions that implement the standard tracing idiom as
described in ASML’s coding standards (i.e., the number of own ob-
jects found in the concept with attributestrace, CC, TRACE INT
or TRACE EXT andfunc name), and the last row presents the per-
centage of those functions with respect to the total number of func-
tions in the component.

The most striking observation revealed by these results is that
only 5.7% (40 out of 704) of all functions invoke tracing in the
standard way, as described in Section 3. This immediately raises
the questions why developers do not adhere to the standard, and if
a new standard should perhaps be considered, more specifically the
way most functions invoke tracing. Whereas we cannot currently
answer the first question, we can provide an answer to the second.

Looking at the second row in the upper half of Table 3, we see
that 29 different tracing variants are used in the four components. If
we consider each component separately, we find 31 variants in total.
This difference can be explained by the fact that 3 components in-
voke tracing according to the standard idiom, and that the functions
of these components doing so are all grouped in one single concept
when considering the components together. This results in one con-
cept replacing three other concepts, hence the reduction with two
concepts. Reversing this reasoning also means that there is no other
way of invoking tracing that is shared by different components, or
in other words, all components invoke tracing by using their own
variant(s). Consequently, we can not select one single variant that
can be considered as the standard among these 29 variants, with the
other variants being simple exceptions to the general rule. This is
confirmed by looking at the lattices.

Looking at Figures 2 and 3, it is clear that both components
use a similar tracing variant implemented by most functions (190
or 58% functions in the case of CC1, 123 functions or 92% in the
case of CC2). Additionally, CC1 has yet another “big” variant that
uses the FUNCTION preprocessor token instead of the variable
func name. This variant is used in 121 functions (37%).



trace CC TRACE TRACE INT TRACE EXT CC func name f name
f

√
-

√
-

√ √
-

g -
√

- - -
√

-
h

√
- -

√ √
-

√

i -
√

- - -
√

-
j

√
-

√
-

√ √
-

CC SCAN COMPONENT2STR CC CHUCK ID ENUM2STR no tracing CC chuck id CC scancomponent
f CC scancomponent

√
- - -

√

f CC chuck id enum -
√

-
√

-
g CC chuck id enum - -

√ √
-

h CC scancomponent
√

- - -
√

i CC chuck id enum - -
√ √

-

Table 2. A sample input context.

CC1 CC2 CC3 CC4 total global
Function-level variability

#concepts 11 6 24 2 43 47
#tracing variants 6 4 19 2 31 29

#functions w. std. tracing 13 1 26 0 40 40
% of total functions 4 0.7 15 0 7.5

Parameter-level variability
#concepts 191 120 194 84 589 517
#not traced 61 49 4 16 130 115

#consistently traced 15 5 16 19 55 40
#inconsistently traced 32 17 45 14 108 94

#w.o. not traced 11 6 39 8 64 57

Table 3. Function-level and parameter-level variability results

Figure 3. Function-level variability in the CC2 component

Figures 5 and 4 show significantly different results. The CC4
component implements only two tracing variants, implemented by
31 and 37 functions respectively. The difference between the two
variants is that one is an extension of the other: one variant uses
CC4 LINE to denote the component name, whereas the other uses
both CC4 LINE andCC4 CC. The CC3 component implements 19
different variants, and none can be selected as the most represen-
tative or resembles the variants of another component. The vari-

ability in this case stems from the fact that the CC3 component
defines its own macro for invoking tracing, and that this macro re-
quires one extra argument, namely the name of the file in which is
defined the function that is being traced. This is clearly visible in
the lattice: each concept corresponding to a specific tracing variant
that corresponds to a specific file in the source code, contains an
extra attribute that denotes the constant used in the trace call corre-
sponding with the file. Interestingly, although CC3 defines its own
macro, it is also the component that uses the standard idiom the
most. Whether the mixing of the standard idiom with the dedicated
macro is a deliberate choice or not is an issue that remains to be
discussed with the developers.

Summarising, we can state that very few functions implement
the standard tracing variant, that no other standard variant can be
identified that holds for all components, but that within one single
component a more common variant can sometimes be detected.

The previous subsection discussed an example of accidental
variability in the CC1 component. A similar situation occurs in the
CC2 component, as can be seen in Figure 3, where one function
usesCC and"CC2". The CC3 component contains one variant that
is accidental, as confirmed by the ASML developers, consisting of a
copy/paste error when passing a constant representing the file name
in invoking theCC3 trace macro.

6.3 Parameter-level Variability

The parameter-level variability involves the way a parameter of
a specific kind is traced, i.e., whether it is converted to a string
representation by means of a converter function, whether it is traced
in a different way or whether it is not traced at all. Note that we
do not show lattices for this part of experiment since the large
number of parameter types generates too many concepts. Instead



Figure 4. Function-level variability in the CC3 component

Figure 5. Function-level variability in the CC4 component

we produce statistics from the results of the FCA algorithm with
our Scheme scripts.

The lower half of Table 3 summarises the results for this ex-
periment on our four components. The first row describes the total
number of concepts found for each component. The second row
shows the number of types that are never traced, while the third
and fourth depict the number of types that are used consistently
(i.e., that are always converted in the same way) and the number of
types that are not used consistently.

The fact that the global number of consistently-used types is
lower than the sum of the numbers of consistently-used types per
component shows that there is variability between different compo-
nents: one type can be converted consistently per component, but
if these components each convert it in their specific way, the type
becomes inconsistently-used at the global level. The opposite is of
course not possible: if a type is used inconsistently within a sin-
gle component, it can never become consistently used at the global
level. The fact that the number of inconsistently-traced types drops

as well on a global level, is due to the fact that the different compo-
nents share types, and that the different ways in which these types
are traced are combined into a single inconsistency.

One immediate conclusion that we can draw from these results
is that 37.7% of the types (94 out of 249) are traced in an incon-
sistent way, and only 16% (40 out of 249) is traced consistently. If
we consider that 115 types are not traced at all, we can even say
that, of all types that are traced, 70.1% (94 out of 134) is traced in-
consistently and 29.8% is traced consistently. However, we should
take into account one particularity of the tracing idiom. Although
its definition states that each function should trace all of its param-
eters, in practice this does not happen. Helper functions, in particu-
lar, often do not trace all of their parameters, since these are passed
in from the calling function, and are traced there. In order to take
this into account, we exclude from the number of inconsistently-
traced types those types that are traced using one single converter
function or are not traced at all. Hence, the fifth row in the table
shows the types that are converted using more than one converter
function, and thus we can conclude that 42.5% (57 out of 134) of
all types are not traced consistently, and 57.5% (77 out of 134) are
traced consistently.

In contrast to the situation at the function-level, closer analy-
sis of the results at the parameter-level reveals that most of the
types that are traced inconsistently are converted in two or three
different ways only. This result is found by counting the number
of unique conversion attributes that are included in concepts that
a type appears in (except for the bottom concept, which includes
all attributes but does not represent a meaningful grouping). The
median and mode of the number of conversion functions for an in-
consistently traced type are both 2.

There are two interesting outliers in this result. The basic type
double, and simple derived typebool, are traced respectively in
13 and 11 different ways. What appears strange is that these basic
types are sometimes converted with a converter function defined
for another type. This might be explained by C’s weak typing
mechanism: the other types are basically defined in order to prevent
overloading of the basic type and to make the code more readable,
but are not always used consistently by the developers.



Studying the results at the level of individual components re-
veals interesting issues as well.

As can be seen in the table, the tracing implementation in the
CC1 and CC3 components appears to be less consistent than in the
other two components. If we take into account the basic statistics
from Table 1, this seems logical: CC1 and CC3 are by far the largest
components. However, taking into account size does not explain
everything: the CC2 component defines more types than CC3, but
is more consistent.

Even when excluding types that are either traced consistently
or not traced at all, the CC3 component still traces a lot of its
types in many different ways. When we take a detailed look at the
way in which the 39 parameter types are traced inconsistently, we
can observe a clear pattern however. It turns out that 28 of these
types are traced using a slightly different variant of the standard
tracing idiom: the value of the parameter is traced, as always, but
this value is accompanied by the memory address of the parameter,
as follows:

CC3_TRACE ( CC , TRACE_INT , func_name ,
FILE_CONSTANT ,
”< ( p = [%p ] , ∗p = [%s ] ) ” ,

p , p_store_values_ptr_args ( p ) ) ;

Our variability model does not take into account this slight
variation in the idiom, and hence reports a lot of variability. A
refinement of the variability model could prevent this.

Some cases very clearly show that the variability is not intended.
For example, the CC2 component uses a typechuck enum and a
type chuck id enum. Each of these types has its own converter
function, but the converter function for thechuck id enum type
is used twice for converting a parameter of typechuck enum. The
CC3 component also uses thechuck id enum type, and converts it
in three different ways, using converter functions defined in differ-
ent components. It is not clear why this happens, and presumably
this is undesirable behaviour.

7. Aspect Design
This section considers how the results of the variability analysis
can be used in aspect design, more specifically to determine the
required language abstractions for representing the particular con-
cern. The purpose here is not to come up with new language fea-
tures that should be provided by every aspiring aspect language,
nor to conduct a study of existing aspect languages for determining
the degree in which they can implement the required variability. In
our concrete case, this exercise would be incomplete anyway, since
we analysed part of the variability of the ASML tracing concern
— enough to demonstrate the relevance of our method. Instead, we
attempt to point out that from our method it is straightforward to
determine the required (aspect) language abstractions for capturing
the variability. Note that even if the target aspect language does not
provide the required abstractions, it can probably still express the
concern in one way or another. However, the resulting aspect im-
plementation will be long and complicated, which we attempt to
demonstrate later on in this section.

Typically, not all the discovered variability will be represented
in an aspect-oriented solution, since a substantial amount of it is
undoubtedly accidental. With our proposed method for analysing
the variability we are able to make some educated guesses as to
what is essential variability and what is accidental. However, the
process of confirming these findings is one that requires feedback
from the software developers, which is outside the scope of this
paper but is discussed briefly in Section 8.3. In the context of aspect
design, we assume that only the confirmed, essential variability will
be considered.

In the next subsection we describe how the results of our
method’s variability analysis can be used directly to determine
required aspect language abstractions, capable of expressing the
concern with its essential variability. In the two following subsec-
tions, we discuss two such concrete language requirements for the
tracing idiom under investigation.

7.1 From Variability Analysis to Language Abstractions

The results of the analysis described in the previous section sum-
marise the tracing idioms and their variability. For example, the
most common variant of the tracing idiom for component CC4
can be described quite succinctly as follows:all functions invoke
tracing with the functiontrace and valuesCC4 CC, TRACE INT
andfunc name, except for functionsf1, ..., fn, which invoke
this trace function withCC4 LINE in addition toCC4 CC. Similarly,
the most common variant of the tracing idiom for component CC3
can be expressed as:all functions invoke tracing with the function
CC3 TRACE, valuesCC, TRACE INT and func name , and a vari-
able that varies according to the name of the file.

We observe that such statements can serve as a concise specifi-
cation for a future aspect implementation per component. Indeed,
they clearly specify what the common part of the aspect is, as
well as its variation points. We argue briefly in Section 2.5 that
the choice of the target aspect language should be such that it pro-
vides abstractions for capturing the specified variability. If not, the
amount of duplication in the aspect implementation will increase
with a factor that is equal to the number of variations. We attempt
to express this in a more systematic way below. Consider the fol-
lowing representation of an aspect:

∀x1, ..., xn : f(x1, ..., xn)

The variablesx1, ..., xn each correspond to different join points
or values from join points. The types of these variables are elements
of the program definition or execution7. The predicatef expresses
that the functionality of the crosscutting concern will be woven for
all x1, ..., xn. When employing an aspect language that supports
quantification of all the types of elements to whichx1, ..., xn are
bound, the aspect specification and implementation are structurally
similar. However, if the aspect language does not support quantifi-
cation of the type of element to whichxi is bound for example, the
aspect implementation becomes:

(∀x1, ..., xn : xi = a1 ∧ f(x1, ..., xi−1, b1, xi+1, ..., xn))∧
· · · ∧
(∀x1, ..., xn : xi = am ∧ f(x1, ..., xi−1, bm, xi+1, ..., xn))

wherem is the number of ways in whichxi can vary. As a result,
the aspect implementation contains code that is duplicatedm times.
Additional limitations in quantification will again result in the code
duplication increasing with a factor, and so on.

Based on the results of our analysis of the tracing idiom, we
identified two aspect language abstractions that are required to
capture the discovered variability and thus avoid duplication in
the aspect implementation as described above. In the worst case,
when employing an aspect language that is not able to meet these
requirements, the aspect implementation converges to a state where
there is one aspect per function. These aspects duplicate the entire
tracing idiom but differ in the essential variability, which does not
offer substantial advantages over an idioms-based implementation
of the tracing concern.

7.2 Quantification of Parameters

Our experiments with respect to parameter-level variability show
that complex parameter types require a converter function and that

7 Depending on the join point model being static or dynamic, respectively.



each type requires a different function. If we look at mainstream
aspect languages, the join point model does not explicitly include
parameters or parameter types as quantifiable elements, however.
We can only select functions based on their number of parameters,
or based on specific types occurring in the function’s signature.
Few languages, such as AspectJ [18] , provide extensive reflective
access to the current join point, however, and as such the actual
and formal parameters can be retrieved. For expressing the tracing
idiom in an aspect language for C with such capabilities, which to
the best of our knowledge does not exist, the per-function advice
needs to be parameterised with the list of parameters, and we need
to be able to refer to the individual elements of this list in order to
determine their converter method.

Let us consider an aspect language that is able to represent pa-
rameters as quantifiable elements directly. In pseudo-code and us-
ing a logic-based pointcut language, the pointcut expression could
look as follows

execution( * *(?params))

which selects all functions regardless of their name and return type,
and binding their parameter list to the?params variable. The ad-
vice code corresponding to the pointcut should then be able to refer
to the individual parameters contained within the?params vari-
able, and retrieve their corresponding converter functions. This re-
quires meta-programming facilities to be present in the aspect lan-
guage, not only to iterate over all parameters, but also to construct
the actual trace call that will be woven into the code out of the dif-
ferent parameters that it requires.

7.3 Specifying Default Functionality and Exceptions

Another requirement is an aspect-language mechanism that allows
us to specify default functionality as well as some exceptions to
that general rule. As we have seen in our analysis, the implemen-
tation of the idiom is never consistent, not in a single component
and not even when we only consider essential variability. For ex-
ample, a parameter type might always be converted with the same
converter function, except in one particular case when the devel-
oper is actually interested in the address of the parameter instead of
in its value. Another example occurs in component CC3 where the
use of a special-purpose tracing macro is mixed with the use of the
defaulttrace function.

One obvious solution for dealing with this kind of behaviour is
to define separate aspects for these special cases. However, each ex-
ception then requires its proper aspect, and one single component
might need many different aspects that have a lot of commonality.
This is undesirable, since it can (and probably will) again lead to
accidental variability and code duplication. Indeed, for a particu-
lar function, one single parameter might need to be converted dif-
ferently, but the other parts of the tracing implementation remain
standard, but need to be specified as well.

We argue that a mechanism for specifying default functionality
together with its exceptions should be incorporated into the aspect
language. This allows us to define one main aspect for a single
component, that specifies what the default tracing implementation
for that component looks like. Additionally, it allows for denoting
those few cases where variability occurs. For example, a particular
function that traces a particular parameter type in a different way,
or that uses a different tracing macro.

The addition of annotations to the Java language and the way
these annotations can be addressed in the AspectJ language are a
good starting point for experimenting with such a feature. A default
aspect is defined and used for all elements that have no annotation
attached to them. When such an annotation is present, it should
specify what it denotes and the weaver should then know how to
handle the situation.

8. Discussion and Evaluation
This section discusses the implications of variability caused by
idioms-based development from the perspectives of software de-
velopment and legacy system migration. Whereas the discussion
in the previous section concerned the essential variability, the dis-
cussion here is based on the occurrence of accidental variability.
First, however, we discuss the consequences of taking into account
additional variability that was not considered in our analysis.

8.1 Further Variability

It is important to note that we have only considered function-level
and parameter-level variability in our experiments, and in our dis-
cussion above. However, the tracing idiom has other characteristics
that we did not analyse in depth, and these characteristics make the
idiom richer. Hence, more features might be needed in an aspect
language then the ones we described above if we wish to express
ASML’s tracing idiom in an aspect.

For example, ASML code distinguishes between input and out-
put parameters. Our analysis did not make that distinction and con-
sidered input and output tracing together. Although this allowed us
to detect accidental variabilities that we would not have discovered
otherwise, it also prevented us from considering the impact on an
aspect implementation. An aspect needs to know which parameters
are input and which are output in order to construct the appropriate
input and output trace statements. An aspect weaver could extract
such information from the source code using data-flow analysis,
and could make it available in the aspect language, for example.

Other characteristics that we did not consider but that are rel-
evant for such a discussion include the position of the input and
output trace statements in the original code (do they always occur
right at the beginning and at the end of a function’s execution?), the
tracing of other variables besides parameters (such as local and/or
global variables), the order in which the parameters are traced, and
the format string that is used, together with the format types for
parameters contained within that string.

Clearly, the results we obtained can thus be seen as a lower
bound of the real amount of variability present in the tracing id-
iom’s implementation. Since the variability we found was consid-
erable already, we arrive at our claim that simple crosscutting con-
cerns do not exist, at least not for software systems of industrial
size.

8.2 The Limitations of Idioms

A first point in the discussion of variability is more concerned
with its cause than its implications. As is expected, shown in other
work [4] [9], and again confirmed by the results in this paper,
idioms-based development as opposed to the use of (aspect) lan-
guage abstractions introduces accidental variability in the imple-
mentation of (crosscutting) concerns. Aspect-oriented languages
typically provide abstractions for implementing crosscutting con-
cerns in a localised way, thus avoiding code duplication and, more
importantly, accidental variability in this duplicated code.

Consider for example the results of the analysis of variability in
trace calls in the component CC2: 123 functions call the trace func-
tion using the same idiom. However, 11 functions introduce a vari-
ation in this idiom: nine functions use one variation, whereas two
remaining functions each implement yet another variation. Based
on these quantitative results and on an inspection of the source
code, we conclude that 123 functions implement the default trac-
ing idiom, whereas the other 11 functions exhibit accidental vari-
ability. This is confirmed informally by several ASML developers,
(although we did not investigate systematically why ASML devel-
opers introduced this variability in the idiom).

Assuming our interpretation is correct, and the aforementioned
variability is indeed accidental, the question is raised whether an



aspect-oriented solution for tracing would have prevented the acci-
dental variability. Ignoring for now the parameter values that need
to be traced, it is easy to imagine an aspect that captures all func-
tion executions, specifies that input and output tracing should be
invoked around those executions, and provides the appropriate ac-
tual parameters for the trace invocation ("CC2", trace, TRACE INT
andfunc name in this case). Such an aspect would be preferred
over an idioms-based implementation, since it specifies once in a
single place how tracing should be invoked, and hence prevents the
accidental variation exhibited when using idioms.

If an aspect-oriented solution can prevent accidental variability,
the question remains whether all tracing idioms identified by our
analysis can be expressed in a certain aspect language, such that
the accidental variabilities are avoided, but the essential variabili-
ties can be expressed. We believe the answer is yes, although the
conciseness and declarativeness of the solution highly depends on
the presence of certain aspect language characteristics or features,
as discussed in Section 7.

It is important to note that the above doesnot show that over
the course of many years, by large teams of changing developers,
the aspect-oriented solution would not have introduced other ac-
cidental variabilities, ones that we cannot even envision currently
because of the lack of legacy aspect-oriented systems.

The work presented in this work should therefore be comple-
mented by a study of the ‘human’ causes behind the variability
we observed in the code. A study of that kind would focus on the
reasons for the use of a particular deviant idiom, and may reveal
additional opportunities for useful abstraction within an aspect lan-
guage. An example of such a study in the context of clone detection
is presented by Kimet al. [19].

8.3 Migration of Idioms to Aspects

Given that an aspect-oriented solution has benefits over an idioms-
based solution, it is relevant to study the risks involved in migrating
the idioms-based implementation to an aspect-oriented implemen-
tation.

In general, migrating code of an operational software system is
a high-risk effort. Although one of the biggest contributors to this
risk is the scale of the software system, in our case this can be dealt
with by approaching the migration of tracing incrementally [3],
for instance on a component-per-component basis. However, other
sources of risk need to be accounted for: the migrated code is of
course expected to be functionally equivalent to the original code.

Our findings concerning variability of idioms-based concern
implementations introduce an additional risk dimension. In partic-
ular, accidental variability is a complicating factor. Ignoring such
variabilities by defining an aspect that only implements the essen-
tial variability means we would be changing the functionality of
the system. A particular function that does not execute tracing as
its first statement but only as its second or third statement, might
fail once an aspect changes that behaviour, for example, when orig-
inally a check on null pointers preceded the tracing of a pointer
value. So this risk is real even with functionality that is seemingly
side-effect free, as is the tracing concern, and will become higher
when the functionality does involve side-effects.

On the other hand, migrating the idiom including its accidental
variability is undesirable as well: aspect-oriented languages are not
well-equipped for expressing accidental variability and the result-
ing aspect-oriented solution quickly converges to aone-aspect-per-
functionsolution. So the issue boils down to a trade-off between
minimising the risk on the one hand, and on the other hand re-
ducing the variability in favour of uniformity, in order to reach a
reasonable aspect-oriented solution.

At the moment, we do not have an answer to the question how
to migrate idioms of legacy systems with a high degree of acciden-

tal variability — at this point we do not even know what ahigh
degreeof accidental variability is, nor do we know whether auto-
mated migration towards aspects is feasible at all in practice, if a
simple aspect such as tracing already exposes difficult problems.
This discussion only serves to point out that the risk is present and
that there are currently no processes or tools available for minimis-
ing the risks. Nevertheless, we can say that in the particular context
of ASML, the initial proposal for dealing with the migration risk
is to (1) confirm or refute the detected accidental variability, (2)
eliminate the confirmed accidental variability in the idioms-based
implementation of the legacy system incrementally and test if the
resulting implementation is behaviour-preserving by comparing the
compiled code, (3) remove the remaining idioms-based implemen-
tation of the crosscutting concern, and (4) represent the idiom and
its essential variability as aspects.

8.4 Variability Findings

Our results indicate that only 7.5% of the functions implement
tracing according to the standard predefined idiom, that no other
standard idiom can be identified in the source code, and that 42.5%
of the types defined by those functions is not traced consistently.

An important question is to what extent the figures we obtained
for ASML’s tracing idiom are representative. Assessing the rep-
resentativeness of our findings allows us to answer the question
whether we can expect similar figures for (1) other ASML compo-
nents than the ones we studied; (2) other idioms in use at ASML;
or (3) idioms-based software not developed by ASML.

The four components represent systems of different size, age,
and maintenance history. The components we studied were selected
by ASML developers because these components are currently be-
ing reworked, and they wanted an initial assessment of the variabil-
ity present in the tracing implementation. They did not expect that
variability to be significant. In other words, the components were
chosen fairly randomly, and not with high or low variability of the
tracing concern in mind.

We believe the amount of variability we observed for the tracing
idiom will not be significantly lower for other idioms as applied by
ASML. In another study [5], we have shown that the exception han-
dling idiom they use is responsible for approximately 2 faults per
1000 lines of code, because the idiom is not applied consistently.
Additionally, when studying the parameter checking idiom [4], we
observed that 1 out of 4 parameters was not correctly checked, and
that the implementation of the idiom was not at all uniform. More-
over, tracing is regarded as a very simple concern, since it is not a
core functionality of the ASML software, and it is not tightly tan-
gled with this core functionality, as opposed to exception handling
and parameter checking. Hence, analysing such more complex id-
ioms might result in significant more variability.

The question whether the ASML software is representative for
software developed through idioms-based development is harder to
answer. We can state that the software is developed using a state-
of-the-art development process, that includes analysis, design, im-
plementation, testing and code reviewing. The reasons for the ob-
served variability can however be manifold: inadequate and impre-
cise documentation, many different developers working on a very
large code base, no adequate automated verification, developers not
understanding the relevance of tracing and hence paying less atten-
tion to it, etc. This situation is probably not that much different
for software developed in other organisations, or even open source
software. Hence, we are inclined to believe that a variability anal-
ysis for other software would show similar results. However, once
again this is only speculation, and remains to be investigated fur-
ther.



Fact extraction Lattice creation
Function 96.39 s 0.03 s
Parameter 140.8 s 0.91 s

Table 4. CPU times for tool execution on an AMD Athlon 64
3500+ with 1 GB RAM. Input consists of all components.

O A Relation Fill ratio Concepts
Function 573 29 2331 0.14 47
Parameter 2219 385 4592 0.005 517

Table 5. Context and relation sizes for all components considered
together.

8.5 Genericity of the Method

Another question concerns the genericity of the variability analysis
method. ASML has expressed interest in conducting the method
themselves, in order to assess the variability of tracing in other
components. Furthermore, they would like to analyze the variabil-
ity of other idioms. Likewise, we are interested in using the ap-
proach on non-ASML systems as well.

Several of the steps of our approach are largely manual. These
include the idiom definition and variability modeling steps, as well
as the aspect design step. These steps will be very similar indepen-
dent of the idiom or component analyzed, and hence are sufficiently
generic.

The idiom extraction and variability analysis steps require tool
support. For the idiom extraction, the tools have to be configured
so that they recognize the idiom at hand. Given our ASF+SDF
and CodeSurfer infrastructure, this is a fairly simple step. It does,
however, require knowledge of these tools, which for ASML may
not be readily available. The formal concept analysis tools do not
have to be adjusted: all that is needed is creating the〈object,
attribute〉 pairs in a simple textual format.

Based on these observations, we believe that the approach is
applicable to different idioms and systems.

8.6 Scalability

The scalability of our approach is determined by two factors, tool
execution time and the size of the resulting lattices. These lattices
have to be processed by a human.

First, fact extraction is performed using the ASF+SDF Meta
environment. The tracing code is parsed using a generalized LR
parser (SGLR) [29], followed by a single traversal of the parse
tree to extract the relevant facts (see Section 3). Subsequently, the
FCA tool concepts is used to produce the concept lattices. Table 4
contains timing results for both the function-level and parameter
level studies. In both cases, the timing results apply to the execution
of the tools on all components together.

Second, concept lattices can grow exponentially with the size
of the object–attribute relation. However, if a relation is sparsely
filled, quadratic growth is observed in practice [20]. Table 2 shows
the context and relation sizes for our studies. Thefill ratio is defined
by the actual relation size, i.e., the number of object–attribute tuples
in the relation, divided by the maximum relation size, i.e.,O · A
whereO is the number of objects, andA the number of attributes.

A sparsely filled relation (i.e., fill ratio below 0.1) appears to be
no guarantee for a small enough number of concepts, as is shown
by the parameter-level study. Inspecting 517 concepts is too big
a task to be performed by a human. Fortunately, such a manual
inspection is not required in our approach. The concepts of interest,
i.e., those that contain own objects (see Section 6), are found
automatically. The number of concepts containing own objects can

be significantly lower, as can be seen in Table 3. The ‘tracing
variants’ there correspond to concepts containing own objects.

Furthermore, the number of concepts containing own objects is
a valuable indicator by itself. It tells us the number of variations
on the idiom. Based on this number alone one could conclude that
too much variability will prevent automatic transformation of the
idiom. In that case the actual concepts do not have to be inspected
by hand.

9. Related Work
The work presented in this paper can be situated between the work
onaspect miningand that onaspect refactoring.

Aspect mining is the activity of (automatically) identifying
crosscutting concerns in source code. Several techniques have been
investigated, among which techniques based on formal concept
analysis [28, 27]. An overview of these techniques can be found
in [17, 23].

Once identified, the crosscutting concerns can be refactored into
an aspect. Several authors have proposed a process for such migra-
tion [1, 24, 13]. All authors note that after such (semi-)automatic
migration, the aspects should be “tidied up” in order to make them
more general, for example by generalising advice code and creat-
ing sensible pointcuts. [13] even includes extra steps in the pro-
cess to test whether the migration preserved the behaviour of the
software as a whole. Both Binkleyet al [1] and Marinet al [13]
present results of applying their process to JHotDraw, a medium-
sized object-oriented software system, while Monteiro and Fernan-
dez [24] illustrate their approach on simple examples only.

Our work is situated in between these activities, since we know
what the crosscutting concern code looks like a-priori, and our
analysis can provide hints about the difficulties we can encounter
when refactoring it. Given our analysis of a simple concern and our
conclusions about the difficulties with automated migration, it is
worthwhile to study the behaviour of all these different approaches
for ASML’s tracing concern. Additionally, it would be interesting
to study how the results of our analysis could be fed into these
approaches in order to determine automatically the refactorings that
should be applied, for example.

Lippert and Lopez [22] present a study in which they (manu-
ally) extracted the design-by-contract and exception handling be-
haviour from a software system into aspects. Just as in our case,
they found that some of the variability present in the original im-
plementation could not be expressed easily in the (early) version of
AspectJ they were using. Interestingly, this variability also involved
formal parameters. Another study, by Coadyet al [8], describes
how the prefetching concern of the FreeBSD operating system can
be migrated into an aspect. Both lines of work are closely related to
ours, but have a different focus: they are meant as a study into the
benefits of AOSD technology. Hence, the focus of both papers is on
the potential gains when using aspects, and little or no discussion
is present on how the aspects were extracted from the source code,
and what the difficulties are when doing so.

Coyler et al. also observe that variability is present in the id-
iomatic implementation of a tracing policy of a product line [9].
Their work is focused on refactoring the tracing concern (among
others), and in their case studies the variability is (partly) elimi-
nated by the use of aspects. In comparison, our work takes a more
cautious approach by visualizing any variability that we detect, and
facilitating the process of distinguishing between accidental and es-
sential variability.

Our use of formal concept analysis and the results it provides
can be seen as a means to identify appropriate aspects, given all
concern-related code. Many researchers, Siff and Reps [25], Lindig
and Snelting [21], and van Deursen and Kuipers [12] have been
using formal concept analysis for exactly that purpose, albeit in



a procedural versus object-oriented context. The idea is to let the
FCA algorithm group functions that use data structures in the same
way, and that the concepts found in this way correspond naturally
to classes. Interestingly, both [25] and [12] mention a problem that
resembles the tangling of concerns and a solution to that problem.
[25] refers to it as “tangled” code that uses multiple data structures
at the same time, whereas [12] considers the problem of large
data structures that are actually a combination of many smaller, and
largely unrelated, data structures.

The work on aspect languages, and in particular on which fea-
tures should be added in order to improve the expressiveness and
conciseness of aspects is of course relevant for our research as well.
Several aspect languages for C have been proposed [8, 14, 26, 31],
and some of them could even express the variabilities we encoun-
tered. Most of these languages are experimental in nature, however,
and it remains an open question whether they scale to the size of in-
dustrial systems. On the other hand, mature aspect languages, such
as AspectJ and JBoss AOP, seem to lack most of the required fea-
tures for expressing the variabilities we found in the tracing idiom.

10. Concluding Remarks
In this paper, we have studied “tracing in the wild” using idioms-
based development. It turns out that for systems of industrial size,
tracing is not as simple as one might think: in the code we anal-
ysed, the idiom used for implementing the tracing concern exhibits
remarkable variability. Part of this variability is accidental and due
to typing errors or improper use of idioms, which could be seen
as a plea for using aspect-oriented techniques. A significant part of
the variability, however, turns out to be essential: aspects must be
able to express this variability in pointcuts or advice. Even with our
partial analysis of the variability of the so-called “trivial” tracing
concern, we discover the need for quite general language abstrac-
tions that probably no aspect language today can provide entirely,
and certainly not in the context of an industrial system. This will
only worsen when more variability is considered or more complex
concerns are investigated.

In summary, this paper makes the following contributions:

1. We proposed a method to assess the variability in idioms-based
implementation of (crosscutting) concerns.

2. We have shown how existing tools for source code analysis and
transformation, and for formal concept analysis can be com-
bined and refined to support the variability analysis process.

3. We presented the results of applying the method on selected
components of a large-scale software system, showing that sig-
nificant variability is present.

4. We show how the results of the variability analysis can be used
almost directly to determine the appropriate language abstrac-
tions for expressing the concern and its essential variability.

5. We discussed the implications of the accidental variability
caused by idioms-based development in the context of cross-
cutting concerns from the perspectives of software development
and legacy system migration.

The most important direction for further research is strength-
ening the empirical basis of our work. This involves both extend-
ing the code base to which we have applied our variability analysis
techniques, and involving more concerns, such as parameter check-
ing or exception handling, in our case studies.
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