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abstract. We propose a dynamic epistemic framework for the
verification of security protocols. First, we introduce a dynamic epis-
temic logic equipped with iteration and cryptographic supplements
in which we can formalize and check (epistemic) requirements of se-
curity protocols. On top of this, we give a general guide how to go
from a protocol specification to its representation in our framework.
We demonstrate this by checking requirements of a simplified version
of a protocol for confidential message comparison.
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1 Introduction

Security protocols are designed to make sure that only the right agents get to
know the right things. It seems natural to reason about such protocols using
logics of knowledge and belief, since the required properties can be naturally
expressed in such languages. One of the first efforts in formal verification of
security protocols indeed was a logic containing a predicate for belief: BAN-
logic [BAN89] is a logical language with an adaptable set of derivation rules,
that aim to capture the reasoning steps one can safely make in the context
of a given protocol. However, formalizing protocols in BAN remains ad
hoc by the lack of a mechanism to transform a (high level) specification
into a BAN-formalization. Additionally, the lack of a proper semantics for
the original language made the value of correctness proofs in BAN-logic
unclear. In fact, other verification methods found attacks on protocols that
were proven correct before using BAN, most notably the man-in-the-middle
attack to the Needham-Schroeder authentication protocol [Low96].

Operational aspects of protocols in general are successfully captured in
various process algebraic approaches to the verification problem, gener-
ally enforced by tool support (model checking). However, as pointed out
in [HS04], the formalization of some security properties (like anonymity and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Francien Dechesne, Yanjing Wang

privacy) is very subtle and error-prone. There is a general feeling and some
evidence that epistemic logics could lead to more elegant and intuitive for-
malizations, at least for a certain subclass of protocols and their properties.
Many epistemic logics for protocol analysis have been proposed recently.
On one hand, [CD05a] gives Kripke-style semantics for an adaptation of
BAN-logic, with completeness results. On the other hand, several tempo-
ral epistemic logics were proposed, e.g. [HO05, DGFvdH04, RS05, JH06] for
analyzing security protocols, most of which follow the general idea of adding
indistinguishability relations between states on the basis of local states of
the agents. Another development is dynamic epistemic logic [BM04], that
incorporates the epistemic effects of actions in the logic. This logic was
used to analyze the famous protocol for anonymous broadcast, the Dining
Cryptographers, in [EO05]. But this is not a typical protocol in the sense
that it prescribes one specific scenario, with no intruder and no interleaving.

An initial attempt to formalize more typical security protocols in a dy-
namic epistemic framework was presented in [HMV04]. In this paper we
focus on how the dynamic epistemic framework of [BM04] can be used to
reason about all possible behaviors of security protocols, incorporating be-
havior of an intruder. For this purpose, we take a higher abstraction level
with respect to the cryptographic reasoning involved. We summarize the
highlights of our framework:

• We enrich dynamic epistemic logic with refined propositions to talk
about the cryptographic elements, and an iteration operator to express
and check typical requirements such as “after any run of the protocol
property φ holds”.

• Like [RS05, JH06], we distinguish between two types of knowledge:
declarative knowledge as in “I know the secret” (where a secret is con-
sidered to be a piece of information, like a password) and propositional
knowledge as in “I know she knows the secret”. Thus we avoid part of
the logical omniscience problem ([CD05b]) and stay at a fairly good
abstraction level.

• We give a general way of modeling a protocol from its specification to
a single action model, that also includes the intruder model. The iter-
ation of this action model generates all the possible runs and epistemic
indistinguishabilities.

• Our modeling is modular in the sense that we can separate the intruder
model from the protocol model. Thus we may verify the protocol
against different intruder models without altering the protocol model.

• The product update with the action model, models the higher level
evolution of knowledge by the way agents observe the actions (rather
than by which information they send or receive).
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• We analyze a simplified version of the protocol for confidential secret
comparison, as proposed in [Tee07]. The protocol is intended to let an
agent find out whether another agent shares his secret (which can be
regarded as a higher order knowledge statement), without revealing it
if they don’t share it.

The rest of the paper is structured as follows. We first define the logic,
and then demonstrate through an example how it can be used to formalize
security protocols. We end by mentioning some of the many interesting
open questions regarding this direction of research.

2 A DEL-language with iteration for protocol analysis

We consider a dynamic epistemic language in the style of [DK06], extended
with iterated action executions, and tailored to express facts in a security
protocol setting, by a refinement of the structure of the basic propositions
in the language: we construct basic propositions from a predicate ‘has ’ (to
express that an agent has a certain message) and another predicate ‘mk’
(to mark that a certain protocol action that has been performed).

Parameters of this language are a set of agents I, a set J ⊆ I of the
agents whose epistemic states we want to discuss, a set of actions Act and
a set of atomic message terms with some cryptographic functions. For the
protocol to be discussed in the next section, we only need a singleton set of
hash functions H, a finite set of atomic secret terms S, and a special ‘Nil’-
term N . It is straightforward to add other cryptographic elements, like
encryption (keys), nonces etc. when necessary for the analysis of a given
protocol.

Definition 2.1. (M and ΦI
sec) Let M be the set of message terms m

defined by

m ::= i | s | h | N | h(m) | (m,m′)

with i ∈ I, s ∈ S, and h ∈ H. The set ΦI
sec of basic propositions p is defined

by
p ::= hasim | hasim | mk(α)

with i ∈ I, m ∈ M and α ∈ Act . Let ΦIS , ΦIS and ΦAM be the subsets
of ΦI

sec containing only the propositions of the first, second and third type
respectively. �

The difference between hasim and hasim is that the first is intended to
mean that agent i has the message m itself, while the second means that i
could generate m from the messages he possesses. This will become clearer
when we define the semantics.
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Definition 2.2. (Language LI,J
sec) The formulas of LI,J

sec are built from the
set ΦI

sec as follows:

> | p | φ ∧ ψ | ¬φ | Kjφ | CGφ | [A, α]φ | [A]∗φ

with p ∈ ΦI
sec, j ∈ J , G ⊆ J and α an action in the action model A. �

The intended meaning of the formulas is as usual in dynamic epistemic
logic: Kjφ should be read as “agent j knows φ”, CGφ as “the agents in G
commonly know φ”, [A, α]φ as “if the action α can be executed, then after
this action φ holds”. We include iteration: [A]∗φ is to be read as “after
every possible finite sequence of actions in A, φ holds”.

As usual, we define ⊥, φ ∨ ψ, φ→ ψ, 〈Ki〉φ and 〈CG〉φ as the abbrevia-
tions of ¬>, ¬(¬φ∧¬ψ), ¬φ∨ψ, ¬Ki¬φ and ¬CG¬φ respectively. We use
[A]φ as the abbreviation of

∧
α∈A[A, α]φ. We denote [A] · · · [A]︸ ︷︷ ︸

n

φ as [A]nφ

where n ≥ 1. We define 〈A, α〉φ, 〈A〉φ and 〈A〉∗φ as the abbreviations of
¬[A, α]¬φ, ¬[A]¬φ and ¬[A]∗¬φ respectively.

In order to interpret our LI,J
sec-formulas, we let the finer structure of the

basic propositions correspond with a finer structure in the Kripke models
(replacing the traditional valuation) by adding ‘Information Sets’ (IS ) and
‘Action Markers’ (AM ).

Definition 2.3. (LI,J
sec-models) A model for LI,J

sec is a tuple:

M = (W, {Rj}i∈J , IS ,AM )

where W is a non-empty set of possible worlds; Rj are binary equivalence
relations on W for all j ∈ J , and finally: IS : W × I → P(M) and AM :
W → P(Act). �

For w ∈ W, i ∈ I, the set IS (w, i) is intended to be the set of messages
that agent i possesses in world w, either by some initial distribution of
information, or by receiving them. For α ∈ Act , the set mk(w) should be
read as the set of actions which have been marked.

The functions IS and AM determine the valuation of our basic proposi-
tions. Proposition hasim is satisfied in world w, if and only if m ∈ IS (w, i).
But based on the messages an agent possesses, he may also derive new mes-
sages. This goes along the following message derivation rules (cf. the synth
and analz-rules of [Pau97]):

Definition 2.4. (Cryptographic Reasoning) Given a set M ′ ⊆M , M ′

is the closure of M ′ under the following cryptographic derivation rules:
m m′

(m,m′)
(m,m′)
m

(m,m′)
m′

m h
h(m)

�
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For example, you can compute h(s) if you have the secret term s and the
hash function h, but you can not derive the message s from the messages
h(s) and h only, since s is not in the closure of {h, h(s)}.

Summarizing, the semantics of our basic propositions is as follows:1

Definition 2.5. (Satisfaction of basic propositions) Let M be a model
for LI,J

sec . Then:

M, w � hasi(m) ⇐⇒ m ∈ IS (w, i)
M, w � hasi(m) ⇐⇒ m ∈ IS (w , i)
M, w � mk(α) ⇐⇒ α ∈ AM (w)

�

We will now define the action models. The actions in an action model
will have pre- and postconditions, corresponding with the facts that should
hold for an action to be possible, and the effects of executing that action in
terms of changing (finitely many) basic facts.

For the postconditions, we adapt the terminology in [DK06]. If Φ is the
set of basic propositions for a DEL-language L, then we call a function
Φ → L a substitution in L if it maps all but a finite number of basic
propositions to themselves. We denote the set of all substitutions for Φ in
L by SUB(L).

In our setting, it suffices to consider restricted classes of pre- and postcon-
ditions for actions. The preconditions will all be in L|ΦI

sec: the propositional
(i.e. modality free) part of the language LI,J

sec . We divide the postconditions
in two ‘types’: changes in the information sets (PosIS ), and changes in the
action markers (PosAM ).

Definition 2.6. (Action model) An action model A for LI,J
sec is a tuple:

A = (Act , {∼j}j∈J ,Pre,PosIS ,PosAM ) where Act is a finite non-empty
set of actions, and ∼j is an equivalence relation on Act for each j ∈ J .
Pre : Act → L|ΦI

sec assigns to each action a propositional precondition.
PosIS : Act → SUB(LI,J

sec) assigns to each α ∈ Act a substitution for L
with the property that PosIS (α)(p) ∈ ΦIS ∪ {>,⊥} for all p ∈ ΦIS and
PosIS (α)(p) = p otherwise. PosAM : Act → SUB(LI,J

sec) assigns to each
α ∈ Act a substitution for L with the property that PosAM (α)(p) ∈ ΦAM ∪
{>,⊥} for all p ∈ ΦAM and PosAM (α)(p) = p otherwise. �

In the following, we write ‘m ∈ i’ for the substitution mapping hasim to
> while leaving the other basic propositions in place. The effect will be

1Note that by taking messages as terms rather than propositions, we can now safely
express “i knows that j ‘knows’ the password, while i does not ‘know’ the password

herself”: we can do so by the LI,J
sec-formula Kihasjp ∧ ¬hasip. A formula like KiKjp ∧

¬Kip would be inconsistent in the standard reading of the K-operator.
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the addition of m to the information set of i after the action. We write
‘α+’ for the substitution mapping mk(α) to > while leaving the other basic
propositions in place, and similarly ‘α−’ for the substitution mappingmk(α)
to ⊥. This will mark (unmark) α after the action. All postconditions in
our protocol formalization in the next section will be combinations of these
‘atomic’ substitutions.

Updating with an action model transforms an LI,J
sec-model into another

LI,J
sec-model as follows:

Definition 2.7. (Update execution) Given a model M for LI,J
sec and an

action model A, the updated model M ◦ A = (W ′, {R′j}j∈J , IS ′,AM ′) is
defined as follows:

W ′ = {〈w,α〉|M, w � Pre(α)}
R′j = {(〈w,α〉, 〈v, α′〉)|wRjv and α ∼j α

′}
IS′(〈w,α〉, i) = {m|M,w � PosIS (α)(hasim)}
AM ′(〈w,α〉) = {β|M,w � PosAM (α)(mk(β))}

�

Definition 2.8. (Satisfaction) On top of the satisfaction relation for p ∈
ΦI

sec of Definition 2.5, we define:

M, w � > ⇐⇒ true
M, w � ¬φ ⇐⇒ M, w 2 φ
M, w � φ ∧ ψ ⇐⇒ M, w � φ and M, w � ψ
M, w � Kjφ ⇐⇒ for all v, if wRjv then M, v � φ
M, w � CGφ ⇐⇒ for all v, if wRGv then M, v � φ
M, w � [A, α]φ⇐⇒ if M, w � Pre(α) then M ◦ A, 〈w,α〉 � φ
M, w � [A]∗φ ⇐⇒ for all n ∈ N : M, w � [A]nφ

where RG is the transitive closure of the relations in {Rj |j ∈ G}. �

REMARK 1. It is easy to check the following facts:

M, w � [A]φ ⇐⇒ for all α ∈ A: M, w � [A, α]φ
M, w � 〈A〉φ ⇐⇒ there is an α ∈ A: M, w � 〈A, α〉φ
M, w � 〈A〉∗φ⇐⇒ there are α0 · · ·αn: M, w � 〈A, α0〉 · · · 〈A, αn〉φ

Our language LI,J
sec is comparable to the DEL-language with more re-

stricted iterated relativizations considered in [MM05]. The satisfiability
problems of many fragments of that language are proven to be Σ1

1-complete
on general models, thus the logics are not recursively axiomatizable. How-
ever, the decidability of our language on S5 models is still open (while the
models we construct in the next section are all S5).
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3 Modeling protocols

3.1 The verification problem in general

Protocol A (communication) protocol Prot is specified by a sequence of
action patterns (possibly with conditions), usually of the form A → B : m
(‘A sends message m to B’), where m is a message of some fixed pattern.
Parameters of these patterns each have a fixed domain. We use the term
role for any parameter in the specification that ranges over agents.
Instantiations In a concrete run of the protocol, the action patterns of
the specification are instantiated by some instantiation θ, which is a map
from the parameters of the protocol to their respective domain. Several
instantiations can be interleaved in one run of the protocol. In the context
of some given protocol, we use Inst for the set of all possible instantiations.
In this paper, the set of parameters and their domains are all finite, such
that Inst is finite as well.
Network Like [CM05], we assume that the protocol is to be executed
on a network with an input-buffer (modeled as special agent In) and an
output-buffer (Out), in between which a malicious agent, the ‘intruder’,
could tamper with the messages. Trusted agents only send messages to In
and receive messages from Out .
The verification problem Given a protocol Prot (with fixed domains for
the parameters) and a requirement φ ∈ LI,J

sec , verification of the requirement
on the protocol is formalized as follows:

M �
∧

θ∈Inst

[ProtIntr ]∗[ProtIntr , α(θ)]φ(θ)

where:

• M is the initial model, incorporating the assumptions on the initial
distribution of information, and the initial epistemic uncertainties of
the agents.

• ProtIntr is the action model including all possible actions according of
Prot , and all possible actions according to some intruder model Intr .

• α is an action pattern of Prot (typically the final one).

• φ is an LI,J
sec-formula scheme (with parameters) stating some static

epistemic or factual properties.
∧

θ∈Inst [ProtIntr ]∗[ProtIntr , α(θ)]φ(θ)
is then the LI,J

sec-formula obtained by taking the conjunction over all
(finitely many) possible instantiations of the parameters. It expresses:
“In any possible run of the protocol, property φ holds right after the
execution of action α.”
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3.2 Modeling the static and action models

We now briefly indicate how to model two essential components of our
framework for the verification problem of a given protocol: viz. the initial
model M and the action model ProtIntr . The set Ag of agents should
be given, and we will take B ∈ Ag to be the fixed name for the agent
performing the intruder actions (the ‘bad guy’). In general we can take
I = Ag ∪ {In,Out} and J = Ag (although we might want to restrict J
further when checking requirements for specified agents).

The action model ProtIntr . The set of actions Act of ProtIntr consists
two independent parts: actions according to the protocol specification, and
intruder actions according to the intruder model. (This gives our framework
the nice property of being modular, allowing an easy comparison of one
protocol under different intruder strengths, or different protocols under the
same intruder model.)

In accordance with to our network model, we split the protocol actions
of the form i → j : m into a ‘send’ (α) i → In : m and a ‘receive’ (β)
Out → j : m. The precondition for α is that m can actually be constructed
by i from his information set: Pre(α) = hasim. The IS -postcondition is
that m is delivered at In: PosIS (α) = m ∈ In. The AM -postconditions
are optional but are intended to order the protocol actions executed by one
role. They mark the current action or unmark a previous action (e.g. α+

and γ−), and such action markings can occur as preconditions for a later
action. Similarly, the conditions for the receive are Pre(β) = hasOutm –
note the use of has rather than has : we assume the buffers do not construct
new messages– and PosISβ = m ∈ j (and a possible action marking).

We transform a protocol specification into a set of parameterized actions.
The actions in Act are all concrete actions generated by instantiating the
parameters in those action schemes.

In our network model, the intruder actions are either of the form In →
B : m or B → Out : m. The strength of the intruder model is reflected in the
pre- and postconditions of these actions. The standard Dolev-Yao model,
where the intruder can take everything from the In-buffer, and construct
any message into the Out-buffer, is modeled as follows:2

Action Direction Message Pre PosIS PosAM

[take m] In → B m hasInm m ∈ B −
[fake m] B → Out m hasBm m ∈ Out −

2Other intruder models could have weaker actions like [eavesdrop]: intruder learns
the message and passes it on; [jam m]: intruder deletes the message from In without
learning.
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Epistemic relations between actions A simple general way of modeling
indistinguishabilities between actions, is to assume that a trusted agent i
can only distinguish the actions performed by himself; all actions by others
are linked by ∼i.

For the intruder, we might want to model stronger observational power.
This will add new layers of power to the intruder model. In our case study
however, we will construct ∼B as for the trusted agents.

Note that it is safe to model weaker observational powers for the agents
for whom the requirements contain positive knowledge claims (of the form
Kiϕ), and stronger observational powers for agents for whom the require-
ments contain negative knowledge claims (of the form ¬Kiϕ).
Initial Model The initial model M = (W, {Rj}j∈J , IS ,AM ) can be ob-
tained by following the guidelines below.

• W and IS : we can let each function f : J → P(M) define one world
wf in the initial model; then every w is determined by the message
distribution over the non-buffer agents.3 We start with empty buffers.
This determines IS : for w = wf ∈ W : IS (w, j) = f(j) for j ∈ J , and
IS (w, In) = IS (w,Out) = ∅.

• Rj : Let wRjv if and only if IS (w, j) = IS (v, j) (making the Rj into
equivalence relations).

• AM : in any world w ∈W we take AM (w) = ∅.

In the next section, we demonstrate the above general modeling method
by analyzing an example protocol.

3.3 Analysis of an example protocol
Let us consider the situation proposed in [Tee07, p. 101]: Suppose Charley
confidentially received a secret, that he would like to gossip about with
Alice, whom he suspects knows about the secret as well. We propose and
analyze a protocol that is intended to allow for the challenger (Charley in
this case) to check whether the responder (Alice) actually possesses the
secret, without revealing the secret to her if she happened not to have it,
nor to anyone else (in particular the intruder).
The protocol specification We specify a protocol for confidential gos-
siping as follows, where s stands for the secret that ‘challenger’ C possesses
and wants to gossip about with ‘responder’ R:

1. C→ R : h(s), provided that hasCs

3By not having several worlds with the same message distribution, we will not be able
to model higher order statements like ‘A does not know that B knows that A has m’.
This restriction may have to be avoided for more ‘epistemic’ protocols.
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2. (a) if hasRs, then: R→ C : h(h(s), s)

(b) if ¬hasRs, then: R→ C : (N,h(s))

Here s, C, R are the parameters, with as domain for the first a finite set of
secrets S, and for the latter two a set of agents Ag. We take Ag = {A,B,C}
to consist of the trusted agents A and C, and the intruder B. The hash
function h is not a parameter in this case: we fix it in the specification to
be the same in every instantiation of the protocol.

The intuitive reading of the protocol specification is that C initiates the
communication by sending R the hash value of the secret h(s), and then R
either responds the hash of the pair (s, h(s)) if she has the secret, or h(s)
paired with the Nil-term N otherwise. It is worth noting that one agent
can play different roles in different instantiations. For example, while agent
C challenges agent A for secret s, A might want to challenge C for some
other secret s′ by the same protocol.
The action model ProtIntr The actions in the protocol part of the action
model are instantiations of the following action patterns: 4

Action Direction Message Pre PosAM

α1(C, R, s) C→ In (h(s), (C, R)) hasCs ∧ hasCm α1
+

β1(X, R, Y ) Out → R (h(Y ), (X, R)) hasOutm β1
+

α2a(X, R, Y ) R→ In (h(h(Y ), Y ), (R, X)) mk(β1) ∧ hasRY ∧ hasRm β1
−, α2a

+

α2b(X, R, Y ) R→ In ((N, h(Y )), (R, X)) mk(β1) ∧ ¬hasRY ∧ hasRm β1
−, α2b

+

β2a(C, R, s) Out → C (h(h(s), s), (R, C)) mk(α1) ∧ hasOutm α1
−, β2a

+

β2b(C, R, s) Out → C ((N, h(s)), (R, C)) mk(α1) ∧ hasOutm α1
−, β2b

+

If we split these actions according to the executer of the actions, then the
challenger role C performs α1(C, R, s), β2a(C, R, s), and β2b(C, R, s), while the
responder role R performs β1(X, R, Y ), α2a(X, R, Y ) and α2b(X, R, Y ). One
can then notice that variables (X,Y, . . .) are used for the parameters that
are not within the control of the role performing the action: the challenger
chooses whom he will challenge (he controls the value for R) with which
secret (the value for s). The responder on the other hand is not able to
choose whom he is challenged by (therefore the variable X). In this paper,
we assume strict well-typedness, viz. that the variables can only be instan-
tiated in the intended parameters’ domains.5 Thus there are only finitely

4To keep the table within the page margins, we uniformly use m to abbreviate the
message being sent in each action and omit PosIS which uniformly adds m into the re-
ceiver’s information set. We omit the parameters to the action names αi and βi occurring
in the pre- and postconditions: they are identical to those of the action in the Action-
column. Note that the messages in the actions include a pair indicating the (purported)
sender and the (intended) receiver. One could see these as the addresses written on an
envelope being part of a letter.

5For example, β1(A, C, h(s)) is not an action in ProtIntr , since h(s) is not of the
required type (it is not in S).
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many actions for the trusted agents because the domains of the parameters
and variables are finite.

We take the actions in the intruder part of the action model to be those
of the Dolev-Yao intruder model as given in section 3.2. The epistemic
relations between actions are generated as what we stated in section 3.2: an
agent can only distinguish the actions performed by himself.
The initial model We picture the initial model for a simplified situation.
Suppose we have S = {s}, and let’s assume that all non-buffer agents have
the hash-function h, the Nil-term N , and the agents names in Ag. Then
each triple

〈IS (w,A), IS (w,B), IS (w,C)〉 ∈ P(M)3

with {h,N}∪Ag ⊆ IS (w, i) ⊆ {h,N}∪Ag∪{s} defines a world in the initial
model. If we name each world w after the agents i for whom s ∈ IS(w, i),
the initial model looks like this:

B

�
�
�
�
�
�
� AB

�
�
�
�
�
�
�

BC

�
�
�
�
�
�
� ABC

�
�
�
�
�
�
�

∅ A

C AC

The full lines indicate the worlds that are distinguishable for A, the dashed
lines those for B, and the dotted lines those for C. So, for example, the
indistinguishability relation of A (∼A) is the combination of the dotted and
the dashed lines.
Requirements The following are formalizations of the requirements we
want the protocol to satisfy:

R1 After receiving the positive answer from R (by execution of β2a(C, R, s)),
C knows that R has s:∧

θ∈Inst

[ProtIntr ]∗[ProtIntr , β2a(θ(C), θ(R), θ(s))]Kθ(C)hasθ(R)θ(s)

R2 No one, in particular not the intruder, learns s during the protocol
execution if he didn’t have the secret at the beginning:∧

θ∈Inst

¬hasBθ(s) → [ProtIntr ]∗¬hasBθ(s)



12 Francien Dechesne, Yanjing Wang

3.4 Verification of the protocol
For the verification of R2, we state the following useful results:

Proposition 3.1. For any set of message terms M , and any secret s: if
s /∈ M then s /∈ {h(m)} ∪M for any message term m.

Proof. In the decomposing rules of Definition 2.4, h(m) never occurs as
premise, so the atomic message term s can not be derived by adding h(m)
to M . �

In the postconditions of the actions in ProtIntr , messages are never deleted
from the information sets of the agents, so we have:

Proposition 3.2. For any agent i, and any message term m:

M � [ProtIntr ]∗(hasim→ [ProtIntr ]∗hasim)

Proposition 3.3. R2 is globally true in the initial model M.

Proof. For a proof by contradiction, assume there is a world w in M with:

M, w 2 ¬hasBs→ [ProtIntr ]∗¬hasBs

It follows that there exists an action sequence α1 · · ·αn such that

M, w � ¬hasBs ∧ 〈ProtIntr , α1〉 · · · 〈ProtIntr , αn〉hasBs

From the design of the initial model M, it is easy to see that:

M, w � ¬hasBs ∧ 〈ProtIntr , α1〉 · · · 〈ProtIntr , αn〉hasBs

Write the information set of agent i after executing α1 · · ·αk on M, w as
ISi

k. From Proposition 3.2, it follows that there must be a unique k < n

such that s /∈ ISB
k but s ∈ ISB

k+1 . Of the actions in ProtIntr , only the
following options for αk+1 could add anything to B’s information set:

• αk+1 is [take m]

• αk+1 is a β-action of the protocol where B receives m

In both cases ISB
k+1 = {m} ∪ ISB

k . In the first case, from the precon-
dition of [take m] we know that m ∈ ISIn

k . Since the messages in the
In-buffer only come from the protocol actions, m will have one of the fol-
lowing patterns: (h(s), (C, R)), (h(h(s), s), (R, X)) or ((N,h(s)), (R, X)), with
the parameters and variables instantiated with agent names. Using that
these names and the Nil-term N were already in B’s initial information set,
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ISB
k+1 can be seen to be of the form {h(m ′)} ∪ ISB

k in all three cases (be-
cause {(h(s), (C, R))} ∪ ISB

k = {h(s)} ∪ ISB
k , {(h(h(s), s), (R,X ))} ∪ ISB

k =
{h(h(s), s)} ∪ ISB

k and {((N , h(s)), (R,X ))} ∪ ISB
k = {h(s)} ∪ ISB

k ). But
then it follows from Proposition 3.1 that s /∈ {m} ∪ ISB

k . Contradiction.
In the second case, since messages in the Out-buffer come from a previous

fake-action by B, and information sets are increasing (Proposition 3.2), it
must be the case that m ∈ ISB

k . But then ISB
k = ISB

k+1 . Contradiction. �

However, requirement R1 is violated.

Proposition 3.4. R1 does not hold globally in the initial model M.

Proof. In the picture, take the world AC, where M, AC � ¬hasBs∧hasCs∧
hasAs. It is easy to check that the action sequence below can be executed
on AC according to the preconditions of each action:

α1(C, B, s). C → In : (h(s), (C, B))
[take (h(s), (C, B))]. In → B : (h(s), (C, B))
[fake (h(s), (B, A))]. B → Out : (h(s), (B, A))
β1(B, A, s). Out → A : (h(s), (B, A))
α2a(B, A, s). A → In : (h(h(s), s), (A, B))
[take (h(h(s), s), (A, B))]. In → B : (h(h(s), s), (A, B))
[fake (h(h(s), s), (B, C))]. B → Out : (h(h(s), s), (B, C))
β2a(C, B, s). Out → C : (h(h(s), s), (B, C))

Here B as “the man in the middle” passes on C’s request for checking s
with B, to A as if it was from B. A responds positively to B. Now B
passes her answer back to C as if it was from himself. Note that C and A
are performing their actions in different instantiations of the protocol, as
can be seen from the parameters to the actions. It is easy to check that the
following holds (we omit the parameters):

M, AC |= 〈α1〉〈take〉〈fake〉〈β1〉〈α2a〉〈take〉〈fake〉〈β2a〉¬hasBs

Since the epistemic relations in our model are reflexive then it follows that

M, AC |= 〈ProtIntr 〉∗〈ProtIntr , β2a(C,B, s)〉¬KChasBs

which violates R1. �

To prevent such man-in-the-middle attack, we should alter the protocol,
for example by adding the name of the intended responder into the message
being sent at the first step of the protocol, e.g. C → R : h(s, R). Then the
message cannot be passed through to another responder.

The above is only our toy example to demonstrate how the framework
works. The verification of the original set of T1-protocols in [Tee07] is
expected to be done within our frame work in the future.
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4 Conclusion and future work

We have presented a framework for the verification of security protocols
based on dynamic epistemic logic with iteration. On the one hand, our
language LI,J

sec allows for a straightforward specification of security require-
ments, in particular if they are about what agents should (or should not)
know. On the other hand, our proposed model allows to go from a protocol
specification to a complete representation of the protocol, capturing both
the behavior (in terms of traces of actions) and the epistemic developments
of the agents (by the indistinguishability relations within the static- and
action models). We demonstrated our framework by the example of a pro-
tocol with epistemic requirements, intended for confidential comparison of
message terms.

There are several issues left open in this paper on which we will continue
our research. Along the theoretical line of consideration, the expressivity of
LI,J

sec and the decidability of its verification problem are still open. With re-
spect to the modeling choices, the observational power of the intruder can be
reasonably reinforced by letting him distinguish two initially indistinguish-
able actions in retrospect, by acquiring information during the protocol. A
promising extension is to introduce conditional epistemic relations in the
action model which depend on the epistemic states of the agents. Among
the approaches to the verification problem, epistemic logics are easy to be
used in specifying protocol requirements while process algebras are good
at generating run models. Some attempts have been tried out in [DMO07]
and [HS04] to combine the power of the two. In future work, we may study
using process algebra terms as the action model generators and introducing
them as the dynamic modalities in the language instead of the modalities
for action models. It is also an open issue to find protocols whose analysis
truly benefits from the richness of such frameworks. In particular we are
looking for protocols that involve higher order knowledge.

It is worth mentioning that the ultimate goal of this research is to build up
a dynamic epistemic framework of security verification with tool support. A
good candidate tool is DEMO developed in [Eij05]. As a dynamic epistemic
modeling tool, it has been used in [EO05] and [DHMR06] to check some
epistemic properties. In order to adapt our framework in DEMO, we are
cooperating with its author to equip it with the fact change features which
are currently still missing.
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