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Abstract

Through Laplace transforms, we study the extremes of amoatis-time Markov-additive pro-
cess with one-sided jumps and a finite-state background dwak state-space, jointly with the
epoch at which the extreme is ‘attained’. For this, we ingesé discrete-time Markov-additive pro-
cesses and use an embedding to relate these to the contitimeusetting. The resulting Laplace
transforms are given in terms of two matrices, which can lerdegned either through solving a
nonlinear matrix equation or through a spectral method.

Our results on extremes are first applied to determine tlaelgtstate buffer-content distribution
of several single-station queueing systems. We show thatramework comprises many models
dealt with earlier, but, importantly, it also enables usdoie various new results. At the same time,
our setup offers interesting insights into the connectioetsveen the approaches developed so far,
including matrix-analytic techniques, martingale methathe rate-conservation approach, and the
occupation-measure method.

Then we turn to networks of fluid queues, and show how the t®sunlsingle queues can be used
to find the Laplace transform of the steady-state buffetamnector; it has a matrix quasi-product
form. Fluid-driven priority systems also have this progert

1 Introduction.

A classical result, playing a pivotal role in applied proitih is what could be called the ‘generalized
Pollaczek-Khinchine formula’: withX the supremum of a spectrally positive Lévy procésgi.e., a

Lévy process with no negative jumps) and With the epoch at which this supremum is (first) ‘attained’,
under the assumption of a negative dEX (1) < 0,

—aF¥ X _ pB—@_x(a)
Ee - EX(1)7UJ_X e 1)

for o, > 0 with ¥_x(8) # «; see for instance [12, Thm VII.4]. In this formula;_x(3) :=

log Ee=#X() is the Laplace exponent ef X, and®_ x is its inverse (which exists sinag_ x increases
on [0, c0)). Exploiting an equality in law betweeN and the the steady-state buffer content in an M/G/1
queue (the buffer-content process can be thought of as bbtagned fromX by Skorokhod reflection

at 0), Equation (1) also provides us with the Laplace-tramsfof the steady-state buffer content in the
system—note that by taking = 0 and assuming that the Lévy process is of compound-Poisgm t
we retrieve the classical Pollaczek-Khinchine formulaisTéxplains why the above framework is one
of the cornerstones of queueing theory, but also of apphicatomains where key performance measure
can be expressed in terms of extremes, such as risk theompaimematical finance.

There are several directions in which one could extend (ks paper addresses two such extensions.
(A) In the first place, our paper covers a generalization iictviX corresponds to a spectrally positive
Markov-additive processsuch a process can be thought of as a Markov-modulated f@oess (with
additional jumps at transitions of the background proceéB) In the second place, motivated by the
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aforementioned relationship between fluid queues andregsewe extend these resultsnitworksof
fluid queues. Specifically, the contributions of this paperthe following:

A. One of the motivations for the present paper is to find arlognaf (1) for spectrally positive
Markov-additive processes with finitely many backgrouratest. The quantity_ x (o) becomes
a matrix in the Markov-additive setting, and it is a key ceafje to describe this matrix in the
current general setting. The present paper is the first ieaeihis goal in full generality through
novel insights relying on a spectral method, which is comgeted by a corresponding formula
for the infimum of X

The derivation of our results relies on Wiener-Hopf theaydn embedded process, in conjunc-
tion with a ladder height analysis as in Feller [20, Ch. XFerhaps for historic reasons, the
Wiener-Hopf technique is sometimes regarded as a complatysis tool from which probabilis-

tic insight cannot be obtained. However, inspired by thekwair Kennedy [26], we are able

to give appealingnterpretationsof all our results in terms of a last-passage process. Our ap-
proach to Markov-additive processes is essentially difiefrom Asmussen’s occupation-measure
method [5], the martingale method of Asmussen and KellagB{l the rate-conservation method
of Miyazawa [32].

On the technical level, two steps are crucial. In the first@lave convert our continuous-time
process to a discrete-time Markov-additive process bygusmembedding. The maximum of the
original, continuous-time process coincides with the mmaxn of the embedded process. In the
special case of continuous Markov-additive processesjdba has been applied by Asmussen [4].
However, by using this embedding we lose information on fhech at which the extreme is ‘at-
tained’, and we therefore also apply a second idea: we imgpetp-dependent killing mechanism
through which we keep track of the ‘time’ that passes in th#inoous-time process between em-
bedding epochs. The resulting procedure enables us to fncbiimterpart of (1). We remark that
the killing technique is an alternative to other approadhes have been proposed for fluid-flow
models [1, 3, 10].

Our results for discrete-time processes are of indeperidegrest; they unify and extend (parts
of) Section 1.12 and Chapter 5 of Prabhu [38]. We exempliiy ltly analyzing a ramification of
a queueing system with Markov-modulated ON/OFF input ohiiceed by Cohen [16]; although
this input doesot fall into the framework of Markov-additive processes, we &éll analyze its
buffer-content distribution using our results on discitatee processes. As a further application,
we show that our approach may also be useful when the numterckfyround states isfinite;

a specific contribution of our work is a procedure to detesrihe steady-state distribution of the
M/M/ co-driven fluid queue.

B. A second motivation for this paper was a procedure, deeeldy Debickiet al. [17] for Lévy-
driven tandem queueing systems, which expresses the leapdarsform of thgoint buffer-content
distribution in terms of the corresponding Laplace tramsf@l) for a single queue. Our main
contribution here is that we show how this translation carpedormed in a Markov-additive
setting, by converting the counterpart of (1) to the Lapkraasform of the buffer-content vector
in tandem networks with Markov-additive input. This partafr work extends [17, 25], which
focus on tandem networks with Lévy input, and [23], in whtchffic is fed into the network at
deterministic rates (determined by the state of the backgt@rocess).

Although we give matrix equations for all matrices that p&yimportant role in the theory, it is
still an interesting and challenging issue to devise efficagorithms for numerically calculating these
matrices. Therefore, our work could accelerate the dewedop of such new numerical methods. We
find this indispensable for a successful application of te®ty.

This paper is organized as follows. First, in Section 2, vaet stith the analysis of the extremes of a
discrete-time Markov-additive process. The insights tatbtain are then applied to continuous-time
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Markov-additive processes in Section 3. Section 4 castsasuilts on extremes into the setting of single-
station queues, and some examples are given in Section %ectios 6 we show how these results on
single queues can be used to determine the Laplace tranefahm steady-state buffer-content vector in
tandem fluid networks, and we conclude the paper with sonemsiins of our theory (Section 7).

2 A discrete-time process and its extremes.

This section introduces the discrete-time three-dimemwgiprocessS, T, J) = {(Sn, T, Jpn) : n > 0}.
Although this process may look quite specific at first sight, sthow in Sections 4—7 that it is highly
versatile: it can be used to study the steady-state buffeientd (in conjunction with the steady-state age
of the busy period) for a broad class of queueing systemkidimg networks and priority queues.

2.1 Definitions and assumptions.

The discrete-time procegs, T, J) takes values ifR x R, x Z, whereZ is a finite set withV; + N_
elements. We writd€, for the first/V,. elements (which we calk-points’, as made clear below), and
Z_ for the lastN_ elements (which we call*-points’). The component is interpreted as a ‘random
environment’. We suppose th@t, 7', J) is defined on some measurable spgeer).

Of primary interest is the minimur and the maximun® of the processS. After settingF® :=
inf{n > 0: .5, =infi> Sk} andF = inf{n > 0: S, = supy>( Sk}, these are defined &&:= S;.s
and S := st respectively. The procesE is interpreted as the ‘real’ time that passes between the
(discrete) time epochs; it cannot decrease. Thereforalsp of interest to study := T'ps, T' := Tps,

J = Jps andJ := st. The aim of this section is to fully characterize the joingtdbutions of the

triplet (S, T, J) if S drifts to +oo, and(S, T, J) if S drifts to —oo, under a measure specified below.
Let P be a probability measure off2, 7) (with corresponding integration operatB) such that
(S,T,J) is a (discrete-time) Markov process Bnx R x Z underP with transition kernel given by

J 13 ik U
. | pyP (UJ € dv,d’ Edw) if jeZy kel

where thes7*, U7% 77 D7 are random variables off2, F). The p}-]k constitute the Markov transition
matrix P of J underP, assumed to be irreducible. The unique stationary digtdbwf J is written
asm;. We also assume that tfidistributions of the vector§(c?*,U7*) : j € T,k € I} and
{(v7,D7) : j € T_} are concentrated 0, c)? and |0, cc0) x (0, c0), respectively. The letter§ and
D stand for ‘up’ and ‘down’. Thé/’¥ and— D’ can be interpreted as ‘jump sizes’, whereasdaffeand
77 reflect ‘sojourn times’. Note thd&(o7* = 0), P(U/* = 0), andP(/ = 0) are allowed to be strictly
positive.

Fork € Z, we writeP,, for the law of (S, T, J) given Sy = Ty = 0 and.Jy = k. To avoid trivialities,
we suppose throughout that bath. and V.. are nonzero, and that not all of th&* are degenerate at
zero. The following assumption is crucial in our analysis.

Assumption 2.1 For anyj € Z_, there exists som&; > 0, uj' € (0, 1] such that

Aj

]Ee—a'rj —-BDJ — 7
A

@
J

0 a, 3 >0,

wherey? = 1.

Assumption 2.1 can be thought of as (a generalized versipa ofemoryless property for the dis-
tribution of the jump sizes and sojourn times in thepoints. We suppose that this assumption holds
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throughout this sectianMotivation for the specific form of the above assumption barfound in Sec-
tion 3.2.

In many of the proofs in this section, an important role ig/pthby a family of probability measures
{P*: o >0} on (9, F). We let theP>-distribution of U7* be defined in terms df throughP*(U7* ¢
dv) = E[e=2""; U7* e dv]; this distribution is thus potentially defective. Simligrwe setP*(D7 e
dv) = Ele~*""; DI € dv]. Furthermore, we letS, J) be a discrete-time Markov process uni@érwith
transition kernel

J po k s
o . | pp PO edv) if jEeTy keT;
p((5,), (s + dv, k) = { p;’kw(—m cdv) if jeT kel

TheP*-law for which Sy = 0 and.Jy = k is denoted by

We note that{(S,,J,) : n > 0} is a discrete-timeMarkov-additive processinder each of the
measure®, Pi for k € Z anda > 0. As a result, the powerful Wiener-Hopf factorization foesie
processes is available. More details can be found in ArjdsSpreed [2] and Asmussen [6, Sec. X1.2.2f].
As an aside, we mention thé$,7") can be interpreted as a two-dimensional additive compaunaater
P;.; we do not use this.

In order to use the Wiener-Hopf technique, we need some nuiggion related tdime-reversion
Let us therefore introduce the time-reversed transitiababilities

g _ k) ;
p]k Ty (]) pk]a
constituting the transition matri®”; herer ;(k) denotes thé-th element ofr ;. LetP be a probability
measure ori(2, F) (with expectation operatdt) such that S, 7', J) is a Markov process with transition
kernel

~ kj kj e )
. . B pjkIP’(UJEdv,ajedw) if jeZ, kel
p((s,t,), (s + dv,t + dw, k)) = { ﬁjkIP’ (-D* € dv, % € dw) if jeZ,kel_.
It is instructive to compare this ‘time-reversed’ kernetiwihe kernelp defined above. The-law for
which Sy = Ty = 0 andJy = k is denoted byPy. R

Finally, we also define the probability measuf&sby requiring that S, J) is a Markov process with
transition kernel

~J pa kj e
. . _ pjkIP’ (UM edv) if jeT kel
p*((s,]), (s + dv, k)) = { plP(-DF e dv) if jeT kel

and@"k1 is defined as th@-law of this process gively; = 0 andJy = k.

2.2 Notation.

We now introduce some convenient matrix notation. It is aor #@ present a set of notation rules that
we follow throughout the paper, as opposed to defining aiore@and matrices individually.
We start with our conventions for matrices. We defihe,, A, A, A __ foragiven(Z x I)-
matrix A through itsblock form
A= ( Ay A > ’

A, A__

so that, for instanced ; ; is an(Z; x Z, )-matrix. An example is th€Z x 7)-identity matrix, denoted by
I, which consists of the blockg, ., 0, 0_, andI__ in self-evident notation. The diagonal matrix
with the vectorv on its diagonal is written adiag(v). For example] = diag(1), wherel stands for
the Z-vector with ones. The vector with elements; : j € I} is written asvec(\®), and diag(A\®) is
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shorthand fordiag(vec(A*)). We also writediag (A*/(A* + i$3)) for the (Z_ x Z_)-diagonal matrix
with element(j, j) equal toA$ /(A§ + i3). Moreover, we write

#A = diag (w;) ' A’ diag (7;), )

where " denotes matrix transpose. In conjunction with block riotat# has priority over block nota-
tion: #A, is the(+, +)-block of #A.

The second set of notation rules shows how vectors and reatare built from probabilities and
expectations involving a background process with values.inThe resulting matrices or vectors are
distinguished by writingP? and FE instead off andE, respectively, and by omitting indices. For instance,
we set

E[Sy; 1] ={E;[S1;J1 = k] : j,k € T},

and thej-th element of the vectaE S; is E;S;. Similarly, the j-th element of the vectaP (S; > 0)
is P;(S1 > 0). A matrix involving P or E can be partitioned into four blocks as described before, in
which case a subscript’" or ‘' +' below P or E indicates theow of the matrix block, and a< +' or
‘e — after the background process indicates ¢o&umn For instance, the matrik [Sy; .J;| consists of
four blocks, which we write a&, [S1;J1 €+], E4 [S1;J1 €], E_ [S1;J1 €+], andE_ [S;; J; € —].
The first row consists of two blocks and can be writterEas[S;; .J;]. Matrices such a&. [S;; J;] are
defined analogously, but with; replaced byﬁj. Similar conventions apply to vectors, which should
always be interpreted as column vectors: the restrictioth@fvectorE'S; to Z,. (or Z_) is written as
E.S; (or E_S;). Note that we have the relatioB S, = E, [S1;J1]1 = E[S1;J1 €414 +
E, [S1;J1 €—]1_, wherel, and1_ stand for theZ, -vector andZ_-vector with ones, respectively.
TheZ-vector with zeroes is written & and consists o, and0_.

We now give examples of the above conventions for some diemnthat play an important role in
this paper. We setfar > 0, 3 € R

plEe= 0 HBU i j e T, ke T
F‘jk(aaﬂ) = IR —ari—iBDJ T
pjpEe if jeZ kel.

This defines not only the matrix-transform of the transiti@mnel F'(«, 8) := {Fji(a, 3) : j,k € I},
but also its four block matrices. Note that Assumption 2.&c#ffes the structure of_ (o, 3) =
E_ [e-oTitiB51 I e4+] andF__ (o, 8) = E_ [e @T1+i0%1; J; € —]. The time-reversed counterpart
is written asF(w, 3), i.e., F(o, 8) := #F(a,3). Note that in particulalP’ = #P7. The iden-
tity #ﬁ(a,ﬁ) = F(a, ) is frequently used in the sequel. Givgne 7., we write Fj;(c,ic0) for
limg_o0 Fjg (v, i) = pjkIE[e—"“”k; U’k = 0], thereby also defining’, _(a, ico) and F, (a,i00).

2.3 The ladder heights ofS.

The goal of this subsection is to characterize thedistribution of (.S, 7', J) at the first strict ascending
ladder epoch of and at its first strict descending ladder epoch. We do not smgonditions on the drift
of S yet.

The first strict ascending ladder epoch and the first weaketheltieg ladder epoch & are defined
as

7+ =inf{n >1:5, >0}, 7— =inf{n >1:5, <0}.

Its first strict descending ladder epoch, for which the weakjuality is replaced by a strict inequality, is
denoted byr_.



The distribution of (S, , 15, ,J., ).

T4y T4
In order to facilitate the investigation of the ascendinddier structure o(S T, J) we first prove a
useful lemma related te_. For notational convenience, we define the maffix = { % J,k€Tl}as
P* = E [e_O‘TL : JL} .

This matrix admits a block form as described in Section 2.eAeral remark is that, when integrating
a defective random variable, we only carry out the integrativer the set where the random variable is
both finite and well-defined: in the above definitionf, it is tacitly assumed that. < cc.

Lemma 2.1 Suppose that Assumption 2.1 holds. &r 0, § € R, we have
F,(a,i) F, (a,io0)
diag (Aaﬂﬁ’) #13_"‘+ diag (/\aﬂ/@) #po_

Proof. After recalling thatr_ is aweakladder epoch, it is immediate that far> 0, j € 7,k € 7.,

#E [e—aTT_HﬁST_. J. } _ (

~

E; [e“"TLHBSL;JT_ = k} :ﬁ‘j]kIE [6_0“’ Uk = 0} Jk(a 100).
Hence, it remains to calculate
E {e_aTT— +iBS_ o S E—} = E~ [eiﬁsf— o S 6—} .

To find an expression for this quantity, we directly apply ithea of Lemma VI111.5.1 of Asmussen [6],
as follows. Evidently, forj € 7, k € 7_, we have

PO (S, < —a,Jr. =k) =Y P¥(S, <-—xz,7-=n,J,_ =k).

Conditioning onS,,_; and using Assumption 2.1, we see that the summands equal
IE;’ [uge_’\g(”S”‘l);T_ >n—1,J, = k} = e—/\gx]]j:? [ ARl s -1, = k} ,

since the value of the-th increment should (in absolute terms) be larger thap S,,—;. Importantly,
this is exponential irx, so that we obtain

i [,uke’\S"IT_>n 1JT_:k}.

The latter sum is calculated by insertifig= 0 into this identity. O

Eo [eiﬁSr_;JT_ — } /\a+ 7

The above lemma requires knowledge of (submatrices?‘#ff)’. The following proposition gives a
fixed-point equation for these matrices, so that they carobad numerically. WriteF'", (dx) for the
measure-valuedZ, x Z)-matrix with element(j, k) equal tOpjkPO‘(Ujk € dx) for j,k € 7., and
defineF'{_(dx) similarly.

Proposition 2.1 For « > 0, we have

#Pe = diag(u®) P/_ +/ f #P*, (Iy — Fiy(a,ic0)) ' F?_(da),
(0,00)

#P*, = diag(u*) P’ +/ e #P*, (Iy — Fiy(a,ic0)) ' F2, (do),
(0,00)

where integration should be understood as componentwisgration, and#éi_ is specified by

#Qo = — [I__ — #PY Iy — Fyy(0,ic0)) ") Fy_(a,io0) — #133_} diag (\%).



Proof. Write 7_(z) := inf{n > 0: S,, < —z} forx > 0. Forj € Z andk € Z_, we have by the
Markov property

Py =B, = k) =Pl + 3 7 /( | Y € dn i =B
lely 100

Note that the integration interval féf/ is (0, 0o), because it/ were 0, then/,_ would be inZ, . The
claims follow after showing that

By (e = k) = D Fim(ovico)Py,(J; + Y B =) [
mely JEL J
where
Q% _ = —diag (\*) [I—— —F_ (o ic0) (I++ - ﬁ++(a,ioo))_ Py - ﬁf—] :

To this end, note that_(x) is nondecreasing im. Thefirst-passageprocess{J,_(,) : z > 0} given
J-_ = jis a (defective) Markov process undg} with values inZ_, cf. Assumption 2.1. It suffices to
prove thaiQ® _ is its intensity matrix. For ease we first concentrate on #sedor which the distributions
of the U7* do not have an atom at zero. After an exponentially distethutme with parametex?, the
first-passage process then jumps te-pointk € Z_ with probabllltfo;C (wherej = k is allowed). For

the general case whet&‘ may have an atom at zero, we have to take into account the jpatvisich
S stays at the same level for a while before entefing Z_. This procedure leads to the given intensity
matrix. O

Our next result is a nonlinear system for the mafki¥ _, where

K = diag(\*) #Q" _diag(A\*)~". (3)

Sinceéi_ is the intensity matrix of the first-passage (Markov) precesthe time-reversed process as
detailed in the proof of Proposition 2.IK*_ is the intensity matrix for the last-passage process of the
original process. To state the nonlinear system, we defing foRR,

Fi, (a,8) = Iy — Fyi(a,8)) 7 Fy_(a, ),

andF¢_ _(dz) is the measure for which — F ., _(«, §) is the characteristic function. These notions
relate to the increment in the ‘vertical direction’, whearsing in a+--point, until the epoch that-a-point
is reached. For simplicity we only prove uniqueness drifts to +oo or —oo. We write

H :{ (BEC:R(B) >0} if limp_o S = +00;

{BeC:R(B) >0} if limy_o Sy = —00. 4)

Corollary 2.1 For « > 0, the matrix K _ solves the nonlinear system
K®_ + diag(\*) (I_— — diag(u®)P’_) — / Ko7 diag (u*A\*)P7 ¢, (dw) =0__.
[0,00)
The solution is unique within the class of matrices with eigdues in .

Proof. The idea of the proof is to slightly modify the process witholanging the (time-reversed) first-
passage process (and thKs* ). Indeed, interpret subsequentpoints as a single--point; one then
obtains a different discrete-time process, with_(«, 3) replaced byF', , _(«, 3). Importantly, for this
‘new’ J we have thaP/, = 0, , so that#P2, = diag(u®) P’ by Proposition 2.1. The formula for
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#CA)E_ in this proposition then immediately leads to the desirettimaquation forK*_. The proof of
uniqueness is deferred to the appendix, see Corollary A.1. O

It is interesting to observe that, according to Corollard @&xd its proof, we may ‘lump’ subsequent
+-points and assume without loss of generality tlat, = 0, in order to calculatekK®_. This
lumping can also be used to comput®¢_ and #P°_ with Proposition 2.1, bubnly for o = 0.

There are several ways to extract algorithms for deterrgiﬁiﬁ’a_, #13_"‘_, and K%_ from Propo-
sition 2.1 and Corollary 2.1. For instance, Corollary 2.1 && interpreted as a fixed-point equation
K% _ = ¢p(K*_) for some matrix-functionp. This suggests to fix an initial matrik®’, and then use
the recursionK "™ = p(K*™) to characterize a sequence of matrices that convergi&“to. We
refer to Asmussen [5, Sec. VI.2], Miyazawa [32, Sec. 3], daba [42, Sec. 4] for further details on this
technique. One difficulty that needs to be overcome is theutation of matrix exponentials, see [34]
for a survey of available methods. It is not our aim to devast flgorithms for computing the matrix
K< _, and we shall therefore not address these algorithmic piiepéhere. An alternative method for

determiningK®_ (and thus#ﬁf_ and #135“_) is discussed in Appendix A.
T.

The next proposition characterizes thgdistribution of (S T

.y Jr, ). The main ingredient is the
celebrated Wiener-Hopf factorization.

Proposition 2.2 For o > 0, 8 € R with («, 3) # 0, we have
. ~ . —1
E [e—aTw“ﬂSw;Ju} —I- (I _*E [e—aTL +i8Sr_, JT—D (I - F(a,f)),

where nonsingularity is implicit.

Proof. Write G(a, 8) := E[e"*T-T#57—. J_|. The statement is the Wiener-Hopf factorization (e.g.,
[6, Thm. XI.2.12]) for the Markov-additive processunder the measur@, providedl — #G is non-
singular. This requirement is equivalent to nonsinguwasit! — G.

To see that this matrix is nonsingular, we exploit the faet tﬁjk is the transform of a nonlattice
distribution forj € Z,k € Z_. Therefore, we hav@jk(a,ﬂﬂ < ]%Qk for (o, B) # (0,0), see, e.g.,
Theorem 6.4.7 of Chung [14]. As a resullt— Gisa strictly diagonally dominant matrix:

> |Girta8)] < X BRPWY =0)+ Y P <1,

keT keTy keZ_
where the last inequality follows from the fact thét_  has a (possibly defective) distribution, see
Lemma 2.1. O
The distribution of (S;_,T_, J=_).

We now turn to our second aim of this subsection, the chaiaat®n of the distribution of S>_, T>_, J>_).

This turns out to be simpler than the analysig 8f, , 7", , J-, ); particularly, Wiener-Hopf techniques

are not required here. We omit all proofs, since similar argots apply as before.
In the context of strict decreasing ladder heights, a prentinole is played by the matrix
Py .= EJF[e_aTt ;51 >0,J7_ 1 €—].
The indices in this expression should be compared to thaidefinition of P*. We also set
P = (I — Fii(a,ic0)) " [Py diag(u®) ™ + Fi_(,i00)] .
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The analog of Lemma 2.1 follows immediately from these dedins: fora > 0, 8 € R, we have

P _diag (%) P/ P? _diag ( S ) 2
. N\« J . )« J
diag (%) P’ diag (%) P’

We continue with a result in the spirit of Proposition 2.1 ievhcan be proved along the same lines.

E e_aT;_+lﬂS7:_;J%7 _

Proposition 2.3 For a > 0, we have

Pjr’_:/(o )Ff+(dx)Pﬁo_eQaxdiag(ua)+/(0 )Fﬁ_(dx)eQ(iniag(,uo‘),

where@Q? _ is specified by
Q“_ = —diag(\*) | I__ — diag(p®)P’_ — diag(u*)P’, P2, _|.

We next turn to the analog of Corollary 2.1, which can be pnoatng the same lines. When
inspecting the differences between the two corollariesfivge note that they are remarkably similar.
Whereas thd<{®_-matrices are always tHest matrices in each of the terms, th¥* _-matrices always
appearast In Appendix A, we show that this has a specific reason. Thieneld uniqueness follows
from Corollary A.1.

Corollary 2.2 For « > 0, the matrixQ® _ solves the nonlinear system
Q° _ + diag(\?) | I__ — diag(u®)P7_ —/ diag(,uo‘)P;]JrFfo_(da:)chf—x =0__.
[0,00) )

The solution is unique within the class of matrices with evgéues inH ..

2.4 The distribution of (S, T, J).

In this section, we study (jointly with T',.J), assuming thaf drifts to —oo. In fact, throughout this
subsectiopwe suppose that’, ES; < 0. We remark that, with the only exception of Lemma 2.3, all the
results also hold under the weaker assumption $haifts to —oo. Our main tools are the ladder-height
results obtained in the previous subsection.

The following theorem expresses the transforn{$fT", J) in terms of the matrix characterized in
Lemma 2.1 and the (still unknown) vectd?(S = 0). Observe that the matriceéP*_ and #133+
required in Lemma 2.1 can be found with Proposition 2.1.

Theorem 2.1 For « > 0, 5 € R with (a, 3) # (0,0), we have
E [e—aﬂiﬁ?;j} = (I F(a,5))"" (I _HE [e—an— +ipS:_, JLD diag (P(S = 0)).
Proof. By the Markov property, we have far > 0 with («, 5) # (0,0), 5 € R,
B[eT55.7) = (1- B9 ]) 7 diag (Plry = o0))
— (I-F(a,B))" (I — *E [e—an— iBS:_, JT_D diag (P(S = 0)),

where the second equality follows from Proposition 2.2. mbesingularity off — F'(«, 3) follows from
(strict) diagonal dominance, cf. the proof of Propositio. 2 O
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There is a direct, insightful interpretation of Theorem 1ierms of a last-passage process, which
is used on several occasions in this paper, inspired by Kisfsiaterpretation [26] of the Wiener-Hopf
factorization. First note that the theorem states mpraﬂlﬂs J] equals

Z F"(a, §)diag(P Z F*(a e—oTr_+iBS-_. JL} diag(P(S =0)). (5)

Clearly, then-th summand in the first term can be interpreted as the trems§o(.S,,, 7,,, J,,) on the event
{sup,,>pn Sm = Sy }. If the maximum is attained &, this is preciselyE[e~*T+05; J]. However, if
this is not the case, we have to subtract the contributiontalttee fact that there is ah< n for which
Sy > Sp. In that case, write5,, = S + (S, — Sk), wherek = sup{¢ < n : Sy > S,}, so thatn
is now a so-calledast-passagespoch for the process witfk, Sy ) as the origin. Lookindackwardin
time, starting from(n, S,,), k is a first weak descending ladder epoch. The argument is ebecpby
exploiting the Markov property. Partitioning with respéatthe last-passage epoch is sometimes called
the Benes-method [11].

It is insightful to give the complete argument far = 0 in formulas. The terms that need to be
subtracted (because the maximum occurred earlier) are

iE[’ﬁS" Vm>n: Sy < SpIm<n: Sy > S,

DI VS”” ($2=SK): sup Sy = 5, Sk > S, sup Sy < S |
k=0 n=k+1 m2n k<t<n

where the equality is justified by the fact that the eventsdisjint as a result of the partitioning with
respect to the last-passage epoch. Now note that the doufléssindeed the second sum in (5) for
a=0.

Theorem 2.1 implies that, to compuige 775, only the determination of the vectd? (S5 = 0)
is left. Before giving results o#(.S = 0), however, we first discuss some consequences of Theorem 2.1.
Let us define for, 8 > 0,

D__(a,8) = BI-_ — diag(\*)[I__ — diag(u®)P’_
— diag(u*) P’y (T4 — Fyy(a,iB)) " Fy(a,i8)].

It is instructive to derive the following result with the alminterpretation of Theorem 2.1: consider the
discrete-time process only atpoints.

Corollary 2.3 For a, 8 > 0 with D__(«, 3) nonsingular, we have
E_ [e_O‘T_ﬁg;j 6—}
= D__(Oz,ﬂ)_1 [ﬂI__ — diag (AY) (I__ — diag (u®) P;7+
X (Iyy — Fyy(o,i8)) " Fy_(a,ioc0) — #ﬁf_ﬂ diag (P_(S =0)) .
Proof. The claim (with characteristic functions instead of Lapla@cansforms) follows from(I —
F(a,08))2L = (I — F(a, )L F_1(a,8)(I++ — F(a,3))"! and some elementary linear algebra.
Since all characteristic functions involved are well-defirvheng is replaced byi3, we obtain the

claim. 0
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If Pj+ = 0,4, using the second matrix equation of Proposition 2.1, taercin this corollary can
be reformulated in the following interesting form:

E_ [e—fﬁ—ﬂ?;j e —] =D__(a,8) [BI__ + K*_] diag (P_(S = 0)). (6)

Our next aim is to findP(S = 0). The following lemma gives two matrix equations that must be
satisfied byP(S = 0).

Lemma 2.2 P(S = 0) satisfies the system

Py(
P_

) = Fiy(0,i00)P(S )+F+ (0,i00) P (S = 0),
) = *PLP.(5=0)+*P’ P.(5=0).

/CBI Nl

0
0

Proof. The claim follows upon right-multiplication of the statemien Theorem 2.1 byl and choosing
a=p3=0. O

The two equations in the lemma can be described as followas{if&t equation conside®, (S = 0)
by conditioning on the first stefS;, J;) and using the Markov property/; can both be a--point or
a —-point, butS; cannot strictly increase. The interpretation of the seceqaiation is slightly more
complicated, and follows from arguments reminiscent ofititerpretation of Theorem 2.1. Again, the
idea is to partition with respect to the last-passage egogh inf{n : S, = sup,,>,, S}, Which is
either a+-point or a—-point. On the even{S = 0}, starting from(¢, S;) and looking backward in
time, zero is a first descending ladder epoch. On the othet, Haoking forward in time from(¢, Sy),
the process cannot have a strict ascending ladder epocé tizit fails to be a stopping time.

We briefly pause our analysis #f(S = 0) to record the following Pollaczek-Khinchine type formula
for S.

Corollary 2.4 For g > 0 with D__(0, 5) nonsingular, we have

E_¢ 75 =8D__(0,8)"'P_(S =0).

Proof. The corollary is a consequence of Corollary 2.3 and Lemma 2.2 O

We now investigate to what extend the system of equationserha 2.2 determineP (S = 0).
First, sincel,, — F{.(0,i00) is always nonsingular by assumption, the first formula shtvas it
suffices to findP_ (S = 0) instead of the larger vectd?P(S = 0). Unfortunately, the whole system of
equations in Lemma 2.2 mwayssingular. More precisely, using (3) and Proposition 2.1,readily
obtain that

K° P (§=0)=0_. 7)

The following proposition shows that this determinBs(S = 0) (and thereforeP(S = 0)) up to a
constant.

Proposition 2.4 The matrixK _ has the following properties:

1. zero is a simple eigenvalue Af°
parts, and

and the othetV_ — 1 eigenvalues have strictly negative real

2. if N_ > 1, thendiag(A\°)~!m;(—) and P_(S = 0) are left and right eigenvectors dk° _
respectively, corresponding to the eigenvalue zero.
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Proof. For the first property, it suffices to consider the ma@9< which is similar toK" _. The matrix

@9_ inherits its irreducibility fromP?, and since it is an intensity matrix of a (nondefective) Mark
process, the assertion follows from standard Perron-fiabeheory.

The ‘right eigenvector’ part of the second claim followsrrd7), and the ‘left eigenvector’ part
translates t€Q° _1_ =0_. O

Proposition 2.4 shows that one more equation is neededyshecify P_(S = 0), and this equation
is given in the following lemma. Let_ be the uniqu& _-probability vector satisfying

w_diag(\’) (P7_+ P2, (Ioy - PL) " P{_) = diag(\"); ®)
in fact, _ is proportional todiag(\°) 7 (—).
Lemma 2.3 We have
7 P (S=0)=1-n_diag\)P’, (I, — P{,) " E.S.
This equation is independent of the. — 1 independent linear equations stemming from (7).

Proof. The idea is to premultiply the expression fBr (S = 0) in Corollary 2.4 byn’ , to divide both
sides bys, and then le — 0. By definition ofr_, this immediately yields that’” P_(S > 0) equals

lim ﬂ‘n‘_ diag (\°) P, [(I++ —P/) P/~ (I — F i (0,iB8) " Fy_(0,iB)] E_e 5.

Itis not hard to see that this equat$ diag (\°) P/, E, S, , wherey_ :=inf{n >1:J, € Z_}. To
computeE S, _, we condition on the first step to see that the first claim fedo

E.S, =E.,S+P/ E.S, ,
The independence of the oth8t. — 1 equations is a consequence of the fact that
x_diag\)P?, (I, 4 — P{,) " By S < 1,
due to the stability constraint’, ES; < 0. 0

2.5 The distribution of (S, T, J).

In this subsection, we suppose thef ES; > 0, so thatS drifts to +oco. We are interested in the
minimum of S and related quantities.

To interpret the result, it is important to note that the mxattI - — Q< _ is always nonsingular for
£ >0, sinceQ® _ is a defective intensity matrix.

Theorem 2.2 For o, 3 > 0, we have/ € 7, and

E e—aZ'ﬁ‘ﬁﬁ;i €_|_:| p— |:( (€++ ) 4 ( 'F;"Fo_ ) (IBI__ — Q‘f_)—ldiag (MOC)\OC) P;]_A,_
_+ _

x diag <1+ — P20_1_> .
In particular, forj € Z andk € 7, we have the matrix-exponential form
PO
Pi(S <z J =k) = (1 - e;PEO_L) ¢ ( Fo- > ~Q2_7 4iag(A\) P/, e,
wherex < 0.
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Proof. The Markov property shows that for, 3 > 0,
E, [e—aﬂﬁi; J e+} — P _E. [e—aﬂﬁi; J e+} + diag(P. (S = 0))

and

o)\«

E_ [e—aI-Fﬂﬁ; J e _|_} = diag ()fi i 3

A
—i—diag()\'[i_i_ﬂ

Substitution of the first equation in the second yields, whihexpression fo< _ in Proposition 2.3,

> P‘_Z_EJr [e‘O‘IJrfBE;i €+}

) P’ _E_ [e_a1+ﬁ§;i €+} )

E_ [e‘O‘IJrﬁﬁ;i G—I—} = (BI-_ — Qﬁ_)_1 diag (u*\*) P’ diag(Py(S = 0)).

The proof is finished after observing th& (S =0) =1, — Pﬂo_l_. Note that this vector is nonzero
as a result of the drift condition. O

3 Markov-additive processes and their extremes.

In this section, we study the extremes of a continuous-tinaekisl-additive procesX with nonnegative
jumps and finitely many background states. Loosely spealdngh a process is characterized by a
number of Lévy processes (with nonnegative junb). .., Z and a continuous-time Markov process
with state spacé1,...,N}; X behaves ag’ when the Markov process is in state Our goal is to
find the Laplace transform of the maximum and minimunXgfjointly with the epoch at which they are
attained and the state of the Markov process at that moment.

We first give a precise definition of the process under studgt{@n 3.1). Section 3.2 introduces
an embedded proceghat falls in the framework of Section 2, so that the maximunthe embedded
process equals the maximum of the original process. This embedding facilitates the potation
of the desired transform, see Section 3.3. For the minimusindar procedure can be followed; the
analysis ofX may be found in Section 3.4.

3.1 Definitions and assumptions.

A continuous-time Markov-additive proce§$X (¢t),(t)) : t > 0} is defined on some probability
space(€Y, 7', P) and has cadlag paths with values®, {1,..., N}). We only define Markov-additive
processes with nonnegative jumps and a finite number of backd states, but we refer to the classical
papers [2, 15, 36] for the construction and properties oegarMarkov-additive processes.

UnderP, {I(t) : t > 0} is a (finite-state) continuous-time Markovian backgroundcpss, which
stays in statg for an exponentially{;) distributed amount of time, and then jumps according toesom
transition matrixP’. We allow I to jump to thesamestate. We assume thétis irreducible, so that
there is a unique stationary distributiery (i.e., 7} diag(q)P! = =« diag(q)). While I(t) = j, the
processX (t) behaves undep as a spectrally positive (i.e., without negative jumpsyy_processz/,
with Laplace exponent

Yo 2(8) = logEexp(~ZI(1) = 203 —esf— | (1= — Byl () Ty(dy),

(0,00)
where thel_évy measurél; is such thatf(ojoo)(l Ay (dy) < oo, and alsa:; € R and3,a; > 0. In
particular, X (0) = 0. The reason for writing)_ ,, instead ofi); is that we try to follow the notation
of Bertoin [12, Ch. VII] as closely as possible. Let z(3) be the vector with elements_,;(3),
j=1,...,N.
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We need some further notation relatedito,;, where; is such that the sample paths &f are
not monotone. Then we have ,;(3) — oo asf3 — oo. Moreover, by Holder’s inequality)_ ,; is
strictly convex. Let®_,;(0) be the largest solution of the equatign ,;(3) = 0, and defined_,;
(the ‘inverse’ ofy_ ;) as the unique increasing functidn_,; : [0,00) — [®_4;(0),00) such that
V_7i(®_zi(B)) = pfor 3> 0.

When the background procesgumps fromj to &, the process jumps according to some distribu-
tion H;j, on [0, 0o). The matrix of the Laplace transforms corresponding toethesvironmental jumps’
is written asH, i.e., elementy, k) of the matrixH () equalsf[ojoo) e P Hjp(dx).

In the spirit of Section 2.2, we use the matrix notation

E [e—ﬁX“);I(t)} — {Ej [e—ﬁX“);I(t) _ k} Cik=1,... ,N},

and similarly for other quantities thaki(¢). We draw attention on the difference betwdgrthe matrix
version of the ‘continuous-time’ medncorresponding t®, and E, the matrix version of the ‘discrete-
time’ meank corresponding t@.

Using this matrix notation, the definition i, I) entails tha€ [e=#X®); I(¢)] is given bye!¥-x (¥,
where

Y_x () = diag(yh_z(8)) — diag(q) (I — PT o H(B)), (9)

with o denoting componentwise (Hadamard) matrix multiplicatibiote that for instance Asmussen [6]
uses a slightly different (yet equivalent) representatimn ours is more convenient in the context of this
paper. The representation in (9) can be proven along the éihthe proof of Proposition X1.2.2 in [6],
by setting up a differential equation f&g[e =X ®); 1(t) = k].

Each of the states = 1,..., N can be classified as follows. #f; = 0 andc; > 0, we callj a
subordinator state Special cases amero-drift stateo; = ¢; = 0 andIl; = 0), compound Poisson
state(o; = ¢; = 0, I1;(R) € (0, 00)), andstrict subordinator statés(all other subordinator states). If
0; =0, ¢; <0,andIl;(R;) € (0,00), we callj anegative-drift compound Poisson statfe say thay
is anegative-driftstate ifo; = 0, ¢; < 0, andIl; = 0. The other states are call@lownian statesthese
are characterized by eithes > 0 or¢; < 0, II;(R) = co. Therefore, ifj is a Brownian state, it is not
necessary thaf’ contains a Brownian component, but the terminology is coiare.

There is no one-to-one correspondence betwger and tuples(v_z, ¢, P1,H). For instance,
consider the situation that’/ corresponds to the sum of a Brownian motion and a compourgss&oi
process. Then one could equivalently do as if there are@mviental jumps at the jump epochs of the
Poisson process; by also adapting the transition matrixobtains an alternative description of the same
stochastic process.

Consequently, sincé is allowed to make self-transitions, without loss of gehgrave can assume
that there are neither compound Poisson states nor neghiiyteompound Poisson states. Indeed,
these states can be replaced by zero-drift or negativestaifes, provided thé/;; andg; are changed
appropriately. Throughout, we suppose that there is at @S negative-drift state or Brownian state
after this simplification (itX drifts to —oo, then this is a consequence of the spectral positivity).

The above observations allow a partitioning of the states. , N of the background process into

(i) the strict subordinator states, labeled
(i) the zero-drift states, labeled’;
(iii) the negative-drift states, labeled’; and

(iv) the Brownian states, labeled".

LItis customary in the literature to use the testrict subordinatorfor a subordinator with an infinite lifetime; here, it stands
for a strictly increasing subordinator.
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In the following, wealwaysassume that the state spgde..., N} of I is partitioned in the ordes—
z—n—B. This allows us to use block matrix notation as in Section &@metimes, it is unnecessary to
distinguish between- and z-states, and it is therefore convenient to refestand z-states ag-states.
If we use thiss-notation in block matrices, we suppose that the orderis Similarly, we refer ton-
and B-states as--states, again preserving the order. R R

We also need another probability measurgQh '), denoted byP. UnderP, (X, I) is a Markov-
additive process with Laplace exponent

~

Y_x(B) := diag(mw;) "’ x(3)diag(my). (10)

That is, working with(X, I) underP amounts to working with théme-reversedarkov-additive pro-
cess under the measureand vice versa.
We define

) = sup{X(s):0< s <1},
) = inf{s<t:X(s)=X(t) orX(s—)=X(t)},
) = Inf{X(s):0<s<t},

)

= inf{s<t:X(s)=X(t) or X(s—) =

[><

()}

We also setl(t) := I(FX(t)) andI(t) = limgpx ) I(s). Itis our aim to study these quantities as

t — oo, in which case we omit the time index. We study the jdtdlistributions of(X, FX,T) (in
Section 3.3) andX, FX,I) (in Section 3.4). We rely extensively on two fundamentalperties of
Lévy processes, which we recall in the next subsection.

3.2 Intermezzo on Léevy processes.

In this intermezzo, we consider a Lévy procesf.e., there is no background process) with killing at an
exponentially distributed epoch. We letdenote the killing epoch with medry¢, and suppose that it is
independent of/. We also suppose that the process does not have negativs,jthmapits paths are not
monotone, and that it is not a compound Poisson process. thittein the terminology of the previous
subsection, Lévy processes arising from ‘Brownian statassfy this property. Moreover, the inverse
& _ ; of the Laplace exponent is then well-defined.

We start with two observations that actually hold in gregtmerality, see for instance [12, Ch. VI].
The quantitiesZ, FZ, Z,andF7Z are defined similarly as faK . First, we have the interesting identities:
fora, 8 >0,

Ee_aEZ (eq)“’ﬂZ(eq) — Ee_aEZ (eq) Ee_/BZ(eQJra)’

Eeo(eF(e)-8(Ze)-2(0)  _ g -a(eF (€) go-p(Z(esra)-Z(eqra),

which can be deduced from Equation (VI.1) in conjunctionhwitmma 11.2 and Proposition VI.4 of
Bertoin [12].

Moreover, due to Theorem VI.5(i) of [12], there are two waysiecomposinge,, Z(e,)) into two
independentectors:

Z

1. e avector(o,U) := (Fz(eq)Z(eq)) related to the process till time” (e, ), and

e anindependensecond vector, —D) = (e, — Fz(eq),Z(eq) — Z(ey)) related to the
—7
process betweeR™ (e,) ande,.

2. e avector(FZ(e,),Z(e,)) related to the process till imgZ (e,) (this vector has the same
distribution agr, — D)), and
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e anindependensecond vectofe, — FZ(e,), Z(e,) — Z(e,)) related to the process between
time £ (e,)) ande, (this vector has the same distribution(asl))).

For applications of thisplitting at the maximum (or minimum), we refer to [17, 19] and refee=nc
therein. In the special case of no jumps, Asmussen [4] etsplbis property in the context of Markov-
additive processes.

Due to the assumptions thatis spectrally positive and that its paths are not monotéfie, ) —
Z(eq+q) has an exponential distribution; see Theorem VII.4 of [1R]that case, the joint transforms
of the ‘upward’ part(o, U) and ‘downward’ par{r, —D) are known: fora, 5 > 0, (o, 3) # (0,0), we
have

Ee_aT_ﬂD _ (I)—Z(Q)
P_z(g+a)+p’

and if furthermored # ®_z(q + «),

Eo—ao—pU _ _ 4(P-z(g+a) = f) (11)

D_7(q) (g +a—v-z(83)
Here,y_ 7 is the Laplace exponent ef Z as defined in the previous subsection. The crucial observati
is that (7, D) satisfies Assumption 2.1 with* = ®_z(¢ + «) andp® = ®_z(q)/P_z(q + «). This
property facilitates the application of the results of 88tP in the context of continuous-time Markov-
additive processes, as we demonstrate in the next subsectio

3.3 The distribution of (X, F ", 7).

We have collected all the necessary prerequisites to prasegmbedding that allows us to characterize
the distribution of(X, F, ). ltis our aim to apply the analysis of Section 2 to the embddttecess,
and to reformulate the results in terms of the charactesisif the procesX as defined in Section 3.1.

Throughout this subsectipwe suppose that;EX (1) < 0, but, as in Section 2, the majority of our
results only requires the weaker assumption fiadrifts to —oo almost surely. This holds in particular
for our main result, Theorem 3.1.

To find the distribution of X, 7, T), we do not monitor the full proce€sX, T), but we record time
and position at ‘special’ epochs only. Festates and-states, these epochs are chosen as follows.

e The start of a sojourn time in anstate or am-state gives rise tg-pointsandn-pointsrespectively.
Note that, by right-continuity of the sample paths, the gadii X at these epochs includes the
displacement due to a possible environmental jump.

e We also record the value of right beforethe end of the sojourn times #states andi.-states.
The environmental jump at that epoch is nexcluded

For B-states, we record the value &f at three epochs.
e The firstis the start of a sojourn time in these states. Thétneg points are called-points

e The second is the epoch for which the maximum within the sojtie is attained. These points
are calledA-points

o Finally, as for the other states, we record the vaigbt beforethe end of the sojourn time.

Note that we have thus constructed a discrete-time stachasicess fromX that still contains all in-
formation on the maximum oK. We call this process thembedded processmportantly, as a result
of the independence discussed in Section 3.2, the embedoessp fits into the framework of Section 2
when the space-component of the embedded points is recordednd the time-component ifi. The
embedding is illustrated in Figure 1; in the realizationdfa negative-drift compound Poisson state has
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Figure 1: The left-hand diagram represents the progessth its embedding points, along with tistéate
labels. The discrete-time embedded procgss given in the right-hand diagram, along with theint
labels.

been replaced by a negative-drift state with environmgotaps and self-transitions. Note that some of
the embedding points remain unlabeled, since we do not reefdr to these points. As an aside, we
remark that the above embedding differs from an embeddicenty introduced by Asmussen al. [7]

for special Markov-additive processes.

Motivated by this embedding, we referitepoints andA-points as—-points (as from these points the
process moves down), in accordance with the terminologyeofi® 2.2. The order is — A. Observe
that wealwaysincorporate environmental-jump points into the embeddedgss, even if there are no
jumps with probability one. The value of the process is therply left unchanged.

Application of this labeling shows that we have

gnta vec( dn )
AY = vee ( ~cn ) = Into . (12)
vec

(@_2(qp + ) vee (gope)s)

The notation in (12) should be interpreted as follows. Fisis the block vector ofy corresponding to
n-points; similarlyc,, is the block vector of the drift vectercorresponding ta. Then(g, +«)/(—cy) is
the vector with element equal to(g, ; + ) /(—cy ;). The vectorg is defined analogously tg,. With
k =1,...,N being the index of thg-th B-state, thej-th element ofb_(¢p + ) IS ®_ 71 (¢B,; + ).
The notation used in the definition pf* should be read in a similar fashion.

It is our aim to find a characterization 0K, FX,T) which can be regarded as the analog of Corol-
lary 2.3.1n principle, its Laplace transform can be deduced from the above emtgddid the results of
Section 2. However, this leads to results in terms of the elaéd@ process as opposed to the continuous-
time processX. It is our primary goal to obtain results in terms&f and for this we need some further
definitions related to displacements of the procEss-or«, 5 > 0, we set

Fy (e, ) = (aly — _x=(8)) " diag(gs)PLy o Hom(5),

where_ xss is the (s, s)-block in the matrixy_x and ‘M’ can be replaced by any of the blocks

z, n, or B. The matriceF ;. r((c, ) andF, r(av, 3) are defined similarly, witls replaced bys and

z respectively. It is convenient to abbreviatestates and3-states as--states, and to impose the order
n — B in block matrices. Therefore, in particuld, ... characterizes the displacement in time and space
when we start in a-state and stay ig-states until the background process jumps te-atate. The

17



change in the position due to the latter environmental jusripdluded, but the environmental jump into
the firsts-state is not. This jump appears in the following definitione set fora, 5 > 0,

Fisom(a,B) :=PL o Hog(B)Fs m(a, B) + PLy o Hom(B),

where agairs, z, n, or B can be substituted fotM’. The first term should be interpreted as zero if
there are ng-states. The measure- valued matr|E§§ M (dz) are defined similarly as in Section 2.3.
Importantly, we have now defindg;, .. a, 3), which corresponds to the displacement in time and space
between theendof a sojourn time in av -state and théeginningof a sojourn time in the next-state,
including both environmental jumps.

In analogy with the discrete case, the (Markovian) lasspgs process of plays a key role in our
analysis. This process takes values-irstates. It follows from the analysis in Section 2 that one ca
associate a matrik® _ to the embedded process. Let us define

—1
Ko = diag ( a~ Aa) K°_ diag ( g;a) . (13)
7

The matrixkC%, plays a pivotal role in the remainder. It is therefore ddd@do have a representation
for IC2 _ in terms of the characteristics &, much like Corollary 2.1. This is presented in the next
proposition, whose proof relies on the spectral analysspgfendix A.

Proposition 3.1 For o > 0, the matrix/C® _ solves the nonlinear system
0.2
al __ = (K2, ) diag ( 5 ) + K2, diag(c~)
- /( o (T = 101)0)) ding( )

— diag(g~) + /[0 )emNydiag(qN) T (dy).

The solution is unique within the class of matrices with migédues in the closed right complex halfplane.

Proof. Construct a ‘censored embedded’ process by monitoringhlibeeadiscrete-time embedded pro-
cess only on—-points and the points immediately thereafter (from whiwhré is a nonnegative jump).
In the notation of Section 2, we then ha¥%e. = N_, F , (a,3) = 044, andF__(«, 3) = 0__, while

., o
F, (o,8) = FBON(OA, —if)diag (EN@—QF (eq)—HﬁZ(eq)) :

a)\Oé
Foatam = dig ().

Using the fact thaBI__ — diag(A\“) equals

~

diag (,uq)\ > x [diag(¢—z~~(0)) — diag(g~) — aI__] diag (Ewe_afz(e‘ﬂ_ﬁi(e‘])> ; (14)

we readily find thatD__ from Section 2.4 is given by

D__(a,8) = diag (“:Aa) [diag(@b_zw(ﬂ)) — diag(g~) (I—— - FT§0~(0475)) - 041——}

~

x diag (ENe_aFZ(CQ)_ﬁZ(CQ)> :
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The factorization identity (26) can therefore be rewritdasn
diag(w—ZNN (/6)) - dlag(qN) (I—_ - FTéoN(avﬁ)) —al _ = [ﬂI—— + ’ng} M/__(Oé,ﬁ), (15)

for some matrixM” _(«, 3) which is nonsingular ifR(3) > 0. This factorization identity is the basis
of the ‘spectral’ approach advanced in Appendix A. Using)(1be reasoning in Appendix A can be
repeated verbatim to characterik&' _ as the solution to the stated nonlinear system. In fact, l&imc
follows from Corollary A.1 and its proof. O

If one recalls the representation of the Laplace exponeX af (9), the above nonlinear system
can be regarded as a matrix version of the equatien_z(®_~(a)). A spectral analysis reveals the
connection with this fixed-point equation, as detailed im Appendix A. In fact, the appendix outlines
how a spectral analysis can also be used tofiftg, numerically, thereby complementing the discussion
in Section 4 of Asmussen and Kella [8].

Compared to Section 2, it is somewhat more involved to wotk Veist-passage matrices in the gen-
eral Markov-additive setting, due to the presence of subatdr states and Brownian states. Therefore,
to formulate our next result, we set

Ko = / ¢ ding (g FS, ., (dx)
(0,50)
and

K¢ =K¢_ — ( K. F. . (a, oo)diag(—ec,)"! 0_p )

In these definitions, we use the subindiceg”and ‘——'to indicate matrix dimensions, ambtto refer
to an embedding. We also define hendependent matrices

K.. := —diag(q.) [I.- — PL o H..(00)], K.n:= diag(q.)PZL, o H., (co)diag(—c,) !,

andK. 4 := 0,5. We remark that these matrices cannot be interpreted assityanatrices related to
the last-passage process.

The following theorem is the main result of this subsectibrs the matrix version of (1), and should
be compared with (6). The presence of the madfixy (5) — ol is anticipated in view of the Wiener-
Hopf factorization for general continuous-time Markowddive processes by Kaspi [22, Thm. 3.28], but
our assumption of nonnegative jumps allows us to obtain aregplicit result.

Theorem 3.1 For o, 8 > 0 with (¢_ x () — o) nonsingular, we have

E e_an_ﬁy; 7}

Ogs 0. (1 0,
= (¢—X (ﬂ) - aI)_l Ozs Kzz - aIzz Kz— dlag U 5
0., K°. pBI_+K°_ v_

where the vectors, andwv_ are characterized in Lemma 3.1 below.

Proof. Define |
Ol = g (e 4 ),

so that
(I-C(a,8)" = [o —p_x(—iB)] " diag(q + a — ¥_z(—if)). (16)

First suppose thatt is a Brownian state. We need to show that
=X | o —
Evi [e7" T e B] = (y-x(=if) — aDy. [FiBLp + K2 diag (v),  (17)
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wherevp = vec(qp/®_z(qp)) o P4(S = 0) is given in terms of the embedded process, aktl tan
be any of the background states. Since there is always #yspsitive jump between #-point and
an A-point, we can use (6) by considering the embedded procdg®onr--points. This shows that the
left-hand side of (17) equals

—=Z . —
(I—C(a, B)) 7L diag (ENe_aF <6q>+fﬁZ<6q>) diag(A\* +iB) " [—iBI_p + K* 4] diag(PA(S = 0)).

We stress thaK® , refers to the embedded process. Some algebra in conjuneiibr{11), (13), and
(16) shows that (17) holds.

Next suppose thaf is a negative-drift state. We follow the reasoning usedieranvhen deriving
Theorem 2.1 with Kennedy’s Wiener-Hopf interpretation.eThaximumsS™* of the embedded process
should be in am-point, after some number of steps, gay After k*, the process should never exceed
S*. We next subtract a term to compensate paths for wkicis astrict last-passage epoch, so we use
K2, instead ofC?,,. In analogy with the casg € B, this leads to the term

o — _x(B)| i [BI-n + K2,] diag (v,) ,

wherew,, = vec(—cy,)o P, (S = 0). Finally, we also need to subtract the contribution of pédhsvhich
there is az-point without environmental jump right befok€g. It is readily seen that this contribution is
[aI - Q:b—X (ﬁ)}/_\jz K. diag(vn)' _ .

A similar term also plays a role whehis a zero-drift state, which we study next. $et= P, (S =
0). The ‘base’ termis- [ — 1p_x ()], [aL.. + diag(q.)] diag(v.), and the term to be subtracted to
correct forz points right beforet* now becomesy_ x (5) — aI]X,}Z diag(q,)PL, o H,,(c0)diag(v,).
Using the definition oK® _, we readily find that the term correspondingktobeing astrict last-passage

—z

epoch islal — v x(8)] v K, diag(v.). O
We now show that the vectoks, andv_ can be found (up to a constant) as in Section 2.4. Indeed,
the following lemma casts Lemma 2.2 and Proposition 2.4timogeneral Markov-additive setting.

Lemma 3.1 The vectorw, andv_ have the following properties:
1. v, = -K_ 'K, v_,and

2. if there is more than one-state, thenv_ is a right eigenvector ofC’ _ with corresponding
eigenvalue zero.

Proof. Sincev, = P.(S = 0) andwv, = vec(—c,) o P,(S = 0), application of Lemma 2.2 to the
discrete-time embedded process yields

v, = sz oH,,(c0)v, + Pin o H,,,(c0)diag(—1/cp)vn,

which is readily rewritten as, = —K;;Kzngn, and this is the first assertion.

For the second claim, we obtaii®_ P_(S = 0) = 0_ by applying Proposition 2.4 to the embedded
process. Then we use (13) and = diag(q/A\°)P_(S = 0). O

Next we formulate a result in the same spirit as Corollary, &llich immediately follows from
Theorem 3.1 and Lemma 3.1. It is the Markov-additive versibil) for « = 0. A closely related
formula has been obtained by Asmussen and Kella [8, Eq.](4vhp phrase their result in terms of the
reflected process and a local-time vector. The precisdardtip between the two formulas is further
investigated in Section 4.2.

Corollary 3.1 For g > 0 with ¢y_ x (/) nonsingular, we have

Ee X = By_x(8)7! ( s ) :

v_
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The vectorv_ is determined by Lemma 3.1 and the next normalization lenwhéch is an analog
of Lemma 2.3. Note that this lemma corrects Equation (4.28]in

Lemma 3.2 We have
—mEX(1) = m(~)v_.

Proof. Sincen; satisfiest diag(q)P! = « diag(g), Corollary 3.1 shows that fo# > 0,
1 . . _8X
57"} [diag(¢—2(0)) — diag(q) (P' — P o H(f))] Ee™"* = mr(~)'v_.

Now let 3 — 0 to obtain that—=} [EZ(1) + diag(q)P! o [ 2H(dz)] = m;(~)'v_. Using Corol-
lary X1.2.9(b) and (the second equality in) Corollary Xb2f Asmussen [6], it is not hard to see that the
left-hand side equals w/EX(1). O

3.4 The distribution of (X, £, I).

In this subsection, we study the minimum &fif it drifts to +o0c. More specifically, we establish the
analogs of Proposition 3.1 and Theorem 3.1. We supfiusaghout this subsectiahatz,EX (1) > 0.

As before, we do not monitor the full procegk, 7), but we only record fog-states ane-states the
time and position at the start (leadingggoints andr-points, respectively) and immediately before the
end of the sojourn time, and fdg-states in addition the minimum within the sojourn timeadiag to
A-points). Note that the embedding is different from the oseduin the previous subsection. In fact, in
view of the conventions in Section 2.2, thepoints are labeled differentlyn-points andB-points are
now —-points. Since the underlying proceXsis the same as in the previous subsection, we continue to
refer ton-states and3-states (i.e., for the process) as~-states, and we still use the safequantities
since these do not depend on the embedding.

For fixeda > 0, a matrix @2 _, related to the first-passage process for the embeddedsgroce
plays a similar role a&% _ in the previous subsection. The characterizatio®gdf_ given in the next
proposition is the analog of Proposition 3.1.

Proposition 3.2 For o > 0, the matrix@< _, solves the nonlinear system
2

al __ = diag (%) (QiN)Q + diag(c.) Q2.

_ /(0 dinalL. () (1 =@+ 92yl ()

- dingle) [T~ [ B ()
[0700) 20

The solution is unique within the class of matrices with eigdues in the open right complex halfplane.

Proof. The proof is similar to the proof of Proposition 3.1. Again im&oduce a censored embedded
process by only monitoring the embedded process-guoints and the points immediately thereafter.
Note that this results in a different censored embeddedepsothan in the previous subsection, since the
underlying embedded processes differ. In the notation ofi@e2, the censored embedded process has
Ny =N_,F (a,0) =044,andF__(«,3) = 0__, while fora, 5 > 0,

Fy (0,f) = diag (Ewe o t0Ze) [PL o H,(~if)Fy (o, —if) + PL_oH_(~if)]
) uoa)\oa
F_ = .
o) = ding ()
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For fixeda: > 0, the first-passage process for the embedded process ieat(def Markov process, and
we write Q% _ for its intensity matrix.
In conjunction with (14), given the current embeddi#g,  from Section 2.4 can be written as

D__(a,f) = diag(u-) |diag(t—z~(8)) - diag(a) (I-- = Fpy (0, 8)) = al-] |

for some (known) vector . Factorization identity (27) can thus be rewritten as

ding(- z~~(8)) = ding(g.) (I~ Fry (0. 8)) —al - = N'_(a,8) [BI-- + Q..

for some matrixN’__(«, 5) which is nonsingular ift(5) > 0. This factorization is the Markov-additive
anolog of (27), which is the starting point for the spectradlgisis forQ®_ in Appendix A. The argu-
ments leading to Corollary A.1 and its proof can be repeaézd.h O

The preceding proposition generalizes the results in @eé&i3 of Miyazawa and Takada [33] and
Proposition 2(i) of Pistorius [37]. In comparison with Pogjtion 3.1, we note that the place of the
matricesQ¢  andexp (Q%, x) is different: instead of premultiplied, they are now positiplied. This
is in line with the correspondence between Corollaries BdLa2.

We need some further notation to give the Laplace transfdr(ko F~, I). We define the measure
F2, __(dx) through its Laplace transform

S8~

Foo.~(a, B) i= diag (Ese_o‘eq”ﬁz(eq)) [P§§ o Hyy(—iB)F,. (0, B) + PL_o HSN(—w)} :

and set
po_ — / FO (dz)e@i~?, (18)
(0,00)

Our next result is the main result of this subsection.

Theorem 3.2 For «, 8 > 0, we have

. 1, -PY 1. R
E [ 0] = diag | 1. - F,o(0,00)1- — Floy(0,00)P0 1
0
Py
+ ons(a, OO)P?N + FZQN(a7 OO) (ﬂI—— - ng)_l
I

x diag(u*A*) ( 0_s —diag(diag(A\°)71Q% 1) ).

Proof. Consider the censored embedding introduced in the proofagdition 3.2. It is readily seen
that
E. [e“"EXJFBX;I GN} =FE_ [e‘az+ﬁ§;J 6—1—} ,

and the latter is readily found with Theorem 2.2. The othaina$ follow along the lines of the proof of
Theorem 2.2. O

[0}

We conclude this section with a relationship betw&t) andlACNN, which can be regarded as the
analog of (3). The matrii@iw is defined adC? _, but with the dynamics of the Markov-additive process
specified by the time-reversed Laplace exporgnty instead ofy)_x. The next lemma formalizes
the intuition that the last-passage matrices under the ume&sare closely related to the first-passage

matrices under the measufe
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Lemma 3.3 For o > 0, we have

~

0 — diag (m(~))"" [zciw}' diag(m(~)). (19)

Proof. First we note that, since their proofs rely on the appenabxapply Propositions 3.1 and 3.2
we do not need thak drifts to —oo or +o0, respectively. The matnK ~. satisfies the system given
in Proposition 3.1, but WMFTS _(dx) replaced by its time-reversed counterpE%oN(dx). Using

FT%N(a, B) = diag (7r(~))"" F’Ts (o, B)diag (m;(~)) , the matrix on the right-hand side of (19) is

seen to satisfy the same matrix equatior%N given in Proposition 3.2. Uniqueness of its solution
proves the claim. O

4 The fluid queue: theory.

In this section, we use the theory developed in the previeasans to analyze a singfiiid queue We
stress that our treatment of the single fluid queue is of atuwiportance for understanding the network
results of Section 6. In a fluid queue, work (fluid) arrives at@rage facility, where it is gradually
drained; if the input temporarily exceeds the output capaitien work can be stored in a buffer.

More precisely, the system dynamics of the fluid queue arelasvs. Let{(A(t),I(t)) : t > 0}
be a continuous-time stochastic process, defined on somsunagte space, such that for any> 0,
A(t) is the amount of work offered to the system in the interigak] and I(¢) is the state of some
background process at timeThe buffer can be interpreted afiad reservoir to which input is offered
according to thenput processA. The buffer is drained at a constant ratd.e., a tap at the bottom of
the fluid reservoir releases fluid at rat@s long as the buffer is nonempty. After the fluid is processed
it immediately leaves the system. Throughout, we suppcsetie buffer capacity is unlimited.

We write W (¢) for the amount of fluid in the buffer at timeg and call this thebuffer content The
buffer-content process is also known as a (stochastarpge processA busy periodstarts when the
buffer becomes nonempty (i.e., the buffer content becorostiye). Theage of the busy periodt time
t, written asB(t), indicates how long ago a busy period started; in a formhla,mheans that

B(t) :=t—sup{s <t: W(s) =0}.

It is our aim to study the distribution ¢¥/(t), B(t), I(¢)) in steady-state, i.e., @s— oo, for a number
of different input processes. We abbrevigig o), B(o0), andI(oo) asW, B, and! respectively; their
existence follows from assumptions that we impose later on.

4.1 Markov-modulated ON/OFF input.

Suppose that the input process corresponds to a singleestiatis driven by a background procdss
that switches betweelN states. The transitions of the background process aremgéy an irreducible
Markov chain.J, defined through the transition probability mat#x’ := {p}-]k : 4,k =1,...,N}, the
sojourn times in the each of thié states are specified below. Suppose thand all other random objects
in this subsection are defined on the probability spacer, P).

If the background processisin stgtéor j = 1,..., N — 1, it feeds work into the reservoir at a con-
stant rateR; < r. Since the fluid level decreases during these periods, Wwéheatorresponding states
OFF-states The lengths of the sojourn times in these states are allattuindependent. Moreover, the
sojourn time in OFF-statgis exponentially distributed with parameigt.

If the source is in staté/, the so-calledDN-state the source generates work according to a generic
stochastic proces§Aon(t) : t > 0}. In order to ensure that the buffer content does not decrease
(strictly) while the source emits fluid, we suppose tHafx (t) > rt for anyt > 0 almost surely. The
ON-period is terminated after some period distributed asyémeric random variablB®) > 0 (‘*killing
time’), independent oon. After this ON-period,/ always makes a transition to an OFF-state (i/e.,
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has no self-transitions in sta?é). We suppose tha&7*) < co. In principle, the probability distribution
governing the transitions to OFF-states may depend on (Hmevirajectory of)Aox and7®, but we
suppose for simplicity that this is not the case. The ONgquriare mutually independent, and also
independent of the OFF-periods.

To characterize the distribution ¢/, B, I), we use an embedding and the theory from Section 2.
Let 7™ pe distributed as the elapsed time that the source is ON, iblgerve the system in steady
state in an ON-state. That is, it has the integrated-taiitibigion

* 1 &
P(TW" > 4) = ) / P(TY > z)d,
Y

wherey > 0. We also need the expected sojourn tinetweenON-statesEVorr. Standard formulas
for moments of phase-type distributions show that

- 1
EVorr = Pj\],_ (I__ — P‘_]_) ! vec (q—) ,
where the beginnings of the OFF-sojourn times and ON-spjtinres are labeled as-points and+-
points respectively, as in Section 2. The quantilyporr plays an important role for the probabilipy;
that the source is in statewhen the system is in steady state. We find that

EVorr (k) ET®)
= , k=1,...,N—1; = . (20
Pk~ EVorr + ET® m(—) vec(qr/a_) PN = vope + BT &0
The stability condition of this model is
EAon(T®) )
——  _+ R p <.
EVorr + ET &) thep "
We write P/ = {ﬁ}’k . j,k = 1,...,N} for the time-reversed transition matrix of the Markov

process/, and we defin@ such that .S, 7', J) has the transition kernel

PhP (U € dv,o € dw) j=Nandk=1,...,N;

p((s,8,7), (s+dv, t+dw, k) = { p4P(~Di € dv,ri €dw) j=1,....N—landk=1,..,N,

with

Ee—aa—ﬁU - F [e—aT(k)—ﬁ[AON(k)—’rT(k)]} Ee—a'rj—ﬁDj — qj )
’ ¢ + o+ B(r — Ry)

We next express the distribution 6/, B, I') in terms of the distribution ofS, T').
Proposition4.1 Fork=1,...,N —1,w, 3 > 0, we have
E [e_“’W_ﬂB;I = k‘} = ppBe 5T,

and

~

E [e—wW—ﬁB;I — N:| — pNE [e—(ﬁ—wr)T(k)*_wAON(T(k)*) ﬁj\]f_E_e—wg—ﬁT.
Proof. The proof relies elements from regenerative-processesythef. the construction used in Theo-

rem 4 in Kella and Whitt [24]. We here specialize to jiist the proof of the stated result, which also
covers the age of the busy peridtas well as the state of the background prodessgorks analogously.
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e The classical Reich formula states that, denot#ig) := —ﬁ(—t) —rt,

W sup # (),
>0

with A(—t) being the work generated in the inter{ia;, 0], where the system started in steady state
at time—oo. This entails that the maximum value attained by the prog€gy = —A(—t) — rt
needs to be analyzed; realize that increasiogrresponds to lookingackwardin time.

e To analyzesup,-( # (t), the state of the background process at time zero is samletf (as
determined in (20)). Two possibilities arise: the backgibprocess is in the ON-staf€, or in
one of the OFF-statels..., N — 1:

Ele=“W] = pyEy [exp (—w sup W(t))} + ]:E;llpkEk [exp (—w sup W(t))] :

>0 £>0

— The initial state igV. Using the argumentation of [24], it is seen that the bacdlgdoprocess
stays in this state for a period that has the integratediisitibution of 7®): the increment
of ¥ (t) is distributed asdon(T®") — rT®™ (which is nonnegative, a& is ON-state).
The next state, say(which is necessarily an OFF-state), is sampled using the-teversed
transition probabilitiesﬁj\’,_. It is readily seen that the supremum’f(¢) overt > 0 equals
Aon(T®™) — rT®™ increased by

sup —A(—t) —rt + A(=T®) 4 p7®"
t>T0)"

(21)

where the ‘initial’ state (that is, the state at timéF(k)*) of the background process js
Then realize that (21) is distributed @, #(t), but now started iry rather thanv.

— The initial state isk = 1,...,N — 1. It stays in this initial state for a period that has
the integrated-tail distribution of*, which is again exponential with parameigr, as a
consequence we could do as if the background process hagijuséd tok at time zero.
The supremum of# (t) overt > 0 can thus immediately be expressed in terms of the time-
reversed embedded process.

The stated follows by combining the above findings. O

Expressions for thﬁke—wg—ﬁf in Proposition 4.1 fok = 1,..., N —1 can be found with the theory
of Section 2. Hence, in order to use the above theorem, itirmmafind an expression for the transform
of (T™M™, Aoxn(k*)); from Scheinhardt and Zwart [41] we have

E [emoT®-p40n(¢)] g
Ek

T7k)
/0 e~ t=BAon(?) dt] . (22)

When specialized to the distribution @f and using (22), Proposition 4.1 reduces to

T (k) _
Ee—wW — <p'_ T EPT% E ! / e~wlAon(t)—r1] dt] Pj\]f_> E_e%.
0

In Boxmaet al. [13], a similar expression has been interpreted as a decsitigpoof W in terms of a
clearing process and an independent dam process.

25



AN

Figure 2: A realization oiV.

4.2 Markov-additive input.

In this subsection, we suppose that there is an irreducilaiek&¥ process such that A, I') is a Markov-
additive process on some probability spa& 7', P). We defineX (¢) := A(t) — rt, thefree process
Clearly, (X, I) is a Markov-additive process as well. Even though Propmsidi.2 below holds in much
greater generality, we suppose throughout tNatloes not have negative jumps. Consequently, this
subsection relies extensively on Theorem 3.1. We do notyaedhe spectrally negative case, but it
could be analyzed with Theorem 3.2; further details can baddan Miyazawa and Takada [33].

In Figure 2, we have plotted a possible realization of the@ssll’. Note that in this diagram there
are Brownian states, subordinator states, and negatiftesidites.

We now establish the precise relationship between the badietent process and extremes of the
free process, which follows from the reasoning in Sectiod #ind Section VI.7 of Asmussen [5]; see
also Section 4 of Miyazawa and Takada [33]. AgdiB(0), W (0), 1(0) does not have influence on the
behavior of(B(t), W (t),I(t)) ast — oo, a property that is intuitively clear. The result follows the
same arguments as those used for Markov-modulated ON/Qftk, ibut no ‘residual’ (or ‘clearing-
model’) quantities are needed since the sojourn timesae exponential. We write, for the law of
the Markov-additive procegsX, I) with 7(0) = k and Laplace exponent_ x defined in (10).

Proposition 4.2 Suppose that7EX (1) < 0. Then(W, B) is a finite random vector, and for any, 3 >
0,k=1,...,N,we have

~ =X =
E[eeW-8B. 1 = k} — 7 (k)Epe PF —wX,

We now work out the preceding proposition for the distribntof (W, 1), since the resulting formula
is particularly appealing. Corollary 3.1 shows thatdor 0, providedi_ x (w) is nonsingular,

. r—wX _ . 1 Oi _ / -1 0§
ding(m)Be ¥ = wding(m)k (@) (92 ) =wlwx@) (0 ).
where we seu_ := m(~) o v_ (recall that~-states stand for-states and3-states). The vectas_

is defined in the same way as the veatorvector, but withP replaced by3. With Proposition 4.2, this
leads immediately to the identity

EleWiI]=w( 0, v )y_xw)! (23)

for w > 0 with ¥_ x (w) nonsingular. This formula is Equation (4.1) of Asmussenlselth [8], who in-
terpretu_ in terms of local times. The following observation, howeg¥&new. By combining Lemma 3.3
with Lemma 3.1, it readily follows thai_ must be a left eigenvector @° . (corresponding to the sim-
ple eigenvalue zero); this uniquely determimesup to a constant. This constant can be found by writing
down the formula foEe~«" from (23), usingl = P’1, and lettingw — 0 in the resulting expression.

Motivated by Proposition 4.2, we next characterizeRhdistribution of(X, FX, I) (the last compo-
nent is not required here, but it is needed in Section 6). Bidathe introduction of yet more matrices,
we suppose that there are no zero-drift states. The follpwasult then follows immediately from The-
orem 3.1 and Lemma 3.3.
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Corollary 4.1 Suppose thatr’EX (1) < 0 and that there are no zero-drift states. We then have for
Oé, /8 2 01

(8 x(9) = o) ding(m)E [T T = (0 ) )

In conclusion, ifX is spectrally positive, the matri@< __ plays a similar role for the steady-state
buffer-content process as the matkiX',, for the maximum of the free process.

5 The single queue: examples.

Many known models can be incorporated into the frameworkefireceding section. To emphasize the
versatility of our framework, we now give some examples. éntigntly, the matrices that appear in these
examples also play fundamental roles in a network settiegSection 6.

The BMAP/GI/1 queue.

The BMAP/GI/1 queue is a generalization of the classical MUGueue. Here BMAP is shorthand for
batch Markovian arrival processSpecial cases include the MMPP/GI/1 queue, where MMP Felstiam
Markov modulated Poisson procesnd the PH/GI/1 queue, where PH standspbase-type renewal
process For further special cases, we refer to Latouche and Rammaij#@, Sec. 3.5]. The BMAP/GI/1
queue has been studied in detail by Lucantoni [31], and itiigpoesent aim to relate his results to ours.
This is particularly relevant since our notation does natagk agree with the standard notation in the
matrix-analytic literature as used in [31]. We stress thwattenof the results presented here are new.

The virtual waiting time in a BMAP/GI/1 queue is defined as thdfer content in a fluid queue
with special Markov-additive input; we describe this beldiore precisely, as observed by Tzenata
al. [44], the BMAP/GI/1 queue can be viewed as a fluid-flow modehvyamps (fluid-flow models are
discussed below).

In a BMAP/GI/1 queue, the arrival process is governed by akis\dan background procedsthat
can takeN < oo values. The sojourn time dfin statej has an exponential distribution with parameter
q;- Atthe end of a sojourn time in stajewith probabilitypg.z), n > 0 customers arrive (that all bring in
a generic amount of work/ > 0) and a transition of to statek occurs. These transition probabilities
satisfy) " fo:lp;’;) =1forj=1,...,N. We write H for the distribution ofU/, and the stationary
distribution ofI is denoted byr; as usual.

Let us now define the free proce&Ssuch that( X, I) becomes a Markov-additive process, so that
the setting of Section 4.2 can be used. Since the amount &f wdhe system decreases at unit rate, it
readily follows that the Laplace exponentfis given by

W x(8) = BT — diag(q) (I -3 P [Ee ] ) , (24)
n=0
where P(") is the matrix with elementpg.’,?. We suppose that the system is stable, m¢EX (1) < 0.
It is an immediate consequence of Proposition 4.2 and thankenthereafter that
Ee "W = wu/ ¢~ (w)1,

for w > 0 with ¥_x(w) nonsingular. This formula, in the present context due to &amami, is
Equation (45) in [31]. In the matrix-analytic literature:,i$ customary to use the notatigpy for u_.
Note that we have shown in Section 4.2 thatQ° = 0'.

This motivates the investigation of the matdX®  for o > 0. Upon setting

G® = / eS~TH(dx), (25)
[0,00)
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we have by Proposition 3.2,

Q% + ol = —diag(q) (I i [G"‘]”) :
n=0
Substitution of this expression in (25) leads to a fixed-psystem forG:

G® = / oo o~ diag(q) (I-327%, P(")[GQ]V'L)”“"H(dx),
[0,00)

which is the matrix version of Takacs’ fixed-point equatiénP(!) is the only nonzero matrix in the
sequence{P(”) : n > 0}. Based on this formula, Lucantoni [31] gives an algorithrattherves as an
efficient alternative for Neuts’ approach to M/Gl/1-typeegeing systems [35]. Importantly, it is not
necessary to compu@? _ in order to findu_: the definition ofG® in (25) shows that:_ is necessarily
proportional to the unique probability vectgrsatisfyingg’G® = g’. The normalizing constant is found
as in Section 4.2.

Fluid-flow models.

A fluid-flow model is a fluid queue with a special type of Markagditive input: the free process is
neither allowed to have jumps nor Brownian states. Theytiates undoubtedly the most well-studied
fluid queues; we do not attempt to give a full bibliographyt tadier to [4, 28, 40] for more details.

Recently, there has been some interest in deriving the taptansform of the busy period in fluid-
flow models [1, 10]; see also [3] for an earlier contributioh.is our present aim to show how our
general theory reproduces some of the most important beisgepresults. Thus, the results below are
well-known. We remark that we allow states with zero drifts.

Even though fluid models are special Markov-additive preesswe shall work within the framework
of Section 2 to derive formulas that are familiar from thedlélow literature. To facilitate the use of
our discrete-time results, we use an embedding that re¢bedme and position at thieeginningof
a sojourn time of the underlying background procésdn self-evident notation, we partition the state
space into+-points,0-points, and—-points. The intensity matrix of is written asQ/; this also defines
Q’.,, for instance.

Let ¥ _ be the matrix with the transforms of the busy-period lengfsat is, ifc; > 0 andc;, < 0,
then the elemerttj, k) of this matrix is the Laplace transform of the length of thetfpositive excursion
of X on the event that it ends this excursion in statdn other words, it corresponds to the amount of
time thatX spends above zero on the event that it starts in gtatel it first hits zero in state.

Let us use the notationec(c4 ) and vec(c_) for the vector of strictly positive and strictly negative
drifts respectively. We also sgf! := diag(q+ /(¢ + «)), AY := diag((¢g+ + «)/c+), and

: 1 _

d +diag (a) [QLs — ais — QLo(Qho — doo) ' Qp],

o : 1 _

L = tding (- ) [Qhe — Qho(Qly ~ alw) Q]
Note that, in the notation of Section 2, we are intereste®in = P¢_diag(1/u*). As in the proof
of Corollary 2.1, we consider a sequencetefand0-points as a single--point, so thatF', _(«, 5) =
(B4 — T%,)~'T%_. Then Proposition 2.3 immediately yields that

e :/ eTi+mTi_eQZ~’”dx,
(0,00)

whereQ? = T2 + T, ¥% . Since the eigenvalues df¢ , have a strictly negative real part and
those of Q2  have a nonpositive real part, the integral in the above sgprtation for¢ _ converges.
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This implies the identity (see Beat al. [9] for references)
T¢ WS +99 QY =-T9_.
After some rearranging and substitution@f_, we obtain the matrix equation
T +WE T2, W + T, 08 +P5 T2 =04,

which is Theorem 1 of Beaat al. [10] and, fora = 0, Theorem 2 of Rogers [40]. Note that no drift
condition was imposed to derive this equation.

Importantly, the theory of Section 4.2 shows that the ma@i¥%,_, is a key quantity for fluid-flow
models. For instance, under a stability assumption, a Igéneector ofQ° _ (corresponding to the
simple eigenvalue zero) appears in the representatidiy @fs a phase-type distribution. The matrix
Q% _ plays a prominent role in many system characteristics df fjuieues, see also Section 7.

M/M/ co-driven fluid queues.

Although it was assumed that the state space of the backgjmocess be finite, we now give an example
with a countably infinite state space (that, to the best ofkoasvledge, was not solved so far) that still

fits into our framework. The model is a fluid-flow model, but wew that we can translate it in terms

of the queue with Markov-modulated ON/OFF input of Sectich 4

Consider the following queueing model. A buffer is empti¢c @onstant service raie and jobs
arrive according to a Poisson process (with r&te They stay active for an exponentially distributed
period of time (without loss of generality, we set its meanado 1); while active they feed work into
the buffer at unit rate. Notice that the number of (activdsjin the system follows an M/Mé-model,
therefore it has a Poisson distribution with megrdenotep;, := e~*\*/k!. This leads to the stability
condition\ < r.

The buffer level increases when the number of active jobsed®-, whereas the buffer is drained
(or remains empty) when the number of jobs is belowLet X (¢) denote the free process at timhas
before, and lefV(¢) the number of active flows at tinte For ease we assume tha¢ N; r_ := |r| and
ry = [r]. Define for¢ > [r]

op:=1nf{t >0: N(t) =r_ | N(0) =¢}, Up:= X(oy).

An explicit formula foré,(a, 3) := E[e~*7¢—8U¢] is provided by Preater [39].

Due to exponentiality and reversibility properties, we édalat the steady-state buffer contéfit
is distributed assup;~ X (¢). To study this supremum, it suffices to consider an embeddidge
embedding could be the position of the free process at egobssirive and leave, but this has drawback
that the dimension of the background process is (countanfiylite. Evidently, we could alternatively
opt for the ‘sparser’ embedding that lumps together thestat, », + 1, ... into stater ; the supremum
of the embedded process coincides with the supremum of lifesiel process. Then the sojourn time in
statek = 0, ..., r_ is exponential with parametar+ k, whereas the Laplace transform of the time spend
in r, jointly with the net amount of work generated{is (o, §). With ¢; := X + j, it is easy to verify
that corresponding discrete-time Markov chain{on. .., r } has the following transition probabilities:
p}{jH = Ng;, itj=0,...,r_; p}{j_l =j/g, it =1,...,r_; p;ﬂ]%,,i =1 p}fk = 0, otherwise.
DefinelP such that(S, T’, J) has the transition kernel

p}IkIP’(Ude,UEdw) ifj=riandk=0,...,7y;

plle, 1), (a4 v, i+ du K)) = { phP(=D7 € dv, 7/ € dw) ifj=0,...,r_andk=0,...,ry,

with

]Ee—aU—BU — Fe oy —BU”_ — 5 a, ,6 7 Ee—om‘j—ﬁDj — 4 .
r+(@ ) qj +a+ B(r—7j)
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A procedure analogous to that for Markov-modulated ON/Q#fai now yields fork = 0,...,r_
andw, 8 > 0,

E [e‘“’w_ﬁB;I = k‘} = ppEge w57

and

E e W08 —r,| = fjpkfk(a,m E,_e “5~AT,

k:T+

6 Tandem networks with Markov-additive input.

One of the simplest networks is a tandem network, in whidtuid reservoirs are lined up in series.
In this section, we extend the analysis of single statiorteése tandem fluid networks. The results we
obtain are new. Our analysis shows that we can immediatelyhasresults on the joint distribution of the
buffer content and the age of the busy period for the sing&iguas found in Section 4. The reasoning
below also shows that tandems with Markov-modulated ON/@p&t [41] can be analyzed analogously
to tandems with Markov-additive input [23]; we here onlys®at the analysis for Markov-additive input.

Even though our framework offers an appealing approachdb satworks, we do not strive for the
greatest possible generality. Instead, we only give themdaias without proofs, since the results can be
proven along the lines of [17]. Several extensions are desaliin the next section.

In our model queug is drained at rate; as long as there is content in bufferAfter fluid is released
from queueyj, it immediately flows to queug + 1, unlessj = n; then it leaves the system. We suppose
that the input to the first queue is governed by the same Maakioltive proces§A, 1) as in Section 4.2,
i.e., its input processdl is spectrally positive. Furthermore, we suppose for siaitglthat I has no zero-
drift states and that there is no external input to queues , n. To avoid ‘invisible’ stations, we impose
the conditionr; > ... > r,,.

We definelV;(t) as the content in buffef at timet, and letW (¢) be the vector of buffer contents.
The evolution of the proces® is completely determined byl and the initial buffer-content vector
W (0). Formally, this can be made precise by using Skorokhod tefteenappings; see for instance
[17]. Itis our aim to study the steady-state vector of buffentents in this network, which we denote
by W := W (c0). The inclusion of the ages of the busy periods raises noiaddltdifficulties, but we
focus here on the simplest possible situation.

We define forj = 1,...,n, X;(t) .= A(t)—rjtand X (t) = (X1 (t),..., Xn(t))". Note that( X, I)
is a multidimensional Markov-additive process®h x {1,..., N} underP. We also set

X :=sup Xj(t), FJX = inf{t > 0: X;(t) = X(c0) or X;(t—) = X,;(c0)},
t>0

andl; := I(Ff). Throughout, we suppose tha{EX,,(1) < 0, so that each component &F drifts to
—0Q.

Our analysis consists of three steps. First, the queueiolglgm is formulated in terms of free
processes. The splitting technique of Section 3.2 can ba, uise different form, to characterize the
extremes of these free processes. This is reminiscent @rthlysis of Lévy-driven fluid networks in
[17]. The final step converts the results back to the queussaitting.

We start by giving the analog of Proposition 4.2, therebglaihing the connection between fluid
networks and extremes &. It can be proven along the lines of Proposition 5.2 in [17htéNthat the
distribution of W = W (o) is independent oW (0) and(0).

Proposition 6.1 The vectoW is finite, and for anyw € R, we have

n—1

E €_<“’:W>;I =k| = ﬂ'[(k)Ek [G_Zi:l (wi_wi+l)yi_wn7n;7n:| 1.
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We use splitting to calculate the transform in this expassin [17], splitting is distinguished from
splitting from the left, but this is irrelevant for the arganis and the results. Modulo this remark, the
following lemma can be proven along the lines of Lemma 2. 1@} [

. =X =X =X\ =X
Lemma 6.1 Foranyj, {(X(¢),1(t)) : 0 <t < F }and{(X (F; +t)— X (F; ), I[(F +t)) : t > 0}
are ﬁ-conditionally independent giveﬁff).

With this proposition at our disposal, the joint distritastiof - := (F; ,...,F.) and X :=

(X1,...,X,) can be derived in only a few lines. The key element in thisamislis the observation

F; <...< Fff In the following theorem, we give the resulting Laplacensf@rm; in the terminology
of [17], this transform has quasi-product form The proof requires only minor modifications in com-
parison with the proof of Theorem 3.1 of [17], and is therefomitted. We emphasize that the product

is taken froml to n — 1; the order is important, since the matrices do not commute.
Corollary 6.1 We have fo3 € R",

E [e—wan c N} — E [e—[zzﬁ(m—m)ﬂkﬁf (ST, ¢ N}

n—1 - ’ o -1
% H { (EN [e—[ZLL_J‘H(Tj—rk)ﬂk}Ff—[Z;_jHﬂk}Xj;Tj €~]>
j=1

Y

% E. [e—[z}:_j+2(rj+1—rk)ﬁk]Ffﬂ_[Eg_jH ﬁk]yj+1;7j+l c N} }

whenever the appropriate matrices are nonsingular.

Corollary 6.1 expresses the transform of alistribution of (X,1,) in terms of the marginals
(X;,1;) for j = 1,...,n. Importantly, the transforms of these marginals can be dowith Corol-
lary 4.1. As a final step, we therefore cast the results battkthre queueing setting. For notational
convenience, we define

n

ni(w) == > (re_1 — ro)wy,
l=j+1
so that we obtain the main result of this section, which isrgegaization of (23). The simplicity of the
expression for the Laplace transform is remarkable, ealean view of the transform-free solution of
Kroese and Scheinhardt [27] for the two-station fluid-flowdem with a two-dimensional background
state space. The matriQ(Nj)N(a) appearing in the following theorem is defined as tBg._ -matrix
arising from the procesx’;.

Theorem 6.1 For w € R}, we have

E e W 1]

n—1 1
- ( 0, wa[u]' ] {[wjﬂl__ + QU (ni(w))|  |wiL -+ Q(le(nj(w))}} )

j=1
< (h-x,(w1) —m(w)I)7",

whenever the appropriate matrices are nonsingular.

Importantly, this theorem shows that the joint buffer-emmtdistribution for a fluid network can
immediately be established frokmownresults about the single (fluid) queue discussed in Section 5
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For instance, Lucantoni’s algorithm for the BMAP/GI/1 imdiately yieldsQY), (-), and similarly for
algorithms that efficiently solve the matrix-quadratic atjen in fluid-flow models.

Specializing Theorem 6.1 to the marginal distributionV@f for n > 1, we obtain the interesting
formula

Ele " Ten~] = [t [wI__ + O ((ryy — 1)) - QY ((rp1 — rp)w),

n — Th—1

which should be compared with Theorem 3.2 of [18] or Corgl&2(i) of [17].

7 Extensions.

In the course of writing this paper, we have bypassed seirdgmksting questions. It is the aim of this
section to sketch how some additional features can be incatgd into our framework. These features
are mainly inspired by models that have been recently sdudiéhe literature.

Markov-additive processes under exponential killing.

The approach taken in this paper can also be used to chazedtes distributions of X (t), F - (), T(t))
and(Y(t),FX (t),1(t)) for anyt > 0. By taking Laplace transforms with respect to time, this ams
to investigating(X (e), F (ex), T(ex)) and (X (ex), F (ex), I(ey)) for someX > 0. The resulting
identities can be viewed as the analog of (11X ifs spectrally positive.

The vector(X(ey), I(ey)) plays a role in a number of problems in applied probabilityrstr it
completely specifies the solution to the one-sided exit lpralf29]. We remark that, if there are no
subordinator states, the nonnegative ma%r()lciw)—l plays a prominent role in this solution; it can
be interpreted as a local-time matrix. Moreover, the distion of (X (ey), I(ey)) also immediately
specifies the transient behavior of a queue with Markoviagdinput, see [1] for a special case.

Ramifications of the tandem network in Section 6; priority systems.

In Section 6, there are no external inputs to the statiyns. , n of a tandem fluid network. As long as
these external inputs are increasing subordinators,ifitey do not depend on the state of the back-
ground process$, our reasoning immediately carries over to this more gesetting.

Kella [23] doesallow for a dependence of this external input (or the draiesion the background
state, and we now outline how our framework should be moditidzk able to derive expressions under
this assumption. In terms of the one-dimensional Markod#ae processX of Section 3, it is not
sufficient to studyFX (jointly with (X, T)), but knowledge is required about the amount of time spent
in each of the statesill time 7.

The last-passage (or Wiener-Hopf) approach that we hawt insthis paper can still be applied,
but the matricedC® _, now depend on a&ector vec(a) instead of a single value. An expression such
asy_x(B) — aI in Theorem 3.1 then changesdo x () — diag(«). However, the reasoning essen-
tially requires no further new ideas. As for tandem netwptke only remaining assumption is that the
components oF " are ordered (note that a similar assumption is needed if.[23]

Recently, there has been an interest in fluid-driven pyiagitstems [43, 45]. These systems are
closely related tandem queues with external inputs andl elyam rates. Although equal drain rates
are not covered in Section 6, the techniques still applyeduald if the external inputs are nondecreasing
processes (with the first station as the only possible eirepsee for instance [17]), the components
of F* are ordered. In particular, our theory can be used to angigieaty fluid systems with Markov-
additive input.
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Phase-type jumps in the opposite direction.

All Markov-additive processes in this paper have one-sjdetps. Given the tractability of Lévy pro-
cesses with general jumps in one direction and phase-typpgun the other direction [19], it seems
plausible that results can be obtained within the Markodiae setting under the same assumptions.
Indeed, an embedded process can be introduced and the tie€degtion 2 can be applied.

A The spectral method for the matricesK“_ and Q“ .

Corollaries 2.1 and 2.2 give two non-linear matrix equatitimat must be satisfied bf(®_ and Q< _.
This appendix describes and analyzes an alternative mévhiirdd these two matrices. To our knowl-
edge, the resulting approach is novel.

Exactly the same approach can be taken in the context of thkaviadditive matricedC® _ and

@ ., but we here focus on the discrete-time framework of Se@iohhroughout, we fix some > 0
and we suppose thatdrifts to +oco or —oo.

As observed in the body of this paper, subsequepbints may be ‘lumped’ in order to calculate the
matricesK®_ andQ< _. Therefore, if we replacé’, _ (o, §) by F ,_(a, 3), we may assume without
loss of generality thaP;ZJr = 0. The reasoning that led to (6) shows tifat (0, 3) then factorizes
into two matrices:

D__(a,8)= (BI__ +K"_) (I__ _E_ [e—aTT+ 5, € —D . (26)

This equation can be regarded daetorization identityand is the starting point of the spectral method.
When inspecting the two matrices enclosed by round braaketbe right-hand side, we note that the
first matrix has singularities in the right complex halfgtaand the second matrix in the left complex
halfplane. For similar factorizations in a discrete-statenework, we refer to Zhaet al. [46].

A similar factorization can be given f&@< _: the first-passage matrig® _ of the original process

can be expressed in terms of the last-passage nitix of the time-reversed process through
K® = diag(\*) #Q*_ diag(A\*) 1,
cf. (3). An analysis along the lines of Section 2 yields thetdazation identity
diag(\*) *D__ (a, §) diag(A*) ™ = (8T + K* )N(a, 3),

where N (o, 3) is an N_ x N_-matrix with singularities in the left complex halfplane hi yields a
second factorization identity:

D__(a,8) = diag(\*) N (o, 8) diag(A*) ' (B + Q% ). (27)

The spectral method uses (26) or (27) to constii€t andQ< _ from their eigenvalues and eigen-
vectors. We explain the key ideas by discussing the follgwiroposition, which is a special case of
Theorem A.1 below. It immediately follows from (26) and (23ge also Section 5 of Asmussen [4] for
related results. Recall the notatidn. from (4).

Proposition A.1 For anyr € H,., the following are equivalent:
(i) —visan eigenvalue o< _,
(i) —vis an eigenvalue oK“_, and
(ii) zerois an eigenvalue db__(«a, v).

Moreover, the geometric multiplicities of these eigengalaoincide.
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Proposition A.1 indicates why the recursions in CorollsrZel and 2.2 are necessarily matrix ver-
sions of the equatio®__(«, 3) = 0__. Indeed, suppose thét-v, £) is a left eigenpair fod<®_, so
that¢/ K = —vf'. Since ther?/e®=-% = ¢=»2¢/ it follows from the recursion fol&®_ in Corol-
lary 2.1 that¢/D__(«,v) = 0’_. The same reasoning goes through for the recursion in GoydH.2,
but one then has to work with the right eigenpair.

If K¢ orQ“_ is diagonalizable, Proposition A.1 shows that its eigamsland eigenvectors (and
hence the matrix itself) can be determined by studying sardies of 3 — D__(«, (), i.e., the values of
G for which this matrix is singular. Several relatively exjiresults can then be derived, see Kella [23].
However, if K®_ is not diagonalizable, Proposition A.1 shows that itimspossibleto find enough
pairs (—v;, £;) with the above properties. To resolve this, one might gukas thegeneralizedleft
eigenvectors ofD__(«a, ;) can be used to construg&’®_. It is the contribution of this appendix to
show that this approach does not work, and to show how thibeaersolved. In particular, we provide
answers to the questions raised in Section 4 of Asmussen eltal [K] in the continuous-time Markov-
additive context.

Proposition A.1 has implications for the locations of thegsilarities of D__ («, 3) in H. First,
since K% _ andQ“ _ are real matrices, these singularities must come in cotgyggirs. Moreover, as
a result of Proposition 2.4, if zero is a singularity it is pimand the real parts of the other singularities
are strictly positive. In fact, all nonzero singularitiesish be in the open disc with radius and center
max; A}. Fora =0 andlim,, S,, = —o¢, this claim has recently been proven with different methods
by Tzenoveet al.[44]. In [44], it is also shown tha8 — det D__(0, 3) has exactlyN_ zeroes inH
(counting multiplicities).

If S drifts to —oo, Proposition A.1 can sometimes be used to find the veBtaiS = 0) studied in
Section 2.4. Indeed, in view of Lemma 2B, (S = 0) can be found if one ha¥_ —1 linear independent
vectorsey, ..., £y__1 orthogonal toP_(S = 0). To determine the vectors;, one determines a root
vj € H4 of the equationrlet D__ (0, 5) = 0, and identifies thé; with a left eigenvector oD __(0, v;)
corresponding to the eigenvalue zero. By Corollary 2.4 we Ihaveeg.P_ (S = 0) = 0. Proposition A.1
shows that enough independent vectors can be found o&fy if (or Q° ) is diagonalizable.

As an aside, we mention that Gat al. [21] present a method (in the context of a discrete-state
model) for determining the vectd?_(S = 0) if S drifts to —oo, and that they also call this a ‘spectral
method’. Cast into the present setting, they show thigtD__ (0, 3) P_(S = 0) must vanish to the
order at least at 3 = v if v # 0 is a singularity ofD__(0,v) with algebraic multiplicityr. Here
adj D__(0, ) denotes the adjoint matrix dD__(0, 3), i.e., the transpose of the matrix formed by

taking the cofactor of each elementBX__ (0, 3).

It is the aim of the remainder of the appendix to find a suitdbien of the spectral method with
which K% _ andQ®_ canalwaysbe constructed, not only in the diagonalizable cas§. dfifts to —oo

anda = 0, the procedure also gives exacflyy. — 1 vectors orthogonal t&_(S = 0).
It is most insightful to present the procedure in an algamithform:

e Locate the singularities dD__ («, ) in H (if lim,, S,, = —oc anda = 0, thens = 0 is such a
singularity).

e For every nonzero singularity, find as many independent vectdrsvith £/ D__(«,v) = 0’ as
possible (iflim,, S,, = —oo anda = 0, thenzr_ is such a vector for = 0, see (8)).

e This results ins pairs(—v;, £;), for somes < N_, j = 1,...,s (thev; need not be distinct). If
s = N_, then stop;K¢_ is diagonalizable.

e Suppose thaiK®_ is not diagonalizable. Ifim, S, = +o0o or & > 0, execute the following

subroutine foreach = 1,...,s. If lim, S, = —oc anda = 0, setd; = 1 andﬁgl) = m_, and
execute the following subroutine for eagh=1,...,s — 1:
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Lo
— Setp := 1 and erteﬁg )= L.

— If possible, find a vecto€, independent otg.l), . ,£§ ), such that

£D__(a,v;) Ep Z/{) ) P _”fop a+1)’ diag(ua)\a)P;]+Ffo_(d:c).

— If the previous step was successful, S%frl =¥, p = p+ 1, and repeat the previous step.

If it was unsuccessful, sef; := p and stop the subroutine.

The following theorem shows that this algorithm yields* _ for o« > 0, in addition toP_(S = 0)
if S drifts to —co. The matrix@Q®_ can be found in a similar fashion, using (27) as a startingitpoi
For notational convenience, we only write down the nonzéements of the matrices. Note that the
J;-matrices are Jordan blocks.

Theorem A.1 For o > 0, the matrix X%_ is constructed as follows:

L, - Ji Ly

Kg— = . ’ (28)
L, Js L,

where the(d; x dj)-matricesJ; and (d; x N_)-matricesL; are defined as

~vj o
1 —Vj J
Jj = . . , Lj =
R (d;)’
1 —Vj ej ’
Moreover, iflim,, S, = —ooc anda = 0, then the rows ofL4,..., L1 constitute exactiyv_ —

independent vectors orthogonal 8 (S = 0).

Proof. If suffices to prove the first claim, since the second claim edrately follows from (7). For
convenience, we denote the second matrix between rounkidtsan (26) byM («, (3).

To prove the theorem, writé®_ in the Jordan formL—_1 J__L__, cf. (28). Iflim, S, = —oco
anda = 0, we know that zero is a simple eigenvalue and that its cooretipg left eigenvector is_,
cf. Proposition 2.4. Factorization identity (26) showsttha

adj (BI——+J__)L__D__(o,3) =det (BI-_+J__)L__M(x,[). (29)

Now observe thabI__ + J__ is a block-diagonal matrix, and that for (square) block mag A and

B of arbitrary size,
d; A 0\ [ detBadjA 0
Wlo B)™ 0 detAadjB |-

This shows that (29) is equivalent to theystems
adj (B14,q, + J;)L;D-_(ov, B) = (B — v;)“ L;M (v, B). (30)

If « =0, the equation fof = s plays no role and is redundant. In the rest of the proof, weiden this
system for fixedj and suppress the subscrigts
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It remains to show that our algorithm constructs the malri¢= L;). First observe that (30) is
equivalent to thel equations

n _1\p—1 , ’
3 %g(w D__(a,5) = (8 - v)t™ M{(a, 8), (31)

2By

forn=1,...,dandg > 0. For notational convenience, we set

D@_(a,z/) ::/

z? —vx q: ay« J a
—e diag(u\) P F _(dz).
[0,00)

q
We now prove:
Claim A. Let1 < k < d. If (31) holds forn = 1,...,k andg > 0, thent' D__(a, 3) = 0’_ and

n—1
€' D__(a,v) = €07V = 3" 0@ D" (a, 1) (32)
q=1

forn=2,... k.
To see that Claim A is true fdt = 2, setn = 1 in (31) and let3 — v to obtain¢™)' D__ (o, v) =
0_. Using (31) forn = 2, we see that

1
-7

Upon letting 3 — v, we see (with dominated convergence abd/) > 0) that£® ' D__(a,v) =
¢ — gy pt) (v, v).

Suppose t_h_at Claim A holds for someby induction it suffices to show that it also holds fo# 1.
For this, first multiply thek — 1 equations in (32) by—1)"~!(3 — v)*~*~1, and substitute them in
Equation (31) form = k£ + 1 such that termd__(a, 3) — D__(«,v) appear everywhere; also use

' D__(a,v) = 0'_. After some algebra, one then obtains

€' D__(a,p) ¢V [D__(a,8) = D__(a,v)] = (8= v)e? M(a, ).

(!

(8= )"V M(a,5) = (-1)"¢*V'D__(a,8) + ¢V [D__(a, ) = D__(a,v)]

68—v
= (_1)71—1 (n)
X Gt [P D -
k—n
- (=(B=v))" D (a,v)].
q=1

Upon letting3 — v, this leads to (32) fon = k + 1.

To finish the proof of the theorem, we also show that:

Claim B. Let£™) ... 2™ satisfy (31). If there exists some vectindependent o)), ..., £(m)
with the property that

€D (op) = £ =340 DI ), (33)
q=1
thend > m + 1 and (31) holds fon = m + 1 and¢(™+1) = ¢.
To show that Claim B holds, we suppose tliat m and work towards a contradiction. The assump-

tion d = m implies that, for any vectoo independent of(1), ... €™ o' K®_ + —pov' + £’ By
definition of M («, 3), this implies that for any} > 0,

v'D__(a,8) + (v — B)v'M(a, B) # £ M(a, B).
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Using a similar argument as in the proof of Claim A, it can bersthaw(m)'M(a, v) equals the right-
hand side of (33); this relies on the assumption thatéhesatisfy (31). A contradiction arises upon
settingv = £ and lettingG — v in the last display. O

Two elements of the preceding proof deserve special atentrirst, we emphasize the appealing
form of the factorization (26); we encounter similar formshe body of the paper. Another interesting
point is the connection between the system (32) and themearlimatrix equation of Corollary 2.1. We
use this connection to prove the following.

Corollary A.1 The matrix equations in Corollaries 2.1 and 2.2 have a unigsoi@tion within the class
of matrices with eigenvalues i, .

Proof. It suffices to prove the claim for Corollary 2.1, as the otlwdiofvs similarly. Rewrite the system
(32) and the equatiol’) D__(a, ;) = 0/_ as

04— = —J;L;— Ljdiag(\*) + L;diag(u*\*)P?_
dj—1 ok
vz k . ayao a
+ ) e 7 (vilaya, +Jj)" Ljdiag(u®A VP! FY_(dx), (34)
k=0
forj=1,...,s.

In the proof Theorem A.1, we showed that there is saiseich that (34) holds for a uniqug
and unique matriced; and L;. The matricesJ; have eigenvalues ifi{, and the matriced.; have
independent rows (uniqueness holds up to multiplicatiora lepnstant). We now argue that a solution
to (34) immediately gives a solution to the equation in Clargl 2.1. To see this, stack thematrix
equations of (34) into a single system, premultiplyby' , note that

dj—1 k

L k J:
§ : viT ) ) T

¢ (vilaa, +Jj)" = e,
k=0

and use (28). The argument can also be reversed: given #gsdioithe equation in Corollary 2.1 with
all its eigenvalues ifH, the ‘building blocks’ for the Jordan form must solve (34). O
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