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ABSTRACT 
In this paper we consider the first passage process of a spectrally negative Markov additive 
process (MAP). The law of this process is uniquely characterized by a certain matrix function, 
which plays a crucial role in fluctuation theory. We show how to identify this matrix using the 
theory of Jordan chains associated with analytic matrix functions. Importantly, our result also 
provides us with a technique, which can be used to derive various further identities. We then 
proceed to show how to compute the stationary distribution associated with a one-sided 
reflected (at zero) MAP for both the spectrally positive and spectrally negative cases as well as 
for the two sided reflected Markov modulated Brownian motion; these results can be interpreted 
in terms of queues with MAP input.  
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In this paper we consider the first passage process of a spectrally negative Markov additive process (MAP). The
law of this process is uniquely characterized by a certain matrix function, which plays a crucial role in fluctuation
theory. We show how to identify this matrix using the theory of Jordan chains associated with analytic matrix
functions. Importantly, our result also provides us with a technique, which can be used to derive various further
identities. We then proceed to show how to compute the stationary distribution associated with a one-sided
reflected (at zero) MAP for both the spectrally positive and spectrally negative cases as well as for the two sided
reflected Markov modulated Brownian motion; these results can be interpreted in terms of queues with MAP
input.
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1. Introduction Continuous-time Markov additive processes (MAPs) with one-sided jumps have
proven to be an important modelling tool in various application areas, such as communications networking
[21, Ch. 6-7] and finance [3, 12]. Over the past decades a vast body of literature has been developed; see
for instance [1, Ch. XI] for a collection of results. A MAP can be thought of as a Lévy process whose
Laplace exponent depends on the state of a (finite-state) Markovian background process (with additional
jumps at transition epochs of this background process). It is a non-trivial generalization of the standard
Lévy process, with many analogous properties and characteristics, as well as new mathematical objects
associated to it, posing new challenges. Any Lévy process is characterized by a Laplace exponent ψ(α);
its counterpart for MAPs is the matrix exponent F (α), which is essentially a multi-dimensional analogue
of ψ(α).

In this paper we consider the first passage process. More concretely, with τx defined as the first time
the process exceeds level x, we study properties of the process τx as a function of x. We concentrate on
the case of a spectrally negative MAP (that is, all jumps are negative), so that the first passage process
is a MAP itself. Knowledge of the matrix exponent of this process, which we in the sequel denote by the
matrix function Λ(q), is of crucial interest when addressing related fluctuation theory issues. Indeed it
can be considered as the multi-dimensional generalization of −Φ(q), where Φ(q) is the (one-dimensional)
right-inverse of ψ(α), as given in [16, Eqn. (3.15)]. Our main result concerns the identification of the
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matrix function Λ(q) in terms of the matrix exponent F (α) of the original MAP. We provide the Jordan
normal form of Λ(q) relying on the theory of Jordan chains associated with analytic matrix functions.

Importantly, our main result is not only about identification of the matrix exponent of the first passage
process. We prefer to see our contribution rather as the development of a new technique: the theory of
analytic matrix functions, combined with the special structure of the Jordan pairs of F (α) − qI (with
I being the identity matrix), and their relation to the matrix Λ(q), enables the derivation of a set of
further identities. These identities, such as (32) and (56), then play an important role in the solution of
a number of problems related to the reflection of the MAP; here ‘reflection’ amounts to an adaptation of
the MAP in order to ensure that the process attains values in a certain subset of R only. In this sense,
we could reflect at 0 to obtain a process that assumes nonnegative values only (which can be interpreted
as a queue with infinite buffer capacity), or at both 0 and b > 0 to restrict the process to [0, b] (this
double reflection is essentially a queue with finite buffer b). In the following we discuss in more detail
these reflection problems, which we solved using this technique.

In [4] a martingale associated with the MAP was established, being essentially the multidimensional
counterpart of the martingale found in [14] for the standard Lévy process. In the same paper, various
situations were considered in which this martingale could be applied. Most notably, attention was paid to
reflection of a spectrally positive MAP at 0, i.e., a queue fed by a spectrally positive MAP; here ‘spectrally
positive’ means that all jumps are positive. For this model the multidimensional martingale allowed to
reduce the problem of determining the stationary workload to finding various constants that are solutions
to a system of linear equations. The authors of [4] did not succeed, however, in proving that such a system
of equations has a unique solution. Also for the situation of doubly reflected Markov-modulated Brownian
motion (that is, a finite-buffer queue fed by Markov-modulated Brownian motion), a similar complication
arose. In the literature, problems of this type were only partially addressed for special cases (e.g., see
[2, 5, 13, 15]). In our paper we tackle these problems using the above outlined technique.

This paper is organized as follows. Section 2 reviews some main results from analytic matrix function
theory, while in Section 3 we identify the matrix exponent Λ(q) by relating the Jordan pairs of the matrix
functions F (α) − qI and αI + Λ(q) for a fixed q ≥ 0. The result, which is Theorem 3.1 and which can
be considered as the main contribution of our work, is explicit in the sense that it is given in terms of
computable quantities associated with F (α). In the second part (Sections 4-6) of the paper we solve a
number of open problems related to reflected processes. In Section 4 we study spectrally one-sided MAPs
reflected at 0. We succeed in solving the (above mentioned) issues that remained open in [4]. In particular,
both for spectrally negative and spectrally positive MAP input, we express the steady-state workload
in terms of quantities related to the matrix exponent Λ(q) of the first passage process of a spectrally
negative MAP. In Section 5 we apply the methodology to identify the stationary distribution of Markov-
modulated Brownian motion with two reflecting barriers. We provide a full treatment of this model, also
for the case of 0 asymptotic drift. Yet another demonstration of applicability of our technique is given in
Section 6, where we present a simple proof of the fact that Λ(q) is a unique solution of a certain matrix
integral equation. This result (in different degrees of generality) appears in [2, 5, 18, 19, 20, 22], and is
commonly considered as the main tool used to numerically identify Λ(q). Some spectral considerations
(under the assumption that Λ(q) has distinct eigenvalues) can be found in [2, 5, 19].

The remainder of this section is devoted to the definition of some of the quantities of interest, with a
focus on spectrally negative MAPs and their first passage process.

1.1 Spectrally negative MAP A MAP is a bivariate Markov process (X(t), J(t)) defined as fol-
lows. Let J(·) be an irreducible continuous-time Markov chain with finite state space E = {1, . . . , N},
transition rate matrix Q = (qij) and a (unique) stationary distribution π. For each state i of J(·) let
Xi(·) be a Lévy process with Laplace exponent ψi(α) = log(EeαXi(1)). Letting Tn and Tn+1 be two
successive transition epochs of J(·), and given that J(·) jumps from state i to state j at Tn, we define
the additive process X(·) in the time interval [Tn, Tn+1) through

X(t) = X(Tn−) + Unij + [Xj(t)−Xj(Tn)], (1)
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where (Unij) is a sequence of independent and identically distributed random variables with moment
generating function

G̃ij(α) = EeαU
1
ij , where U1

ii ≡ 0, (2)

describing the jumps at transition epochs. To make the MAP spectrally negative, it is required that
U1
ij ≤ 0 (for all i, j ∈ {1, . . . , N}) and that Xi(·) is allowed to have only negative jumps (for all i ∈
{1, . . . , N}). As a consequence, the moment generation functions G̃ij(α) are well defined for α ≥ 0.

A Lévy process is called a downward subordinator if it has non-increasing paths a.s. We denote the
subset of indices of E corresponding to such processes by E↓. Let also E+ = E\E↓, N↓ = |E↓| and
N+ = |E+|. We use v+ and v↓ to denote the restrictions of a vector v to the indices from E+ and E↓
respectively. Finally, in order to exclude trivialities it is assumed that N+ > 0.

Define the matrix F (α) through

F (α) = Q ◦ G̃(α) + diag[ψ1(α), . . . , ψN (α)], (3)

where G̃(α) = (G̃ij(α)); for matrices A and B of the same dimensions we define A◦B = (aijbij). One can
see that in the absence of positive jumps F (α) is analytic on CRe>0 = {α ∈ C : Re(α) > 0}. Moreover,
it is known that

Ei[eαX(t)1{J(t)=j}] = (eF (α)t)ij , (4)

cf. [1, Prop. XI.2.2], where Ei(·) denotes expectation given that J(0) = i. Hence F (α) can be seen as the
multi-dimensional analog of a Laplace exponent, defining the law of the MAP. In the following we call
F (α)the matrix exponent of the MAP (X(t), J(t)).

An important quantity associated to a MAP is the asymptotic drift :

κ = lim
t→∞

1
t
EiX(t) =

∑
i

πi

ψ′i(0) +
∑
j 6=i

qijG̃
′
ij(0)

 , (5)

which does not depend on the initial state i of J(t) [1, Cor. XI.2.7]. Finally for q ≥ 0 we define
F q(α) = F (α) − qI, with I being the identity matrix, which can be seen as the matrix exponent of the
MAP ‘killed’ at random time eq:

Ei[eαX(t)1{J(t)=j,t<eq}] = (e(F (α)−qI)t)ij , (6)

where eq is an exponential random variable of rate q independent of everything else and e0 ≡ ∞ by
convention.

1.2 First Passage Process Define the first passage time over level x > 0 for the (possibly killed)
process X(t) as

τx = inf{t ≥ 0 : X(t) > x}. (7)

It is known that on {J(τx) = i} the process (X(t + τx) − X(τx), J(t + τx)), t ≥ 0 is independent from
(X(t), J(t)), t ∈ [0, τx] and has the same law as the original process under Pi. Therefore, in the absence
of positive jumps the time-changed process J(τx) is a time-homogeneous Markov process and hence is a
Markov chain. Letting {∂} be an absorbing state corresponding to J(∞), we note that J(τx) lives on
E+ ∪ {∂}, because X(t) can not hit new maximum when J(t) is in a state corresponding to a downward
subordinator; see also [17]. Let Λ(q) be the N+×N+ dimensional transition rate matrix of J(τx) restricted
to E+, that is

P(J(τx) = j, τx < eq | J(τ0) = i) = (eΛ(q)x)ij , where i, j ∈ E+. (8)

It is easy to see that in the absence of positive jumps the first passage process (τx, J(τx)), x ≥ 0 is a MAP
itself. Moreover,

E[e−qτx1{J(τx)=j} | J(τ0) = i] = P(J(τx) = j, τx < eq | J(τ0) = i) = (eΛ(q)x)ij ,

so that Λ(q) is the matrix exponent of (the negative of) the first passage process. This interpretation,
however, is not used in the rest of this paper.
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Another matrix of interest is N ×N+ matrix Π(q) defined by

Π(q)ij = Pi(J(τ0) = j, τ0 < eq), where i ∈ E and j ∈ E+. (9)

This matrix specifies initial distributions of the time-changed Markov chain J(τx). Note also that Π(q)
restricted to the rows in E+ is the identity matrix, because τ0 = 0 a.s. when J(0) ∈ E+ [16, Thm. 6.5].
We note that the case of q = 0 is a special case corresponding to no killing. In order to simplify notation
we often write Λ and Π instead of Λ(0) and Π(0).

It is noted that if q > 0 or q = 0, κ < 0 then Λ(q) is a defective transition rate matrix: Λ(q)1+ ≤ 0+,
with at least one strict inequality. If, however, κ ≥ 0, then Λ is a non-defective transition rate matrix:
Λ1+ = 0+; also Π1+ = 1. These statements follow trivially from [1, Prop. XI.2.10]. Finally, note that
Λ is an irreducible matrix, because so is Q. Hence if Λ is non-defective then by Perron-Frobenius theory
[1, Thm. I.6.5] the eigenvalue 0 is simple, because it is the eigenvalue with maximal real part.

It is instructive to consider the ‘degenerate’ MAP, i.e., the one with dimension N = 1. Such a MAP
is just a Lévy process, and Λ(q) = −Φ(q), where Φ(q) is the right-inverse of ψ(α), α ≥ 0. Note also that
Λ being non-defective (and hence singular) corresponds to Φ(0) = 0.

2. Preliminaries In this section we review some basic facts from analytic matrix function theory.
Let A(z) be an analytic matrix function (n × n dimensional), defined on some domain D ⊂ C, where it
is assumed that det(A(z)) is not identically zero on this domain. For any λ ∈ D we can write

A(z) =
∞∑
i=0

1
i!
A(i)(λ)(z − λ)i, (10)

where A(i)(λ) denotes the i-th derivative of A(z) at λ. We say that λ is an eigenvalue of A(z) if
det(A(λ)) = 0.

Definition 2.1 We say that vectors v0, . . . ,vr−1 ∈ Cn with v0 6= 0 form a Jordan chain of A(z)
corresponding to the eigenvalue λ if

j∑
i=0

1
i!
A(i)(λ)vj−i = 0, j = 0, . . . , r − 1. (11)

Note that this definition is a generalization of the well-known notion of a Jordan chain for a square matrix
A. In this classical case A(z) = zI−A, and (11) reduces to

Av0 = λv0, Av1 = λv1 + v0, . . . , Avr−1 = λvr−1 + vr−2. (12)

The following result is well known [9].

Proposition 2.1 Let v0, . . . ,vr−1 be a Jordan chain of A(z) corresponding to the eigenvalue λ, and let
C(z) be m× n dimensional matrix. If B(z) = C(z)A(z) is r − 1 times differentiable at λ, then

j∑
i=0

1
i!
B(i)(λ)vj−i = 0, j = 0, . . . , r − 1. (13)

Note that if B(z) is a square matrix then v0, . . . ,vr−1 is a Jordan chain of B(z) corresponding to the
eigenvalue λ. It is, however, not required that C(z) and B(z) be square matrices.

Let m be the multiplicity of λ as a zero of det(A(z)) and p be the dimension of the null space of
A(λ) = A0. It is known, see e.g. [9], that there exists a canonical system of Jordan chains corresponding
to λ

v
(k)
0 ,v

(k)
1 , . . . ,v

(k)
rk−1, k = 1, . . . , p, (14)

such that the vectors v(1)
0 , . . . ,v

(p)
0 form the basis of the null space of A0 and

∑p
i=1 ri = m. We write

such a canonical system of Jordan chains in matrix form:

V = [v(1)
0 ,v

(1)
1 , . . . ,v

(1)
r1−1, . . . ,v

(p)
0 ,v

(p)
1 , . . . ,v

(p)
rp−1], Γ = diag[Γ(1), . . . ,Γ(p)], (15)

where Γ(i) is the Jordan block of size ri × ri with eigenvalue λ.
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Definition 2.2 A pair of matrices (V,Γ) given by (15) is called a Jordan pair of A(z) corresponding to
the eigenvalue λ.

We note that, unlike in the classical case, the vectors forming a Jordan chain are not necessarily linearly
independent; furthermore a Jordan chain may contain a null vector.

We conclude this section with a result on entire functions of matrices defined through

f(M) =
∞∑
i=0

1
i!
f (i)(0)M i, (16)

for an entire function f : C → C and a square matrix M . The next lemma will be important for
applications.

Lemma 2.1 Let f : C→ C be an entire function and let Γ be a Jordan block of size k with λ on the diago-
nal, then for an arbitrary set of vectors v0, . . . ,vk−1 the (j+1)-st column of the matrix [v0, . . . ,vk−1]f(Γ)
equals

j∑
i=0

1
i!
f (i)(λ)vj−i, (17)

where j = 0, . . . , k − 1.

Proof. Immediate from [6, Thm. 6.6]. �

3. Jordan Normal Form of Λ(q) In this section we consider a spectrally negative MAP
(X(t), J(t)) with matrix exponent F (α) and asymptotic drift κ. Let λ1, . . . , λk be the eigenvalues of
F q(α), to be understood as the zeros of det(F q(α)), for a given q ≥ 0, in its region of analyticity CRe>0.
Let (Vi,Γi) be a Jordan pair corresponding to the eigenvalue λi. Define the matrices V and Γ in the
following way:

V = [V1, . . . , Vk]
Γ = diag[Γ1, . . . ,Γk] if q > 0 or q = 0, κ < 0;

V = [1, V1, . . . , Vk]
Γ = diag[0,Γ1, . . . ,Γk] if q = 0, κ ≥ 0.

(18)

and let the matrices V+ and V↓ be the restrictions of the matrix V to the rows corresponding to E+ and
E↓ respectively.

Theorem 3.1 It holds that Γ and V+ are N+ ×N+-dimensional matrices, V+ is invertible, and

Λ(q) = −V+ΓV −1
+ , Π(q) = V V −1

+ . (19)

We start by establishing a lemma, which can be considered as a weak analog of Thm. 3.1.

Lemma 3.1 If v0, . . . ,vr−1 is a Jordan chain of F q(α) corresponding to the eigenvalue λ ∈ CRe>0 then
v0

+, . . . ,v
r−1
+ is a Jordan chain of αI + Λ(q) corresponding to the eigenvalue α = λ and Π(q)vi+ = vi for

i = 0, . . . , r − 1.

Proof. Apply the optional sampling theorem to the martingale Mα(·), α ∈ CRe>0 as defined
in Lemma A.1 in the Appendix, with the finite stopping time t ∧ τx, to obtain

C(α)F q(α) = B(α), (20)

with

C(α) = Ek
[∫ t∧τx∧eq

0

eαX(s)e′J(s)ds
]
, B(α) = Ek

[
eαX(t∧τx)1{t∧τx<eq}e

′
J(t∧τx)

]
− e′k, (21)

where ‘ ′ ’ denotes the transposition operation.
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Noting that X(·) ≤ x on [0, τx] and using usual dominated convergence argument we conclude that
B(α) is infinitely differentiable in α ∈ CRe>0. Apply Prop. 2.1 to (20) to see that for all j = 0, . . . , r − 1
the following holds true:

j∑
i=0

1
i!

Ek
[
Xi(t ∧ τx)eλX(t∧τx)1{t∧τx<eq}e

′
J(t∧τx)

]
vj−i − e′kvj = 0. (22)

Letting t→∞ we obtain
j∑
i=0

1
i!
xieλxPk(J(τx), τx < eq)vj−i − e′kvj = 0, (23)

where Pk(J(τx), τx < eq) denotes a row vector with `-th element given by Pk(J(τx) = `, τx < eq). Note
that the case when q = 0 and Pk(τx =∞) > 0 should be treated with care. In this case κ < 0 and thus
limt→∞X(t) = −∞ a.s. [1, Prop. XI.2.10], so the above limit is still valid.

Considering (23) for all k ∈ E and choosing x = 0 we indeed obtain Π(q)vj+ = vj . If, however, we pick
k ∈ E+, then

j∑
i=0

1
i!
xie(λI+Λ(q))xvj−i+ − vj+ = 0+. (24)

Take the right derivative in x at 0 of both sides to see that

(λI + Λ(q))vj+ + vj−1
+ = 0+, (25)

which shows that v0
+, . . . ,v

r−1
+ is a Jordan chain of αI + Λ(q) corresponding to the eigenvalue λ. �

We are now ready to give a proof of our main result, Thm. 3.1.

Proof of Theorem 3.1. Lemma 3.1 states that v0
+, . . . ,v

r−1
+ is a classical Jordan chain of the

matrix −Λ(q). Recall that if q = 0, κ ≥ 0 then Λ(q)1+ = 0+ and Π(q)1+ = 1. Therefore the columns of
V+ are linearly independent [8, Prop. 1.3.4] and

− Λ(q)V+ = V+Γ, Π(q)V+ = V. (26)

Consider the case when q > 0. Now [11, Thm. 1] states that det(F q(α)) has N+ zeros (counting
multiplicities) in CRe>0; see also [11, Rem. 1.2], so the matrices V+ and Γ are of size N+ × N+ by
construction (18). Note there is one-to-one correspondence between the zeros of det(F q(α)) in CRe>0

and the eigenvalues of −Λ(q) when q > 0.

Assume now that q = 0. Pick a sequence of qn converging to 0 and consider a sequence of matrix
exponents F qn(α) = F (α) − qnI. In view of [11, Thm. 10] it only remains to show that exactly 1{κ≥0}
eigenvalues of Λ(qn) converge to 0. From (8) it follows that eΛ(qn) → eΛ, hence the eigenvalues of Λ(qn)
converge to the eigenvalues of Λ (preserving multiplicities) as n→∞. Finally recall that 0 is an eigenvalue
of Λ if and only if κ ≥ 0, in which case it is a simple eigenvalue. �

The above proof strengthens [11, Thm. 2]; we remove the assumption that κ is non-zero and finite.

Corollary 3.1 It holds that det(F (α)) has N+ − 1{κ≥0} zeros (counting multiplicities) in CRe>0.

4. One-sided Reflection Problems For a given MAP (X(t), J(t)) the reflected process (W (t), J(t))
is defined through

W (t) = X(t)− inf
0≤s≤t

X(s) ∧ 0; (27)

we say that W (t) is the (single-sided) reflection of X(t) at 0. It is well known that this process has
a unique stationary distribution if the asymptotic drift κ is negative, which we assume in the sequel.
Let a pair of random variables (W,J) have the stationary distribution of (W (t), J(t)), and denote the
all-time maximum attained by X(t) through X = supt≥0X(t). It is an immediate consequence of [1,
Prop. XI.2.11] that

(W | J = i) and
(
X̂ | Ĵ(0) = i

)
have the same distribution, (28)
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where (X̂(t), Ĵ(t)) is the time-reversed process characterized by the matrix exponent F̂ (α) =
∆−1
π F (α)′∆π. In the following we identify the distribution of the random variables appearing in (28)

for two important classes: spectrally negative MAPs and spectrally positive MAPs.

4.1 Spectrally negative MAP Let (X(t), J(t)) be a spectrally negative MAP with negative
asymptotic drift: κ < 0. It is crucial to observe that

(
X | J(0) = i

)
is the life-time of J(τx), thus it

has a phase-type distribution [1, Section III.4] with transition rate matrix Λ, exit vector −Λ1+ and
initial distribution given by e′i Π. It is noted that if i ∈ E↓, then X(t) never hits the interval (0,∞) with
probability Pi(τ0 =∞), hence

(
X | J(0) = i

)
has a mass at zero.

The time-reversed process is again a spectrally negative MAP with negative asymptotic drift and E↓
being the set of indices of associated downward subordinators. Thus, with self-evident notation, the
vector of densities of (W | J) at x > 0 is given by

p(x) = Π̂eΛ̂x(−Λ̂1+). (29)

We conclude that we can express the distribution of the stationary workload in terms of quantities that
uniquely follow from Thm. 3.1.

4.2 Spectrally positive MAP Let (Y (t), J(t)) be a spectrally positive MAP with negative asymp-
totic drift. Define X(t) = −Y (t) and note that (X(t), J(t)) is a spectrally negative MAP with positive
asymptotic drift: κ > 0. Let F (α) and E+ ∪ E↓ be the matrix exponent and the partition of the state
space of the latter process. The Laplace-Stieltjes transform of (W,J) is identified in [4] up to a vector `
of unknown constants:

E[e−αWe′J ] = α`′F (α)−1, (30)

where `↓ = 0, `′1 = κ.

We determine the vector `+ as follows. Let v0, . . . ,vr−1 be a Jordan chain of F (α) associated with
an eigenvalue λ ∈ CRe>0. Right multiply both sides of Eqn. (30) by F (α) and use Prop. 2.1 to see
that λ`′vj + `′vj−1 = 0 for all j = 0, . . . , r − 1; where v−1 = 0. It trivially follows that `′V = κe′1 or
equivalently

(`+)′ = κe′1(V+)−1. (31)

It is easy to verify now using Thm. 3.1 that

`+ = κπΛ, (32)

where πΛ is the stationary distribution of Λ, cf. [5, Lemma 2.2]. Observe that we again succeeded in
expressing the distribution of the stationary workload in terms of quantities that can be determined by
applying Thm. 3.1.

5. Two-sided Reflection of MMBM In this section we consider a Markov modulated Brownian
motion (MMBM) (X(t), J(t)) of dimension N . In this case the matrix exponent (3) has the special form
of a matrix polynomial of second order, that is,

F (α) =
1
2

∆2
σα

2 + ∆aα+Q, (33)

where αi ∈ R, σi ≥ 0 for i = 1, . . . , N ; for any given vector x we define ∆x = diag[x1, . . . , xN ].

We are interested in a two-sided reflection [4] of (X(t), J(t)) with 0 and b > 0 being lower and upper
barriers respectively. This reflected process can be interpreted as a workload process of a queue fed by
MMBM, where b is the capacity of the buffer. Let the pair of random variables (W,J) have the stationary
distribution of this process. It is shown in [4] that

E
[
eαWe′J

]
· F (α) = α(eαbu′ − `′), (34)

where u and ` are column vectors of unknown constants. In the following we show how to compute these
constants. This result completes the investigation on MMBM contained in [4] and extends the previous
works [13, 15, 22].
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In order to uniquely characterize the vectors u and ` we exploit the special structure of MMBM.
As MMBM is a continuous process almost surely, both (X(t), J(t)) and (−X(t), J(t)) are spectrally
negative MAPs. Regarding the downward subordinators of (X(t), J(t)), let the sets E+ and E↓, and the
cardinalities N+ and N↓ be defined as before. The downward subordinators of the process (−X(t), J(t))
correspond to the upward subordinators of the process (X(t), J(t)). Denote the subset of states of E
associated to such processes by E↑. Similarly we denote by E− the set of the states where the process
(−X(t), J(t)) can reach positive records. We note that it is possible to have that E↑ ∩ E↓ 6= ∅, as the
intersection is given by the states where the process stays constant. Finally the cardinalities of E− and
E↑ are denoted through N− and N↑ respectively.

Let λ0, . . . , λk be the zeros of det(F (α)) in C with λ0 = 0. Let also (Vi,Γi) be a Jordan pair of F (α)
corresponding to λi. Define

V = (V0, . . . , Vk), Γ = diag(Γ0, . . . ,Γk). (35)

Theorem 5.1 The unknown vectors u and ` in Eqn. (34) can be uniquely identified in the following way:
u↓ = 0 and `↑ = 0 while the vectors u+ and `− are the solutions of the system of equations

(u+
′, `−

′)
(
V+ e

bΓ

−V−

)
= (k′, 0, . . . , 0), (36)

where

k′ = π′(∆a,
1
2

∆2
σ)
(

V0

V0 Γ0

)
(37)

is a vector with dimension equal to the multiplicity of the 0 root of det(F (α)).

Before we give a proof of Thm. 5.1 we provide some comments on the structure of the pair (V,Γ).
The following simple lemma identifies the number of zeros of det(F (α)) in different parts of the complex
plane, see also [13] for the case when κ 6= 0.

Lemma 5.1 det(F (α)) has N+− 1{κ≥0} zeros in CRe>0, N−− 1{κ≤0} zeros in CRe<0 and a zero at 0 of
multiplicity 1 + 1{κ=0}.

Proof. It is easy to see that det(F (α)) is a polynomial of degree N+ +N−, hence the total number
of zeros of det(F (α)) in C counting their multiplicities is N+ + N−. On the other hand Corollary 3.1
states that det(F (α)) has N+ − 1{κ≥0} zeros in CRe>0 and N− − 1{κ≤0} zeros in CRe<0, because F (−α)
is the matrix exponent of a spectrally negative process (−X(t), J(t)) having asymptotic drift −κ. The
result follows from [11], where it is shown that det(F (α)) does not have zeros on the imaginary axis which
are distinct from 0. �

Next we note that the null-space of F (0) = Q is spanned by 1, because Q is an irreducible transition
rate matrix. Moreover, scaling matrix V amounts to scaling both sides of Eqn. (36) by the same constant,
hence we can assume that the first vector in V0, and thus also in V , is 1. If κ = 0 then according to
Lemma 5.1 the zero λ0 has multiplicity 2, in which case we have that Γ0 is a 2 × 2 matrix, and V0 an
N × 2 matrix, given by

Γ0 =
(

0 1
0 0

)
, V0 = (1,h), (38)

where the vector h solves
F (0)h+ F ′(0)1 = Qh+ ∆a1 = 0 (39)

due to (11). Since π′∆a1 equals the asymptotic drift κ, Eqn. (37) reduces to

k′ =
{
κ, if κ 6= 0
(0,π′( 1

2∆2
σ1 + ∆ah)), if κ = 0.

(40)

We now prove the following technical lemma that further specifies k in the case κ = 0 .
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Lemma 5.2 If κ = 0, then V0 = (1,h) and

bu′1 + (u′ − `′)h = π′(
1
2

∆2
σ1 + ∆ah) 6= 0. (41)

Proof. Differentiating Eqn. (34) at 0 and right multiplying by h, we obtain the identity

(u′ − `′)h = E[We′J ]Qh+ E[e′J ]∆ah = −E[We′J ]∆a1 + E[e′J ]∆ah, (42)

where the second equality follows from (39). Differentiating Eqn. (34) twice at 0 and multiplying by 1,
we find

bu′1 = E[We′J ]∆a1 + E[e′J ]
1
2

∆2
σ1, (43)

which summed with the previous equation gives (41). We conclude the proof by showing that the resulting
expression cannot equal 0.

It is known, see [7], that the maximum length of a Jordan chain cannot exceed the algebraic multiplicity
of the associated eigenvalue. We therefore have that for any vector v it holds that

1
2

∆2
σ 1 + ∆a h+Qv 6= 0, (44)

because otherwise (1,h,v) would be a Jordan chain associated with λ0, which has multiplicity 2 (Lemma
5.1). This implies that 1

2∆2
σ 1+ ∆a h is not in the column space of Q, which is known to be of dimension

N − 1, because Q is irreducible. Moreover, π′Q = 0′, thus π′( 1
2∆2

σ 1 + ∆a h) 6= 0. �

We now construct pairs (V +,Γ+) and (V −,Γ−) in the same way as we constructed (V,Γ), but we use
only those (Vi,Γi) for which λi ∈ CRe>0 and λi ∈ CRe<0, respectively. Moreover, an additional pair (1, 0)
is used (as the first pair) in the construction of (V +,Γ+) and (V −,Γ−) if κ ≥ 0 and κ ≤ 0, respectively.
Note that in view of Lemma 5.1 the matrix V ± has exactly N± columns.

In the following we use Λ± and Π± to denote the matrices associated to the first passage process of
(±X(t), J(t)), and defined according to Eqns. (8) and (9). Next we present a consequence of Thm. 3.1.

Lemma 5.3 The following holds

Λ+ = −V +
+ Γ+(V +

+ )−1 Π+ = V +(V +
+ )−1

Λ− = V −− Γ−(V −− )−1 Π− = V −(V −− )−1.
(45)

Proof. The first line is immediate from Thm. 3.1 and the second line follows by noting that
if v0, . . . ,vr−1 is a Jordan chain of F (α) then v0,−v1, . . . , (−1)r−1vr−1 is a Jordan chain of F (−α).
Lemma 3.1 applied to the process (−X(t), J(t)) entails that (−λI + Λ−)vj−−v

j−1
− = 0, where λ is a zero

of det(F (α)) in CRe<0. Hence Λ−V −− = V −− Γ−. �

We now proceed with the proof of Thm. 5.1.

Proof of Theorem 5.1. The proofs of the facts that u↓ = 0 and `↑ = 0 and, moreover, (u′−`′)1 =
π′∆a1 = κ were already given in [4]. The rest of the proof is split into two steps. First we show that
(u′+, `

′
−) solves (36), and then we show that the solution is unique.

Step 1: Lemma 2.1 and Prop. 2.1 applied to Eqn. (34) imply

u′V ebΓΓ− `′V Γ = 0′. (46)

Let Γ̂ be the matrix Γ with Jordan block Γ0 replaced with I. Suppose first that κ 6= 0. Then (V0,Γ0) =
(1, 0) and so (46) can be rewritten as

u′V ebΓΓ̂− `′V Γ̂ = ([u′ − `′]1, 0, . . . , 0). (47)

Multiply by Γ̂−1 from the right to obtain (36). Supposing that κ = 0, we have that adding

k̂
′

= u′V0e
bΓ0

(
1 −1
0 1

)
− `′V0

(
1 −1
0 1

)
(48)
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to the first two elements of the vectors appearing on the both sides of (46), leads to

u′V ebΓΓ̂− `′V Γ̂ = (k̂
′
, 0, . . . , 0). (49)

To complete Step 1 it is now enough to show that k̂ = k. A simple computation reveals that k̂
′

=
u′(1, (b− 1)1 + h)− `′(1,−1 + h) = (0, bu′1 + (u′ − `′)h), where we used that (u′ − `′)1 = κ = 0. Use
Lemma 5.2 and (40) to see that k̂ = k.

Step 2 (uniqueness): Without loss of generality we assume that κ ≥ 0. It is easy to see that (u′+, `
′
−)

solves (36) if and only if

(u′+,−`
′
−)

(
V +

+ ebΓ
+

V −+ ebΓ
−

V +
− V −−

)
= κe′1 (50)

and, in addition when κ = 0 Eqn. (41) holds true because of the construction of the matrices V ± and
Γ±. Note also that we can right multiply both sides of the above display by the same matrix to obtain

(u′+,−`
′
−)

(
V +

+ V −+ ebΓ
−

V +
− e
−bΓ+

V −−

)
= κe′1

(
e−bΓ

+ O
O I

)
. (51)

Lemma 5.3 shows that
V +
− = Π+

−V
+
+ , V +

+ e−bΓ
+

= ebΛ
+
V +

+ ,

V −+ = Π−+V
−
− , V −− e

+bΓ− = ebΛ
−
V −− ,

(52)

so we obtain (
V +

+ V −+ ebΓ
−

V +
− e
−bΓ+

V −−

)
=

(
I Π−+e

bΛ−

Π+
−e

bΛ+ I

)(
V +

+ O
O V −−

)
. (53)

Theorem 3.1 states that V +
+ and V −− are invertible matrices. Moreover, Π+

−e
bΛ+

and Π−+e
bΛ− are irre-

ducible transition probability matrices, so the first matrix on the right hand side of (53), call it M , is
an irreducible non-negative matrix, which is non-strictly diagonally dominant. If κ > 0, then Π−+e

bΛ−

is sub-stochastic, which implies that M is irreducibly diagonally dominant and hence invertible [10]. If
κ = 0, then M has a simple eigenvalue at 0 by Perron-Frobenius, so

(u′+,−`
′
−)

(
I Π−+e

bΛ−

Π+
−e

bΛ+ I

)
= 0′ (54)

determines the vector (u′+,−`
′
−) up to a scalar, which is then identified using (41):

(u′+,−`
′
−)
(
b1 + h
h

)
= π′(∆ah+

1
2

∆2
σ1), (55)

which is non-zero by Lemma 5.2. �

Finally, we state a corollary, which identifies (in the case of non-zero asymptotic drift) vectors u+ and
`− in terms of matrices Λ± and Π±. We believe that there should exist a direct probabilistic argument
leading to this identity. Moreover, it is interesting to investigate if such a result holds in the case of
countably infinite state space E.

Corollary 5.1 It holds that

(u′+,−`
′
−)

(
I Π−+e

bΛ−

Π+
−e

bΛ+ I

)
=


κ(π′Λ+ ,0′−), if κ > 0
0′, if κ = 0
κ(0′+,π

′
Λ−), if κ < 0

, (56)

where πΛ± is the unique stationary distribution of Λ±, which is well-defined if κ 6= 0.

Proof. Assume that κ > 0. From the above proof we know that

(u′+,−`
′
−)

(
I Π−+e

bΛ−

Π+
−e

bΛ+ I

)(
V +

+ O
O V −−

)
= κ(e′1,0

′
−). (57)

Hence it is enough to check that πΛ+ = e′1(V +
+ )−1, which is immediate in view of Thm. 3.1. The case of

κ < 0 is symmetric, and the case of κ = 0 is trivial. �
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6. Matrix Integral Equation In this section we demonstrate how our technique can be used to
show in a simple way that Λ(q) is a unique solution of a certain matrix integral equation. This equation
appears in [2, 5, 18, 19, 20, 22] and is commonly considered as the main tool in numerically computing
Λ(q). Throughout this section it is assumed that N+ = N . We use the following notation

F q(M) = ∆aM +
1
2

∆2
σM

2 +
∫ 0

−∞
∆ν(dx)

(
eMx − I−Mx1{x>−1}

)
+
∫ 0

−∞
Q ◦G(dx)eMx − qI (58)

where (ai, σi, νi(dx)) are the Lévy triplets corresponding to the Lévy processes Xi(·) and Gij(dx) is the
distribution of Uij .

DefineM to be a set of all N ×N matrices Q, such that Q is a transition rate matrix of an irreducible
Markov chain. Let also {M0,M1} be a partition of M into the sets of defective and non-defective
matrices respectively.

Theorem 6.1 Λ(q) is the unique solution of F q(−M) = O, where M ∈Mi and i = 1{q=0,κ≥0}.

Proof. In the proof we drop the superscript q to simplify notation. Let −M = V ΓV −1 be a
Jordan decomposition of the matrix −M . Let also v0, . . . ,vr−1 be the columns of V corresponding to
some Jordan block of size r and eigenvalue λ. Note that λ ∈ CRe>0 or λ = 0 in which case it must be
simple, because M ∈M. Right multiply (58) by V , note that g(−M) = V g(Γ)V −1 for an entire function
g : C→ C, and finally use Lemma 2.1 to see that the column of F (−M)V corresponding to vj equals

j∑
i=0

1
i!
F (i)(λ)vj−i, (59)

where we also used the fact that differentiation of F (α) at λ,Re(λ) > 0 can be done under the integral
signs and no differentiation is needed for a simple eigenvalue λ = 0 if such exists.

If M = Λ, then the matrices V and Γ can be chosen as in (18). Hence (59) becomes 0, because
v0, . . . ,vr−1 is a Jordan chain of F (α), see (11). But V is an invertible matrix, so that F (−Λ) = O.

Suppose now that F (−M) = O and M ∈ Mi. Then the vectors v0, . . . ,vr−1 form a Jordan chain of
F (α) corresponding to an eigenvalue λ ∈ CRe>0 or λ = 0. Finally, use Lemma 3.1 to see that ΛV = −V Γ,
and hence we have M = Λ. �

Appendix A.

Lemma A.1 For any i ∈ E and α ∈ CRe>0 the right-continuous process

Mα(t) =
[∫ t∧eq

0

eαX(s)e′J(s)ds
]
· F q(α) + e′k − eαX(t)1{t<eq}e

′
J(t) (60)

is a row vector valued zero mean martingale under the probability measure Pi.

Proof. It trivially follows from [4, Lemma 2.1] that

MW (α, t) = eαX(t)1{t<eq}e
′
J(t)e

−F q(α)t (61)

is a row vector valued martingale under Pi. Repeat the steps of the proof of [4, Thm. 2.1] with MW (α, t)
defined above and Y (·) ≡ 0 to conclude. �
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