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In this article we define a multi-factor equity–interest rate hybrid model with non-zero
correlation between the stock and interest rate. The equity part is modeled by the Heston
model and we use a Gaussian multi-factor short-rate process. By construction, the model fits
in the framework of affine diffusion processes, allowing fast calibration to plain vanilla
options. We also provide an efficient Monte Carlo simulation scheme.

Keywords: Hybrid stochastic model; Heston–Gaussian multi-factor equity–interest rate model;
Affine diffusion process; Characteristic function; Unbiased Monte Carlo simulation
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1. Introduction

Pricing modern contracts involving multiple asset classes

requires well-developed pricing models from quantitative

analysts. Among these, the hybrid models, which include

features from different asset classes, are of current interest.
In this article we propose a hybrid model based on two

particular asset classes: equity and interest rates. Such a

model can be used for pricing specific hybrid products or

for accurate pricing of long-term equity options.

Although multi-dimensional hybrids can relatively easily

be defined, real use of the models is only guaranteed if the

hybrid model is properly defined for each asset class (i.e. a

satisfactory fit to implied volatility structures), and if it is

possible to set a non-zero correlation structure among the

processes from the different asset classes. Furthermore,

highly efficient pricing of fundamental contracts needs to

be available for model calibration. In this article we

propose a model that satisfies these requirements.
We define a multi-factor hybrid model with correlation

between the equity and interest rate asset classes, which,

by construction, enables efficient pricing of plain vanilla

equity options and goes beyond the models with a

normally distributed volatility process. We show that

the new model can easily be used for calibration and for

the pricing of structured products exposed to equity and

interest rate risk. The hybrid model is easily understood

and an efficient implementation is given.
In the hybrid model the equity part is driven by the

Heston model (Heston 1993), while for the short-rate

process a Gaussian multi-factor model (Hull 2006) is taken

with a non-zero correlation between the asset classes. The

model belongs to the affine diffusion framework for which

the characteristic function can be determined. This facil-

itates the use of Fourier-based algorithms (Carr and

Madan 1999, Fang and Oosterlee 2008) for efficient

pricing of plain vanilla contracts. Additionally, Monte

Carlo simulation can be performed by a straightforward

generalization of the scheme developed by Andersen

(2008). By defining the affine hybrid Heston model under

the forward measure, we can price several financial

derivative products (such as American options (Fang and

Oosterlee 2011)) as under the basic Heston model.
The interest rates are driven by multi-factor Gaussian

rates (Hull 2008). This model provides a rich pattern for

the term structure movements and recovers the humped

volatility structure observed in the market. The hybrid

model under consideration can be used for hybrid

payoffs which have a limited sensitivity to the interest

rate smile.
*Corresponding author. Email: l.a.grzelak@tudelft.nl
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For the model considered, the Greeks for plain vanilla

options can also be efficiently determined and used for

hedging. When hedging hybrid products, exposed to

different sources of risk coming from equity or interest

rates, it is crucial to choose an appropriate set of hedging

instruments. Particularly, correlation risk needs to be

taken into account here. As it is difficult to find a pure

correlation product in the market that can be used for

hedging, one may consider, similarly as for the hedging of

jump processes (as presented by He et al. (2006)), a mean–

variance hedging strategy based on a portfolio of stocks,

options and interest rate instruments, such as caplets and

swaptions.
Additionally, due to the sensitivity of the model to

different correlations, it is also possible to adjust the risk-

related margins.
Pricing long-maturity options with equity–interest rate

hybrid models is common practice in the market. Grzelak

et al. (2009) and van Haastrecht et al. (2009) present a

stochastic volatility equity hybrid model with a full matrix

of correlations (the Schöbel–Zhu–Hull–White model).
Approximations for the Heston–Hull–White hybrid

model were presented by Grzelak and Oosterlee (2011a).

In the same article the interest rate process of Cox–

Ingersoll–Ross (CIR) (Cox et al., 1985) was analysed.

Because the approximate model derived by Grzelak and

Oosterlee (2011a) (defined for the purpose of calibration)

was based on linearizations of the full-scale model, there

was a discrepancy between the two models. In other

words, the model for calibration was different from the

model for simulation. Moreover, Fourier techniques

could not be used for calculating the sensitivities to any

particular model parameter. These issues are not present

in the current model, where the full-scale hybrid model is

affine, by construction, and contains non-zero correla-

tions between different classes. The same model is thus

used for simulation and calibration. The definition of this

affine hybrid model under the T-forward measure,

and the natural pricing of an equity–interest rate

diversification hybrid product with forward start fea-

tures by Fourier techniques in section 4.3, is also a

contribution here.
Apart from stochastic volatility hybrid models, the

local volatility framework has also contributed signifi-

cantly to hybrid derivative pricing. Deelstra and Rayee

(2010) analysed the local volatility function in the foreign

exchange market. Although the local volatility models for

pricing hybrid derivatives resolve some of the limitations

typical for the stochastic volatility models, numerical

efficiency is still an ongoing research topic.
The Heston hybrid model with CIR interest rates with

respect to forward starting options (the zero-correlation

case) was analysed by Ahlip and Rutkowski (2009).
In practice, especially when dealing with long-maturity

(insurance) options or basic hybrid products, the short-

rate models are sufficiently accurate. Approximate

models for calibration of hybrid models in which the

interest rates are driven by the stochastic volatility Libor
Market Model have been presented by Grzelak and
Oosterlee (2011b). Those models are attractive from a
theoretical point of view, but their complicated structure
requires additional heuristic techniques, such as Libor
rate freezing, when defining an approximate model for
calibration.

This article is divided into several parts. In section 2 we
define the Heston–Gaussian two-factor hybrid model and
highlight the affinity problems. In the follow-up section,
which is the core of the article, we propose an affine
version of this hybrid model. We derive the model under
the T-forward measure and provide the corresponding
characteristic function. In the same section we describe
the derivation of the Greeks as well as Monte Carlo
simulation. We also investigate properties such as the
positive definiteness of the correlation matrix. Section 4 is
dedicated to numerical experiments where we compare
the affine model with the non-affine Heston hybrid model
and the Schöbel–Zhu–Hull–White model, and check the
performance for pricing a hybrid product. Section 5
concludes.

2. Hybrid with multi-factor short rate process

2.1. Model under the spot measure

Suppose we have given two asset classes defined by the
vectors X �n�1ðtÞ, �n 2 N

þ, for the equity and for the interest
rates R �m�1ðtÞ, �m 2 N

þ. One can take high-dimensional
processes with stochastic volatility, and define the fol-
lowing system of governing stochastic differential equa-
tions (SDEs):

dRðtÞ ¼ aðRðtÞÞdtþ bðRðtÞÞdWRðtÞ,

dXðtÞ ¼ cðXðtÞ,RðtÞÞdtþ dðXðtÞÞdWXðtÞ,

ZðtÞZtðtÞ ¼ CHdt, ð2:1Þ

where H(t)¼ [R(t), X(t)]t, Z(t)¼ [dWR(t), dWX(t)]
t, and

CH is a ð �nþ �mÞ � ð �nþ �mÞ matrix that represents the
instantaneous correlation between the Brownian
motions.y The noises dW�(t) are assumed to be multi-
dimensional, and correlation within the asset classes is
allowed, as well as correlations between these classes.

Since the Heston (1993) model is sufficiently complex
for explaining the smile-shaped implied volatilities in
equity, we take this model for the equity part. In
particular, the model for the state vector
XðtÞ ¼ ½vðtÞ, x̂ðtÞ ¼ logSðtÞ�t is described by the following
system of SDEs:

dx̂ðtÞ ¼ ðrðtÞ � 1=2vðtÞÞdtþ
ffiffiffiffiffiffiffi
vðtÞ

p
dWxðtÞ, Sð0Þ4 0,

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
dWvðtÞ, vð0Þ4 0,

ð2:2Þ

with dWx(t)dWv(t)¼ �x,vdt, the speed of mean reversion
�40, �v4 0 is the long-term mean of the stochastic

yWe use superscript ‘t’ for transpose, and superscript ‘T’ to indicate the T-forward measure.
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variance process v(t), and !40 specifies the volatility of

the variance process. Note that the term 1/2v(t) in the x̂ðtÞ

process results from Itô’s lemma when deriving the

dynamics for logS(t).
For the interest rate process, we consider the Gaussian

multi-factor short-rate model (Gnþþ) (Brigo and

Mercurio 2007), also known as the multi-factor Hull–

White model. The model, for a given state vector

R(t)¼ [r(t), �1(t), . . . , �n�1(t)]
t, is defined by the following

system of SDEs:

drðtÞ ¼ �ðtÞ þ
Xn�1
k¼1

�kðtÞ � �rðtÞ

 !
dtþ �dWrðtÞ, rð0Þ40,

d�kðtÞ ¼ ��k�kðtÞdtþ 	kdW�kðtÞ, �kð0Þ ¼ 0, ð2:3Þ

where

dWrðtÞdW�kðtÞ ¼ �r,�kdt, k ¼ 1, . . . , n� 1,

dW�iðtÞdW�jðtÞ ¼ ��i,�jdt, i 6¼ j,

with �40, �k40 the mean reversion parameter, �40 and

parameters 	k determine the volatility magnitude of the

interest rate. In the above system, coefficient �(t)40,

t2R
þ, stands for the long-term interest rate (which is

usually calibrated to the current yield curve).
The Gnþþ model provides a satisfactory fit to the at-

the-money humped volatility structure for forward Libor

rates. Moreover, the easy construction of the model

(based on a multivariate normal distribution) provides

closed-form solutions for caps and swaptions, enabling

fast calibration. On the other hand, since the model is

assumed to be normal, the interest rates can become

negative. This, however, is known and is taken care of in

practical applications (see, for example, Rogers (1995)).
By taking the equity model X(t) as introduced in (2.2)

and the interest rate part R(t) from (2.3), a hybrid model

HðtÞ ¼ ½RðtÞ,XðtÞ�t ¼ ½rðtÞ, �1ðtÞ, . . . , �n�1ðtÞ, vðtÞ, x̂ðtÞ�
t can

be defined with the following instantaneous correlation

structure:

CH :¼

1 �r,�1 . . . �r,�n�1 0 �x,r
�r,�1 1 . . . ��1,�n�1 0 �x,�1

..

. ..
. . .

. ..
. ..

. ..
.

�r,�n�1 ��n�1, �1 . . . 1 0 �x,�n�1

0 0 . . . 0 1 �x,v
�x,r �x,�1 . . . �x,�n�1 �x,v 1

2666666664

3777777775
:

ð2:4Þ

Model H(t) is the Heston–Gaussian n-factor hybrid model

(H-Gnþþ). Note that the equity and the interest rate

asset classes are linked by correlations in the upper-right
and lower-left diagonal blocks of matrix CH. Our main
objective is the preservation of the correlation, �x,r,
between the log-equity and the interest rate.

As it is non-trivial to hedge equity–interest rate hybrids
by liquidly traded standard instruments (see Bouzoubaa
and Osseiran (2010) for details), and as the correlations
between different asset classes cannot be easily implied
from the market, historical estimates are often used.
However, as soon as hybrid product prices become
available, one can use the additional correlations (degrees
of freedom) to enhance the performance of the hybrid
model.

Assuming V :¼V(t, H(t)) to represent the value of a
European claim, we can derive the corresponding pricing
partial differential equation (PDE) (Gatheral 2006) with
the help of the arbitrage-free pricing theorem and the use
of Itô’s formula:

0 ¼ ðr� 1=2vÞ
@V

@x̂
þ �ð �v� vÞ

@V

@v
þ �ðtÞ þ

Xn�1
k¼1

�k � �r

 !
@V

@r

�
Xn�1
k¼1

�k�k
@V

@�k
� rVþ

1

2
v
@2V

@x̂2
þ
1

2
!2v

@2V

@v2
þ
1

2
�2
@2V

@r2

þ
1

2

Xn�1
k¼1

	2k
@2V

@�k
þ �x,v!v

@2V

@x̂ @v
þ �x,r�

ffiffiffi
v
p @2V

@x̂ @r

þ
ffiffiffi
v
p Xn�1

k¼1

�x,�k	k
@2V

@x̂ @�k
þ
Xn�1
k�1

�r,�k	k�
@2V

@r @�k

þ
@V

@t
þ
Xn�2
k¼1

Xn�1
j¼kþ1

��k,�j	k	j
@2V

@�k @�j
, ð2:5Þ

with specific boundary and final conditions (for details on
boundary conditions for similar problems, see, for exam-
ple, Duffy (2006)).

2.1.1. Covariance structure. The solution of the (nþ 2)D
convection–diffusion–reaction PDE in (2.5) can be
approximated by means of standard numerical tech-
niques, such as finite differences (see, for example,
Morton and Mayers (2005)). This may, however, cost
substantial CPU time for model evaluation. An alterna-
tive is to use the Feynman–Kac theorem and reformulate
the problem as an integral equation related to the
discounted expected payoff.

Let us take the state vector H ¼ ½rðtÞ, �1ðtÞ, . . . ,
�n�1ðtÞ, vðtÞ, x̂ðtÞ�

t and determine the associated (symmet-
ric) instantaneous covariance matrix �H of hybrid
model (2.1) with (2.2) and (2.3):

�H :¼

�2 �r,�1�	1 . . . �r,�n�1�	n�1 0 �x,r�
ffiffiffi
v
p

�r,�1�	1 	21 . . . ��1,�n�1	1	n�1 0 �x,�1	1
ffiffiffi
v
p

..

. ..
. . .

. ..
. ..

. ..
.

�r,�n�1�	n�1 ��n�1, �1	n�1	1 . . . 	2n�1 0 �x,�n�1	n�1
ffiffiffi
v
p

0 0 . . . 0 !2v �x,v!v

�x,r�
ffiffiffi
v
p

�x,�1	1
ffiffiffi
v
p

. . . �x,�n�1	n�1
ffiffiffi
v
p

�x,v!v v

266666666664

377777777775
: ð2:6Þ
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For the H-Gnþþ hybrid model the instantaneous covari-
ance matrix in (2.6) is not affine (Duffie et al. 2000) in all
terms of the upper-right block. One can immediately see
that the affinity problem disappears for �x,r¼ 0 and
�x,�k ¼ 0, for k¼ 1, . . . , n� 1. This, however, means
independence between the asset classes. In order to stay
in the affine class with non-zero correlations between the
assets, approximations need to be introduced. This is the
approach we take here.

In order to define an alternative model that is affine, it
appears necessary to relate the instantaneous covariance
matrix in (2.6) to the corresponding stochastic differential
equations. This can be done by expressing the model in
terms of the independent Brownian motions,eWðtÞ ¼ ½ eWrðtÞ, eW�1 ðtÞ, . . . , eW�n�1 ðtÞ,

eWvðtÞ, eWxðtÞ�
t. For a

state vector HðtÞ ¼ ½rðtÞ, �1ðtÞ, . . . , �n�1ðtÞ, vðtÞ, x̂ðtÞ�
t, the

model, in terms of independent Brownian motions, can be
rewritten as

dHðtÞ ¼ 
ðHðtÞÞdtþ AðtÞUdeWðtÞ, ð2:7Þ

where 
(H(t)) represents the drift and U is the Cholesky
lower triangular matrix so that CH¼UUt for matrix CH

in (2.4) and matrix A(t) is given by

AðtÞ ¼

� 0 . . . 0 0 0

0 	1 . . . 0 0 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 . . . 	n�1 0 0

0 0 . . . 0 !
ffiffiffiffiffiffiffi
vðtÞ

p
0

0 0 . . . 0 0
ffiffiffiffiffiffiffi
vðtÞ

p

266666666664

377777777775
: ð2:8Þ

Equivalently, model (2.7) can be expressed as

dHðtÞ ¼ 
ðHðtÞÞdtþ LðtÞdeWðtÞ, ð2:9Þ

with

LðtÞLðtÞt ¼ �H, ð2:10Þ

and �H the instantaneous covariance matrix in (2.6).
The model representation of (2.9) is favorable com-

pared with (2.7), since we have a direct relation between
the covariance matrix (2.6) and the SDEs.

2.2. Zero-coupon bonds under the multi-factor Gaussian
model

In the following sections we reduce the dimension of the
pricing problem by an appropriate measure change, and
define an affine version of the multi-factor hybrid model.
In order to derive the multi-factor hybrid model under the
forward measure the corresponding zero-coupon bond
needs to be determined first.

Under the risk-neutral measure, Q, we consider the
following n-factor interest rate model:

drðtÞ ¼ �ðtÞ þ
Xn�1
k¼1

�kðtÞ � �rðtÞ

 !
dtþ �dWrðtÞ, rð0Þ4 0,

d�kðtÞ ¼ ��k�kðtÞdtþ 	kdW�k ðtÞ, �kð0Þ ¼ 0, ð2:11Þ

with a full correlation matrix with �r,�i 6¼ 0 and ��i,�j 6¼ 0
for i, j¼ {1, . . . , n� 1}, i 6¼ j.

This model is affine in all state variables, so we can
derive the corresponding characteristic function (Duffie et
al. 2000) for r(T):

�Gn++ðu, rðtÞ, �Þ

¼ E
Q
ðe
�
R T

t
rðsÞds

eiurðTÞ j F ðtÞÞ

¼ exp Aðu, �Þ þ Bðu, �ÞrðtÞ þ
Xn�1
k¼1

Ckðu, �Þ�kðtÞ

 !
, ð2:12Þ

with final condition �Gnþþ(u, r(T), 0)¼ eiur(T), where,
conventionally, �¼T� t. The functions A(u, �), B(u, �)
and Ck(u, �) are known explicitly and are given by the set
of Riccati-type ODEs:

B0ðu, �Þ ¼ �1� �Bðu, �Þ,

C0kðu, �Þ ¼ Bðu, �Þ � �kCkðu, �Þ,

A0ðu, �Þ ¼ �ðtÞBðu, �Þ þ
1

2
�2B2ðu, �Þ

þ �
Xn�1
k¼1

�r,�k	kBðu, �ÞCðu, �Þ

þ
1

2

Xn�1
i¼1

Xn�1
j¼1

��i,�j	i	jCiðu, �ÞCj ðu, �Þ, ð2:13Þ

with boundary conditions B(u, 0)¼ iu, Ck(u, 0)¼ 0 and
A(u, 0)¼ 0. These ODEs can be solved analytically. By
setting u¼ 0 in (2.12) the zero-coupon bond price is
obtained, i.e.

Pðt,T Þ ¼
D

E
Q
ðe
�
R T

t
rðsÞds
j F ðtÞÞ

¼ exp Aðt,T Þ þ Bðt,T ÞrðtÞ þ
Xn�1
k¼1

Ckðt,T Þ�kðtÞ

 !
,

ð2:14Þ

where

Aðt,T Þ :¼ Að0, �Þ, Bðt,T Þ :¼ Bð0, �Þ, Ckðt,T Þ :¼ Ckð0, �Þ:

ð2:15Þ

By applying Itô’s lemma to equation (2.14), the zero-
coupon bond dynamics under the Q measure read

dPðt,T Þ

Pðt,T Þ
¼ rðtÞdtþ �Bðt,T ÞdWrðtÞ þ

Xn�1
k¼1

	kCkðt,T ÞdW�kðtÞ,

ð2:16Þ

where the functions B(t,T ) and Ck(t,T ) satisfy the
ODEs (2.13) via (2.15). Their solution reads

Bðt,T Þ ¼
1

�
ðe��ðT�tÞ � 1Þ, ð2:17Þ

Ckðt,T Þ ¼
1

�ð�k � �Þ
e��ðT�tÞ �

1

�kð�k � �Þ
e��kðT�tÞ �

1

�k�
,

ð2:18Þ

with

Ckðt,T Þ ¼
1

�2
ðe��ðT�tÞð1þ �ðT� tÞÞ � 1Þ, for �k ! �,

and k¼ {1, . . . , n� 1}.
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The dynamics for the zero-coupon bond are important
when switching measures in the hybrid model.

3. The affine Heston-Gnþþ model (AH-Gnþþ)

In this section, which is the main part of the article, we
define the affine hybrid Heston model. Since the proposed
model is, by its structure, similar to the Heston-multi-
factor-Gaussian model (denoted by H-Gnþþ), we abbre-
viate the model as ‘AH-Gnþþ’, which stands for the
‘affine H-Gnþþmodel’.

For convenience, we start with n¼ 2. The AH-G2þþ
model with the state vector H(t)¼ [r(t), �(t), v(t), S(t)]t

under the risk-neutral measure Q is given by the following
system of SDEs:

drðtÞ

d�ðtÞ

dvðtÞ

dSðtÞ=SðtÞ

26664
37775¼

�ðtÞþ �ðtÞ��rðtÞ,

���ðtÞ

�ð �v� vðtÞÞ

rðtÞ

26664
37775dtþLðtÞ

d eWrðtÞ

d eW�ðtÞ

d eWvðtÞ

d eWxðtÞ

266664
377775,
ð3:1Þ

where

LðtÞLðtÞt ¼

�2 �r,��	 0 �x,r�ðtÞ

�r,�	� 	2 0 �x,�	ðtÞ

0 0 !2v �x,v!v

�x,r�ðtÞ �x,�	ðtÞ �x,v!v v

26664
37775

¼: �H: ð3:2Þ

Here, the function (t) is a deterministic function
depending on time t, which will be discussed in section 3.3.
With deterministic function (t), matrix �H in (3.2) does
not contain any non-affine elements, so that the AH-
G2þþ model belongs to the class of affine processes. This
allows us to determine the characteristic function for the
model.

Application of the Cholesky decomposition to matrix
�H in (3.2) gives, for matrix L(t),

where U is the lower triangular Cholesky matrix obtained

from the correlation matrix, with values for Ui,j given by

U2,1 ¼ �r,�, U4,1 ¼ �x,r, U4,3 ¼ �x,v,

U2,2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
, U4,2 ¼ ð�x,� � �x,r�r,�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q�
:

ð3:4Þ

The correlation structure between the equity and interest

rate in the AH-G2þþ model in (3.1) with (3.2) is

dependent on function (t). If we set, for example,

(t)� 0, independence between the asset classes

is imposed. Our main objective is to choose a function
(t) so that the AH-G2þþ model stays affine and that it
resembles the full-scale H-G2þþ model. In section 3.3 we
discuss a particular choice for (t).

3.1. The affine hybrid model under measure change

It is common to move the model from the spot measure,
generated by the money-savings account, M(t), to the
forward measure, where the numéraire is the zero-coupon
bond, P(t, T). As indicated by Musiela and Rutkowski
(1997), the forward is defined as

FðtÞ ¼
SðtÞ

Pðt,T Þ
¼

ex̂ðtÞ

Pðt,T Þ
, ð3:5Þ

where F(t) represents the forward, S(t) is the stock, x̂ðtÞ is
the log-stock defined in (2.2) and P(t, T) as defined in
(2.16) represents the value of the zero-coupon bond
paying ¿1 at maturity T.

Under the AH-G2þþ hybrid model the stock dynamics
in terms of independent Brownian motions are given by

dSðtÞ

SðtÞ
¼ rðtÞdtþ  1ðtÞd eWrðtÞ þ  2ðtÞd eW�ðtÞ

þ  3ðtÞ
ffiffiffiffiffiffiffi
vðtÞ

p
d eWvðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞ 4ðtÞ þ  5ðtÞ

p
d eWxðtÞ,

ð3:6Þ

with  1(t)¼U4,1(t),  2(t)¼U4,2(t),  3(t)¼U4,3,  4ðtÞ ¼
1�U2

4,3 and  5ðtÞ ¼ �
2ðtÞðU2

4,1 þU2
4,2Þ, where Ui,j is

defined by (3.4) and the time-dependent function (t).
The zero-coupon bond, P(t, T), in terms of independent

Brownian motions is defined as

dPðt,T Þ

Pðt,T Þ
¼ rðtÞdtþ ð�Bðt,T Þ þ �r,�	Cðt,T ÞÞd eWrðtÞ

þ 	Cðt,T Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
d eW�ðtÞ, ð3:7Þ

with B(t,T ) in (2.17) and C(t, T) in (2.18). By switching
from the risk-neutral measure, Q, to the T-forward
measure, Q

T, the discounting will be decoupled from
taking the expectation, i.e.

�ðtÞ ¼ Pðt,T ÞET
ðmaxðFðT Þ � K, 0Þ j F ðtÞÞ: ð3:8Þ

In order to determine the dynamics for F(t) in (3.5), we

apply Itô’s formula

dFðtÞ

FðtÞ
¼

�
	2C2þB�ðB�� 1ðtÞÞ þ 	C

�
2�r,��B� �r,� 1ðtÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
 2ðtÞ

��
dtþ  ̂1ðtÞd eWrðtÞ þ  ̂2ðtÞd eW�ðtÞ

þ 3ðtÞ
ffiffiffiffiffiffiffi
vðtÞ

p
d eWvðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞ 4ðtÞ þ 5ðtÞ

p
d eWxðtÞ,

ð3:9Þ

LðtÞ ¼

� 0 0 0

	U2,1 	U2,2 0 0

0 0 !
ffiffiffiffiffiffiffi
vðtÞ

p
0

ðtÞU4,1 ðtÞU4,2 U4,3

ffiffiffiffiffiffiffi
vðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞð1�U2

4,3Þ � 
2ðtÞðU2

4,1 þU2
4,2Þ

q

2666664

3777775, ð3:3Þ
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with  ̂1ðtÞ :¼  1ðtÞ � ð�r,�	Cþ �BÞ,  ̂2ðtÞ :¼  2ðtÞ�

	C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
and, for the sake of notation, we have set

B :¼B(t, T) and C :¼C(t, T).
Forward F(t) is a martingale under the T-forward

measure, i.e.

Pðt,T ÞET
ðFðTÞ j FðtÞÞ ¼ Pðt,T ÞFðtÞ,

and the corresponding Brownian motions under the

T-forward measure, d eWT
x ðtÞ, d eWT

v ðtÞ, d eWT
r ðtÞ and

d eWT
� ðtÞ, need to be determined.

A change of measure from the spot to the T-forward

measure requires a change of numéraire from the money-

savings account, M(t), to the zero-coupon bond, P(t, T).

In the model we assume non-zero correlations between

interest rates and equity, and all the processes within each

asset class, which implies that all processes, except the

variance, will change their dynamics by changing the

measure.
The lemma below provides the model dynamics under

the T-forward measure, Q
T.

Lemma 3.1: (the AH-G2þþmodel dynamics under the Q
T

measure): Under the T-forward measure, the AH-G2þþ

model is governed by the following dynamics:

dFðtÞ

FðtÞ
¼  ̂1ðtÞd eWT

r ðtÞ þ  ̂2ðtÞd eWT
� ðtÞ þ  3ðtÞ

ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞ 4ðtÞ þ  5ðtÞ

p
d eWT

x ðtÞ, ð3:10Þ

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ, ð3:11Þ

where  ̂1ðtÞ and  ̂2ðtÞ are defined as in (3.9) and  i(t),

i¼ {1, . . . , 5}, as in (3.6) with

drðtÞ ¼ ð�̂ðtÞ þ �ðtÞ � �rðtÞÞdtþ �d eWT
r ðtÞ,

d�ðtÞ ¼ ð���ðtÞ þ 	��r,�Bðt,T Þ þ 	
2Cðt,T ÞÞdt

þ 	�r,�d eWT
r ðtÞ þ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
d eWT

� ðtÞ,

with �̂ðtÞ ¼ �ðtÞ þ �2Bðt,T Þ þ �r,��	Cðt,T Þ, the correlation
matrix given in (2.4), and B(t,T),C(t, T) in (2.17) and (2.18).

Since the interest rates are Gaussian, and in the

corresponding SDEs the diffusion parts are independent of

the state variables, the dimension of the underlying pricing

problem is reduced under the T-forward measure (as the

forward, F(t), and the variance process, v(t), do not contain

r(t) or �(t)).

Proof: We express the model in terms of the indepen-

dent Brownian motions as

dHðtÞ ¼ 
ðHðtÞÞdtþ LðtÞdeWðtÞ, ð3:12Þ

where 
(H(t)) represents the drift and L(t) is defined in

(3.3). Now, we determine the Radon–Nikodým derivative

(Geman et al., 1995), �T
Q
ðtÞ,

�T
Q
ðtÞ ¼

dQ
T

dQ

�����
FðtÞ

¼
Pðt,T Þ

Pð0,TÞMðtÞ
, ð3:13Þ

where P(t, T) is a zero-coupon bond and M(t) is the

money-savings account. By calculating the Itô derivative

of equation (3.13) we obtain

d�T
Q

�T
Q

¼ �Bðt,T Þd eWrðtÞþ	Cðt,T Þ �r,�d eWrðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2r,�

q
d eW�ðtÞ

� �
¼ ð�Bðt,T Þþ�r,�	Cðt,T ÞÞd eWrðtÞþ	Cðt,T Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2r,�

q
d eW�ðtÞ:

ð3:14Þ

The above representation shows the Girsanov kernel,

which describes the transition from Q to Q
T, i.e.

deWT
ðtÞ ¼ �ðtÞdtþ deWðtÞ:

So,

deWðtÞ :¼
d eWrðtÞ

d eW�ðtÞ

d eWvðtÞ

d eWxðtÞ

2666664

3777775 ¼
d eWT

r ðtÞ

d eWT
� ðtÞ

d eWT
v ðtÞ

d eWT
x ðtÞ

26666664

37777775

þ

�Bðt,T Þ þ �r,�	Cðt,T Þ

	Cðt,T Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
0

0

26666664

37777775dt: ð3:15Þ

Now, by substitution of deWðtÞ from (3.15) in (3.12) and

appropriate substitutions the proof is finalized. œ

3.2. The log-transform and the characteristic function

Under the log-transform, x(t) :¼ log F(t), we obtain the

following model dynamics:

dxðtÞ ¼ �
1

2
ð ̂2

1ðtÞ þ  ̂
2
2ðtÞ þ  5ðtÞ þ vðtÞð 2

3ðtÞ þ  4ðtÞÞÞdt

þ  ̂1ðtÞd eWT
r ðtÞ þ  ̂2ðtÞd eWT

� ðtÞ þ  3ðtÞ
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞ 4ðtÞ þ  5ðtÞ

p
d eWT

x ðtÞ, ð3:16Þ

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ, ð3:17Þ

with independent Brownian motions, d eWT
r ðtÞ, d eWT

� ðtÞ,

d eWT
v ðtÞ and d eWT

x ðtÞ. The remaining parameters are as

in (3.1). With the closed-form expressions for  ̂1ðtÞ,  ̂2ðtÞ,

 3(t),  4(t) and  5(t),

 ̂1ðtÞ ¼ ðtÞU4,1 � ð�r,�	Cðt,T Þ þ �Bðt,T ÞÞ,

 ̂2ðtÞ ¼ ðtÞU4,2 � 	Cðt,T Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
,

 3ðtÞ ¼ U4,3,

 4ðtÞ ¼ 1�U2
4,3,

 5ðtÞ ¼ �
2ðtÞðU2

4,1 þU2
4,2Þ,
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and U the Cholesky matrix in (3.4), the dynamics in (3.16)

can be simplified:

dxðtÞ ¼
1

2
ð�ðt,T Þ � vðtÞÞdtþ  ̂1ðtÞd eWT

r ðtÞ þ  ̂2ðtÞd eWT
� ðtÞ

þ  3ðtÞ
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞ 4ðtÞ þ  5ðtÞ

p
d eWT

x ðtÞ,

ð3:18Þ

with

�ðt,T Þ ¼ �	2C2ðt,T Þ � �2B2ðt,T Þ � 2�r,�	�Bðt,T ÞCðt,T Þ

þ 2ðtÞð�x,r�Bðt,T Þ þ �x,�	Cðt,T ÞÞ: ð3:19Þ

For the log-forward, x(t), the Fokker–Planck equation

for V(t) :¼V(t, H(t)) with H(t)¼ [x(t), v(t)]t is given by

�
@V

@t
¼ �ð �v� vÞ

@V

@v
þ
1

2
ðv� �ðt,T ÞÞ

@2V

@x2
�
@V

@x

� �
þ
1

2
!2v

@2V

@v2
þ �x,v!v

@2V

@x@v
, ð3:20Þ

with the deterministic, time-dependent function �(t,T )

in (3.19).
For the affine model, with �¼T� t, the forward

characteristic function is of the following form:

�Tðu, xðtÞ, �Þ ¼ E
T
ðeiuxðTÞ j F ðtÞÞ ¼ eÂðu, �ÞþB̂ðu, �ÞxðtÞþĈðu, �ÞvðtÞ,

ð3:21Þ

with terminal condition �T(u, x(T), 0)¼ eiux(T). Functions

Â(u, �), B̂ðu, �Þ and ĉ(u, �) satisfy, using B̂ðu, �Þ ¼
½B̂ðu, �Þ, Ĉðu, �Þ�t, the following Riccati ordinary differen-

tial equations (Duffie et al., 2000):

d

d�
B̂ðu, �Þ ¼ �r1 þ aT1 B̂ðu, �Þ þ

1

2
B̂
T
ðu, �Þc1B̂ðu, �Þ,

d

d�
Âðu, �Þ ¼ �r0 þ B̂

T
ðu, �Þa0 þ

1

2
B̂
T
ðu, �Þc0B̂ðu, �Þ:

ð3:22Þ

Here, ai, ci and ri, i¼ 0, 1, are given by a linear

decomposition:


H¼ a0þa1HðtÞ, for any ða0,a1Þ 2R
l
�R

l�l,

�H�T
H¼ ðc0Þijþðc1Þ

T
ijHðtÞ, for arbitrary ðc0,c1Þ 2R

l�l
�R

l�l�l,

rH¼ r0þ rT1HðtÞ, for ðr0,r1Þ 2R�R
l,

where l indicates the dimension of the state vector H(t).

The forward characteristic function in (3.21) is defined by

B̂ 0ð�Þ¼ 0,

Ĉ 0ð�Þ¼ 1=2ðB̂2ð�Þ� B̂ð�ÞÞþð�x,v!B̂ð�Þ� �ÞĈð�Þþ1=2!2Ĉ2ð�Þ,

Â 0ð�Þ¼ � �vĈð�Þ�1=2�ðt,T ÞðB̂2ð�Þ� B̂ð�ÞÞ,

with �(t, T) in (3.19), B̂ð0Þ ¼ iu, ĉ(0)¼ 0 and Â(0)¼ 0. The

ODEs are of Heston-type (Heston 1993), so that the

solution is given in closed form as B̂ðu, �Þ ¼ iu, and

Ĉðu, �Þ ¼
1� e�d1�

!2ð1� ge�d1�Þ
ð�� �x,v!iu� d1Þ, ð3:23Þ

and, for Â(u, �), we find

Âðu, �Þ ¼
� �v

!2
ð�� �x,v!iu� d1Þ� � 2 log

1� ge�d1�

1� g

� �� �
þ
1

2
ðu2 þ iuÞ

Z �

0

�ðT� s,TÞds, ð3:24Þ

with d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x,v!iu� �Þ

2
þ !2ðu2 þ iuÞ

q
, g¼ (��x,v!iuþ

�� d1)/(��x,v!iuþ �þ d1), and �(t,T) defined in (3.19).
The integral in (3.24) of the deterministic function

�(t,T ) can be calculated explicitly. This integral does not
contain the Fourier argument ‘u’, which implies that, for
pricing a whole strip of strikes, one computation suffices.
This is an advantage compared with other hybrid models,
such as the Schöbel–Zhu–Hull–White model, where each
argument, u, requires the calculation of an integral.

Remark 1: (extension to an n-factor affine model): In
section 3.1 we have shown that switching between the
measures, from the spot to the forward, reduces the
complexity of the corresponding PDE for the forward
price F(t) considerably. By taking Gaussian interest rates,
the forward dynamics for F(t) do not depend on interest
rate variables, as only volatility coefficients from the
interest rate processes are present. The generalization
from a two-factor interest rate model to an n-factor model
therefore does not complicate the pricing problem—it is
merely a change of coefficients. It is easy to deduce that,
under the AH-Gnþþmodel, the Fokker–Planck equation
for V(t) :¼V(t, H(t)) with H(t)¼ [x(t), v(t)]t is given by

�
@V

@t
¼ �ð �v� vÞ

@V

@v
þ
1

2
ðv� �̂ðt,T ÞÞ

@2V

@x2
�
@V

@x

� �
þ
1

2
!2v

@2V

@v2
þ �x,v!v

@2V

@x @v
, ð3:25Þ

with function �̂ðt,T Þ given by

�̂ðt,T Þ ¼ �
Xn�1
i¼1

Xn�1
j¼1

��i,�j	i	jCiðt,T ÞCj ðt,T Þ

� 2�Bðt,T Þ
Xn�1
k¼1

�r,�k	kCkðt,T Þ � �
2B2ðt,T Þ

þ 2ðtÞ �x,r�Bðt,T Þ þ
Xn�1
k¼1

�x,�k	kCkðt,T Þ

 !
,

ð3:26Þ

with B(t,T ) and Ck(t,T ) defined in (2.17) and (2.18), a
certain deterministic function (t) and all the parameters
as defined in (2.2) and (2.3). Since the PDE structure in
(3.25) of the AH-Gnþþ model is the same as for the AH-
G2þþmodel in (2.5), the results from section 3.2 can be
used directly (only the function �(t,T ) in (3.24) needs to
be replaced by �̂ðt,T Þ from (3.26)).

3.2.1. Positive definiteness of the covariance matrix

�H. When performing a simulation of a model, either
by a Monte Carlo method or by finite-differences for the
associated PDE, the corresponding covariance matrix
needs to be defined properly. Since L(t) in the AH-G2þþ

The affine Heston model with correlated Gaussian interest rates 1653
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model is obtained from the Cholesky decomposition of
the covariance matrix, L(t)L(t)t¼�H, we need to deter-
mine under which conditions matrix �H is positive
definite. Positive definiteness of the covariance matrix is
necessary for performing a Monte Carlo simulation. Since
we deal with a 2� 2 covariance matrix (by the change of
measure the number of state variables is reduced from
four to two), we use Sylvester’s criterion to determine
when the covariance matrix is positive definite. For a
2� 2 matrix the criterion states that a Hermitian matrix is
positive definite if the upper-left elements of matrix �H

and matrix �H itself have positive determinants.
Covariance matrix �H is given by

�H ¼
1

2

ðvðtÞ � �ðt,T ÞÞ �x,v!vðtÞ

�x,v!vðtÞ !2vðtÞ

� �
, ð3:27Þ

with �(t,T ) in (3.19).
We check when v(t)4�(t,T ). Since we deal with a non-

negative square-root process for v(t), the expression on
the left-hand side is always non-negative, i.e. v(t)� 0. By
(3.19) we can rewrite �(t,T ) as

�ðt,T Þ ¼ �ð	Cðt,T Þ þ �r,��Bðt,T ÞÞ
2
� �2B2ðt,T Þð1� �2r,�Þ

þ 2ðtÞð�x,r�Bðt,T Þ þ �x,�	Cðt,T ÞÞ:

Since B(t,T )� 0 and C(t,T )� 0 for any t�T and �40,
�40, by setting �x,r40 and �x,�40 the expression for
�(t,T ) is negative, guaranteeing that the condition for
positive definiteness is satisfied. In the case �x,r50 or
�x,�50, the inequality v(t)4�(t,T ) needs to be satisfied,
which is typically is not a problem, especially for large
values of v(t).

For the determinant of matrix �H we find

det�H ¼ !
2vðtÞðvðtÞ � �ðt,T ÞÞ � �2x,v!

2v2ðtÞ4 0, ð3:28Þ

which can be expressed as

vðtÞð1� �2x,vÞ4�ðt,T Þ: ð3:29Þ

As before, the left-hand side of inequality (3.29) is positive
for j�x,vj51 and v(t)40, whereas �(t,T ) is negative for
the conditions described before.

3.3. The function (t)

In this section we determine function (t) in (3.2) for the
AH-Gnþþ model. In the H-Gnþþ model, each of
the non-affine terms contains the term

ffiffiffiffiffiffiffi
vðtÞ

p
, where v(t)

is the square-root process defined in (3.1) with dynamics

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
d eWvðtÞ ð3:30Þ

(with all the parameters specified in (2.2)). Since function
(t) is related to the

ffiffiffiffiffiffiffi
vðtÞ

p
term in the H-Gnþþ model, a

natural definition for (t) in the AH-Gnþþ model
appears to be

ðtÞ :¼ Eð
ffiffiffiffiffiffiffi
vðtÞ

p
Þ, ð3:31Þ

where variance process v(t) is of square-Bessel CIR-type
(Cox et al. 1985).

The process is guaranteed to be positive if the Feller

condition (Feller 1971) for v(t), i.e. 2� �v � !2, is satisfied.
It is shown by Cox et al. (1985) and Broadie and Kaya

(2006) that, for a given time t40, v(t) is distributed as c(t)

times a non-central chi-squared random variable, �2(d,
�(t)), with d the ‘degrees of freedom’ parameter and non-

centrality parameter �(t), i.e.

vðtÞ 	 cðtÞ�2ðd, �ðtÞÞ, t4 0, ð3:32Þ

with

cðtÞ ¼
1

4�
!2ð1� e��tÞ, d ¼

4� �v

!2
, �ðtÞ ¼

4�vð0Þe��t

!2ð1� e��tÞ
:

ð3:33Þ

So, the corresponding cumulative distribution function

(CDF) can be expressed as

FvðtÞðxÞ ¼ PðvðtÞ � xÞ ¼ Pð�2ðd, �ðtÞÞ � x=cðtÞÞ

¼ F�2ðd,�ðtÞÞðx=cðtÞÞ, ð3:34Þ

where

F�2ðd,�ðtÞÞð yÞ ¼
X1
k¼0

exp �
�ðtÞ

2

� �
ð�ðtÞ=2Þk

k!

�ðkþ ðd=2Þ, y=2Þ

�ðkþ ðd=2ÞÞ
,

ð3:35Þ

with

�ða, zÞ ¼

Z z

0

ta�1e�tdt, �ðzÞ ¼

Z 1
0

tz�1e�tdt: ð3:36Þ

Further, the corresponding density function (see, for

example, Moser (2007)) reads

f�2ðd,�ðtÞÞðyÞ ¼
1

2
e�ð1=2Þðyþ�ðtÞÞ

y

�ðtÞ

� �ð1=2Þððd=2Þ�1Þ
Bðd=2Þ�1ð

ffiffiffiffiffiffiffiffiffiffiffi
�ðtÞy

p
Þ,

ð3:37Þ

with

BaðzÞ ¼
z

2

	 
aX1
k¼0

ð14 z
2Þ

k

k!�ðaþ kþ 1Þ
, ð3:38Þ

which is a modified Bessel function of the first kind (see,

for example, Abramowitz and Stegun (1972) and

Gradshteyn and Ryzhik (1996)).
The density for v(t) can now be expressed as

fvðtÞðxÞ ¼
def d

dx
FvðtÞðxÞ ¼

d

dx
F�2ðd,�ðtÞÞðx=cðtÞÞ

¼
1

cðtÞ
f�2ðd,�ðtÞÞðx=cðtÞÞ: ð3:39Þ

By using the properties of the non-central chi-square

distribution, the mean and variance of the process v(t) are

known explicitly:

EðvðtÞ j vð0ÞÞ ¼ cðtÞðdþ �ðtÞÞ,

VarðvðtÞ j vð0ÞÞ ¼ c2ðtÞð2dþ 4�ðtÞÞ: ð3:40Þ

In the following lemma we derive the corresponding

expectation for
ffiffiffiffiffiffiffi
vðtÞ

p
.
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Lemma 3.2: (expectation for
ffiffiffiffiffiffiffi
vðtÞ

p
): For a given time t40

the expectation of
ffiffiffiffiffiffiffi
vðtÞ

p
, where v(t) has a non-central chi-

square distribution function with CDF in (3.35), is given by

ðtÞ :¼ Eð
ffiffiffiffiffiffiffi
vðtÞ

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffi
2cðtÞ

p
e��ðtÞ=2

X1
k¼0

1

k!
ð�ðtÞ=2Þk

�ð½ð1þ d Þ=2� þ kÞ

�ððd=2Þ þ kÞ
, ð3:41Þ

where c(t), d and �(t) are defined in (3.33).

Proof: The proof is given in appendix A. œ

3.4. Option pricing and hedging

3.4.1. European options. European option prices can be
obtained efficiently by use of the COS pricing method

from Fang and Oosterlee (2008), which is based on the

availability of the characteristic function. The method

employs a Fourier cosine expansion of the density

function. From the general risk-neutral pricing formula

the price of any European claim, V(T, F(T)), defined in

terms of the underlying process, F(T), can be written as

�ðt,FðtÞÞ ¼ Pðt,T ÞET
ðVðT,FðTÞÞ j F ðtÞÞ

¼ Pðt,T Þ

Z
R

VðT, yÞbfYð y j xÞdy, ð3:42Þ

where bfYð y j xÞ is the transitional probability density

function of F under the forward measure Q
T. Assuming

fast decay of the density function, we can use the

following approximation:

�ðt, xÞ 
 Pðt,T Þ

Z �2

�1

VðT, yÞbfYð y j xÞdy, ð3:43Þ

with �15�2. Now, in order to recover the density functionbfYð y j xÞ, one employs a Fourier cosine expansion based

on the characteristic function

bfYðy j xÞ 
XN
n¼0

2!n

�2� �1
Ref�Tðkn,xðtÞ,�Þe�ikn�1gcosðknðy� �1ÞÞ,

ð3:44Þ

with Re denoting taking the real part of the argument in

brackets, �T(u, x(t), �) is defined in (3.21), !0¼ 1/2,

!n¼ 1, n2N
þ, and k¼�/(�2� �1). The transitional prob-

ability density function bfYð y j xÞ in equation (3.42) is

replaced by the cosine expansion:

�ðt,xÞ 
 Pðt,T Þ
XN
n¼0

!n Reð�Tðkn, xðtÞ, �Þe�ikn�1 Þ��1,�2n ,

ð3:45Þ

where the coefficients ��1,�2n are known analytically for

European options (see Fang and Oosterlee (2008) for

details and for error analysis regarding the different

approximations).
The expansion in (3.45) exhibits an exponential con-

vergence in the number of terms N. Moreover, a whole

vector of strikes can be priced simultaneously. A proper

range of integration in (3.43) is a guarantee for fast

convergence with only a few terms in the Fourier cosine

expansion. Fang and Oosterlee (2008) based the integra-

tion range on the behavior of the probability density

function. There, the choice was �1 ¼ �L
ffiffiffi
�
p

and

�2 ¼ L
ffiffiffi
�
p

, with L¼ 8. We use this integration range here.
An important asset of the AH-G2þþ model is the

availability of the corresponding characteristic function

so that we can calibrate the model fast and efficiently to

plain vanilla contracts. We can also price certain

exotic contracts, whose pricing can be related to the

characteristic function. Moreover, Greeks can be derived

easily for European contracts. The Greeks determine the

price sensitivities to changes in the underlying model

parameters. We provide formulas for Delta, D, Gamma,

�, and the sensitivities to the correlations �x,r, �x,�
and �r,�.

From the definition of a delta hedge we have

D :¼
@�ðt, xÞ

@SðtÞ
¼
@�ðt, xÞ

@FðtÞ

@FðtÞ

@SðtÞ
¼

1

Pðt,T Þ

@�ðt, xÞ

@FðtÞ
:

With u¼ kn, the characteristic function of the AH-G2þþ

model reads

�Tðkn,xðtÞ,�Þ ¼ expðikn logðFðtÞÞþ Ĉðkn,�ÞvðtÞþ Âðkn,�ÞÞ,

ð3:46Þ

with Ĉ(kn, �) and Â(kn, �) from (3.23), (3.24) and (3.45),

so that we have

D 

1

FðtÞ

XN
n¼0

!n Ref�Tðkn, xðtÞ, �Þe�ikn�1 ikng��1,�2n , ð3:47Þ

with k¼�/(�2� �1).
For Gamma, �¼ @D/@S, we find

� 

1

Pðt,T Þ

1

F2ðtÞ

XN
n¼0

!n

Re
n
�Tðkn, xðtÞ, �Þe�i�1knððiknÞ2 � iknÞ

o
��1,�2n : ð3:48Þ

For the derivatives with respect to the correlation, which

we cally Rho(�), for �¼ {�x,r,�x,�, �r,�} we find

Rhoð�Þ : ¼
@

@�
�ðt,xÞ 
 Pðt,T Þ

XN
n¼0

!n

Re �Tðkn, xðtÞ, �Þe�i�1kn
@

@�
Âðkn, �Þ

� �
��1,�2n ,

ð3:49Þ

with Â(kn, �) as in (3.46).

yNot to be confused with the derivative with respect to the interest rate in the standard Black–Scholes model, which is also
called ‘rho’.
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Depending on the different correlations, �¼ {�x,r,
�x,�,�r,�}, we determine the three partial derivatives

(@/@�)A(kn, �)

@

@�x,r
Âðkn,�Þ ¼ �ððknÞ2þ iknÞ

Z �

0

Eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðT� sÞ

p
ÞBðT� s,TÞds,

@

@�x,�
Âðkn,�Þ ¼ 	ððknÞ2þ iknÞ

Z �

0

Eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðT� sÞ

p
ÞCðT� s,TÞds,

@

@�r,�
Âðkn,�Þ ¼�	�ððknÞ2þ iknÞ

Z �

0

BðT� s,TÞCðT� s,TÞds,

with B(t,T ) defined in (2.17) and C(t,T ) in (2.18).
Here, we check the effect of correlations on the Greeks

for a basic call option under the AH-G2þþ model. We

perform two experiments. First, in figure 1(a), we show D,
�, Rho(�x,r), Rho(�x,�) and Rho(�r,�). Second, in

figure1(b), we vary the correlation between the stock

and the interest rate, �x,r, and present the effect on D.
In the experiments we consider a maturity of 15 years,

T¼ 15, and the discount factor P(0, T)¼ exp(�0.06T)

with the set of parameters S(0)¼ 1, �¼ 0.3, �v ¼ 0:02,
!¼ 0.251, �¼ 0.03, �¼ 0.02, �¼ 1.1 and 	¼ 0.02. The

correlation structure is set as follows:

1 �x,v �x,r �x,�

� 1 0 0

� � 1 �r,�

� � � 1

26664
37775 ¼

1 �30% 20% 10%

� 1 0 0

� � 1 �90%

� � � 1

26664
37775:

ð3:50Þ

The experiments indicate that when hedging these long-

maturity European options, the correlation between stock

and interest rates, �x,r, has a significant effect on a delta

hedge. Figure 1(b) also shows that, if one assumes �x,r¼ 0

and performs delta hedging, a portfolio will be under/over

hedged if the correlation is non-zero in reality.
In order to explain the increase of D as �x,r increases,

we need to look at the underlying forward price, F(t). The

forward dynamics in lemma 3.1 can be expressed as

dFðtÞ

FðtÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðtÞ � 2�x,r�Eð

ffiffiffiffiffiffiffi
vðtÞ

p
ÞBðt,T Þ

q
dWT

FðtÞ, ð3:51Þ

with

�ðtÞ¼ vðtÞþ	2C2ðt,T Þþ�2B2ðt,T Þþ2�r,�	�Bðt,TÞCðt,TÞ

�2�x,�	Eð
ffiffiffiffiffiffiffi
vðtÞ

p
ÞCðt,TÞ, ð3:52Þ

and another Brownian motion dWT
FðtÞ.

Assuming that all the parameters stay constant, we
analyse how the volatility term in front of dWF(t) in (3.51)
behaves for different correlations �x,r. We find that, for

any set of parameters, Eð
ffiffiffiffiffiffiffi
vðtÞ

p
Þ4 0 and B(t,T )� 0.

Therefore, an increase of the correlation �x,r is directly
related to an increase of the volatility of the forward.
This explains the additional hedging costs presented in
figure 1(b) in the presence of a positive correlation
between stock and the interest rate. The same pattern may
be observed regarding �x,� and �r,�.

3.4.2. Efficient Monte Carlo simulation. Here, we briefly
discuss an efficient Monte Carlo simulation scheme for
the AH-G2þþ model. We will adopt the algorithm of
Andersen (2008), originally developed for the pure
Heston stochastic volatility model. As presented in
lemma 3.1 the AH-G2þþ (as well as the H-G2þþ)
model can formulated as

dFðtÞ

FðtÞ
¼  ̂1ðtÞd eWT

r ðtÞ þ  ̂2ðtÞd eWT
� ðtÞ þ �x,v

ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞð1� �2x,vÞ þ  5ðtÞ

q
d eWT

x ðtÞ, ð3:53Þ

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ, ð3:54Þ

with

 ̂1ðtÞ ¼ U4,1ðtÞ � ð�r,�	Cðt,T Þ þ �Bðt,T ÞÞ,

 ̂2ðtÞ ¼ U4,2ðtÞ � 	Cðt,T Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r,�

q
,

 5ðtÞ ¼ �
2ðtÞðU2

4,1 þU2
4,2Þ,

and U4,1 and U4,2 are defined in (3.4). We have
ðtÞ ¼ Eð

ffiffiffiffiffiffiffi
vðtÞ

p
Þ for the AH-G2þþ model (and ðtÞ ¼

ffiffiffiffiffiffiffi
vðtÞ

p
for the H-G2þþ model). Since the difference between the
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Figure 1. (a) Several Greek values for a call option. (b) Effect on delta of correlation, �x,r, for a call option.
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AH-G2þþ and the H-G2þþ model appears only in

function (t), the Monte Carlo schemes are very similar.
In both models the dynamics for the forward, F(t), do

not depend on the interest rate processes, r(t) or �(t). This
implies that, for Monte Carlo paths for F(t), only the 2D

stochastic differential equations for the forward, F(t), and

its variance process, v(t), need to be discretized.
Since the Brownian motions in the models are inde-

pendent, we can perform a simplifying factorization,

dFðtÞ

FðtÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 ̂2
1ðtÞ þ  ̂

2
2ðtÞ þ vðtÞð1� �2x,vÞ þ  5ðtÞ

q
d eWT

FðtÞ

þ �x,v
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ,

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ,

with d eWT
FðtÞ independent of d

eWT
v ðtÞ.

In log-transformed coordinates, x(t)¼ log F(t), we find

with Itô’s lemma:

dxðtÞ ¼
1

2
ð�ðt,T Þ � vðtÞÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt, vðtÞÞ

p
d eWT

FðtÞ

þ �x,v
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ, ð3:55Þ

with �ðt, vðtÞÞ ¼ ��ðt,T Þ þ vðtÞ � �2x,vvðtÞ, where

�ðt,T Þ :¼�	2C2ðt,T Þ � �2B2ðt,T Þ � 2�r,�	�Bðt,T ÞCðt,T Þ

þ 2ðtÞð�x,r�Bðt,T Þ þ �x,�	Cðt,T ÞÞ, ð3:56Þ

with ðtÞ ¼
ffiffiffiffiffiffiffi
vðtÞ

p
for the H-G2þþ model or ðtÞ ¼

Eð
ffiffiffiffiffiffiffi
vðtÞ

p
Þ for the AH-G2þþ model.

The variance process v(t) is also independent of the

interest rates processes, r(t) and �(t),

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
d eWT

v ðtÞ: ð3:57Þ

For t40, v(t) is from a non-central chi-square distribution

(Cox et al. 1985). The direct sampling of v(t) can be very

efficiently performed with the Quadratic Exponential

(QE) scheme proposed by Andersen (2008).
In order to obtain a bias-free scheme (Broadie and

Kaya 2006) for sampling the forward price process, it is

convenient to first integrate the SDE for v(t), i.e.

vðtþ �Þ ¼ vðtÞ þ

Z tþ�

t

�ð �v� vðsÞÞdsþ !

Z tþ�

t

ffiffiffiffiffiffiffiffi
vðsÞ

p
d eWT

v ðsÞ:

ð3:58Þ

Process x(t) from (3.55) can be expressed in integral

form as

xðtþ �Þ ¼ xðtÞ þ
1

2

Z tþ�

t

ð�ðs,TÞ � vðsÞÞds

þ

Z tþ�

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs, vðsÞÞ

p
d eWT

FðsÞ

þ �x,v

Z tþ�

t

ffiffiffiffiffiffiffiffi
vðsÞ

p
d eWT

v ðsÞ: ð3:59Þ

The last integral in (3.59) can easily be determined using

equation (3.58). In the discretization (3.59) we distinguish

the time and stochastic-type integrals. Those integrals can

be handled as indicated by Andersen (2008). For a

state-dependent function f(t, v(t)), the time integrals can
be approximated byZ tþ�

t

f ðt, vðsÞÞds 
 �ð	1f ðt, vðtÞÞ þ 	2f ðtþ �, vðtþ �ÞÞÞ,

ð3:60Þ

with certain weights 	1 and 	2. For the stochastic integrals
we have, with help of Itô’s Isometry,Z tþ�

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs, vðsÞÞ

p
d eWT

FðsÞ 	 N 0,

Z tþ�

t

�ðs, vðsÞÞds

� �
,

ð3:61Þ

with N (a, b) indicating a normal distribution with mean a

and variance b.
We note that an extension from a two-factor interest

rate process to n factors is trivial, since only the functions
�(s,T ) and �(s, v(s)) then consist of more terms.

The developed scheme will be used in a number of
experiments in the following sections.

4. Numerical experiments

In this section we compare prices obtained by the AH-
G2þþ model with those obtained by the Schöbel–Zhu–

Hull–White model and by the H-G2þþ model. We use
European options, and also check the performance of the
hybrid models when pricing an exotic hybrid derivative in

the final subsection.

4.1. Comparison with the Schöbel–Zhu model

Here, we compare the AH-Gnþþ model with the
Schöbel–Zhu model with Gaussian interest rates. The
Schöbel–Zhu model is driven by the SDEs

dexðtÞ ¼ rðtÞ �
1

2
�2ðtÞ

� �
dtþ �ðtÞdWexðtÞ,

d�ðtÞ ¼e�ð �� � �ðtÞÞdtþ e!dW�ðtÞ, ð4:1Þ

with dWexðtÞdW�ðtÞ ¼ �ex, �dt and positive parameters.
The stochastic volatility model of Heston (as for the

AH-Gnþþ model) has the following dynamics:

dxðtÞ ¼ rðtÞ �
1

2
vðtÞ

� �
dtþ

ffiffiffiffiffiffiffi
vðtÞ

p
dWxðtÞ,

dvðtÞ ¼ �ð �v� vðtÞÞdtþ !
ffiffiffiffiffiffiffi
vðtÞ

p
dWvðtÞ, ð4:2Þ

with positive parameters and the correlation dWx(t)
dWv(t)¼ �x,vdt. For both models the interest rate process

r(t) is identical, driven by a correlated, normally distrib-
uted, short-rate model, so that we only need to focus on
the differences in the volatility processes. The volatility in

the Schöbel–Zhu model is driven by a normally distrib-
uted Ornstein–Uhlenbeck process �(t), whereas in the
Heston model the volatility is

ffiffiffiffiffiffiffi
vðtÞ

p
with v(t) distributed

as c(t) times a non-central chi-squared random variable,
�2(d, �(t)), as discussed in subsection 3.3.
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We determine under which conditions the two volatility

processes, for the Schöbel–Zhu, �(t), and for the Heston

model,
ffiffiffiffiffiffiffi
vðtÞ

p
, coincide. In other words, we determine

under which conditions
ffiffiffiffiffiffiffi
vðtÞ

p
is approximately a normal

distribution (as �(t) in the Schöbel–Zhu model is normally

distributed).

Result 4.1 (
ffiffiffiffiffiffiffi
vðtÞ

p
as a normal distribution for

05t51): For t51, the square root of v(t) in (4.2)

can be approximated by

ffiffiffiffiffiffiffi
vðtÞ

p

 N

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðtÞð�ðtÞ � 1Þ þ cðtÞdþ

cðtÞd

2ðdþ �ðtÞÞ

s
, cðtÞ

�
cðtÞd

2ðdþ �ðtÞÞ

!
, ð4:3Þ

with c(t), d and �(t) from (3.33). Moreover, for a fixed

value of z in the cumulative distribution function

F ffiffiffiffiffi
vðtÞ
p ðzÞ, and a fixed value for parameter d, the error is

of order O(�2(t)) for �(t)! 0 and Oð1=
ffiffiffiffiffiffiffiffi
�ðtÞ

p
Þ for

�(t)!1.

As already indicated by Patnaik (1949) the normal

approximation (4.3) is a satisfactory approximation for

either a large number of degrees of freedom d, or a large

non-centrality parameter �(t). A large number of degrees

of freedom, d� 0, implies that 4� �v� !2, which is closely

related to the Feller condition, 2� �v4!2. The Heston

model thus has a volatility structure similar to the

Schöbel–Zhu model when the Feller condition is satisfied.

Figure 2 confirms this observation. The volatilities for the

Heston and Schöbel–Zhu models differ significantly when

the Feller condition does not hold, as the volatility in the

Heston model gives rise to much heavier tails than those

in the Schöbel–Zhu model. This may have a significant
effect when calibrating the models to market data with
significant implied volatility smile or skew.

4.1.1. Calibration of the hybrid models. Here we exam-
ine the two models and check their performance when
calibrating to real market data. The Schöbel–Zhu–Hull–
White and the AH-G1þþ models (i.e. affine Heston with
the Hull–White short-rate process) are calibrated to
implied volatilities from the S&P500 (27/09/2010)y with
spot price at 1145.88.

First, we calibrate the parameters for the interest rate
process using caplets and swaptions. Standard procedures
for the Hull–White calibration are employed (Brigo and
Mercurio 2007). Because of the model’s structure, the
calibration is performed with ATM market data. This
implies that hybrid models based on the Hull–White
dynamics are not dependent on the interest rate implied
smile or skew. This is, however, typically not a problem
for payoffs in which the equity is the preliminary hybrid
component. Examples of such products can be found in
Hunter and Picot (2005/06) and Bouzoubaa and Osseiran
(2010). Stochastic volatility Libor (SVL) models can
generate a richer volatility structure. In the case of the
Hull–White model, closed-form formulae for many plain
vanilla products are available. For the SVL models,
however, the pricing of standard interest rate options is
already an issue, and often heuristic techniques, such as
Libor rate freezing, need to be applied. Further, in a
standard setting the dynamics of the SVL model are
described by a high-dimensional system of correlated
SDEs. This system becomes particularly difficult to
handle when a particular pricing measure is prescribed.
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Figure 2. Histogram for
ffiffiffiffiffiffiffi
vðtÞ

p
(the Heston model) and density for �(t) (the Schöbel–Zhu model), maturity T¼ 2. Left: Feller

condition satisfied, �¼ 1.2, vð0Þ ¼ �v ¼ 0:0625, 	¼ 0.1. Right: Feller condition violated, �¼ 0.25, vð0Þ ¼ �v ¼ 0:0625, 	¼ 0.625 as in
Antonov et al. (2008).

yDataset obtained from Rabobank International.
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The hybrid model presented in this article is consistent:

the Fourier inversion corresponds to the original model

dynamics (without any additional simplifications).
For both models the correlation between the stock and

interest rates, �x,r, is set to þ30%.
The calibration results, presented in table 1, confirm

that the AH-G1þþ model is more flexible than the

Schöbel–Zhu–Hull–White model. The difference is

pronounced for large strikes, for which the error for the

affine Heston hybrid model is up to 20 times smaller

than for the Schöbel–Zhu–Hull–White hybrid model

(table 2).

4.2. The AH-G2þþ and H-G2þþ models for pricing
long-term maturity options

In the second experiment we check the performance of the

H-G2þþ model against its affine sister, the AH-G2þþ

model pricing plain vanilla options. First, we generate

European call prices with the H-G2þþ hybrid model by a

Monte Carlo simulation (from section 3.4.2). Secondly,

we make a comparison, in terms of implied volatilities,

with results from the AH-G2þþ hybrid model obtained

by the COS method. We consider two cases, one in which

the model parameters satisfy the Feller condition for the

stock and another experiment in which they do not satisfy

this condition.

Experiment 4.2 (Feller’s condition satisfied,

2� �v � !2): We compare the results of the H-G2þþ

and AH-G2þþ models. The parameters are chosen as

� ¼ 0:8, �v ¼ 0:2, ! ¼ 0:2, � ¼ 1:1, � ¼ 0:01,

� ¼ 0:8, 	 ¼ 0:015,

and the correlation is given by

1 �x,v �x,r �x,�

� 1 �v,r �v,�

� � 1 �r,�

� � � 1

26664
37775 ¼

1 �30% 35% 8%

� 1 0% 0%

� � 1 �40%

� � � 1

26664
37775:
ð4:4Þ

The initial conditions are S(0)¼ 1 and vð0Þ ¼ �v with the

initial yield given by P(0, T)¼ exp(�0.03T). With these

parameters the Feller condition for the stock is satisfied.

We choose four maturities �¼ 1, �¼ 5, �¼ 10 and �¼ 20.

Table 3 shows an almost perfect correspondence between

the volatilities.

Experiment 4.3 (Feller’s condition violated, 2� �v � !2): In

practice, there are many cases in which the Feller

condition is not satisfied. Therefore, we check the

performance of the affine hybrid model in such a setup.

In this experiment we choose �¼ 0.4, �v ¼ 0:2 and !¼ 0.6

and the remaining parameters are as in experiment 4.2.

The Feller condition does not hold in this case, as

0.16� 0.36. Therefore, the probability of hitting zero is

positive. Table 4 shows that our tractable hybrid model,

AH-G2þþ, provides values close to the H-G2þþ model.

These experiments, with standard parameters, show

that the results of the AH-G2þþ model resemble those of

the H-G2þþ model.

Remark 2: The AH-Gnþþ and H-Gnþþ models differ

only in the definition of function (t) in the associated

covariance matrix. This (t) is multiplied either by �x,r� or
by �x,�	. It is therefore evident that both models produce

very similar results when either the correlations or the

volatilities for the interest rates, 	 and �, are small.

Table 1. Calibration results for the Schöbel–Zhu hybrid model (SZHW) and the AH-G1þþ hybrid.

Strike
Implied volatility (%) Error (%)

T (%) Market SZHW AH-G1þþ Err. (SZHW) Err. (AG-G1þþ)

6 months 40 57.61 54.02 57.05 3.59 �0.56
80 31.38 34.33 33.22 �2.95 1.84
100 22.95 25.21 21.57 �2.26 �1.38
120 15.9 18.80 16.38 �2.90 0.48
180 24.54 22.60 24.40 1.94 �0.14

1 year 40 48.53 47.01 48.21 1.52 0.32
80 30.37 31.69 31.07 �1.32 �0.70
100 24.49 24.97 24.28 �0.48 0.21
120 19.23 19.09 19.14 0.14 0.09
180 18.42 18.28 18.40 0.14 0.02

5 years 40 41.30 40.00 41.20 1.30 0.10
80 31.12 31.88 31.38 �0.76 �0.26
100 27.83 28.75 27.86 �0.92 �0.03
120 25.13 25.93 24.91 �0.80 0.22
180 19.28 18.57 19.32 0.71 �0.04

10 years 40 36.76 36.15 36.75 0.61 0.01
80 31.04 31.25 31.08 �0.21 �0.04
100 29.18 29.47 29.18 �0.29 0.00
120 27.66 27.93 27.62 �0.27 0.04
180 24.34 24.15 24.35 0.19 �0.01
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Obviously, the correlations are, by definition, bounded
by 1. The volatilities for the short-rate models, on the
other hand, are also typically of small size (values50.1 are
often reported in the literature (Brigo and Mercurio
2007)). In the following experiments we check the model
performance for unrealistically high volatilities to
emphasize the proposed AH-G2þþ model.

4.3. Pricing of a hybrid product

In this test we consider an equity–interest rate diversifi-
cation hybrid product. This product is based on sets of
assets with different expected returns and risk levels.
Proper construction of such a product may give reduced
risk compared with any single asset, and an expected
return that is greater than that of the least risky asset
(Hunter and Picot 2005/06). A basic example is a
portfolio with two assets: a stock with a high risk and
high return and a zero-coupon bond with a low risk and
low return. If one introduces an equity component into a
zero-coupon bond portfolio the expected return will
increase. However, because of the non-perfect correlation
between these two assets, a risk reduction is also expected.

If the percentage of the equity in the portfolio is

increased, it eventually starts to dominate the structure

and the risk may increase with a greater impact for a

low or negative correlation. The example is defined as

follows:

payoff ¼ maxðŵ1SðT1Þ þ ŵ2PðT1,TÞ, 0Þ, ð4:5Þ

where, for T15T, S(T1) is the underlying asset at time T1,

P(T1,T ) is a zero-coupon bond that pays ¿1 at time T and

ŵ1 and ŵ2 are weighting factors, which can be either

positive (in a long position) or negative (in a short

position).
The value of the contract in (4.5), at time t, under the

risk-neutral measure Q, can be expressed by

�ðt,SðtÞÞ¼E
Q

1

MðT1Þ
maxðŵ1SðT1Þþ ŵ2PðT1,TÞ,0Þ

����FðtÞ� �
:

ð4:6Þ

Since the expectation in (4.6) contains a correlated stock,

a zero-coupon bond, and the money-savings account, this

expectation is difficult to determine analytically.

However, by a change of numéraire, from the

Table 3. Difference in implied volatilities between the H-G2þþ
(simulated with Monte Carlo) and AH-G2þþ (COS method)
models. Numbers in parentheses indicate standard deviations.
The simulation was performed with Feller’s condition satisfied.

Implied volatility (%) Difference

T Strike
H-G2þþ
(MC)

AH-G2þþ
(Fourier) (%)

1 year 0.8869 44.81 (0.19) 44.79 �0.02
0.9324 44.67 (0.23) 44.65 �0.02
1.0305 44.40 (0.30) 44.38 �0.02
1.1388 44.16 (0.38) 44.13 �0.03
1.1972 44.04 (0.42) 44.01 �0.03

5 years 0.8308 44.59 (0.11) 44.60 0.01
0.9290 45.07 (0.12) 45.07 0.01
1.1618 37.89 (0.15) 37.89 0.00
1.4530 30.86 (0.23) 30.85 �0.01
1.6248 27.52 (0.25) 27.50 �0.02

10 years 0.8400 44.57 (0.09) 44.54 �0.02
0.9839 44.44 (0.13) 44.42 �0.02
1.3499 44.22 (0.25) 44.20 �0.02
1.8519 44.00 (0.40) 43.99 0.02
2.1692 43.90 (0.48) 43.88 0.01

20 years 0.9316 44.55 (0.18) 44.49 �0.05
1.1651 44.46 (0.22) 44.40 �0.06
1.8221 44.31 (0.38) 44.24 �0.07
2.8497 44.16 (0.45) 44.07 �0.08
3.5638 44.08 (0.52) 44.00 �0.08

Table 2. Calibration results for caplets with the Hull–White model (G1þþ).

T Expiry Maturity Frwd Implied volatility Err. (G1þþ)

6 months 27-Mar-11 27-Sep-11 0.43 0.88 0.08
1 year 27-Sep-11 27-Mar-12 0.60 0.91 0.07
5 years 27-Sep-15 27-Mar-16 3.18 0.35 0.05
10 years 27-Sep-20 27-Mar-21 4.04 0.25 0.04

Table 4. Difference in implied volatilities between the H-G2þþ
(simulated with Monte Carlo) and AH-G2þþ (COS method)
models. Numbers in parentheses indicate standard deviations.
The simulation was performed with Feller’s condition violated.

Implied volatility (%) Difference

T Strike
H-G2þþ
(MC)

AH-G2þþ
(Fourier) (%)

1 year 0.8869 43.12 (0.15) 43.17 0.05
0.9324 42.53 (0.16) 42.58 0.05
1.0305 41.48 (0.16) 41.54 0.06
1.1388 40.71 (0.20) 40.76 0.04
1.1972 40.44 (0.26) 40.48 0.04

5 years 0.8308 40.29 (0.08) 40.26 �0.03
0.9290 39.59 (0.09) 39.54 �0.05
1.1618 38.40 (0.13) 38.33 �0.08
1.4530 37.59 (0.17) 37.48 �0.11
1.6248 37.33 (0.17) 37.22 �0.11

10 years 0.8400 39.82 (0.14) 39.71 �0.11
0.9839 39.22 (0.17) 39.11 �0.11
1.3499 38.17 (0.23) 38.06 �0.11
1.8519 37.37 (0.35) 37.28 �0.10
2.1692 37.09 (0.40) 37.01 �0.08

20 years 0.9316 39.71 (0.06) 39.60 �0.11
1.1651 39.24 (0.06) 39.13 �0.11
1.8221 38.40 (0.15) 38.29 �0.11
2.8497 37.73 (0.30) 37.62 �0.11
3.5638 37.48 (0.41) 37.36 �0.12
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money-savings account, to a zero-coupon bond maturing
at time T, the expectation in (4.6) simplifies significantly.

The Radon–Nikodým derivative is given as

dQ
T

dQ

�����
FðT1Þ

¼
1

MðT1Þ

PðT1,T Þ

Pð0,TÞ
: ð4:7Þ

So, the price in (4.6) under the T-forward measure, Q
T,

reads

�ðt,SðtÞÞ ¼Pð0,TÞET

�
1

PðT1,TÞ
maxðŵ1SðT1Þþ ŵ2PðT1,TÞ,0Þ

����FðtÞ� �
:

ð4:8Þ

Since the forward F(t) is defined as F(t)¼S(t)/P(t,T ) the
above expectation reduces to

�ðt,SðtÞÞ ¼ Pð0,TÞET
ðmaxðŵ1FðT1Þ þ ŵ2, 0Þ j FðtÞÞ:

ð4:9Þ

We recognize that the expectation (4.9) is a call option
with strike K¼�ŵ2 and a constant multiplier, ŵ1.

Since we are considering the affine Heston hybrid
model AH-G2þþ here, we can simply determine the price
of (4.9) by the COS method described in section 3.4. The
evaluation of such a payoff can be evaluated in a split
second.

We now perform an experiment in which we compare
the performance of the H-G2þþ and AH-G2þþ models
for this hybrid product. For T1¼ 5 and T¼ 8 we choose
the following set of parameters:y �¼ 0.25, �v ¼ vð0Þ ¼
0:0625, !¼ 0.625, �¼ 0.05, �¼ 0.03, �¼ 0.4, 	 ¼ 0.05,
�x,v¼�30% and �r,�¼�20%. The zero-coupon bond
P(0, T)¼ exp(�0.03T) and �x,r¼ �x,�. The prices for the
hybrid product �(t, S(t)) in (4.9) are calculated for
different correlations between stock and the interest
rate, �x,r. For the payoff we take ŵ1¼ 1 and

ŵ2¼ {�4, . . . , 0} and compute Monte Carlo prices with

100,000 paths and 10T1 time-steps for the H-G2þþ

model and by the Fourier expansion for the AH-G2þþ

model. The output is presented in figure 3(a).
Figure 3(b) presents the results for an extreme param-

eter setting. In this experiment we have taken a high

volatility for the interest rates �¼ 0.25 (whereas, typically,

�, 	50.025 as presented by Brigo and Mercurio (2007)).

We report that, for such an extreme parameter set, the

AH-G2þþ model provides results that agree rather well

with those obtained by the H-G2þþ model. This is

another indication of the highly satisfactory performance

of AH-G2þþ.

5. Conclusions and final remarks

In this article we have constructed an equity–interest rate

hybrid model with non-zero correlation between the asset

classes. The model is in the class of affine diffusion

processes so that we can determine a closed-form char-

acteristic function. The availability of a characteristic

function is crucial for efficient model calibration to plain

vanilla options. By defining the affine hybrid Heston

model under the forward measure, we can price several

financial derivative products as under the basic Heston

model.
For the affine Heston–Gaussian multi-factor model,

AH-Gnþþ, we have discussed an efficient Monte Carlo

simulation scheme and an effective way for calculating the

Greeks of plain vanilla options. We have also shown that

the AH-Gnþþ model provides derivative prices similar to

the (non-affine) Heston–Gaussian multi-factor (H-

Gnþþ) model and is superior to Schöbel–Zhu variants

if the Feller condition is violated.
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Figure 3. Prices generated by the H-G2þþ and AH-G2þþ models. Left: Results for �¼ 0.03. Right: Results for �¼ 0.25.

yThe stochastic volatility parameters are chosen as in Antonov et al. (2008).
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Appendix A: Proof of lemma 3.2

Proof: First, from Dufresne (2001) we have

Eð
ffiffiffiffiffiffiffi
vðtÞ

p
j vð0ÞÞ :¼

Z 1
0

ffiffiffi
x
p

cðtÞ
f�2ðd,�ðtÞÞ

x

cðtÞ

� �
dx

¼
ffiffiffiffiffiffiffiffiffiffi
2cðtÞ

p �ðð1þ d Þ=2Þ

�ðd=2Þ
1F1 �

1

2
,
d

2
, �

�ðtÞ

2

� �
,

ðA1Þ

where 1F1(a; b; z) is a confluent hyper-geometric function,

which is also known as Kummer’s function (Kummer

1936) of the first kind, given by

1F1ða; b; zÞ ¼
X1
k¼0

ðaÞk
ðbÞk

zk

k!
, ðA2Þ
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with (a)k and (b)k being Pochhammer symbols of the form

ðaÞk ¼
�ðaþ kÞ

�ðaÞ
¼ aðaþ 1Þ � � � ðaþ k� 1Þ: ðA3Þ

Now, using the principle of Kummer (Koepf 1998),

we find

1F1 �
1

2
,
d

2
, �

�ðtÞ

2

� �
¼ e��ðtÞ=21F1

1þ d

2
,
d

2
,
�ðtÞ

2

� �
:

ðA4Þ

Therefore, from (A3) and (A4), equation (A1) reads
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ffiffiffiffiffiffiffi
vðtÞ

p
j vð0ÞÞ ¼
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which concludes the proof. œ
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