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We describe a framework for modeling systematic risk in loss given default in the
context of credit portfolio losses. The class of models is very flexible and accom-
modates skewness and heteroskedastic errors well. The inference of models in this
framework can be unified. Moreover, it allows efficient numerical procedures, such
as the normal approximation and the saddlepoint approximation, to calculate the
portfolio loss distribution, value-at-risk and expected shortfall.

1 INTRODUCTION

In the context of credit portfolio losses, loss given default (LGD) is the proportion
of the exposure that will be lost if a default occurs. Uncertainty regarding the actual
LGD is an important source of credit portfolio risk in addition to default risk. In
practice, in both CreditMetrics (Gupton et al (1997)) and KMV Portfolio Manager
(Gupton and Stein (2002)), for example, the uncertainty in the LGD rates of defaulted
obligors is assumed to be a beta random variable independent for each obligor. The
beta distribution is well-known to be very flexible, modeling quantities constrained
in the interval Œ0; 1�. Depending on the choice of parameters, the probability density
function can be unimodal, U-shaped, J-shaped or uniform.

However, extensive empirical evidence (see, for example, Hu and Perraudin (2002)
and Altman et al (2005)) has shown this simple approach to be insufficient. It is now
well-understood that LGD is positively correlated with the default rate. In other words,
the LGD is high when the default rate is high, which suggests that systematic risk
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exists in LGD just as it does in default rates. A heuristic justification is that the LGD
is determined by the collateral value, which is sensitive to the state of the economy.

Based on the results of a nonparametric estimation procedure, Hu and Perraudin
(2002) further showed that, without taking the correlation between probability of
default (PD) and LGD into account, the economic capital, or value-at-risk (VaR), of a
loan portfolio can be significantly underestimated. This has important consequences
for risk management practice. In the Basel II Accord this issue is addressed by the
notion of “downturn LGD”.

The interest in LGD being subject to systematic risk dates back to Frye (2000),
where LGD is modeled using a normal distribution. An obvious problem with this
model is that it allows the LGD to be negative, which cannot be the case. To ensure
the nonnegativity of LGD, Pykhtin (2003) employs a truncated lognormal distribution
for the LGD. Andersen and Sidenius (2004) propose the use of a probit transform of
the LGD such that the transformed LGD is normally distributed. The probit trans-
formation guarantees that the LGD stays in the interval Œ0; 1�. In a similar manner,
Düllmann and Trapp (2004) and Rösch and Scheule (2005) employ a logit transform
of the LGD. In contrast with the above approaches, Giese (2006) and Bruche and
González-Aguado (2008) extend the static beta distribution assumption in Credit-
Metrics and the KMV Portfolio Manager by modeling the LGD as a mixture of beta
distributions that depend on the systematic risk.

In this paper we describe the concept of a generalized beta regression (GBR) frame-
work for modeling LGD. This framework generalizes the beta regression model pro-
posed by Ferrari and Cribari-Neto (2004) and is very similar to a class of models
derived from generalized linear models (GLMs). Our models are called generalized
beta regression models since the LGD is always assumed to be (conditionally) beta
distributed. The models by Giese (2006) and Bruche and González-Aguado (2008)
can be regarded as special examples in this GBR framework. The entities appearing
have a simple interpretation as the quantity and quality of the LGD. In contrast with the
transformed LGD models, GBR models do not require normality and homoskedas-
ticity. Inference in this framework can be unified for models with a variety of link
functions and different degrees of complexity using the least-squares method and
maximum likelihood estimation (MLE), making model selection a straightforward
task. Moreover, the GBR framework allows both the normal approximation and the
saddlepoint approximation to efficiently calculate the portfolio loss distribution. This
is the first time that numerical approximation methods have been used successfully
to calculate portfolio loss distribution in the presence of random LGD.

The rest of the paper is organized as follows. In Section 2 we introduce Vasicek’s
Gaussian one-factor model as the default model and give a brief summary of existing
random LGD models. Section 3 elaborates on the GBR framework, including the
basic beta regression model and two extensions. In Section 4 we discuss methods for
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parameter estimation and provide a calibration example. Section 5 explains techniques
for efficient loss distribution approximation in the GBR framework.

2 CREDIT PORTFOLIO LOSS

Consider a credit portfolio consisting of n obligors, each with exposure at default wi

and PD pi . Obligor i is subject to default after a fixed time horizon and the default
can be modeled as a Bernoulli random variable Di such that:

Di D
(

1 with probability pi

0 with probability 1 � pi

Let LGD, the proportion of the exposure that will be lost if a default occurs, be denoted
by �. Then the loss incurred due to the default of obligor i is given by Li D wi�iDi .
It follows that the portfolio loss is given by:

L D
nX

iD1

Li D
nX

iD1

wi�iDi

To evaluate the distribution of L, it is necessary to model the various dependence
effects, including the dependence between defaults, the dependence between LGDs
and the dependence between PD and LGD. A convenient approach is to utilize a latent
factor model and introduce systematic risk in both PD and LGD.

2.1 Default model

We consider the Vasicek (2002) Gaussian one-factor model as our default model.
Although the Vasicek model is often criticized for being oversimplistic in relying on
the Gaussian distribution, the extension of this model to the generic one-factor Lévy
model, as outlined in Albrecher et al (2007), is straightforward. The Lévy models
are able to produce more heavy-tailed loss distributions and provide a better fit to the
financial market data.

Based on Merton’s firm-value model, the Vasicek model evaluates the default of an
obligor in terms of the evolution of its asset value. For obligor i , default occurs when
the standardized log of the gross return Xi is less than some prespecified threshold
�i , where Xi is normally distributed and P.Xi < �i / D pi . Xi is decomposed into
a systematic part Y , representing the state of the economy, and an idiosyncratic part
Zi , such that:

Xi D p
�Y C p

1 � �Zi (2.1)

where Y and all Zi are independent and identically distributed (iid) standard normal
random variables and � is the common pairwise correlation. It is now easily deduced
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that Xi and Xj are conditionally independent given the realization of Y . This implies
that Li and Lj are also conditionally independent given Y .

Define pi .y/ D PŒLi D 1 j Y D y�, ie, the PD conditional on the common factor
Y D y. Then:

pi .y/ D PŒLi D 1 j Y D y�

D PŒXi < �i j Y D y�

D ˚

�
˚�1.pi / � p

�yp
1 � �

�
(2.2)

where ˚ is the cumulative distribution function of the standard normal distribution.

2.2 LGD models

A variety of models in which LGD is subject to systematic risk can be found in the
literature. Within a one-factor framework, Frye (2000) proposed a model in which
the LGD is normally distributed and influenced by the same systematic factor Y that
drives the PD, so that:

� D � C ��; � D �p Q�Y C p
1 � Q��

where � and � are both standard normally distributed. The minus sign in front of
p Q�

reflects the empirical findings that LGD tends to be higher when the economy is weak
and lower when the economy is strong. This way the dependence between LGDs and
the dependence between PD and LGD are modeled simultaneously. The parameters
� and � can be understood as the expected LGD and the LGD volatility, respectively.
Unfortunately, the LGD is unbounded in R and can thus be negative. To ensure the
nonnegativity of LGD, Pykhtin (2003) employs a lognormal distribution for the LGD:

� D .1 � e�C��/C

Other extensions include Andersen and Sidenius (2004), choosing a probit transfor-
mation:

� D ˚.� C ��/

where ˚ is again the cumulative distribution function of the standard normal distri-
bution. Düllmann and Trapp (2004) and Rösch and Scheule (2005) employ a logit
transformation:

� D 1

1 C e�C��

All three transformations for the LGD above guarantee that the LGD lies in the
interval Œ0; 1�. However the parameters � and � do not have a convenient economic
interpretation as in Frye’s model.
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The above models are basically all linear models of the transformed LGD in the
form:

g.�.Y // D � � �
p Q�Y C �

p
1 � Q�� (2.3)

so that g.�.Y // is normally distributed with mean �C�
p Q�Y and variance �2.1� Q�/.

Hence, the transformed LGD g.�.Y // is required to be symmetric and homoskedas-
tic, ie, its variance must not vary with the mean. This contradicts the empirical study
by Düllmann and Trapp (2004), at least for the Pykhtin (2003) model, in which the
Shapiro–Wilk test for normality to log.1 � �/ gives a p-value of 0.05.

A more flexible approach extends the static beta distribution assumption that is
made in CreditMetrics and KMV Portfolio Manager. Giese (2006) and Bruche and
González-Aguado (2008) model the LGD using a mixture of beta distributions:

� � Beta.˛; ˇ/

where both ˛ and ˇ are functions of common factor Y . However, ˛ and ˇ are both
shape parameters and an economic interpretation of such models is nontrivial.

Here we describe a GBR framework for random LGD. The GBR framework
includes Giese (2006) and Bruche and González-Aguado (2008) as special exam-
ples but calls for a different parameterization of the beta distribution. The class of
models is flexible and the quantities in the models have an easy interpretation as the
quantity and quality of the LGD. Inference of models in this framework can be uni-
fied. Compared with the transformed LGD models given by (2.3), these GBR models
better accommodate skewness and heteroskedastic errors.

3 GENERALIZED BETA REGRESSION MODELS

3.1 Parameterization of a beta distribution

Recall that the probability density function of a beta distribution with parameters
˛ > 0, ˇ > 0 reads:

f .x/ D x˛�1.1 � x/ˇ�1

B.˛; ˇ/
D 	 .˛ C ˇ/

	 .˛/	 .ˇ/
x˛�1.1 � x/ˇ�1

where B.�; �/ denotes the beta function and 	 .�/ denotes the gamma function.
The beta distribution is known for being very flexible, modeling quantities con-

strained in the interval Œ0; 1�. Depending on the choice of parameters, the probability
density function can be unimodal, U-shaped, J-shaped or uniform. The expectation
and variance of a beta distributed variable X are given by:

� D EŒX� D ˛

˛ C ˇ
(3.1)

�2 D varŒX� D ˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/
D �.1 � �/

˛ C ˇ C 1
(3.2)
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Note here that the variance is permitted to vary with its mean. Let ' D ˛ Cˇ. Then '

can be regarded as a dispersion parameter in the sense that, for a given �, the variance
is determined by the size of '.

The parameters ˛ and ˇ can be formulated in terms of the mean and dispersion in
the following way:

˛ D �'; ˇ D .1 � �/' (3.3)

Therefore, a beta distribution can also be uniquely determined by its mean and dis-
persion.

3.2 Beta regression model

The generalized beta regression framework is characterized by the following elements:

(1) the LGD is assumed to be beta distributed, conditional on some covariates;

(2) the beta distribution is parameterized by its mean and dispersion, rather than
its natural parameters .˛; ˇ/; the mean and dispersion parameters carry the
interpretation as the quantity and quality of the LGD, respectively.

This framework generalizes the beta regression model proposed by Ferrari and
Cribari-Neto (2004) for modeling rates and proportions. The models from the GBR
framework are similar to a class of models derived from GLMs.

Generalized linear models have been developed as an extension to classical linear
regression models since the seminal paper by Nelder and Wedderburn (1972). In a
GLM, the density function of a response variable X is in the form of:

f .xI 
; �/ D exp.a.�/Œx
 � b.
/ C c.x/� C d.�; x// (3.4)

where a.�/ > 0, so that, for fixed �, we have an exponential family. The parameter �

could stand for a certain type of nuisance parameter, such as the variance of a normal
distribution. For a comprehensive exposition of GLMs we refer the interested reader
to McCullagh and Nelder (1989).

We start the explanation of the GBR framework with the beta regression model
proposed in Ferrari and Cribari-Neto (2004). This approach mainly models the mean
� and treats the dispersion parameter ' as a nuisance parameter. The mean model in
the GBR framework has the following two components.

� A linear predictor �:
� D a� (3.5)

where � is a vector of explanatory variables and a is a vector of the correspond-
ing regression coefficients (by convention the first element of � is set to be 1,
so that the first element of a is an intercept term).
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� A monotonic, differentiable link function g:

g.�/ D �; where � D EŒ�� (3.6)

Potential covariates in the linear predictor can be seniority, collateral, type of industry
and timing of business cycle. According to Schuermann (2004), these factors drive
significant differences on LGD. Meanwhile, the inverse of the link function g�1.�/
should form a mapping from R to Œ0; 1�, which is exactly the range of �. This can be
achieved by a variety of link functions, such as the logit link:

� D e�

1 C e�
; � D log

�
�

1 � �

�
(3.7)

or the probit link:

� D ˚.�/; � D ˚�1.�/ (3.8)

Both the logit and probit link functions have a symmetric form about � D 1
2

. If,
however, it is believed that symmetric links are not justified, asymmetric link functions
like the scaled probit link and the complementary log–log link can be used instead.

It should be noted that the model described here can be very different from the
transformed models characterized by (2.3) as we take g.EŒ��/, rather than EŒg.�/�,
to be linear to the covariates.

A first model for LGD subject to systematic risk is a one-factor model with � D
Œ1; Y �T, where Y is the common factor that also drives the default process.An example
of such a model is given in Giese (2005), where the mean is modeled by:

� D 1 � a0.1 � pi .Y /a1/a2 (3.9)

and ' is considered a nuisance parameter.
Another special case is the static beta distribution model adopted by CreditMetrics

and KMV, which is a degenerated version of the beta regression model, in which the
coefficient in front of Y equals zero.

3.3 Extensions

The beta regression model above can be readily extended in various ways. One exten-
sion is to model the mean and dispersion jointly, rather than treating the dispersion
parameter ' as a nuisance parameter, which is either fixed or known. This is similar
to the joint generalized linear model (JGLM) from the GLM framework (see, for
example, Nelder and Lee (1991) and Lee and Nelder (1998)).

The dispersion ' can be modeled by a separate GLM:

h.'/ D b�
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where h is also a link function. A simple way to ensure ' > 0 is to use a log link so
that:

' D eb� (3.10)

A model of this type, but using a different version of the dispersion parameter, was
suggested by Bruche and González-Aguado (2008). They employ the following log-
linear model for the two parameters ˛ and ˇ:

˛ D ec� ; ˇ D ed� (3.11)

where, as usual, � is a vector of covariates and c and d are vector coefficients. This
specification is chosen to ensure positivity of both shape parameters ˛ and ˇ. We note
that, by substituting (3.11) into (3.1), we obtain:

� D ˛

˛ C ˇ
D e.c�d/�

1 C e.c�d/�

which is a logit model with vector coefficient c � d . The variance is then given by:

�2 D �.1 � �/

˛ C ˇ C 1
D �2.1 � �/

˛ C �

so that the following dispersion parameter is adopted:

' D ˛ D ec�

A second extension is that the mean parameter � can be modeled by a generalized
linear mixed model (GLMM). The GLMM extends the GLM by adding normally
distributed random effects in the linear predictor �. A first mixed model is the random
intercept model:

g.�/ D � D a� C 
 (3.12)

where, in addition to the fixed effect a�, � also has a single component of random
effect 
 that follows a univariate normal distribution N.0; �2

� /. Here, 
 can be thought
of as a latent common factor for the LGD independent of the fixed effects and default
as well.

Such a GLMM, along with the probit link (3.8), is employed to model the mean
LGD in Hillebrand (2006). Other applications of the GLMM for portfolio credit
default and migration risk can be found in McNeil and Wendin (2006, 2007).

Note that the two extensions above can be readily combined to form another model
that jointly models the mean and dispersion by means of GLMMs, ie, fixed and
random effects can be included in the modeling of both mean and dispersion. Further
extensions are possible, such as replacing the linear predictor by a generalized additive
model (see Hastie and Tibshirani (1990)) or adding multilevel random effects in the
GLMM.
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4 ESTIMATION

In this section, we discuss the parameter estimation in the GBR framework using

(1) the least-squares method,

(2) MLE.

The former only requires the knowledge of yearly mean LGD and LGD volatility and
can be used as the first approximation to the MLE.

Suppose we have a time series of LGD data for T 2 N years. Let Kt be the
number of defaulted obligors in year t and let �t;k be the observed LGD for defaulted
obligor k, t D 1; : : : ; T , k D 1; : : : ; Kt . Each year, a realization of the common
factor Yt can be inferred from the default model and historical default data. The value
of Yt , t D 1; : : : ; T , should be considered a known fixed effect in the LGD model.

From now on we call the three models in the GBR framework GBR–GLM, GBR–
JGLM and GBR–GLMM, respectively. The parameters to be estimated are fa; 'g in
GBR–GLM, fa; bg in GBR–JGLM and fa; '; ��g in GBR–GLMM, where a denotes
the vector coefficients in the linear predictor (3.5), b denotes the vector coefficients
in the linear predictor (3.10), ' is the dispersion parameter and �2

� is the variance of
the random effect 
 in (3.12).

4.1 Least squares

The method of least squares that we propose here only requires the knowledge of the
yearly mean LGD and LGD volatility for parameter estimation. The estimates of the
yearly mean LGD and LGD volatility for t D 1; : : : ; T can be obtained by matching
the first and second moments of the LGD realizations �t;k such that:

mt D 1

Kt

KtX
kD1

�t;k; �2
t D 1

Kt

KtX
kD1

�2
t;k � m2

t

Estimation of a and �

The estimate for parameter a can be obtained by employing a linear regression of the
transformed mean LGD g.mt / on Yt and other covariates:

g.mt / D Oa�t C 
t (4.1)

where 
t is the residual term. In the GBR–GLM and GBR–JGLM:

O�t D g�1. Oa�t / (4.2)

and, in the GBR–GLMM, 
t is taken to be the realized random effect in year t so
that:

O�t D g�1. Oa�t C 
t / D mt (4.3)
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10 X. Huang and C. W. Oosterlee

Estimation of b or '

The estimation of the parameters b and ' takes the prediction of O�t , produced by
(4.2) or (4.3), as an input. From (3.2), we obtain:

't D O�t .1 � O�t /

�2
t

� 1

In both the GBR–GLM and GBR–GLMM the dispersion parameter ' is treated as a
nuisance parameter. Its method-of-moments estimator is simply:

O' D 1

T

TX
tD1

't

In the GBR–JGLM, the coefficient b can be calculated by linear regression of the
transformed dispersion h.'t / on covariate vector � such that:

h.'t / D Ob�t C �t

Estimation of �� in the GBR–GLMM

The moment-based estimate for �2
� is given by:

O�2
� D 1

T

TX
tD1


2
t

where 
t is the residual term in (4.1).

4.2 Maximum likelihood estimation

Parameter estimation using the MLE method is also straightforward in the GBR
framework. In the models without random effects, ie, the GBR–GLM and GBR–
JGLM, the log-likelihood function to be maximized reads:

`.�; '/ D
TX

tD1

KtX
kD1

f.�t't � 1/ log.�t;k/ C Œ.1 � �t /'t � 1� log.1 � �t;k/

C log 	 .'t / � log 	 .�t't / � log 	 Œ.1 � �t /'t �g (4.4)

The score function, the gradient of the log-likelihood function and the Fisher infor-
mation matrix, ie, the variance of the score, can be formulated explicitly in terms of
polygamma functions. These are given in Appendix A. Asymptotic standard errors
of the maximum likelihood estimates of the parameters can be computed from the
Fisher information matrix.
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Since the corresponding estimating equations do not admit a closed-form solu-
tion, numerical maximization of the log-likelihood is necessary. Estimates using the
method of least squares may be used as the initial approximations to the solutions of
the likelihood equations.

We remark that the MLE in Ferrari and Cribari-Neto (2004) beta regression model
is already implemented in the statistical computing software R in package “betareg”
so that it can be used immediately.1

Marginal likelihood in the GBR–GLMM

With the presence of random effects, the samples are no longer independent. In the
random intercept model (3.12), the LGDs in year t are only independent conditional
on the random effect 
t . Since we are interested in inference of the variance of
the random component 
, but not in its realizations, the random effect needs to be
integrated out. Therefore we maximize the marginal log-likelihood:

`m.a; '; ��/ D
TX

tD1

log

� Z KtY
kD1

L.a; '; �t ; 
t I �t;k/p��
.
t / d
t

�

where p��
.�/ is the probability density function of a normal distribution with mean

zero and variance �2
� , and L.�t;k/ is the likelihood of fLGD D �t;kg given 
t .

The integral can be efficiently evaluated by Gaussian quadrature. Alternatively, the
marginal likelihood can be approximated analytically by the use of the Laplace
approximation to the integral, such as the penalized quasi-likelihood (QL) estima-
tion (Breslow and Clayton (1993)) and the h-likelihood (Lee and Nelder (2001)),
thereby avoiding numerical integration.

Finally we note that the likelihood-ratio test based on large sample inference can
be employed for model selection. Information criteria such as Akaike’s information
criterion (AIC) or the Bayesian information criterion (BIC) can also be used.

4.3 A simulation study

In this section we show how the models in the GBR framework can be calibrated and
how model selection can be dealt with. Our aim is not to identify possible covariates
that influence the LGD, however. Our estimation is based on data from Bruche and
González-Aguado (2008) that is extracted from the Altman-NYU Salomon Center
Corporate Bond Default Master Database and gives the annual default frequency,
number of defaults, mean LGD and LGD volatility for a period of twenty-four years
(1982–2005). For completeness the data is reproduced in Table 1 on the next page.

Should the values in columns
2, 4 and 5 that have only one
decimal place be shown to
two decimal places for
consistency? If so, should
they be shown 0.90, 14.90,
20.40 and so on?
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TABLE 1 LGD statistics by year, 1982–2005.

Number Mean LGD
PD of LGD volatility

Year (%) defaults (%) (%)

1982 1.18 12 60.49 14.9
1983 0.75 5 51.07 23.53
1984 0.9 11 51.19 17.38
1985 1.1 16 54.59 21.87
1986 1.71 24 63.91 18.82
1987 0.94 20 46.64 26.94
1988 1.42 30 63.43 17.97
1989 1.67 41 56.54 28.78
1990 2.71 76 74.76 22.28
1991 3.26 95 59.95 26.09
1992 1.37 35 45.55 23.38
1993 0.55 21 62.46 20.11
1994 0.61 14 54.46 20.46
1995 1.01 25 57.1 25.25
1996 0.49 19 58.1 24.68
1997 0.62 25 46.54 25.53
1998 1.31 34 58.9 24.56
1999 2.15 102 71.01 20.4
2000 2.36 120 72.49 23.36
2001 3.78 157 76.66 17.87
2002 3.6 112 69.97 17.18
2003 1.92 57 62.67 23.98
2004 0.73 39 52.19 24.1
2005 0.55 33 41.37 23.46

This table is taken from Bruche and González-Aguado (2008), where mean recovery rate (RR) is reported instead
of LGD. The column of mean LGD here is calculated to be 1 minus RR, ie, LGD D 1 � RR.

TABLE 2 Estimates given by the method of least squares for different models.

GBR–GLM GBR–JGLM GBR–GLMM

a1 0.3718 0.3718 0.3718
a2 �0.3054 �0.3054 �0.3054
' 4.1914 — 4.0907
b1 — 1.3505 —
b2 — �0.0033 —
�� — — 0.2686
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FIGURE 1 (a) Yearly average default rate and yearly mean LGD (1982–2005); (b) the
common factor Y estimated by Equation (4.6) versus yearly mean LGD (1982–2005).
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In part (a), the solid line shows the the yearly average default rate and the dashed line shows the yearly mean LGD.

4.3.1 Estimation results

First, we fit the Vasicek default model. We assume that, across the years, the number
of obligors is sufficiently large and that all obligors in the portfolio have the same
PD p and asset correlation �. Denote by pt the annual default frequency. We take the
maximum likelihood estimates for � and p according to Düllmann and Trapp (2004):

� D varŒ˚�1.pt /�

1 C varŒ˚�1.pt /�
; p D ˚

� PT
tD1 ˚�1.pt /

T
p

1 C varŒ˚�1.pt /�

�

1 See www.r-project.org.
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14 X. Huang and C. W. Oosterlee

TABLE 3 Maximum likelihood estimates of various models.

GBR–GLM GBR–JGLM GBR–GLMM

a1 0.3459 0.3471 0.3319
(0.0359)

a2 �0.3213 �0.3246 �0.3307
(0.0298)

' 3.0276 — 3.3240
(0.1149)

b1 — 1.0879 —
b2 — �0.0306 —
�� — — 0.2943

�2` �402.74 �403.34 �468.78
AIC �398.74 �395.34 �460.78
BIC �381.67 �375.25 �440.69

where:

varŒı� D 1

T

TX
tD1

ı2
t �

�
1

T

TX
tD1

ıt

�2

This yields:
� D 0:0569; p D 0:0153 (4.5)

The common factor Yt for year t , assumed to be independent from year to year, can
be estimated as follows:

Yt D ˚�1.p/ � p
1 � �˚�1.pt /p
�

(4.6)

Before we move on to the LGD model, we run a brief preliminary graphical check.
In part (a) of Figure 1 on the preceding page we show the yearly average default
rate and yearly mean LGD for the years 1982–2005, from which the correlation
between PD and LGD is evident. Part (b) of Figure 1 on the preceding page presents
a scatterplot of the common factor Y estimated by Equation (4.6) versus yearly mean
LGD. This figure suggests that the common factor Y , which drives the default, may
also be an important risk factor for LGD.

Next we make inferences about the LGD in the GBR framework with both the least
squares and MLE. The LGD models that we consider only include one covariate,
which is the common factor Y in the default model. In light of the observation from
part (b) of Figure 1 on the preceding page, this may be a reasonable choice. The mean
LGD is fitted using a logit link:

� D ea1Ca2Y

1 C ea1Ca2Y
(4.7)
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in the GBR–GLM and GBR–JGLM, and:

� D ea1Ca2Y C�

1 C ea1Ca2Y C�

in the GBR–GLMM. In the GBR–JGLM, the dispersion parameter is modeled as:

' D eb1Cb2Y

The estimates given by the method of least squares are presented in Table 2 on
page 12. These estimates are used as the first approximation to the MLE. We are
already able to get a first impression of the characteristics of the LGD:

(1) the coefficient a2 is negative, indicating a negative relation between Y and
mean LGD, just as expected;

(2) the coefficient b2 is very close to zero, suggesting that Y may not be relevant
for the estimation of dispersion '.

It is important to keep in mind that these least-squares estimates are only based on
the annual mean LGD and LGD volatility. Consequently, the above observations are
not restricted to any particular sample of simulated LGD realizations, as opposed to
estimates to be obtained from the MLE.

To carry out the MLE we need a sample of LGD realizations. For each year, a
realization of the LGD is simulated for each defaulted obligor from a beta distri-
bution matching the empirical mean and variance. In total, this gives 1123 LGD
observations in T D 24 years. The maximum likelihood estimates for the various
parameters are given in Table 3 on the facing page. For the GBR–GLM, we also
report in parentheses the asymptotic standard errors of the estimates. We find that
the estimates given by MLE are very similar to those given by least squares. The
Wald test confirms that both a1 and a2 are statistically significant (both p-values
< 0:0001), which justifies the use of Y as a risk factor for the mean LGD. The
log-likelihood-ratio statistics of GBR–JGLM and GBR–GLMM to GBR–GLM are
�402:74 � .�403:34/ D 0:6 and �402:74 � .�468:78/ D 66:04, respectively. They
correspond to p-values 0:44 and < 0:0001 for the chi-square distribution with one
degree of freedom. It is clear that GBR–GLMM provides a significant improvement
on the basic GBR–GLM, whereas GBR–JGLM fails to do so. The AIC and BIC
lead to the same conclusion (see Table 3 on the facing page). Additional simulation
tests show that the above estimation results are very robust. We note that this does
not, however, suggest that GBR–JGLM should be abandoned in general since the
idea of jointly modeling mean and dispersion may be meaningful if we include other
covariates, for example, seniority and presence and quality of collateral.
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FIGURE 2 (a) The portfolio loss distributions; (b) the portfolio VaR at three confidence
levels under the three LGD models.
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The results are based on Monte Carlo simulation of 200 000 scenarios. For GBR–GLM and GBR–GLMM, the LGD
parameters are taken from Table 3 on page 14. In the constant LGD model � D 0.58 for all obligors.

Additionally, we also fit the GBR models to a second sample of LGD realizations,
simulated from the probit model where the LGD is given by �t;k D ˚.ct C dt�t;k/.
The parameters ct and dt for all t can be conveniently estimated using the method of
moments since:

E.�t / D ˚

�
ctp

1 C d 2
t

�
; E.�2

t / D ˚2

�
ctp

1 C d 2
t

;
ctp

1 C d 2
t

;
d 2

t

1 C d 2
t

�
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where ˚2.�; �; �/ denotes the bivariate cumulative Gaussian distribution function with
correlation � (for a proof see Andersen and Sidenius (2004)). The MLE procedure
gives the estimates a1 D 0:3562, a2 D �0:3247, ' D 3:0589 for the GBR–GLM
model, a1 D 0:3571, a2 D �0:3275, b1 D 1:1011, b2 D �0:0260 for the GBR–
JGLM and a1 D 0:3393, a2 D �0:3144, ' D 3:4096, �� D 0:3261 for the GBR–
GLMM. These estimates are broadly in agreement with those in Table 2 on page 12
and in Table 3 on page 14, which suggests that the parameters in the GBR models are
robust to misspecification of the LGD distribution.

Moreover, for the second sample we also look at the QL (see Wedderburn (1974))
of a model which assumes that the mean and variance of the LGD are given by (4.7)
and �.1 � �/=.1 C '/, respectively, but the distribution of the LGD is unknown. The
QL is then given by:

QL D
TX

tD1

KtX
kD1

Œ�t;k log.�t / C .1 � �t;k/ log.1 � �t /�

Maximization of QL gives a1 D 0:3799, a2 D �0:3336, ' D 3:0979, indicating
that the assumption on the distribution of the LGD probably does not matter much.
In summary, we conjecture that the distribution assumption of the LGD conditional
on the covariates is of low importance as long as the mean and variance of LGD as
functions of the covariates are modeled appropriately.

4.3.2 Implication for portfolio risk

It is also interesting to see how much the choice of an LGD model can influence the
VaR at the portfolio level. We consider a portfolio of 100 obligors with uniform PD
p and correlation � as in (4.5) and exposures as follows:

wi D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

1; k D 1; : : : ; 20

4; k D 21; : : : ; 40

9; k D 41; : : : ; 60

16; k D 61; : : : ; 80

25; k D 81; : : : ; 100

We compare three models for the LGD:

(1) the GBR–GLM;

(2) the GBR–GLMM;

(3) the constant LGD model.
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For the GBR–GLM and GBR–GLMM, the LGD parameters are taken from Table 3
on page 14. In the constant LGD model, for all obligors we take � D 0:58, matching
the expected LGD EY Œ�.Y /� in the GBR–GLM, where EY .�/ denotes the expectation
obtained by integrating over Y .

The portfolio loss distributions plotted in part (a) of Figure 2 on page 16 are based
on Monte Carlo simulation with 200 000 scenarios. On the one hand, the curves of
the GBR–GLMM and the GBR–GLM are almost identical, with the GBR–GLMM
producing a slightly heavier tail. This is again an indication of the robustness of the
GBR models. On the other hand, the loss distribution under the constant LGD model
deviates substantially from the other two models with random LGD.

We then look at the portfolio VaR at three particular confidence levels, 99%, 99:9%
and 99:99%, illustrated in part (b) of Figure 2 on page 16. Compared with the constant
LGD model, the GBR–GLM (respectively, GBR–GLMM) increases the VaR at the
three levels by a factor of 1.26, 1.32 and 1.36 (respectively, 1.26, 1.36 and 1.41). It
is apparent that ignoring the systematic risk in the LGD significantly underestimates
risk. Moreover, the further along the tail, the higher the degree of underestimation.
These results are in line with those reported in Altman et al (2005) and Giese (2006).

5 LOSS DISTRIBUTION APPROXIMATIONS

The calculation of portfolio loss distribution with random LGD is mostly based on
Monte Carlo simulation in the literature. To our knowledge the only exception is Giese
(2006), where the saddlepoint approximation was employed. An important advantage
of the generalized beta regression framework for random LGD is that it allows both the
normal approximation and the saddlepoint approximation to efficiently calculate the
portfolio loss distribution, thereby avoiding the need for time-consuming simulation.
Both approximations apply to completely heterogeneous portfolios. For simplicity,
we derive the formulas only for the basic GBR–GLM with a single covariate, Y , or,
equivalently, a single-factor model, where the tail probability reads:

P.L > x/ D
Z

P.L > x j Y / d˚.Y /

Generalization to more complex models is fairly straightforward.

5.1 Normal approximation

First of all, in the case of a large homogeneous portfolio, the expected loss from
obligor i conditional on Y reads:

EŒLi .Y /� D wiEŒDi .Y /�EŒ�i .Y /� D wipi .Y /�i .Y / (5.1)
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TABLE 4 Approximations to the portfolio VaR at three confidence levels.

VaR99% VaR99.9% VaR99.99%

Monte Carlo 63 98 133
Normal approximation 58 90 123
Saddlepoint approximation 63 97 133

The LGD model adopted here is GBR–GLM. The Monte Carlo results are based on 200 000 simulated scenarios
and can be regarded as our benchmark.

A version of the large homogeneous portfolio approximation similar to that in the
Vasicek model can also be obtained for random LGD:

L.Y /Pn
iD1 wi

!
Pn

iD1 wipi .Y /�i .Y /Pn
iD1 wi

almost surely

However, when the portfolio is not sufficiently large or not very homogeneous,
unsystematic risk arises. The normal approximation improves on the large homo-
geneous portfolio approximation by taking into account the variability of portfolio
loss L conditional on the common factor Y . The conditional portfolio loss L.Y / can
be approximated by a normally distributed random variable with mean M.Y / and
variance V 2.Y / such that:

M.Y / D
nX

iD1

wipi .Y /�i .Y /

V 2.Y / D
nX

iD1

EŒL2
i .Y /� �

nX
iD1

EŒLi .Y /�2

where:

EŒL2
i .Y /� D w2

i EŒDi .Y /�EŒ�2
i .Y /�

D w2
i pi .Y /EŒ�2

i .Y /�

D w2
i pi .Y /Œ�2

i .Y / C var.� j Y /�

D w2
i pi .Y /

�
�2

i .Y / C �i .Y /
1 � �i .Y /

1 C 'i

�

The conditional tail probability is P.L > x j Y / D ˚..M.Y / � x/=V.Y // and it
follows that the unconditional tail probability reads:

P.L > x/ D
Z

˚

�
M.Y / � x

V.Y /

�
d˚.Y / D EY

�
˚

�
M.Y / � x

V.Y /

��
(5.2)
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FIGURE 3 Loss distribution.
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The loss distribution obtained from (a) the large homogeneous approximation (LHA), the normal approximation (NA)
and (b) the saddlepoint approximation (SA) compared with results based on Monte Carlo simulation of 200 000
scenarios. The Monte Carlo (MC) 95% confidence interval (CI) is based on the standard deviation calculated using
ten simulated subsamples of 20 000 scenarios each.

5.2 Saddlepoint approximation

The use of the saddlepoint approximation in portfolio credit loss was pioneered by
Martin et al (2001a,b). The only paper to apply the saddlepoint approximations to the
calculation of portfolio credit risk in the presence of random LGD is Giese (2006).

Martin et al (2001a,b) and Giese (2006) apply the saddlepoint approximation to
the unconditional moment generating function (MGF) of portfolio loss L, despite
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the fact that the Li are not independent. In Huang et al (2007b) the saddlepoint
approximation was applied to the conditional MGF of L given the common factor
Y , so that L.Y / D P

Li .Y / is a weighted sum of independent random variables,
which is exactly the situation where the saddlepoint approximation will work well.
Here we extend Huang et al (2007b) to models with random LGD and show, using
numerical examples, that the saddlepoint approximation is able to produce accurate
tail probability approximations to all loss levels and handles heterogeneous portfolios
with exposure concentration well.

The use of the saddlepoint approximation only requires the existence of the MGF,
which makes the beta distribution assumption for LGD in the framework described
very attractive. Recall that the MGF of a beta distributed random variable with param-
eters .˛; ˇ/ is a confluent hypergeometric function as follows:

MGF.t/ D1F1.˛; ˛ C ˇI t /

By basic differentiation, we obtain the following first and second derivatives of the
MGF:

MGF0.t/ D 1F1.˛ C 1; ˛ C ˇ C 1I t /
˛

˛ C ˇ

MGF00.t/ D 1F1.˛ C 2; ˛ C ˇ C 2I t /
˛.˛ C 1/

.˛ C ˇ/.˛ C ˇ C 1/

In this setting, the obligors are independent conditional on the common factor Y .
For obligor i , .˛i ; ˇi / conditional on Y can be determined by (3.3). The conditional
MGF and the cumulant generating function, denoted by �, of the portfolio loss are
then given by:

MGF.t; Y / D
nY

iD1

Œ1 � pi C pi 1F1.˛i ; ˛i C ˇi I wi t /�

�.t; Y / D log.MGF.t; Y //

D
nX

iD1

logŒ1 � pi C pi 1F1.˛i ; ˛i C ˇi I wi t /�

For simplicity of notation, we have suppressed the explicit dependence of pi and
.˛i ; ˇi / on the common factor Y .
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The derivatives of the conditional cumulant generating function up to second order
are:

�0.t; Y / D
nX

iD1

wipi 1F1.˛i C 1; ˛i C ˇi C 1I wi t /

1 � pi C pi 1F1.˛i ; ˛i C ˇi I wi t /

˛i

˛i C ˇi

�00.t; Y / D
nX

iD1

�
w2

i pi˛i .˛i C 1/ 1F1.˛i C 2; ˛i C ˇi C 2I wi t /

.˛i C ˇi /.˛i C ˇi C 1/Œ1 � pi C pi 1F1.˛i ; ˛i C ˇi I wi t /�

� w2
i p2

i ˛2
i 1F1.˛i C 1; ˛i C ˇi C 1I wi t /

2

.˛i C ˇi /2Œ1 � pi C pi 1F1.˛i ; ˛i C ˇi I wi t /�2

�

After finding the saddlepoint Qt that solves �0.Qt ; Y / D x for the loss level x, the tail
probability conditional on Y can be approximated by the Lugannani and Rice (1980)
formula:

P.L > x j Y / D 1 � ˚.zl/ C �.zl/

�
1

zw

� 1

zl

�
(5.3)

where:
zw D Qt

p
�00.Qt ; Y /; zl D sgn.Qt /

p
2Œx Qt � �.Qt ; Y /�

and � is the probability density function of the standard normal distribution.
Integrating over Y gives the unconditional tail probability P.L > x/, from which

the portfolio VaR can be derived. Formulas for the calculation of other risk measures
like VaR contribution, expected shortfall and expected shortfall contribution can be
found in Huang et al (2007b).

5.3 Numerical results

We now illustrate the performance of the normal and saddlepoint approximations in
loss distribution calculation. We first take a homogeneous portfolio with n D 100

obligors, each with:

w D 1; p D 0:005; � D 0:18

The parameters in the LGD are:

a D Œ0:37; �0:32�; ' D 3:16

with a logit link for mean LGD. This leads to the following specification of (condi-
tional) mean LGD:

� D 1

1 C exp.�0:37 C 0:32Y /

We compare the loss distributions obtained from various approximation methods
with the results from a Monte Carlo simulation. Our benchmark is the sample mean
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and the accompanying 95% confidence intervals obtained by ten subsamples of Monte
Carlo simulation with 20 000 replications each. The performance of the approxima-
tions is demonstrated in parts (a) and (b) of Figure 3 on page 20.

The large homogeneous approximation (LHA) results deviate considerably from
our benchmark. This is not surprising as the size of the portfolio is rather small.
The normal approximation provides a significant improvement over the LHA and
underestimates risk only slightly. Some of its tail probability estimates, however, fall
outside the 95% confidence interval. By comparison, the saddlepoint approximation
is able to give all tail probability estimates within the 95% confidence interval. The
loss distribution given by the saddlepoint approximation is indistinguishable from
the benchmark. We remark that the calculation of the loss distribution in Matlab
costs roughly four seconds for the normal approximation and four minutes for the
saddlepoint approximation on a Pentium 4 2.8 GHz desktop.

Finally, we calculate theVaR for the portfolio considered in Section 4.3.2, with LGD
modeled by the GBR–GLM. The results are given in Table 4 on page 19. The Monte
Carlo results are based on 200 000 simulated scenarios and can be regarded as our
benchmark. In this example the saddlepoint approximation is again very accurate. The
normal approximation is, however, rather unsatisfactory. At all three levels, relative
errors are around 8%. This is certainly due to the existence of exposure concentration
as the variation in the exposures is not negligible. For more details on how robust the
normal approximation and the saddlepoint approximation are in terms of handling
exposure concentration, we refer the interested reader to Huang et al (2007a).

6 CONCLUSIONS

In this paper we have described a GBR framework for modeling systematic risk in
LGD in the context of credit portfolio losses. The GBR framework provides great flex-
ibility in random LGD modeling and accommodates skewness and heteroskedastic
errors well. We have shown that parameter estimation and model selection are straight-
forward in this framework. Moreover, it has been demonstrated that the portfolio loss
distribution can be efficiently evaluated using both the normal approximation and the
saddlepoint approximation.

APPENDIX A: SCORE FUNCTION AND FISHER
INFORMATION MATRIX

In this appendix we give details about the score function and the Fisher information
matrix for the parameters appearing in the GBR–GLM and GBR–JGLM. The score
function may help to accelerate the convergence in the MLE procedure and the Fisher
information matrix leads to the asymptotic standard errors of the maximum likelihood
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estimates of the parameters in the models. In the GBR–GLMM the corresponding
formulas get more complicated and lengthy and they are therefore omitted here. We
refer the interested reader to Pan and Thompson (2007) for an example.

The score function, ie, the partial derivative of the log-likelihood function with
respect to parameters .�; '/, reads:

@`

@�
D '

�
log

�
�

1 � �

�
� �.�'/ C �Œ.1 � �/'�

�
(A.1)

@`

@'
D � log � C .1 � �/ log.1 � �/ C �.'/

� ��.�'/ � .1 � �/�Œ.1 � �/'� (A.2)

where � is a realization of the LGD and �.�/ is the digamma function.
The second-order partial derivatives of the log-likelihood function with respect to

parameters .�; '/ are:

@2`

@�2
D �'2f� 0.�'/ C � 0Œ.1 � �/'�g (A.3)

@2`

@'2
D � 0.'/ � �2� 0.�'/ � .1 � �/2� 0Œ.1 � �/'� (A.4)

@2`

@�@'
D 1

'

@`

@�
� 'f�� 0.�'/ � .1 � �/� 0Œ.1 � �/'�g (A.5)

where � 0.�/ is the trigamma function.
In the GBR–GLM, the parameters to be estimated are a and '. The score function

for ' is given by (A.2); the score function with respect to ai , the i th element of a, is
given by:

@`

@ai

D @`

@�

@�

@ai

D '

�
log

�
�

1 � �

�
� �.�'/ C �Œ.1 � �/'�

�
�i

g0.�/
(A.6)

The Fisher information matrix is the negative of the expectation of the second deriva-
tive of the log-likelihood with respect to the parameters. The entries in the Fisher
information matrix are:

�E

�
@2`

@'2

�
D � @2`

@'2
(A.7)

�E

�
@2`

@ai@aj

�
D � @2`

@�2

�i�j

.g0.�//2
(A.8)

�E

�
@2`

@ai@'

�
D 'f�� 0.�'/ � .1 � �/� 0Œ.1 � �/'�g �i

g0.�/
(A.9)
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In the GBR–JGLM, the parameters to be estimated are a and b. The score function for
the coefficient a is given by (A.6) and that for bi , the i th element of b, is as follows:

@`

@bi

D @`

@'

@'

@bi

Df� log � C .1 � �/ log.1 � �/

C �.'/ � ��.�'/ � .1 � �/�Œ.1 � �/'�g �i

h0.'/
(A.10)

The Fisher information matrix contains:

�E

�
@2`

@ai@aj

�

given by (A.8) and:

�E

�
@2`

@bi@bj

�
D � @2`

@'2

�i�j

.h0.'//2
(A.11)

�E

�
@2`

@ai@bj

�
D 'f�� 0.�'/ � .1 � �/� 0Œ.1 � �/'�g �i�j

g0.�/h0.'/
(A.12)
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