
Fast algorithm for directional time-scale analysis using waveletsRob A. Zuidwijka and Paul M. de ZeeuwaaCenter for Mathematics & Computer Science (CWI)P.O. Box 94079, 1090 GB Amsterdam, The NetherlandsABSTRACTFast algorithms performing time-scale analysis of multivariate functions are discussed. The algorithms employunivariate wavelets and involve a directional parameter, namely the angle of rotation. Both the rotation steps andthe wavelet analysis/synthesis steps in the algorithms require a number of computations proportional to the numberof data involved.The rotation and wavelet techniques are used for the segregation of wanted and unwanted components in a seismicsignal. As an illustration, the rotation and wavelet methods are applied to a synthetic shot record.Keywords: (bi-)orthogonal wavelets, fast wavelet transform, interpolation, rotation, seismic data processing1. INTRODUCTIONThe topic of this paper is the wavelet analysis of functions in several variables using univariate wavelets. In particular,we study fast algorithms to perform such analyses. Observe that the well-known pyramid algorithm for multivariatefunctions12 , which uses tensor products of univariate wavelets, is such a method. An important aspect of the methodsin this paper is the introduction of a directional parameter, namely the angle of rotation. Besides a combination ofthe usual pyramid scheme and rotation, we also study a method based on the wavelet X-ray transform.The wavelet X-ray transform10,13,21 given byP f(�; x; b; a) = ZR f(x+ t�) 1pa � t� ba � dtcomputes a one-dimensional wavelet transform of the restriction of f 2 L2(Rn ) to the line fx + t� j t 2 Rg, where� 2 Rn is a unit vector and x 2 �? = fy 2 Rn j y ? �g. The translation, dilation parameter pair (b; a) is taken fromthe open upper half plane f(x; y) 2 R2 j y > 0g, just as for the usual 1-D wavelet transform. The wavelet  satis�esadditional conditions so that the function f can be reconstructed from its wavelet X-ray coe�cients P f(�; x; b; a).Properties of the wavelet X-ray transform were discussed in10,13 . The transform was discretized by means ofFourier methods in18 and used to detect linear events in SAR images there. The transform has received furtherattention in21,22 , where an alternative discretization was proposed. A fast implementation of this discretizationsimply comes down to the computation of the 1-D fast wavelet transform along parallel gridlines in a rotated grid.Recall that the 1-D fast wavelet transform computes wavelet coe�cients of a function starting with function valuesgiven at equidistant points. In this paper, we shall not recite the 1-D fast wavelet transform and refer to4,11,12 fordetails. We mention only the immediate fact that computing fast wavelet transforms along parallel gridlines requiresa number of computations proportional to the number of gridpoints.In practice, a function f is usually given on the standard Euclidean grid by means of values at the grid points.These values can be interpreted as point evaluations or as certain averages. The latter interpretation �ts in thecontext of biorthogonal Riesz systems. Some remarks on biorthogonal Riesz systems are given in Section 2.The application of the fast wavelet X-ray transform or a rotated version of the 2-D wavelet transform requiresvalues at the grid points of a rotated (and possibly dilated) version of the Euclidean grid. As a consequence, thefollowing question comes up: Given values of f at the standard Euclidean grid, what are the best values of f at thegrid points of the rotated and dilated grid? Clearly, this is an interpolation issue, and it will be dealt with in thispaper. Optimal values of f -in least squares sense- at the rotated and dilated grid are described in Sections 3 andOther author information: R.A.Zuidwijk@cwi.nl, Paul.de.Zeeuw@cwi.nl, dbs.cwi.nl/cwwwi/owa/cwwwi.print projects?ID=64
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4. Moreover, in Section 4, it will be shown that the number of computations required for the rotation procedure isproportional to the number of data.Finally, we consider an application from the �eld of seismic data processing. For obvious reasons geophysicistare after geometric information on the strati�cation of impedance beneath the earth's surface. Acquisition of data isdone by exciting a signal at the surface. Waves are reected at interfaces (i.e. where the impedances changes rapidly).Seismometers at the surface record the groundmotion as the reecting waves arrive. As the deections are measuredin time and for an array of seismometers, we can represent the recorded signals as a two-dimensional gridfunction(i.e. a rectangular uniform grid where each gridpoint has been assigned a real number). The information of interestis then constituted by hyperbolic shaped events. Unfortunately, these events are overshadowed by groundroll andsurface waves directly stemming from the excitative source. Indeed, these waves often have dominant amplitude andcompletely blur the picture. It is a major challenge to �lter out the surface waves from such given seismic data. Wepropose a synthetic and strongly simpli�ed testproblem that might serve as a benchmark. We sketch a numericalalgorithm for the solution of this testproblem in Section 5.2. BIORTHOGONAL RIESZ SYSTEMS2.1. Biorthogonality and Hilbert space geometryWe introduce Riesz systems in Hilbert space and focus on geometric issues related to biorthogonal pairs of Rieszsystems. For general reading on Riesz systems, we refer to17 , although many wavelet textbooks such as1,4,5,9 containmaterial on the subject relevant to wavelets as well. Recall that a Riesz system in a Hilbert space H is a sequenceof vectors (xk)1k=1 with two positive constants 0 < A � B such thatA NXk=1 jakj2 �  NXk=1 akxk2H � B NXk=1 jakj2for all �nite sequences a1; : : : ; aN . If the constantsA;B are chosen optimally for the Riesz system under consideration,then A;B are called the Riesz bounds of the Riesz system. Let (xk)1k=1 be a Riesz system in the Hilbert space Hwith closed linear span V = span(xk)1k=1. We �rst remark that there exists a unique sequence of vectors (exk)1k=1 inV such that the biorthogonality condition hxk ; exliH = �k;l (1)is satis�ed. It turns out that (exk)1k=1 is a Riesz system and we get span(exk)1k=1 = V . Finally, if the Riesz bounds of(xk)1k=1 are given by A;B, then the Riesz bounds of (exk)1k=1 are given by eA = B�1; eB = A�1. A Riesz system (exk)1k=1which satis�es (1) will be called a dual Riesz system with respect to (xk)1k=1. Observe that a Riesz system is its owndual if and only if it is orthonormal. This particular situation corresponds to the case when A = B = 1. If we allowthe sequence (exk)1k=1 to span a subspace eV � H which is di�erent from the subspace V , then the biorthogonalitycondition (1) does not imply that (exk)1k=1 is a Riesz system. However, we can state the following results23 .Theorem 2.1. Let V; eV � H be subspaces in Hilbert space, and assume that V contains a Riesz basis (xk)1k=1 withRiesz bounds A;B. Then eV contains a Riesz basis (exk)1k=1, with Riesz bounds eA; eB, biorthogonal to (xk)1k=1 if andonly if eV �V ? = H, i.e., if and only if there exists a bounded projection P onto eV along V ?. In that case, the Rieszbasis (exk)1k=1 in eV is uniquely determined and the Riesz bounds of the systems are subject to�2 � eAB � �2; �2 � A eB � �2;where � = inf0 6=x2eV kPxkkxk = inf0 6=y2V kP �ykkyk ; � = sup0 6=x2eV kPxkkxk = sup0 6=y2V kP �ykkyk :.Observe that in the case when V = eV , the theorem reproduces the fact that eA = B�1 and eB = A�1. The bounds inthe theorem are not sharp but can be attained in speci�c cases, as can be seen even in �nite dimensions23 . In thepapers14{16 , the constant � as in Theorem 2.1 arises as the reciprocal cosine of the angle between V and eV and isused there to obtain an important instance of the following result. This instance is discussed in the next subsection.Observe that the case when � = 1 corresponds to the case when V = eV .



Theorem 2.2. Let V; eV � H be subspaces in Hilbert space such that V � eV ? = H. Let P be the projection onto Valong eV ? and let � be the orthoprojector onto V . For all g 2 H, we getkg ��gkH � kg � PgkH � �kg ��gkH ;where � = sup0 6=k2V kP �kkHkkkH :2.2. Multiresolution analysisRiesz systems consisting of integer translates of a single function ' 2 L2(R) are of particular interest here. Moreexplicitly, we will assume that ' 2 L2(R) is a function such that the sequence ('(� � k))k2Z is a Riesz system inL2(R). If V is the closed linear span of this Riesz system, then there exists a unique Riesz system in V biorthogonalto ('(� � k))k2Zwhich is a basis in V . In particular, for the given function ', one may construct a function e' 2 V ,such that the dual Riesz system of ('(��k))k2Z is given by (e'(��k))k2Z. We mention that if ' has compact supportand is bounded, then e' has exponential decay at in�nity always and in some cases compact support4 .We shall make further assumptions on the functions ' and e'. Indeed, we will assume that these functionsinduce multiresolution analyses. Multiresolution analysis forms one of the key issues in wavelet theory; see.4,5,12 Amultiresolution analysis (MRA) in L2(R) is a sequence of subspaces (Vj)j2Z in L2(R) with the following properties:For each j 2 Z, we have(i) Vj � Vj+1,(ii) f 2 Vj , f(2�) 2 Vj+1,and(iii) Tj2ZVj = (0),(iv) Sj2ZVj � L2(R) dense,(v) there exists ' 2 V0 such that ('(� � k))k2Z is a Riesz basis in V0.A function ' 2 L2(R) which gives rise to a multiresolution analysis as above will be called a scaling function.Examples of such function are spline functions together with various dual functions1,3,4 .We remark that a biorthogonal pair of scaling functions leads to the de�nition of a biorthogonal pair of waveletsand a (fast) wavelet transform. We refer to1,4,11 .3. LEAST SQUARES METHOD AND DUAL METHODThroughout this section, we will assume that ' induces a multiresolution analysis as described in the previous section,i.e., ' is a scaling function. We will also �x a dual scaling function e' 2 L2(R).Given an orthonormal basis �1; : : : ; �n in Rn , we consider the (rotated and dilated) gridG �;d = f nXr=1 prdr�r j (p1; : : : ; pn) 2 Zng;where d1; : : : ; dn are positive real numbers. The standard basis in Rn will be denoted by e1; : : : ; en and the standardgrid by G e accordingly. Observe that G �;d is the image of G e under permutation, rotation and dilation. In fact,G �;d = DRQG e , where Q is an n�n permutation matrix, R is an n� n rotation matrix and D is an n�n diagonalmatrix with diagonal d = (d1; : : : ; dn)T .



In order to deal with functions on Rn for n � 2, we shall construct multivariate functions by means of productsof univariate ones. Indeed, given an orthonormal basis �1; : : : ; �n in Rn , we shall write��;d(y) = nYr=1 d�1=2r '(d�1r hy; �ri); almost all y 2 Rn ;where ' is a scaling function. In the same fashion, one de�nes e��;d using the dual scaling function e'. The next twolemmas justify that ��;d will be called a multivariate scaling function.Lemma 3.1. The system (��;d(� � p))p2G�;d is a Riesz system in L2(Rn ). The dual Riesz system is given by(e��;d(� � p))p2G�;d . In particular, h��;d(� � p); e��;d(� � q)iL2(Rn) = �p;q:The Riesz bounds of the system are given by An; Bn.A multiresolution analysis in L2(Rn ) associated with a grid G �;d is a sequence of subspaces (V�;d;j)j2Z in L2(Rn )with the properties: For each j 2 Z, we have(i) V�;d;j � V�;d;j+1,(ii) f 2 V�;d;j , f(2�) 2 V�;d;j+1,and(iii) Tj2ZV�;d;j = (0),(iv) Sj2ZV�;d;j � L2(Rn ) dense,(v) there exists � 2 V�;d;0 such that (�(� � p))p2G�;d is a Riesz basis in V�;d;0.Lemma 3.2. If ' induces a multiresolution analysis in L2(R), then ��;d induces a multiresolution analysis in L2(Rn )associated with the grid G �;d .We shall introduce a multivariate interpolation operator which incorporates the Riesz system induced by themultivariate scaling function. De�ne L�;d : `2(G �;d)! L2(Rn ) byL�;d(ap)p2G�;d (y) = Xp2G�;d ap��;d(y � p)for almost all y 2 Rn . The operator eL�;d is de�ned in the same way using the dual scaling function. Observe thatby Lemma 3.1, we getAnk(ap)p2G�;d k2̀2(G�;d ) � kL�;d(ap)p2G�;d k2L2(Rn) � Bnk(ap)p2G�;d k2̀2(G�;d ):This implies that L�;d : `2(G �;d) ! L2(Rn ) is a bounded injective operator with closed range. It follows that L�;dhas a bounded left-inverse. Indeed, the adjoint operator L��;d : L2(Rn )! `2(G �;d) of L�;d is given by(L��;dg) = �hg;��;d(� � p)iL2(Rn)�p2G�;d ; g 2 L2(Rn );and now we can identify a left inverse of L�;d.Theorem 3.3. The operator L�;d : `2(G �;d)! L2(Rn ) has eL��;d : L2(Rn )! `2(G �;d) as a left inverse.Proof. Note that Lemma 3.1 and the continuity of the inner product impliesheL��;dL�;d(ap)p2G�;d ; (bq)q2G�;d i`2(G�;d ) = hL�;d(ap)p2G�;d ; eL�;d(bq)q2G�;d iL2(Rn) =h Xp2G�;d ap��;d(� � p); Xq2G�;d bqe��;d(� � q)iL2(Rn) = Xp2G�;d apbp:



�In the particular case when ��;d = e��;d, i.e., in the orthonormal case, we obviously get L�;d = eL�;d and by Theorem3.3, we see that in this case L��;dL�;d = I`2(G�;d ). In the general situation, the self-adjoint operator L��;dL�;d will notbe the identity, although the following holds true.Lemma 3.4. The operator L��;dL�;d : `2(G �;d)! `2( GG�;d) is a strictly positive, hence boundedly invertible, operatorwhich satis�es the estimates (in the sense of self-adjoint operators)An I � L��;dL�;d � Bn I:Observe that the expression (fp)p2G�;d = (L��;dL�;d)�1L��;dg (2)makes sense and provides the least-squares solution to the equationL�;d(fp)p2G�;d = g (3)where g 2 L2(Rn ) is a given function. Another approximate solution to (3) is given by(fp)p2G�;d = eL��;dg: (4)We will now look at equation (3) and its approximate solutions (2) and (4) more closely. If we apply the operatorL�;d to the right hand side of (2), we get L�;d(L��;dL�;d)�1L��;dg. The operator ��;d = L�;d(L��;dL�;d)�1L��;d is theorthogonal projection onto ran L�;d. The least squares solution method (2) produces an error kg���;dgkL2(Rn) whichequals zero whenever g 2 ran L�;d. In general, this error is minimal among all attainable errors, since kg���;dgkL2(Rn)equals the distance between g and ran L�;d.On the other hand, if we apply L�;d to the right hand side of (4), we get L�;deL��;dg. The operator P�;d = L�;deL��;d isa not necessarily orthogonal projection onto ran L�;d. This dual solution method produces an error kg�P�;dgkL2(Rn).Since g ���;dg ? ��;dg � P�;dg, we getkg � P�;dgk2L2(Rn) = kP�;dg � ��;dgk2L2(Rn) + kg ���;dgk2L2(Rn):It is immediate that the error caused by the least squares solution method is majorized by the error caused by thedual method. Moreover, the di�erence between the two errors can be measured by kP�;dg ���;dgkL2(Rn).Theorem 3.5. Let ��;d and e��;d be multivariate scaling functions as de�ned before which satisfy the biorthogonalitycondition h��;d(� � p); e��;d(� � q) = �p;q ; p; q 2 G �;d ;and let � be de�ned as in Theorem 2.2. The closed linear span of (��;d(��p))p2G�;d is denoted by V�;d and the closedlinear span of (e��;d(��p))p2G�;d is denoted by eV�;d. The orthoprojector onto V�;d is given by ��;d, and the projectiononto V�;d along eV ?�;d reads P�;d. We get for g 2 L2(Rn ),kg ���;dgkL2(Rn) � kg � P�;dgkL2(Rn) � �nkg ���;dgkL2(Rn):4. INTERPOLATION BETWEEN ROTATED GRIDSWe shall now apply the considerations in the preceding section to interpolation between dilated and rotated Cartesiangrids. The situation is as follows. A collection of data (complex numbers) (aq)q2Ge is given and a function g 2 L2(Rn )is attached to this collection by means of interpolation. Indeed, we assume thatg(y) = Xq2Ge aq�e(y � q); almost all y 2 Rn :



Note that we have constructed a function g such thataq = hg; e�e(� � q)i; q 2 G e :In words, the function g reproduces the original data when inner products are taken with translates along thestandard grid G e of the dual multivariate function e�e. We now search for a collection of data (fp)p2G�;d associatedwith the dilated and rotated grid G �;d . This data should reproduce the function g as an interpolant of (fp)p2G�;d .In general, this is not possible. Therefore, we shall writef(y) = Xp2G�;d fp��;d(y � p); almost all y 2 Rn ;and we shall try to minimize kf � gkL2(Rn).In terms of interpolation operators, we have the following situation. Given the data (aq)q2Ge 2 `2(G e ), weconstruct g = Le(aq)q2Ge . The least squares solution toL�;d(fp)p2G�;d = g = Le(aq)q2Geprovides us with data (fp)p2G�;d on the rotated and dilated grid, such that f = L�;d(fp)p2G�;d minimizes kf�gkL2(Rn)among all possible solutions. The least squares solution can be obtained with the least squares method(fp)p2G�;d = (L��;dL�;d)�1L��;dg = (L��;dL�;d)�1L��;dLe(aq)q2Ge :Here, the least squares method involves the solution of a linear system with a sparse matrix. With completefactorization the number of (oating point) operations required for the solution is at least proportional to the squareof the number of data, see e.g.7 .In order to reduce the number of computations, the dual method(fp)p2G�;d = eL��;dg = eL��;dLe(aq)q2Geis proposed. Moreover, the solution of the dual method can be taken arbitrarily close or equal to the least squaressolution. We describe the dual method. The operator eL��;dLe : `2(G e ) ! `2(G �;d) is applied to the data (aq)q2Ge asfollows: Observe that for p 2 G �;d ,�eL��;dLe(aq)q2Ge�p = ZRnLe(aq)q2Ge (y)e��;d(y � p) dy =ZRn Xq2Ge aq�e(y � q)e��;d(y � p) dy = Xq2Ge aqh�e(� � q); e��;d(� � p)iL2(Rn):The in�nite matrix M = (Mp;q)p2G�;d ;q2Ge , with matrix elements given by Mp;q = h�e(� � q); e��;d(� � p)iL2(Rn)provides the solution to the dual method as follows:(fp)p2G�;d =M (aq)q2Ge :In order to describe the number of calculations required to perform the dual method, we consider the case when thedataset (aq)q2Ge is �nite. In particular, we denote the unit cube in Rn by K = [�1; 1]n and assume that aq = 0 forq 62 Q �K where Q is a �xed positive integer. Further, we will assume that the underlying scaling functions ' ande' have compact support. Indeed, assume that �; e� > 0 are chosen such that supp ' � [��; �] and supp e' � [�e�; e�].Let (p1; : : : ; pn) 2 Zn and (q1; : : : ; qn) 2 Zn, then q = Pnr=1 qrer 2 G e and p = Pnr=1 pr�rdr 2 G �;d . The matrixelement Mp;q = ZRn nYr=1'(hy; eri � qr)d�1=2r e'(d�1r hy; �ri � pr) dyis nonzero, only if jhy; eri � qrj � �; jd�1r hy; �ri � prj � e�; r = 1; : : : ; n:



We get ky � qk2 = nXr=1 jhy; eri � qrj2 � �2n;ky � pk2 = nXr=1 jhy; �ri � drprj2 = nXr=1 d2rjd�1r hy; �ri � prj2 � e�2kdk2;where kdk is the Euclidean norm of d = (d1; : : : ; dn)T . This provides0 = k(y � q) + (q � p) + (p� y)k � kp� qk � ky � pk � ky � qk � kp� qk � (�pn+ e�kdk):As a result, we see that kp� qk � (�pn+ e�kdk):We may conclude that if kp� qk > (�pn + e�kdk), then Mp;q = 0. This means that the matrix M has a band-likestructure with band width majorized by (�pn + e�kdk). The number of data N , i.e., the number of gridpoints ofG �;d in Q �K, is proportional to (2Q)n��1, where � = d1 : : : dn. The number of computations required to calculate(fp)p2G�;d is majorized by the number N(�pn+ e�kdk) which is of the same order as the number of data involved.5. AN APPLICATION IN SEISMIC DATA PROCESSINGIn this section we consider an application of the theory described in the previous section. We propose a testproblemand sketch the outline of a numerical algorithm to solve it.5.1. An idealized testproblemWe propose a simple synthetic shotrecord that is depicted by the picture on the left of Figure 1. It shows a simple
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600Figure 1. Idealized testproblem (frequency= 4)synthetic dataset on a grid of dimensions 300 � 300. The dataset consists of low-amplitude hyperbolic events onwhich a high-amplitude function g has been superimposed. The picture is a caricature of a seismic shotrecord. Thevertical axis corresponds to time, the horizontal axis to a line at the earth's surface. The hyperbolic events wouldcorrespond to measurements of seismometers recording waves excited at the earth's surface and reected at interfaces(i.e. where the impedances changes rapidly). The challenge consists of segregating the high-amplitude distortion fromthe low-amplitude events of interest. The problem might serve as a benchmark for testing numerical algorithms andis therefore made available19 at WWW. The dimensions of the grid, the angle and frequency of the distortion (andits width), and other relevant parameters can all be controlled.



5.2. A segregation templateWe investigate the applicability of wavelet transforms as an alternative to the Fourier transform. Results of earlierresearch in this respect are reported in2,6,8 . What's new in our method is determined by: rotation/interpolation,the transform (of wavelet-type) and the �ltering. We devise numerical algorithms for the solution of problemsas described in Section 5.1. The methods we discuss can be characterized by the following template with sevensubsequent steps:step 1 Flatten data.step 2 Rotate data.step 3 Transform data.step 4 Adapt (limit, mute, interpolate) appropriate coe�cients, i.e. �ltering.step 5 Apply backtransform.step 6 De-rotate data.step 7 De-atten data.Apart from step 2 (and its counterpart step 6) this is quite a conventional framework. Most or all present methods �tin this framework where often `fast Fourier' is used as transform (step 3). Step 1 (and its counterpart step 7) may bea simple method to compensate for the exponential decay in time of the signal, but more sophisticated preprocessingat this point is quite common. Step 2 (and its counterpart step 6) is new. For reasons to be explained later, we rotatethe data such that they more or less align with either horizontal or vertical gridlines. The actual �ltering takes placeat step 4, it is the heart of the algorithm. In a way, the combination of steps 1{3 can be seen as one big transformwith the aim of making the undesired components explicit. The purpose of steps 1 { 3 is to transform a signal stepby step in such a manner that the coe�cients with respect to the new basis of representation can be divided into aset corresponding to the desired components and another set corresponding to the undesired components. Ideally,we then could simply mute the coe�cients going with the undesired components. By numerical experience our waysof adapting (step 4) evolved from A to C:A c := max(min(c; upperbound); lowerbound);B if c satis�es mute-criterion then c := 0 (mute c);C if c satis�es mute-criterion then replace c by interpolation between nearby coe�cients that do not satisfy themute-criterion.Here A is called limiting, B is called muting, C is called interpolation. The values `lowerbound' and `upperbound'are de�ned in a problem-dependent way. Often A turns out to be too crude: the groundroll remains too large. Thisis improved by B which is more radical by muting coe�cients completely. An important di�erence of C with bothA and B is that the coe�cients which need to be adapted are replaced by interpolation between remaining nearbycoe�cients that (are supposed to) correspond to the wanted components. The mute-criterion in B, C still needs tobe �lled in. It can be simple like:mute-criterion = (c > upperbound or c < lowerbound)be it that the values `lowerbound' and `upperbound' still need to be determined. More details and results can befound in20 .



5.2.1. RotationWhy rotate the data? As with every transform in the context of seismic data processing the aim is to make abetter separation between the unwanted components and the events of interest. For the two-dimensional wavelet-decomposition, it has been shown2 that if the angle between groundroll and the gridlines is within well-de�ned boundsa bias exists for distribution of the energy towards either horizontal detail or vertical detail wavelet coe�cients. These�ndings supported our research to investigate the e�ects of rotation. Figure 1 shows how a simple synthetic dataseton a 300 � 300-grid is rotated (interpolated) onto a 600� 600-grid (both grids are uniform). The \right" angle ofrotation is chosen visually, in practice we need to rely on a numerical approach to detect directional bias in a dataset.In order to add a touch of realism, the function g is not completely aligned with the grid. Note that the rotatedgrid wants a smaller meshwidth than the original if we do not allow for loss of information. Generally, we need tobe concerned about costs and accuracy of the rotation, see Section 4 and20 .5.2.2. A numerical resultWe apply the above segregation template to the idealized testproblem of Section 5.1. Steps 1 and 7 are omitted.We choose a compactly supported two-dimensional separable biorthogonal spline wavelet and use a correspondingdecomposition of 6 levels. Muted coe�cients at step 4 are replaced by interpolation (C). Figure 2 shows the resultsbefore and after de-rotation (step 6). If we compare Figure 2 with Figure 1 we observe a reasonable result: the
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300Figure 2. Numerical segregation result for the idealized testproblem (frequency= 4)high-amplitude distortion has been removed e�ectively and (nearly) all of the hyperbolic events retain coherence.6. CONCLUSIONSThe notion of a biorthogonal pair of Riesz systems which induce multiresolution analyses can be de�ned in themultivariate case. This leads to a fast rotation algorithm which uses biorthogonal (spline) wavelets.By employing rotation and wavelet decomposition we were able to devise and demonstrate a numerical algorithmthat can segregate a high-amplitude distortion with directional bias from low-amplitude hyperbolic events.ACKNOWLEDGMENTSThis work was supported �nancially by the Technology Foundation (STW), project no. CWI44.3403.
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