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Abstract. We propose a property-preserving refinement/abstraction
theory for Kripke Modal Labelled Transition Systems incorporating not
only state mapping but also label and proposition lumping, in order to
have a compact but informative abstraction. We develop a 3-valued ver-
sion of Public Announcement Logic (PAL) which has a dynamic operator
that changes the model in the spirit of public broadcasting. We prove
that the refinement relation on static models assures us to safely reason
about any dynamic properties in terms of PAL-formulas on the abstrac-
tion of a model. The theory is in particular interesting and applicable for
an epistemic setting as the example of the Muddy Children puzzle shows,
especially in the view of the growing interest for epistemic modelling and
(automatic) verification of communication protocols.

1 Introduction

Epistemic logics are modal logics for reasoning about knowledge, traditionally
used to describe the distribution of information among parties. Recently, these
logics have become interesting also from a more practical perspective, i.e. for
modelling knowledge development during communication protocols, by the ad-
dition of dynamics: mathematical constructions that enable to reason about
knowledge and information change [8,1,2]. Methods based on epistemic logics
have been developed for the analysis of complex communication protocols: e.g.
BAN logic [4], the theory of function views [13] and interpreted systems [8,10,19].
These approaches are also more and more tool-supported, and interesting proto-
col properties are assessed or discarded by (automatic) model checking [11,19,22].

The structures on which epistemic formulas can be evaluated are Kripke models
as in usual modal logic, with multiply labelled transitions representing different
agents’ uncertainties. Inevitably, when epistemic modelling is applied to complex
situations, very large epistemic models can be expected. One way to deal with this,
is to import the refinement and abstraction techniques developed for labelled tran-
sition systems (LTS), e.g. [16,15,20]. The refinement method intuitively relates a
detailed model (refined model) with a coarser one (abstract model) in which some
information may be lost, but the information kept is faithful to the detailed model.
In the Kripke models of the epistemic setting, there are often transitions with dif-
ferent labels that might be similar to each other — for instance if they express
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uncertainties of agents playing similar roles in a multi-agent system. Another spe-
cific characteristic of epistemic Kripke models is that in modelling practical sit-
uations, numerous different basic propositions might be used. We may expect to
lump some of those transitions with different labels or combine states with dif-
ferent propositional valuations to obtain a more compact abstraction. However,
the traditional LTS abstraction techniques do not perform this type of reductions,
so an adaptation is needed. Moreover, when we include the dynamic modalities,
which essentially change the model, into the language (e.g announcements or ac-
tions, cf. [8,1,12,7]), it is a challenge to adapt the LTS abstraction theory such
that a suitable abstraction relation will preserve the truth values of the dynamic
formulas on the abstract model.

In this paper, we extend the refinement theory for Kripke Modal Labelled
Transition Systems (KMLTSs), incorporating not only state mapping but also
label- and proposition lumping, in order to obtain compact but informative ab-
stractions. We develop a 3-valued Public Announcement Logic (PAL) and prove
that the refinement relation on static models can assure us to safely verify any
dynamic properties in terms of PAL-formulas on the abstractions of a KMLTS.
Thus the theory can be used to abstract Kripke models, since Kripke models can
be regarded as special case of KMLTSs. This theory is in particular applicable
for an epistemic setting as the example of the Muddy Children shows.

In the flourishing field of abstraction techniques, to the best of our knowledge,
no work on the abstraction of Kripke models exists yet reducing both the number
of labels and of basic propositions. The literature related most closely to the
current paper is the work on abstraction of LTSs [20] in which the labels could
be grouped. Since both temporal and knowledge properties can be expressed
using box- and diamond modalities of modal languages, model checkers on LTSs
are sometimes employed to verify epistemic properties [11,19,22]. However, LTS
abstractions were never used in this context. A complementary technique for
escaping the epistemic explosion problem is symbolic model checking discussed
in [17].

Section 2 introduces Kripke Modal Labelled Transition Systems, together with
a 3-valued interpretation of PAL. In Section 3, the notions of refinement and
abstraction are introduced and the preservation results are proven. Section 4
contains two examples of applying abstraction to some real epistemic models.
We conclude in Section 5.

2 Preliminaries

In this section we introduce the 3-valued Public Announcement Logic (PAL)
interpreted on 3-valued Kripke Modal Labelled Transition Systems.

2.1 Kripke Modal Labelled Transition System

A standard Kripke model consists of a set of states S, the labelled relations
R among them and a 2-valued valuation V which assigns a truth value to each
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basic proposition in each state1. In order to define abstractions of Kripke models
the standard definition is extended in the following sense:

– To incorporate the approximation of propositional information in the ab-
stract model, we use 3-valued valuations instead of 2-valued ones. Besides
true and false, atomic propositions can now have a third truth value ⊥ which
is intended to mean unknown.

– To incorporate the approximation of relations, two types of relations must
and may are introduced as in Modal Transition Systems [16], where must
transitions are under-approximations (the relations are necessarily there in
the concrete model) and may for over-approximations (there are possibly
such relations). Since necessarily existent relations should be at least possi-
ble, we require that the must relations are included in the may relations.

Formally, similar to the definition of Kripke Modal Transition Systems in [14,9],
we have:

Definition 1 (Kripke Modal Labelled Transition System). A Kripke
Modal Labelled Transition System (KMLTS) is a tuple M = (I, P ; S, →�, →�, V )
where:

– I is a non-empty set of labels;
– P is a set of basic propositions;
– S is a non-empty set of states;

– →� is a set of transitions of the form s
i→� s′ where i ∈ I;

– →� is a set of transitions of the form s
i→� s′ where i ∈ I;

– V is a valuation function: V : S → {true, false, ⊥}P .

We require that →�⊆→� . We call (I, P ) the signature of M. A pointed KMLTS
(M, s) is a pair of a KMLTS M and a distinguished state s in it.

We include the signature (I, P ) in the specification of the models as, in general,
the signatures of a model and its abstraction will be different.

A standard Kripke model can be regarded as a special kind of KMLTS, where
must and may coincide and the valuation is essentially 2-valued:

Definition 2 (Concrete model). A KMLTS M = (I, P ; S, →�, →�, V ) is a
concrete model if:

– →�=→�;
– for all s ∈ S, all p ∈ P : V (s)(p) �= ⊥.

1 In an epistemic setting, the states (also called “possible worlds”) are interpreted as
states of affairs that may be considered possible by agents: an i-relation from one
state to another means that at the first state agent i considers the second possible.
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2.2 Public Announcement Logic

Public Announcement Logic (PAL) initiated in [18] is a convenient language to
describe announcements and their informational consequences for (a group of)
agents. Based on the standard language of epistemic logic (logic of knowledge), a
new modality [φ] is introduced into the language, with [φ]ψ intended to express
“if φ is true then after the announcement of φ, ψ is true.”. Various case studies
showed this logic to be powerful in helping to understand complicated higher
order reasoning about knowledge and announcements such as in the cases of
Muddy Children, Sum and Product and the protocol of Dining Cryptographers
(we refer interested readers to [21] for detailed explanations).

Formally, given a signature (I, P ), the formulas of the Public Announcement
Logic LI,P are defined by

φ, ψ ::= p | φ ∧ ψ | ¬φ | �iφ | [φ]ψ

where p ∈ P , i ∈ I. As usual, we define φ ∨ ψ, φ → ψ and �iφ as abbreviations
of ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ and ¬�i¬φ respectively.

As we will see in the next section, our overall approach is not constrained to
be used only in epistemic settings, as it does not require the model to be S5.2

Not constrained within S5 models, we will have more freedom to find suitable
abstractions, as we will see in the Muddy Children example.

2.3 Semantics

The semantics for 2-valued public announcement logic is the extension of stan-
dard modal logic with relativization operators [φ]: M, s � [φ]ψ ⇐⇒ [M, s � φ
implies M|φ, s � ψ], where the relativized model M|φ is the restriction of M to
the states where φ holds. We extend such relativization, which we call “update”
in the context of PAL, to the 3-valued case and take the usual semantics for �

as in the logics on Modal Transition Systems:

Definition 3 (3-valued Semantics). The truth value of a LI,P formula φ in
a state s of a KMLTS M = (I, P ; S →�, →�, V ), written �φ�M,s, is defined by:

�p�M,s = V (s)(p)
�¬φ�M,s = ¬3�φ�M,s

�φ ∧ ψ�M,s = �φ�M,s ∧3 �ψ�M,s

��iφ�M,s =

⎧
⎪⎨

⎪⎩

true if ∀s′ : s
i→� s′ =⇒ �φ�M,s′

= true
false if ∃s′ : s

i→� s′ and �φ�M,s′
= false

⊥ otherwise

�[φ]ψ�M,s =

⎧
⎨

⎩

true if �φ�M,s = false or �ψ�M|φ,s = true
false if �φ�M,s = true and �ψ�M|φ,s = false
⊥ otherwise

2 S5 is a set of formulas axiomatizing the reading of � as knowledge. S5 characterizes
models in which the relations are equivalence relations.
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where:

– ¬3(true) = false, ¬3(false) = true and ¬3(⊥) = ⊥, and for any x, y ∈
{true, false, ⊥}: x ∧3 y = min(x, y) w.r.t. ≤v: false ≤v ⊥ ≤v true.

– M|φ = (I, P ; S′ →′
�, →′

�, V ′) is defined as follows:
• S′ = {s ∈ S | �φ�M,s �= false};
• →′

�=→� |S′×S′ ;
• →′

�=→� ∩(S′ × {s ∈ S′ | �φ�M,s = true});
• V ′(s) = V (s) for s ∈ S′.

The intuitive idea behind the semantics of � is that �φ is true if all the possible
(may) relations lead to φ-true states, and is false if there exists a necessary (must)
relation leading to a φ-false state.

The updated model M|φ keeps all φ-not-false states and all the relations
among them, except for the must relations directed at a φ-unknown state.3

Note that M|φ is still a KMLTS since →′
�⊆→′

� by definition. It is not hard to
check that this three valued semantics “coincides” with the standard 2-valued
semantics on concrete models. Formally, for any LI,P formula φ, any concrete
model M :

�φ�M,s = true ⇐⇒ M′, s � φ �φ�M,s = false ⇐⇒ M′, s �� φ

where M′ is the standard Kripke model converted from M by lumping may and
must relations together. For 2-valued Public Announcement Logic the following
reduction axioms hold:

(At) [φ]p ↔ φ → p
(PF) [φ]¬ψ ↔ φ → ¬[φ]ψ
(Dist) [φ](ψ1 ∧ ψ2) ↔ [φ]ψ1 ∧ [φ]ψ2
(Seq) [φ][ψ]χ ↔ [φ ∧ [φ]ψ]χ
(KA) [φ]�iψ ↔ φ → �i[φ]ψ

In the 3-valued case, there are a few cases where the left hand side of ↔ gives
false while the right hand side gives ⊥, all involving the valuation of φ to be ⊥.
So if we only consider concrete models then the evaluation of φ is either true or
false and the above equivalences hold.

Although our concern in this paper is primarily to develop the theory of epis-
temic abstrcations, the ultimate goal is to enable automatic verification of large
epistemic models. Designing efficient algorithms for checking the satisfaction of
3-valued PAL formulae on KLMTSs, based on the definition above, is an interest-
ing topic in itself and we leave it as further work. We now only note that, looking
at similar results in the literature [3], it is to expect that such a model checking
algorithm will not be more complex than the ones for checking (2-valued) PAL
on KMs or LTSs.
3 The must-relations signify necessary relations. However, a φ-unknown state s is not

necessarily there in the updated model, as unknown leaves the possibility open that
φ could ‘actually’ be false, in which case s would not be in the updated model.
A relation directed at a possibly but not necessarily existent state, cannot be a
necessary relation, so must-relations to φ-unknown states are removed.
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3 Refinement and Logical Characterization

In this section we extend the classic definition of refinement with label and
proposition mapping in order to reduce the number of labels and possibly achieve
smaller abstraction models. We show that we can reason about properties of the
more refined model by model checking the more abstract model.

3.1 Refinement and Abstraction

As observed in [20], to do model checking on infinitely-labelled systems, one
needs abstraction to obtain a model with a reduced number of labels. We aim
for an abstraction method to reduce the labels also in the finite case, by lumping
similar transitions with different labels together into a unified one. This is often
applicable in the epistemic case, as several agents may play a similar role and
therefore have similar uncertainties. On the other hand, different propositions
may also have a similar role on different states, in which case abstractions may
combine propositions together as well. In the following, we use two mappings
from one signature to the other to capture the above intuitions of lumping labels
and propositions. It is important to note that these abstractions produce models
with a different signature.

Notation For a function h and x in its range, we use h−1[x] to denote the
preimage of x.

Definition 4 (Refinement and Abstraction). Given two KMLTSs M =
(I, P ; S, →�, →�, V ) and N = (I ′, P ′; T, →′

�, →′
�, V ′) and two surjective func-

tions f : I ′ → I and g : P ′ → P , a binary relation R ⊆ T × S is called an
f, g-refinement relation between N and M, if for all t ∈ T, s ∈ S with (t, s) ∈ R
the following hold:

– for any p ∈ P : V (s)(p) �= ⊥ implies for all p′ ∈ g−1[p] : V ′(t)(p′) = V (s)(p);

– t
i′

→� t′ implies ∃s′ ∈ S: s
f(i′)→� s′ and R(t′, s′);

– s
i→� s′ implies ∀i′ ∈ f−1[i] : ∃t′ ∈ T such that t

i′
→� t′ and R(t′, s′).

We say N is a f, g-refinement of M (notation: N �f,g M) if there exists an f, g-
refinement relation R between N and M. We say (N , t) is an f, g-refinement of
(M, s) (notation: (N , t) �f,g (M, s)) if there exists an f, g-refinement relation
R between N and M such that (t, s) ∈ R.

Correspondingly, (M, s) is called an f, g−abstraction of (N , t) iff (N , t) is an
f, g-refinement of (M, s).

The first condition says that the valuation in the more abstract model can be
less informative by making some propositions unknown (⊥), but never unfaithful.
The intuition behind the requirement of must is that an i-must relation in the
more abstract model is like an intersection of corresponding i′-must for i′ ∈
f−1[i]. For may, an f(i′)-may relation in the more abstract model is like a union
of those i′′-may relations in the more refined model for which f(i′′) = f(i′).
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Fig. 1. A pointed KMLTS and three possible abstractions of it. Dot lines are for may
relations and solid lines for must. May relations that coincide with corresponding must
ones are omitted. If there is no arrow on a relation then it is bidirectional. p/ is to

mean the value of p is unknown (⊥) at the current state. For clarity, the states of M
are numbered and the numbers on the states of the abstracted models indicate which
original states they represent. In (2), the mappings are the identity functions, and the
valuation of proposition q is mapped to ⊥ for all worlds. In (3), the abstraction is
given by the identity functions as well, but collapsing different worlds. In (4), there’s
an abstraction obtained by lumping both agents and both propositions.

Note that for two 2-valued Kripke models with the same signature (I, P ), N is
a refinement of M in the classical sense of [15] iff N is an (IdI , IdP )−refinement
of M where IdX is identity function on the domain X .

Fig. 1 shows an example of a KMLTS M and some abstractions of it.
Since →�⊆→�, we can make a concrete refinement of any KMLTS by drop-

ping may relations that do not have a must counterpart (i.e. →′
�, →′

�:=→�) and
by adapting the valuation to become two-valued (e.g. by defining V ′(s)(p) = false
whenever V (s)(p) = ⊥ and V ′(s)(p) = V (s)(p) otherwise). Therefore:

Proposition 1. A KMLTS M always has a concrete refinement.

3.2 Logical Characterization

We will prove a preservation result of satisfaction of formulas between a pointed
model (N , t) and its abstraction (M, s). Intuitively we want a formula to be
true/false at N if it is true/false at M respectively, such that we can safely model
check the more abstract model to get the information of the more refined one.
However, as these models may have different signatures due to the f, g mappings
attached to the refinement relation, we need to check different formulas on these
two models. Given two pointed models (M, s), (N , t), and two formulas φ, ψ, we
say �ψ�M,s ≤ �φ�N ,t if the following hold:

1. �ψ�M,s = true =⇒ �φ�N ,t = true;
2. �ψ�M,s = false =⇒ �φ�N ,t = false.
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Then our goal is to check whether (N , t) �f,g (M, s) implies for all φ:
��φ��M,s ≤ �φ�N ,t where �φ� is a formula in the signature of M correspond-
ing to φ. To pinpoint the right formulas to check, we introduce the following
translation:

Definition 5 (Translation of formulas). Given signatures (I ′, P ′), (I, P ),
and surjective functions f : I ′ → I, g : P ′ → P , we define the translation of
an LI′,P ′-formula φ into an LI,P -formula �φ�f,g inductively as follows:

�p′�f,g = g(p′)
�¬ψ�f,g = ¬�ψ�f,g

�ψ1 ∧ ψ2�f,g = �ψ1�f,g ∧ �ψ2�f,g

��i′ψ�f,g = �f(i′)�ψ�f,g

�[χ]ψ�f,g = [�χ�f,g]�ψ�f,g

Before proving the main result of this paper, we first prove a result establishing
the refinement relation between the updated models (N|χ, t) and (M|�χ�f,g

, s)
for some LI,P -formula χ, given that (N , t) �f,g (M, s)

Lemma 1. Suppose (N , t), (M, s) are pointed KMLTSs with signatures (I ′, P ′)
and (I, P ) and set of states T and S respectively, such that (N , t) �f,g (M, s).
Then for any LI′,P ′ formula χ such that t ∈ N|χ and s ∈ M|�χ�f,g

, we have
(N|χ, t) �f,g (M|�χ�f,g

, s) if for each t′ ∈ T, s′ ∈ S the following condition holds:

(N , t′) �f,g (M, s′) =⇒ ��χ�f,g�
M,s′

≤ �χ�N ,t′
(�)

Proof. Suppose (N , t) �f,g (M, s) then there is a relation R which constitutes
an f, g-refinement between N and M with (t, s) ∈ R. We claim that R′ =
R ∩ (N|χ × M|�χ�f,g

) is an f, g-refinement relation between N|χ and M|�χ�f,g
.

Note that (t, s) ∈ R′ since t ∈ N|χ and s ∈ M|�χ�f,g
. Now we check the three

conditions of the refinement relation:

– for the condition on p: follows from this property of R and the fact that the
valuation of an updated model is just the restriction of the original valuation
to the remaining states.

– Suppose t
i′

→� t′ in N|χ, then t
i′

→� t′ in N according to the definition

of the update. Since (N , t) �f,g (M, s), there exists s′ ∈ M: s
f(i′)→� s′

and (t′, s′) ∈ R. Remains to show that s′ ∈ M|�χ�f,g
. Suppose not, then

��χ�f,g�
M,s′

= false. Because (t′, s′) ∈ R ensures (N , t′) �f,g (M, s′), it
then follows from condition (�) that �χ�N ,t′

= false. But then t′ �∈ N |χ,
contradiction.

– Suppose s
i→� s′ in M|�χ�f,g

, then ��χ�f,g�
M,s′

= true and s
i′

→� s′ in M.
Because R is an f, g-refinement between (N , t) and (M, s), for any i′ ∈ f−1[i]

there exists t′ ∈ N such that t
i′

→� t′ and (t′, s′) ∈ R. To show that (t′, s′) ∈
R′ for such t′, it remains to show that t′ ∈ N|χ. Since ��χ�f,g�

M,s′
= true

and (t′, s′) ∈ R, it then follows from condition (�) that �χ�N ,t′
= true. Hence,

t′ ∈ N|χ.
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Theorem 1. Suppose N , M are KMLTSs w.r.t. I ′, P ′ and I, P respectively. s
and t are two worlds in M and N respectively. Then (N , t) �f,g (M, s) implies
for all φ ∈ LI′,P ′ : ��φ�f,g�

M,s ≤ �φ�N ,t.

Proof. We prove the theorem by induction on the structure of φ :

– φ = p′ : trivial, follows from the first condition of the definition of refinement.
– φ = ¬ψ : suppose ��φ�f,g�

M,s = true then according to the semantics
��ψ�f,g�

M,s = false. Thus by induction hypothesis �ψ�N ,t = false. Therefore
�φ�N ,t = true. For the case ��φ�f,g�

M,s = false, similar.
– φ = ψ1 ∧ ψ2 :

• suppose ��φ�f,g�
M,s = true then by the semantics: ��ψ1�f,g�

M,s = true
and ��ψ2�f,g�

M,s = true. Thus by induction hypothesis �ψ1�
N ,t = true

and �ψ2�
N ,t = true. Therefore �φ�N ,t = true.

• suppose ��φ�f,g�
M,s = false then by the semantics either ��ψ1�f,g�

M,s =
false or ��ψ2�f,g�

M,s = false. Without loss of generality, suppose the lat-
ter. Thus by induction hypothesis �ψ2�

N ,t = false. Therefore �φ�N ,t =
false.

– φ = �i′ψ : then �φ�f,g = �f(i′)�ψ�f,g.
• suppose ��φ�f,g�

M,s = true then according to the semantics for all s′

with s
f(i′)→� s′ we have ��ψ�f,g�

M,s′
= true. Suppose in N there is a

world t′ such that t
i′

→� t′ then according to the definition of refinement,

there is a s′′ ∈ M such that s
f(i′)→� s′′ and (N , t′) �f,g (M, s′′). Thus

��ψ�f,g�
M,s′′

= true. By induction hypothesis, �ψ�N ,t′
= true. Therefore

��i′ψ�N ,t = true.
• suppose ��φ�f,g�

M,s = false then according to the semantics, there is s′

with s
f(i′)→� s′ such that ��ψ�f,g�

M,s = false. By definition of refinement,

for any i′′ ∈ f−1[f(i′)] there is a t′ ∈ N such that t
i′′

→� t′ and (N , t′) �f,g

(M, s′). By induction hypothesis, for all such t′ : �ψ�N ,t′
= false. Thus for

all i′′ ∈ f−1[f(i′)] : ��i′′ψ�N ,t = false. In particular: ��i′ψ�N ,t = false.
– φ = [χ]ψ

• if ��φ�f,g�
M,s = true then ��χ�f,g�

M,s = false or ��ψ�f,g�
M|�χ�f,g

,s =
true. If ��χ�f,g�

M,s = false then �χ�N ,t = false by induction hypoth-
esis, hence �φ�N ,t = true. Otherwise, ��ψ�f,g�

M|�χ�f,g
,s = true and

��χ�f,g�
M,s �= false, so s ∈ M|�χ�f,g

. Now suppose �χ�N ,t �= false, so:
t ∈ N|χ. We need to show that �ψ�N|χ,t = true. By induction hypothesis
(N , t′) �f,g (M, s′) =⇒ ��χ�f,g�

M,s′ ≤ �χ�N ,t′
for each s′ ∈ S, t′ ∈ T .

Therefore from Lemma 1 we have (N|χ, t) �f,g (M|�χ�f,g
, s). By induc-

tion hypothesis, �ψ�N|χ,t = true. Thus �φ�N ,t = true.
• if ��φ�f,g�

M,s = false then ��χ�f,g�
M,s = true and ��ψ�f,g�

M|�χ�f,g
,s =

false. Since ��χ�f,g�
M,s = true then �χ�N ,t = true by induction hypoth-

esis. We only need to show �ψ�N|χ,s = false. It is clear that t ∈ N|χ and
s ∈ M|�χ�f,g

, then by the induction hypothesis the condition of Lemma 1
holds, and it follows that (N|χ, t) �f,g (M|�χ�f,g

, s). Thus by the induc-
tion hypothesis we have �ψ�N |χ,t = false. Therefore: �φ�N ,t = false.
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Corollary 1. Suppose (N , t), (M, s) are two pointed KMLTSs w.r.t. (I ′, P ′)
and (I, P ) respectively. If (N , t) �f,g (M, s) and N is a Kripke model converted
from a concrete KMLTS then for any formula φ ∈ LI′,P ′ :

– ��φ�f,g�
M,s = true =⇒ N , t � φ

– ��φ�f,g�
M,s = false =⇒ N , t � ¬φ

By the above corollary, to know whether φ is satisified at a pointed Kripke model,
we can instead model check �φ�f,g on its f, g−abstraction.

To justify the logical characterization, we prove the converse of Theorem 1.

Theorem 2. Suppose (N , t) and (M, s) are pointed KMLTS models with sig-
natures (I ′, P ′) and (I, P ), and suppose they enjoy image finiteness (i.e. every
transition relation has most finitely many successors at any state). If for every
formula φ ∈ LI′,P ′ : ��φ�f,g�

M,s ≤ �φ�N ,t then (N , t) �f,g (M, s).

Proof. Assume: for every formula φ ∈ LI′,P ′ : ��φ�f,g�
M,s ≤ �φ�N ,t, and let

R = {(t′, s′) | for every φ : ��φ�f,g�
M,s′ ≤ �φ�N ,t′}. Then (t, s) ∈ R, and we

check the three conditions of definition 4 for R. Suppose (t′, s′) ∈ R, then:

– The first condition follows from ��p′�f,g�
M,s′ ≤ �p′�N ,t′

for p′ ∈ P ′.

– Suppose towards contradiction that ∃t′′ : t′ i′
→� t′′ in N but for any s′′ ∈ S:

s′
f(i′)→� s′′ implies (t′′, s′′) �∈ R. According to image finiteness, we have only fi-

nitely many such s′′; call them s′′0 . . . s′′n. For each s′′k, since (t′′, s′′k) �∈ R, there
must be a formula ψs′′

k
such that ��ψs′′

k
�f,g�

M,s′′
k = true but �ψs′′

k
�N ,t′ �=

true.4 Now �f(i′)(
∨n

k=0�ψs′′
k
�f,g) is true at s′ but �i′(

∨n
k=0 ψs′′

k
) is not true

at t′, contradicting the assumption that (t′, s′) ∈ R.

– Suppose towards contradiction that s′
f(i′)→� s′′ in M, but there exists

i′′ ∈ f−1[f(i′)] such that ∀t′′ ∈ T : t′ i′′
→� t′′ implies (t′′, s′′) �∈ R.

According to image finiteness, there are only finitely many such t′′; call
them t′′0 . . . t′′n. For each t′′k , since (t′′k , s′′) �∈ R, there must be a formula
ψt′′

k
such that ��ψt′′

i
�f,g�

M,s′′
= false but �ψt′′

i
�N ,t′′

i �= false. Note that
�f(i′)(

∨n
k=0�ψt′′

i
�f,g) is false at s′ but �i′′ (

∨n
k=0 ψt′

i
) is not false at t′, con-

tradicting the assumption that (t′, s′) ∈ R.

4 Examples

4.1 The Muddy Children

A standard example demonstrating the effect of updates on the knowledge within
a group of agents, is the epistemic modelling of the Muddy Children Puzzle
(cf. the seminal work on reasoning about knowledge [8]). The setting is as follows:
out of n children, k > 1 got mud on their foreheads while playing. They can see

4 If ��ψs′′
k
�f,g�M,s′′

= false but �ψs′′
k
�N ,t′′ �= false then ��¬ψs′′

k
�f,g�M,s′′

= true but

�¬ψs′′
k
�N ,t′′ �= true.
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Fig. 2. Abstractions of the Muddy Children for n = 3 children. Each world has reflexive
may-relations for each i ∈ I , some have reflexive must-relations, but for simplicity of
presentation, all reflexive relations are omitted; D3//// means proposition D3 has valuation

⊥ in the current state.

whether other kids are dirty, but there is no mirror for them to discover whether
they are dirty themselves. Then father walks in and states: “At least one of you
is dirty!” Then he requests “If you know you are dirty, step forward now.” If
nobody steps forward, he repeats his request: “If you now know you are dirty,
step forward now.” After exactly k requests to step forward, the k dirty children
suddenly do so (assuming they are honest and perfect reasoners).

The left column of Fig. 2 shows the standard epistemic model for this setting
with three children. Proposition Di signifies “child i is dirty”. After the first
update formula (“At least one of you is dirty”), all updates are of the form
“nobody knows (yet) he is dirty” (by showing no move). One can check that if
only one child is dirty, it will know after the first update. In that case a world
satisfying only one Di is the actual world; from this world in the updated model,
child i considers no other worlds possible anymore. If nobody steps forward after
the first request (implying nobody knows yet whether he is dirty), and a child
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sees only one other muddy child, it will know that he himself must be dirty as well
(otherwise this other child would have known previously). This is modelled by the
fact that after the second update the worlds with only one dirty child disappear
in the updated model (they are no longer considered possible by anybody). If
then nothing happens (third update), it must be the case that all three are dirty
(and everybody knows this).

The middle and right columns of Fig. 2 show abstracted versions of the con-
crete model on the left. The refinement relation underlying both abstractions
relates three pairs of worlds in the concrete model to three single worlds in the
abstraction, while the world with all propositions false and the world with only
D3 true are kept (for example, the world with D2 true and the world with D2, D3
true in the concrete model are related to the one world in the abstracted model
where D2 is true and D3 unknown). In the middle column, the parameters f, g
for the refinement are identities, in the right column f maps both 1 and 2 to
abstract label A. Let D be the abbreviation of the first update (D1 ∨ D2 ∨ D3)
and K be the abbreviation of the next ones (¬�1D1 ∧¬�2D2 ∧¬�3D3). Notice
the following significant properties can be verified to be true in the two ab-
stractions: (1) In both abstractions, �[D][K][K](�1D1 ∧�2D2)�f,g is true at the
worlds that correspond to the world which makes D1, D2 and D3 true in the orig-
inal model. Thus [D][K][K](�1D1 ∧ �2D2) is true in that world in the original
model. Namely, in the case all three children are dirty, children 1 and 2 will know
they are dirty after three updates. (2) In both abstractions, �[D][K]�1D1�f,g is
true at the worlds that correspond to the world which makes D1 and D3 true.
Namely in the case children 1 and 3 are dirty, child 1 will know he is dirty after
2 updates. (3) �[D]�3D3�f,g is true at the worlds with only D3 true. Namely
when only child 3 is dirty, he will know after the first announcement. For the
generalization to the n children case, similar abstractions can be made.

Note that whereas all relations in the concrete model are equivalence relations
(S5), this is no longer the case for the abstractions: in the middle abstraction, the
must relations can be seen to be non-symmetric, and in the right abstraction, the
relation labelled A is no longer transitive (in general the union of two equivalence
relations is not necessarily transitive). In terms of the axiom set S5: some of the
axioms are unknown rather than true in the non-S5 abstractions of this example.

4.2 Encoded Broadcast

Consider the following simple situation: a television sender wants to broadcast
its programs (i.e., streams of bits) only to paying viewers. Therefore, it encodes
the stream with a boolean function, let us consider negation. The encoding
function has been shared to the registered clients, indexed 1 . . . n, while some
other unregistered parties, indexed n + 1 . . . n + m, do not know it and it should
be the case that they do not get access to the programs. A model of this situation
can be seen in Figure 3 (up). b1 . . . bn+m are the bits located at the sites of the
n + m viewers, currently waiting to be set to the value of the next bit in the
stream. The broadcast, to both registered and unregistered users, will consist
of one bit c, which is the encoding of the actual next bit. In the actual world



Refinement of Kripke Models for Dynamics 123

· · ·
1 . . . n + m

c bn+1bn+3 . . . bn+m

· · ·1 . . . n + m

c b1bn+1 . . . bn+m

1 . . . n + m

1 . . . n + m
· · ·

· · ·

n + 1 . . . n + m

n + 1 . . . n + m

b2 . . . bnbn+1 . . . bn+m

c

b1 . . . bnbn+1bn+3 . . . bn+m b1 . . . bn

1 . . . n + m 1 . . . n + m

n + 1 . . .
n + m

b1 . . . bnbn+1 . . . bn+m

n + 1 . . .
n + m

c bn+1 . . . bn+m

u u

u u

c ba///bu///c ba///buc bu///

ba/// ba///bu///babu///

a, u a, u a, u

(1)A concrete epistemic model representing the information state before the bit broadcast:

(2)Abstraction of (1), according to the agent mapping f :{1 . . . n} �→ a,{n + 1 . . . n + m} �→ u
and the proposition mapping g: c �→ c, {b1 . . . bn} �→ ba, {bn+1 . . . bn+m} �→ bu:

Fig. 3. Epistemic modelling of encoded broadcasting. To keep a clear overview, not
all arrows were drawn; the transitive and reflexive closure of the arrow relation forms
the intended equivalence. (up): on each row, the first dots stand for a continuation
of the sequence of indistinguishable worlds where the valuations range through all the
subsets of {bn+1 . . . bn+m}. The second dots stand for sequences of worlds where the
valuations range through all the subsets of {b1 . . . bn+m} with at least one positive
(on top) or negative (on bottom) bi, with i ∈ {1 . . . n}. In the possible worlds on the
top row, c = true and on the bottom row, c = false. The registerd users know that
the encoding algorithm ensures

�
i∈{1...n} c ↔ ¬bi, therefore their indistinguishability

relations do not reach worlds where this formula is false. The unregisterd users are not
able to distinguish between any two possible valuations. (down): ba and bu can be
seen as the receiving bits of a symbolic registered user a and a symbolic unregistered
user u, respectively. The abstraction in (2) is obtained by mapping all concrete states
where c is true and b1 . . . bn are false to the abstract state cbu///, all other concrete states

where c is true and bn+1 . . . bn+m are true to cba///bu, and the rest of the concrete states

where c is true to the abstract state cba///bu/// (a similar mapping for states with c is false).

(marked with a circle), let us assume that the next bit in the stream is false and
hence its encoding is c = true. We are interested in checking that, after a bit
has been broadcasted, (only) the authorized users have received it correctly.

The size of the epistemic model varies obviously with m and n and can be
huge, but it is also very regular. The uncertainty relation for every unauthorized
agent i ∈ {n + 1 . . . n + m} is the complete graph. Intuitively, this is because
such an agent does not hold any information on the encoding function or on
any of the waiting bits b1 . . . bn+m, so it considers all valuations as possible. An
abstraction of this concrete model can be seen in Figure 3 (down). Broadcasting
the encoded bit c can be simply modelled by the public announcement of c. The
abstract version of this announcement �c�f,g is still c.

The correct receive property by authorized viewers might be formalized as:∧
i∈{1...n}[c]�i¬bi (since the transmitted bit was false). Its translation to the
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abstract context is [c]�a¬ba, which is true on model (2) in Figure 3. Therefore,
according to Theorem 1, all original formulas are true.

The other desired property is that unauthorized users will not receive the
intended bit, that is

∧
i∈{n+1...n+m}[c]¬�i(¬bi). The translation of this formula,

[c]¬�u¬bu can also be evaluated to true on model (2), meaning, again via The-
orem 1, that the value of b doesn’t leak to the unauthorized agents. Note that
must relations are needed in order to establish satisfiability of such negative
knowledge properties. An interesting observation is that, due to the enormous
density of arrows in an epistemic model, must relations will occur often enough
in abstracted models. This is quite different than the case of LTSs, where most
relations in abstracted models are of the may type.

5 Conclusion

We proposed a refinement/abstraction framework for KMLTSs, which allows
reasoning on small coarse abstract models and transfer the results on refined de-
tailed models. In particular, if the concrete Kripke models are epistemic models,
interesting knowledge properties are preserved by refinements and abstractions
as shown by two examples.

The theoretical novelty of this work is the extension of traditional abstraction
techniques to both the label and proposition mapping, and to a logic containing
a dynamic public announcement modality. Both features are of fundamental im-
portance in (epistemic) modelling and verification, which is the main motivation
of our work. In order to incorporate the full power of dynamic epistemic mod-
elling, more research is needed on integrating general update constructions as
formalized by action models [1]. The abstraction of action models is also practi-
cally interesting, as it is shown in [6] that they can be of huge size when modelling
protocols. Another goal is to adapt this framework to Interpreted Systems [8,19],
which combines both epistemic and temporal characteristics.

On a practical side, our framework opens the way to automatic epistemic
verification of large or even infinite models. Future research should be dedicated
to practical problems like generating abstract models directly from textual or
formal, but compact, protocol specifications. A possible starting point is the
process algebra language of [5].
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