
C e n t r u m W i s k u n d e & I n f o r m a t i c a

Software ENgineering

Semi-bracketed contextual grammars

L. Kuppusamy

REPORT SEN-R0808 DECEMBER 2008

Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Semi-bracketed contextual grammars

ABSTRACT
Bracketed and fully bracketed contextual grammars were introduced to bring the concept of a
tree structure to the strings by associating a pair of parentheses to the adjoined contexts in the
derivation. In this paper, we show that these grammars fail to generate all the basic non-
context-free languages, thus cannot be a syntactical model for natural languages. To overcome
this failure, we introduce a new class of fully bracketed contextual grammars, called the semi-
bracketed contextual grammars, where the selectors can also be non-minimally Dyck covered
language. We see that the tree structure to the derived strings is still preserved in this variant.
when this new grammar is combined with the maximality feature, the generative power of these
grammars is increased to the extend of covering the family of context-free languages and some
basic non-context-free languages, thus possessing many properties of the so called `MCS
formalism'.

2000 Mathematics Subject Classification: 68Q45
1998 ACM Computing Classification System: F.4.2
Keywords and Phrases: contextual grammars, MCS formalism, derivation tree structure
Note: The work was carried out during the tenure of an ERCIM "Alain Bensoussan" Fellowship Programme.

Semi-Bracketed Contextual Grammars

Lakshmanan Kuppusamy∗

Centrum Wiskunde en Informatica
413 Kruislaan, 1098 SJ

Amsterdam, The Netherlands.
L.Kuppusamy@cwi.nl

Abstract

Bracketed and fully bracketed contextual grammars were introduced [16] to bring the
concept of a tree structure to the strings by associating a pair of parentheses to the adjoined
contexts in the derivation. In this paper, we show that these grammars fail to generate
all the basic non-context-free languages, thus cannot be a syntactical model for natural
languages. To overcome this failure, we introduce a new class of fully bracketed contextual
grammars, called the semi-bracketed contextual grammars, where the selectors can also be
non-minimally Dyck covered language. We see that the tree structure to the derived strings
is still preserved in this variant. when this new grammar is combined with the maximality
feature, the generative power of these grammars is increased to the extend of covering the
family of context-free languages and some basic non-context-free languages, thus possessing
many properties of the so called ‘MCS formalism’.

Keywords: contextual grammars, MCS formalisms, derivation tree structure.

1 Introduction

Contextual grammars were introduced by S. Marcus in 1969. They produce languages starting
from a finite set of axioms and adjoining contexts, iteratively, according to a selector present in
the current sentential form. As introduced in [13], if adjoining the contexts is done at the ends
of the strings, the grammar is called external. Internal contextual grammars were introduced by
Păun and Nguyen in 1980 [19], where the contexts are adjoined to the selector strings appearing
as substrings of the string. Later on, many variants of contextual grammars were introduced
and we refer to [5],[9],[10],[20] for some of them.

One of the important problems in the area of formal language theory and natural language
processing is to obtain certain classes of languages that provide an appropriate description for
natural languages. In fact, the classes of languages searched for should have the so called ‘mildly
context sensitive’ (MCS) properties which are defined as follows:

1. The class of languages contains all context-free languages

2. The class of languages contains the following three basic non-context-free languages:

• multiple agreements: L1 = {anbncn|n ≥ 1},
• crossed dependencies: L2 = {anbmcndm|n, m ≥ 1}, and

• marked duplication: L3 = {wcw|w ∈ {a, b}∗}.
∗The work was carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship Programme.

1

3. All the languages in the class are parsable in polynomial time.

4. All the languages in the class have the bounded growth property. That is, for any infinite
language L, there is a constant kL such that, for any n ≥ 1, if L contains words of
length n, then it also contains words of some length between n + 1 and n + kL. In other
words, informally, there should not be arbitrarily large gaps between two consecutive words
present in the language.

A class of languages possesses the MCS properties characterize the MCS family of languages
and the corresponding class of grammars forms the MCS formalism. For more details on MCS
formalisms, we refer to [7], [17]. One such example for MCS formalisms is Tree Adjoining
Grammar (TAG) [8]. We make a clear note here that so far no unanimously agreed definition
for mildly context sensitive formalism is available. For example, in [5], the condition of context-
free inclusion was not present but semilinear condition was present instead of the last condition.
However, in this paper, we stick to the initial conditions specified above for mildly context
sensitive formalism.

Even though contextual grammars were introduced to give an appropriate model description
for natural languages [12], the basic class, internal contextual languages itself fails to contain
non-context-free constructions [3], [4]. Further, the membership problem for the above families
of languages still remains open [6], or is solvable only with exponential time [2].

In the last decade or so, some attempts have been made to introduce some variants of con-
textual grammars by restricting the selector chosen in the derivation to obtain certain specific
classes of contextual languages and therefore several new classes of grammars were introduced,
for instance, global maximal and local maximal [14]. In these modes, at each derivation step, a
selector having maximal length (either with respect to all selectors or with respect to the local
selector) is chosen for the next derivation. Though these variants generate non-context-free
languages, they still allow non-semilinear languages [17] and they can be parsed with expo-
nential time complexity by transforming the given grammar into an equivalent dynamic range
concatenation grammar [1]).

Unlike as context-free grammars, no derivation tree exists for contextual grammars. In order
to define a derivation tree for a derivation in internal contextual grammars, bracketed and fully
bracketed contextual grammars were introduced in [16]. The selectors for these grammars are
based on the notion of minimally Dyck covered language, which is a restricted version of the
well known Dyck covered language. In these grammars, a notion of structure to the strings
was introduced, by associating a pair of parentheses (brackets) to the contexts inserted at each
derivation step. The generative power of these grammars has been discussed in [15]. However,
the relevance of these grammars to MCS formalisms has not been explored in detail so far.

In this paper, we first investigate the power of fully bracketed contextual grammars for the
above mentioned natural language constructions. In [16], it was shown that fully bracketed
contextual grammars with regular selectors cannot generate the crossed dependency language.
Here, we prove that these grammars with regular selectors cannot cover the other two non-
context-free constructions. To overcome this failure, we introduce a new variant called semi-
bracketed contextual grammars obtained by relaxing the condition in fully bracketed contextual
grammars that the selectors need be minimally Dyck covered string. We see that the structure to
the strings is still maintained in this new variant. When the maximality condition is incorporated
with this variant, we show that the basic non-context-free languages are covered with regular
selectors. We also show an important result that the family of context-free languages is contained
in this variant, a rare result in the domain of contextual languages.

2

2 Preliminaries

In this section, we introduce the notion of formal languages and contextual grammars which are
used in the paper. A finite non-empty set V is called an alphabet. We denote by V ∗ the free
monoid generated by V , by λ its identity or the empty string, and by V + the set V ∗−{λ}. The
elements of V ∗ are called words. For any word x ∈ V ∗, we denote by |x| the length of x. |x|a is
the number of occurrences of the symbol a in the word x. The families of finite, regular, context-
free and context-sensitive languages are denoted by FIN,REG,CF and CS respectively. For
more details on formal language theory, we refer to [21].

Now we shall present some basic definitions of contextual grammars. An internal contextual
grammar is a construct

G = (V,A, (S1, C1), ..., (Sm, Cm)), m ≥ 1, where

• V is an alphabet,

• A ⊆ V ∗ is a finite set called the set of axioms,

• Si ⊆ V ∗, 1 ≤ i ≤ m, are the sets of selectors (not necessarily of finite type),

• Ci ⊆ V ∗ × V ∗, Ci finite, 1 ≤ i ≤ m, are the sets of contexts.

The modular presentation [18] of a contextual grammar is given as G = (V,A, P) where V,A
are as defined above and P is the finite set of selector-context rules of the form (S1, C1), . . . , (Sm, Cm).
The usual derivation in the internal mode (denoted by in) is defined as

x =⇒in y iff x = x1x2x3, y = x1ux2vx3, for x1, x2, x3 ∈ V ∗,

x2 ∈ Si, (u, v) ∈ Ci, for some 1 ≤ i ≤ m.

Consider a contextual grammar G = (V,A, (S1, C1), . . . , (Sm, Cm)). The maximal mode of
the grammar is defined in the following way [14].

x =⇒M y iff x = x1x2x3, y = x1ux2vx3, for x2 ∈ Si, (ui, vi) ∈ Ci, 1 ≤ i ≤ m,

and there are no x′1, x
′
2, x

′
3 ∈ V ∗, such that x = x′1x

′
2x

′
3, x′2 ∈ Si, and x′2 contains x2.

That is, in this maximal mode, the chosen selector x2 for the next derivation should not be
contained (in substring sense) in a longer selector x′2, where both x2, x

′
2 ∈ Si for some i. The

language generated by a contextual grammar G in internal (respectively maximal mode) is given
as Lα(G) = {x ∈ V ∗ | z =⇒∗

α x, z ∈ A}, where =⇒∗
α is the reflexive transitive closure of the

relation =⇒α and α ∈ {in,M}.
Let us consider the brackets [,] and denote the set {[,]} by B. The Dyck language over

B is denoted by DB and it is the language generated by the context-free grammar G =
({S}, B, S, {S → SS, S → [S], S → λ}). Given the two disjoint sets V and B, we can define the
projection mapping prV , prB, from (V ∪B)∗ to V ∗, B∗, respectively as follows:

prβ(a) =

{
a, for a ∈ β

λ, for a /∈ β,

where β ∈ {V,B}. A string x ∈ (V ∪ B)∗ is said to be a Dyck covered string if x =⇒∗ λ, by
reduction rules of the form [w] → λ, for w ∈ V ∗. For instance, x1 = [[a]a[a]], x2 = [a][a], and
x3 = [[a][a]] are Dyck covered strings. Clearly, if x ∈ (V ∪ B)∗ is a Dyck covered string, then
prB(x) ∈ DB. A Dyck covered string x ∈ (V ∪ B)∗ is said to be minimally Dyck covered string
if the following conditions are hold:

3

1. if x = x1]x2[x3 with x1, x3 ∈ (V ∪B)∗ and x2 ∈ V ∗, then x2 = λ.

2. The reduction rule [] → λ is not used when reducing x to λ.

Condition 1 refutes the string x1 above, condition 2 refutes the string x3, hence these strings
are not minimally Dyck covered; the string x2 is of this type. We denote the language of all
minimally Dyck covered strings over the alphabet V by MDC(V).

For every string x ∈ MDC(V), we can associate a tree τ(x) with labeled edges in the
following way:

• draw a dot representing the root of the tree; the tree will be represented with the root up
and all the leaves down;

• scan x from the left to right and grow τ(x) according to the following two rules:

– for each maximal substring [w of x, with w ∈ V ∗ (since w is maximal, after w we
find either [or]), we draw a new edge, starting at the current point of the partially
constructed τ(x), marked with w on its left side, and placed to the right hand of the
currently constructed tree;

– for each maximal w], w ∈ V ∗, not scanned yet (hence, either we find] before w, or
w = λ and to the left of] we have a substring [z for some z ∈ V ∗ already scanned),
we climb the current edge, writing w on its right side.

In figure 1, a derivation tree τ(x) is drawn for the word x = [a[ab][ab[ab[c]b]b]a][a].

1

2

4

5

7

3

x = [a[ab][ab[ab[c]b]b]a][a]

λ

b

λ

a a

ab
ab b

ab

c

6

a λ

Figure 1: derivation tree structure τ(x)

4

Now, let us recall the definitions of bracketed and fully bracketed internal contextual gram-
mars which originated from the above concepts in order to give a tree structure to the derived
strings. A bracketed contextual grammar is a tuple G = (V,A, (S1, C1), . . . , (Sm, Cm)),m ≥ 1
where V is an alphabet, A is a finite subset of MDC(V), called axioms, Si ⊆ V ∗, and Ci are
finite subsets of V ∗ × V ∗ − {(λ, λ)} for all 1 ≤ i ≤ m. The derivation relation (in internal con-
textual mode) is defined as follows: for x, y ∈ (V ∪B)∗, we write x =⇒G y, if and only if x =
x1x2x3, y = x1[ux2v]x3, x1, x3 ∈ (V ∪ B)∗, x2 ∈ MDC(V) and prV (x2) ∈ Si, (u, v) ∈ Ci, for
some 1 ≤ i ≤ n.

A fully bracketed contextual grammar (in short, FBIC grammar) is similar to a bracketed
contextual grammar, except that the selectors are in MDC(V) instead of Si ⊆ V ∗, and no
projection is applied to the chosen selector. It is proved in [16] that if x =⇒G y is a derivation
step in a bracketed or fully bracketed contextual grammar, then y ∈ MDC(V) whenever x ∈
MDC(V). Note that, since the axioms of these grammars are in MDC(V), any string derived
under these modes is also in MDC(V), thus each derived string will have a tree structure, as
mentioned above.

The string language generated by a bracketed or fully bracketed contextual grammar G =
(V,A, (S1, C1), . . . , (Sm, Cm)), m ≥ 1 is defined as

L(G) = {prV (w) | z =⇒∗
G w, for some z ∈ A},

where =⇒∗
G is the one discussed already. Moreover, we can associate to G, the bracketed

language BL(G) defined by

BL(G) = {(prV (w), τ(w)) | z =⇒∗
G w, for some z ∈ A}.

Unless otherwise specified for each grammar, we assume the projection of V as the one dis-
cussed above. The selectors of a bracketed contextual grammar are languages over V , hence
their type is clear. But, in the case of FBIC grammars, the brackets are important when dis-
cussing the type of the selectors, thus leading to a confusion in the type. To avoid this, the type
of projection prV (Si) is considered for the selectors of FBIC grammars. That is, the brackets
are ignored while considering the selector type for FBIC grammars. When the selectors are
of regular languages for grammars, we represent them as a form of regular expressions itself
instead of language of regular expressions. The family of languages generated by internal, max-
imal, bracketed, fully bracketed contextual grammars with F selectors (or choice) is denoted by
ICC(F),MIC(F), BIC(F), FBIC(F), respectively. For more technical details on contextual
grammars, we refer to the monograph [18].

3 Power of FBIC for Non-Context-free Languages

In this section, we analyze the power of FBIC grammars towards generating the non-context-free
languages and we show that these grammars fail to generate the non-context-free languages.

Lemma 3.1 L1 = {anbmcndm | n, m ≥ 1} /∈ FBIC(REG)

Proof. See [16].

Lemma 3.2 L2 = {anbncn | n ≥ 1} /∈ FBIC(REG)

Proof. Assume that the language L2 can be generated by a fully bracketed contextual grammar
G2 = ({a, b, c}, A, (S1, C1), . . . , (Sm, Cm)) with regular selector. Since the occurrences of a,b
and c are pumped evenly by the contexts for the strings of the language, there must exist a
context of the form (aibi, ci), i ≥ 1 or (aj , bjcj), j ≥ 1 or (asbr1 , br2cs), s ≥ 1, r1 + r2 =

5

s. Assume that x =⇒G2 y is a derivation in L(G2), where x = x1x2x3 and x1x2x3 is in
MDC(V). If the context (aibi, ci) is used in a derivation, that results a string of the form
x1[aibix2c

i]x3 ∈ L2. If the context (aj , bjcj) is used in a derivation, that results a string of
the form x1[ajx2b

jcj]x3 ∈ L2. If the context (asbr1 , br2cs) is used in a derivation, that results
a string of the form x1[asbr1x2b

r2cs]x3. In the above cases, x2 is the selector and therefore in
MDC(V) and the underlined symbols are the contexts introduced in the current derivation
x =⇒G2 y. However, no further derivation after x =⇒G2 y is possible since no context can
further be adjoined. To adjoin any context further in the next derivation step (there are three
types of contexts available for the grammar which are discussed above), the selector must be
in MDC(V) and it should either start with [b, in order to adjoin (aibi, ci) at the right place
or the selector must end with b], in order to adjoin (aj , bjcj) at the right place or the selector
must start with [b and end with b], in order to adjoin the context (asbr1 , br2cs

) at the right place.
Such a selector with MDC(V) is not possible in the derived strings: For x1[aibix2c

i]x3, there
is no substring starting [b after a occurs in this word; For x1[ajx2b

jcj]x3, there is no substring
ending with b] before c occurs in this string; For x1[asbr1x2b

r2cs]x3, there is no substring that
neither starts with [b nor ends with b] in the string. It follows that the derivation is terminated
and thus the language generated by the fully bracketed contextual grammar is finite. This is a
contradiction to L2 is infinite. �

Lemma 3.3 L3 = {xcx | x ∈ {a, b}∗} /∈ FBIC(REG)

Proof. Assume that the language L3 = L(G3) for some fully bracketed contextual grammar
G3 = ({a, b, c}, A, (S1, C1), . . . , (Sm, Cm)) with regular selector. In order to generate strings of
the form xcx, we have to use a context of the form (wi, wi), i ≥ 1, w ∈ {a, b}, thus producing a
string in MDC(V) of the form x1[wix2w

i]x3. It is obvious that any selector for the language L3

must be of the form cx or xc where x ∈ {a, b}∗ and x is of maximal length. Since x2 ∈ MDC(V),
x2 is of the form as x2 = [cx] or x2 = [xc]. To adjoin a context further to the obtained word
x1[wix2w

i]x3, the selector must be of the form x1[wix2 or x2w
i]x3. Such a selector is not

minimally Dyck covered string since the corresponding pair of right or left parenthesis is not
present in x1[wix2 or x2w

i]x3, respectively. Therefore no context can be adjoined further and
this follows that the generated language is finite, a contradiction. �

From the above proofs, we can see that the problem is due to the condition that the selectors
are minimally Dyck covered languages. In the next section, we relax this condition to the selector.
Interestingly, the derived strings are yet in MDC(V) and thus the tree structure to the strings
is maintained.

4 Semi-Bracketed Contextual Grammars

In this section, first we define a new variant of fully bracketed contextual grammars, namely
semi-bracketed contextual grammars. A semi-bracketed contextual grammar (in short, SBIC
grammar) is a construct G = (V,A, (S1, C1), . . . , (Sm, Cm)),m ≥ 1 where V is an alphabet,
A ∈ MDC(V) is a finite set of axiom, Si ⊆ [(V ∪ B)∗ ∪ (V ∪ B)∗] and Ci are finite subsets
of V ∗ × V ∗ − {(λ, λ)} for 1 ≤ i ≤ m, with the condition that whenever Ci contains a context
(u, λ), u ∈ V + for some i, then the corresponding selector is of the form Si ∈ [(V ∪ B)∗ and
whenever Ci contains a context (λ, v), v ∈ V + for some i, then the corresponding selector is of
the form Si ∈ (V ∪B)∗]. Note that, when the context is not one-sided (one sided means either
u = λ or v = λ in (u, v)), the corresponding selector may be of any type; may start or end with
a bracket. The derivation relation is defined as follows. For x, y ∈ (V ∪B)∗, we write x =⇒G y
if and only if x = x1x2x3, y = x1[ux2v]x3, where x1, x3 ∈ (V ∪ B)∗, x2 ∈ Si, (u, v) ∈ Ci, for
some 1 ≤ i ≤ m.

6

Next, we shall show that each derivation step of the above introduced grammar preserves
the minimally Dyck covered string.

Lemma 4.1 If x =⇒G y in a semi-bracketed contextual grammar G = (V,A, (S1, C1), . . . , (Sm, Cm))
and x ∈ MDC(V), then y ∈ MDC(V).

Proof. Assume that x = x1x2x3, y = x1[ux2v]x3, for (u, v) ∈ Ci such that x1x2x3 ∈ MDC(V)
and x2 ∈ Si for some i. As per the definition of the grammar, the selectors can be of three
types. First, let us assume that Si ⊆ [(V ∪ B)∗. Then, x can be rewritten as x = x1[x′2x

′
3]x

′′
3

with x1, x
′
3, x

′′
3 ∈ (V ∪ B)∗, [x′2 ∈ Si, and x1x

′′
3 ∈ MDC(V). Similarly, y can be rewritten as

y = x1[u[x′2v]x′3]x
′′
3. By applying the MDC reduction rule to y, we get [x′2v] → λ, [ux′3] → λ,

and x1x
′′
3 → λ, thus y ∈ MDC(V). Note that, the result also holds true for contexts of the form

(u, λ), u ∈ V + whenever x′2 contains at least one symbol from V . Also, the reduction does not
necessarily take place in one step. If Si ⊆ (V ∪B)∗], then, x can be rewritten as x = x′1[x

′′
1x

′
2]x3

with x′1, x
′′
1, x3 ∈ (V ∪ B)∗, x′2] ∈ Si, and x′1x3 ∈ MDC(V). Similarly, y can be rewritten as

y = x′1[x
′′
1[ux′2]v]x3. By applying the MDC reduction rule to y, we get [ux′2] → λ, [x′′1v] → λ, and

x′1x3 → λ, thus y ∈ MDC(V). The result also holds true for contexts of the form (λ, v), v ∈ V +,
whenever x′2 contains at least one symbol from V . Thirdly, when the selectors are of minimally
Dyck covered string type, it is obvious that the derived string is also in MDC(V) (since the
case reduces to FBIC grammar, for which the result is already proved in [16]). �

When the maximality condition (i.e., choosing the selector of maximal length) is included
with these semi-bracketed contextual grammars, the grammar is said to be a maximal semi-
bracketed contextual grammar and is denoted by MSBIC grammar. The string language gen-
erated by a semi-bracketed or by a maximal semi-bracketed contextual grammar G is defined
by L(G) = {prV (w) | z =⇒∗

G w, w ∈ (V ∪ B)∗, z ∈ A}, where =⇒∗
G is the reflexive transitive

closure of the relation =⇒G. When G is obvious, it may be omitted in the derivation. Sometimes
in a derivation, the projection of a derived word w, w ∈ (V ∪B)∗ with respect to V is denoted as
=⇒pr(V)

w. It is easy to see that when λ /∈ L(G), w can be rewritten as w ∈ (V ∪B)∗a]+, where
a ∈ V . The family of languages generated by maximal semi-bracketed and semi-bracketed in-
ternal contextual grammars with F selector (or choice) is denoted by MSBIC(F), SBIC(F),
respectively. The selector type of SBIC,MBHIC grammars are defined by the way of FBIC
grammars. In this paper, we consider the selector types as FIN and REG only.

5 Covering Non-Context-free Languages by MSBIC Grammars

In this section, we first prove that all the three basic non-context-free languages can be realized
by this new variant when the chosen selector is of maximal length.

Lemma 5.1 L1 = {anbmcndm | n, m ≥ 1} ∈ MSBIC(REG)

Proof. Consider a grammar G1 = ({a, b, c, d}, {[a[bc]d]}, {([a([b)∗[bc], (a, c)), ([bc](c])∗d], (b, d))}).
Any derivation in the grammar G1 is given as

[a↓[bc]d]↓ =⇒ [a↓[b[bc]d]↓d] =⇒↓ [a[b[b[bc]↓d]d]d] =⇒ [a↓[a[b[b[bc]↓c]d]d]d] =⇒∗
pr(V)

anbmcndm.

The substring between the two down arrows indicate the selector used in the next derivation
step and the adjoined contexts in a derivation step are marked with underline. It is easy to see
that L(G1) = L1, thus L1 ∈ MSBIC(REG). �

Lemma 5.2 L2 = {anbncn | n ≥ 1} ∈ MSBIC(REG).

7

Proof. Consider the grammar G2 = ({a, b, c}, {[a[bc]]}, {(b∗[bc], (ab, c))}). Any derivation of the
grammar is given as

[a↓[bc]↓] =⇒ [a[a↓b[bc]↓c]] =⇒ [a[a[a↓bb[bc]↓c]c]] =⇒ [a[a[a[a↓bbb[bc]↓c]c]c]] =⇒∗
pr(V)

anbncn.

It is easy to see that L(G2) = L2, thus L2 ∈ MSBIC(REG). �

Lemma 5.3 L3 = {xcx | x ∈ {a, b}∗} ∈ MSBIC(REG)

Proof. Consider the grammar G3 = ({a, b, c}, {[c]}, {([c]({a, b}])∗, {(a, a), (b, b)})}). Any deriva-
tion in the grammar is given as

↓[c]↓ =⇒ [w1
↓[c]w1]↓ =⇒ [w1[w2

↓[c]w1]w2]
↓ =⇒ [w1[w2[w3

↓[c]w1]w2]w3]↓ =⇒∗
pr(V)

xcx,

where wi = a, b, 1 ≤ i ≤ n. It is clear that L(G3) = L3, thus L3 ∈ MSBIC(REG). �
The following lemma proves that MSBIC grammars with regular choice can even cover the non-
marked duplication language, an interesting feature not available to all contextual grammars
which are shown to have MCS formalism.

Lemma 5.4 L′
3 = {xx | x ∈ {a, b}∗} ∈ MSBIC(REG)

Proof. Consider the grammar G′
3 = ({a, b}, {λ, [[a]a], [[b]b]}, {({w′[w] | w′ ∈ {V,B}∗, w ∈

{a, b}, {(a, a), (b, b)})}).
Any derivation in the grammar is given as

↓[[w]↓w] =⇒↓ [w1[[w]↓w1]w] =⇒↓ [w2[w1[[w]↓w2]w1]w] =⇒↓ [w3[w2[w1[[w]↓w3]w2]w1]w] =⇒∗
prV

xx

where w,wi = a, b, 1 ≤ i ≤ n. Note that [w] is a unique structure in the string and also center
in the string, thus it served as a marker of the string. It is easy to see that L(G′

3) = L′
3, thus

L′
3 ∈ MSBIC(REG). �

We next prove an important result by taking advantage of the projection and maximality features
in maximal semi-bracketed contextual grammars.

Theorem 5.5 CF ⊆ MSBIC(REG)

Proof. Let G = (N,T, S, P) be a context-free grammar in Chomsky normal form, where N
is the set of non-terminals (or variables), T is the set of terminals, S ∈ N , the start variable
and P is the set of production rules of the form A → CD, A → a, A,C,D ∈ N, a ∈ T .
Assume that λ /∈ L(G). If λ ∈ L(G), we directly include λ to the axiom of the contextual
grammar. Now, construct a maximal semi-bracketed contextual grammar G′ = (V, {[S]}, P ′)
where V = {N ∪ T ∪ {$}} and P ′ consists of the following productions.

1. ({[S]}, {($, $AC)}) for each S → AC ∈ P

2. ({[S]}, {($, $a)}) for each S → a ∈ P

3. ({[S]($A)∗$C}, {($, $DE)}) for each C → DE ∈ P

4. ({[S]($A)∗$C}, {($, $a)}) for each C → a ∈ P

5. ({[S]($A)∗$a]C])+}, {($, $DE)}) for each C → DE ∈ P

6. ({[S]($A)∗$a]C])+}, {($, $b)}) for each C → b ∈ P

7. ({[S](($A)∗$a]C])+$A}, {($, $CD)}) for each A → CD ∈ P

8. ({[S](($A)∗$a]C])+$A}, {($, $b)}) for each A → b ∈ P

The intuition behind the construction of G′ is as follows. Once a variable is used (i.e., the
production rule for the corresponding variable is applied), the symbol $ is introduced to the

8

right of the used variable to identify that the variable is dead. Therefore, all the variables
placed left of $ are already used and the variables placed after the rightmost $ indicates that
the variables are alive and are not used yet. The maximality condition helps to avoid choosing
the used variable again. Since the variables are used based on the leftmost derivation, the first
variable after the rightmost $ is applied in each derivation of G′. As the given grammar is in
Chomsky normal form, all variables must have a production rule (no useless variables) and thus
at each derivation in G′, the leftmost variable (after $) has a rule and is processed.

We define the language for G′ as L(G′) = {prV (w) | z =⇒∗
G w, w ∈ (V ∪ B)∗tB+, t ∈ T}

and the projection is defined as follows:

prV (a) =

{
a, for a ∈ T

λ, for a /∈ T

Since at each derivation, the leftmost non-terminal symbol is processed, a string w ∈ (V ∪
B)∗tB+, t ∈ T is possible only when the rightmost variable symbol is processed. If w is not
a string of this form, then it means that w contains some non-terminals and thus we cannot
apply the projection to the string, and therefore, no string is collected in the language L(G′).
Therefore, the strings in the language L(G′) is non-empty only when all the variables are replaced
by a terminal symbol in the string w. �

Now, let us verify the result with an example from a context-free grammar. Assume that a
context-free grammar has the following rules in Chomsky normal form. P = {S → AC,A →
DE,D → a,E → FF, F → d, C → b}. Consider a string addb which can be obtained by
the following left-most derivation S =⇒ AC =⇒ DEC =⇒ aEC =⇒ aFFC =⇒ adFC =⇒
addC =⇒ addb. Let us see how we can achieve this word by using the rules in P ′. The number
at the suffix in each derivation symbol ‘=⇒’ indicates the rule which is applied from P ′.

↓[S]↓ =⇒1 [$↓[S]$A↓C] =⇒3 [$[$↓[S]AD↓E]C] =⇒4 ([$)2[$↓[S]AD$a]E]↓C] =⇒5

([$)3[$↓[S]AD$a]E]$F ↓F]C] =⇒8 ([$)4[$↓[S]AD$a]E]$F$d]F]↓C] =⇒5

([$)4[$↓[S]AD$a]E]$F$d]F]$d]C]↓ =⇒8 ([$)5[$[S]AD$a]E]$F$d]F]$d]C]$b] =⇒pr(V)
addb.

Note that in the above proof, the maximality condition is important. This helps to choose the
rightmost $ everytime and avoids to choose the used variable again. Also, the condition of
leftmost derivation is important here which avoids any variable before the rightmost $ to be
alive. From these details, it is easy to see that L(G) = L(G′), thus the family of context-free
languages is subset of semi-bracketed contextual grammars with regular choice.

Corollary 5.6 CF ⊂ MSBIC(REG)

Proof. Follows from above theorem and previous lemmas. �

6 Generative Power

As in this paper, our aim is to find the relevance of bracketed contextual grammars for natural
language constraints, we do not analyze the generative power and hierarchical relations of the
bracketed contextual grammars in depth. We present only a few results in this aspect and a
detailed analysis is left as a future work.

Lemma 6.1 FBIC(REG) ⊂ SBIC(REG).

Proof. The relation FBIC(REG) ⊆ SBIC(REG) is obvious, since every selector in FBIC
grammar is in MDC(V) which can also be the case for SBIC grammar. To prove the strictness,

9

consider the language L1 = {anbmcndm | n, m ≥ 1}. It was shown earlier that L1 can be
generated by a MSBIC grammar with regular selector. The same grammar G1 is applicable for
SBIC grammar. However, it was proved in [16] that L1 /∈ FBIC(REG). �
The result for finite selectors is not trivial here and we give a separate proof for the case of finite
selectors.

Lemma 6.2 FBIC(FIN) ⊂ SBIC(FIN).

Proof. The part FBIC(FIN) ⊆ SBIC(FIN) is obvious. To prove the strictness, let us consider
a language L5 = {(a∗bba∗)+}. That is, L5 contains the strings with an even number of b’s, where
any number of a can be appeared before or after two consecutive b. This language can be
generated by the following semi-bracketed contextual grammar with finite choice

G5 = ({a, b}, {[b][b]}, {([b][b], {(bb, λ), (λ, bb), (a, λ), (λ, a)}), ((bb], (λ, a)), ([bb, (a, λ))}).

A sample derivation in this mode is given by

↓[b][b]↓ =⇒ [bb↓[b][b]↓] =⇒ [bb[↓[b][b]↓bb]] =⇒ [bb[[↓[b][b]↓bb]bb]] =⇒ [bb[[[↓[b][b]↓a]bb]bb]] =⇒
↓[bb↓[[[[a[b][b]]a]bb]bb]] =⇒ [a[bb][[[[a[b][b]]a]bb]↓bb]↓] =⇒∗

pr(V) abbabbabbbba.

First, the necessary even number of b can be generated by the rule ([b][b], {(bb, λ), (λ, bb)}) and
then a can be inserted any number of times before or after two bb by the remaining rules. Note
that the rule ([b][b], {(a, λ), (λ, a)}) is necessary, since without this rule, a cannot be introduced
adjacent to [b][b]. It is easy to see that L(G5) = L5. However, this language L5 cannot be
generated by a fully bracketed grammar with finite choice. Conversely, let us assume that G′

5 is
a fully bracketed contextual grammar with finite choice that generates L5. Consider the strings
over bb only. Since the string (bb)i is in the language for a large i, there must be a derivation
such that x1x2x3 =⇒G′

5
x1[ux2v]x3 =⇒∗

G′
5

x1([u)kx2(v])kx3 (by repeatedly choosing x2 as the
selector) such that x1x2x3 and x2 ∈ MDC(V) with x1, x3 ∈ (b ∪ B)∗, x2 ∈ (b ∪ B)+, uv ∈ b2j

for j ≥ 1 and at least one of them is non-empty. Assume that u is a non-empty string. Since,
x1u

2aruk−2x2v
kx3 ∈ L5 for a large r (as any number of a can be inserted before or after bb),

there must be a selector uk−2x2v
k−2 ∈ MDC(V) in G′

5. But such a selector is not of finite length
for a large k. On the other hand, if a’s are adjoined first, we get x1([a)rx2(])rx3. But then,
x1([a)r([u)k−2x2(v])k−2(])rx3 can only be generated, but u cannot be adjoined in between x1

and ar (otherwise, the selector cannot be in MDC(V)) and therefore x1u
2aruk−2x2v

kx3 cannot
be generated. Hence L5 /∈ FBIC(FIN). Note that, since λ ∈ MDC(V), a clever rule like
(λ, (a, λ)) is also not useful for a FBIC grammar. If such a rule is there, a can be inserted in
between b and b, thus a word not in the language is generated. �

Lemma 6.3 MSBIC(FIN)− (ICC(REG) ∪MIC(REG)) 6= ∅.

Proof. Consider a language L6 = {amb | m ≥ 1} ∪ {anbn | n ≥ 1}. This can be generated by the
following semi-bracketed contextual grammar with finite choice.

G6 = ({a, b}, {[a][b], [ab]}, {([a], (a, λ)), ([ab], (a, b))}).

A sample derivation of the grammar for L6 is given as below.

↓[a]↓[b] =⇒ [a↓[a]↓λ][b] =⇒ [a[a↓[a]↓λ]][b] =⇒ [a[a[a↓[a]↓λ]]][b] =⇒∗
pr(V) amb.

↓[ab]↓ =⇒ [a[ab]b] =⇒ [a[a[ab]b]b] =⇒ [a[a[a[ab]b]b]b] =⇒∗
pr(V) anbn.

However, it was proved in [18] that the language L6 can neither be generated by an internal
contextual grammar nor by a maximal contextual grammar. �

10

7 Conclusion

In this paper we have introduced a new class of contextual grammars namely semi-bracketed
contextual grammars. Though not in detail, their relevance and suitability with natural language
construction has been analyzed by incorporating the maximality feature. We have shown that
context-free languages are strict subset of maximal bracketed contextual grammars with regular
choice. This is an interesting result in the field of contextual grammars since no family of contex-
tual languages, especially the class of contextual grammars which generate the non-context-free
languages was shown to be a superset of context-free languages. Note that there are already
some classes of contextual grammars are shown to possess the MCS formalisms without this
result; for details, we refer to [10],[11]. However, the parsing issue for maximal semi-bracketed
contextual grammars has not been discussed here but they are yet to be explored. We con-
jecture that MSBIC(REG) ⊂ CS, since every MSBIC grammar with regular choice can be
transformed to an equivalent length increasing grammar. Note that we do not use (λ, λ) context
in a SBIC grammar, so at each derivation, the length is increasing. To prove the strictness,
we can show that there is a context-sensitive language (but which is yet to be identified) that
cannot be generated by a MSBIC grammar with regular choice. We do not bother about the
last condition mentioned for MCS formalism since the condition 4 is satisfied for any class of
contextual grammars (the length difference between any two consecutive words in a contextual
language is less than or equal to the total length of the maximal context). One natural question
comes at this stage is when already several MCS formalisms exist in literature (including in
the domain of contextual grammars), why we are interested in finding more formalisms? The
answer to this is all the existing MCS formalisms are using variables or rewriting (in terms of
symbols or trees) or not all derivation steps are accounted in the generated language. But, the
MCS formalisms based on contextual grammars are pure grammars (no non-terminals) and all
derivation steps are accounted in the language. But the previous MCS formalisms in the domain
of contextual grammars do not have a structure to the strings and in this paper, we made an
attempt to identify the MCS formalisms with the structure to the strings is maintained.

A small work on generative power of SBIC grammars has also been done, but a detailed
study on the generative power and hierarchical relations of these grammars with the other
bracketed contextual grammars and Chomsky grammars need further study. We also conjecture
that MSBIC(FIN) ⊂ CF . Though the derived strings of SBIC or MSBIC grammars preserve
the tree structure of MDC(V) languages, the properties mentioned in [16] do not hold here.
For instance, given a derivation tree for a word generated by a bracketed contextual grammar,
the leaf edges identify the axiom used [16]. But that is not true for a derivation tree of a string
generated by semi-bracketed contextual grammars (easy to see the difference when the selectors
are not of MDC strings), thus analyzing the properties of the tree structure for semi-bracketed
contextual grammars needs further study.

References

[1] Boullier, P. Range concatenation grammars. Proceedings of Sixth International Workshop
on Parsing Technologies (IWPT ’00). 2000, 53–64.

[2] Boullier, P. (2001). From contextual grammars to range concatenation grammars. Electronic
Notes in Theoretical Computer Science, 53.

[3] Ehrenfeucht, A., Ilie, L.; Păun, Gh.; Rozenberg, G.; Salomaa, A. On the generative capacity
of certain classes of contextual grammars. In Mathematical Linguistics and Related Topics;
Păun, Gh.; Ed.; The Publ. House of the Romanian Academy: Bucharest, 1995; pp 105–118.

11

[4] Ilie, L. A non-seminlinear language generated by an internal contextual grammar with finite
selection. Ann. Univ. Bucharest Math. Inform. Series. 1996, 45/1, 63–70.

[5] Ilie, L. On computational complexity of contextual languages. Theo. Comp. Science. 1997,
183/1, 33–44.

[6] Ilie, L. Some recent results in contextual grammars. Bull. EATCS. 1997, 62, 172–194.

[7] Joshi, A.K. How much context-sensitivity is required to provide structural descriptions: Tree
adjoining grammars. In Natural Language Processing: Psycholinguistic, Computational, and
Theoretical Perspectives; David, D.; Lauri, K.; Arnold, Z.; Eds.; Cambridge University Press:
New York, 1985; pp 206–250.

[8] Joshi, A.K. An introduction to tree adjoining grammars. In Mathematics of Language; Man-
aster, R.A.; Ed.; John Benjamins: Amsterdam, PH, 1987; pp 87–114.

[9] Krishna, S.N.; Lakshmanan, K.; Rama, R. On some classes of contextual grammars. Intern.
J. of Comp. Math. 2003, 80/2, 151–164.

[10] Lakshmanan, K.; Krishna, S.N.; Rama, R.; Martin-Vide, C. Internal contextual grammars
for mildly context sensitive languages, Research on Language and Computation, 2007, 5, 181–
197.

[11] Lakshmanan, K, End-marked Maximal Depth-first Contextual Grammars, Proceedings of
Developments in Lang. Theory’08, LNCS 4036, 2008, 339-350.

[12] Marcus, S. Algebraic Linguistics, Analytical Models; Academic Press: New York, 1967.

[13] Marcus, S. Contextual grammars. Rev. Roum. Pures. Appl. 1969, 14, 1525–1534.

[14] Marcus, S.; Martin-Vide, C.; Păun, Gh. On internal contextual grammars with maximal
use of selectors. Proc. of 8th Conf. Automata and Formal Languages. Salgotarjan, 1996. Also
in Publ. Math. Debrecen. 1999, 54, 933–947.

[15] Martin Kappes, On the Generative Capacity of Bracketed Contextual Grammars, Gram-
mars, 1, 1998, 91–101.

[16] C. Martin-Vide, G. Păun, Structured Contextual Grammars, Grammars, 1, 1998, 33–55.

[17] Marcus, S.; Martin-vide, C.; Păun, Gh. Contextual grammars as generative models of
natural languages. Computational Linguistics. 1998, 24(2), 245–274.

[18] Păun, Gh. Marcus Contextual Grammars; Kluwer Academic Publishers: Dordrecht, The
Netherland, 1997.

[19] Păun, Gh.; Nguyen, X.M. On the inner contextual grammars. Rev. Roum. Pures. Appl.
1980, 25, 641–651.

[20] Păun, Gh., Rozenberg, G., Salomaa, A.: Contextual grammars: erasing, determinism, one-
side contexts, Proc. of DLT’93, 1993, 370–388.

[21] Salomaa, A. Formal Languages. Academic Press: New York, 1973.

12

