
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive version was published in the following publication:
CC’15, LNCS 9031, pp. 89-108
© Springer Berlin Heidelberg 2015
http://dx.doi.org/10.1007/978-3-662-46663-6_5

Faster, Practical GLL Parsing

Ali Afroozeh and Anastasia Izmaylova

Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
{ali.afroozeh, anastasia.izmaylova}@cwi.nl

Abstract. Generalized LL (GLL) parsing is an extension of recursive-
descent (RD) parsing that supports all context-free grammars in cubic
time and space. GLL parsers have the direct relationship with the gram-
mar that RD parsers have, and therefore, compared to GLR, are easier
to understand, debug, and extend. This makes GLL parsing attractive
for parsing programming languages.
In this paper we propose a more e�cient Graph-Structured Stack (GSS)
for GLL parsing that leads to significant performance improvement. We
also discuss a number of optimizations that further improve the perfor-
mance of GLL. Finally, for practical scannerless parsing of programming
languages, we show how common lexical disambiguation filters can be
integrated in GLL parsing.
Our new formulation of GLL parsing is implemented as part of the Iguana
parsing framework. We evaluate the e↵ectiveness of our approach using
a highly-ambiguous grammar and grammars of real programming lan-
guages. Our results, compared to the original GLL, show a speedup fac-
tor of 10 on the highly-ambiguous grammar, and a speedup factor of 1.5,
1.7, and 5.2 on the grammars of Java, C#, and OCaml, respectively.

1 Introduction

Developing e�cient parsers for programming languages is a di�cult task that
is usually automated by a parser generator. Since Knuth’s seminal paper [1] on
LR parsing, and DeRemer’s work on practical LR parsing (LALR) [2], parsers of
many major programming languages have been constructed using LALR parser
generators such as Yacc [3].

Grammars of most real programming languages, when written in their most
natural form, are often ambiguous and do not fit deterministic classes of context-
free grammars such as LR(k). Therefore, such grammars need to be gradually
transformed to conform to these deterministic classes. Not only is this process
time consuming and error prone, but the resulting derivation trees may also con-
siderably di↵er from those of the original grammar. In addition, writing a deter-
ministic grammar for a programming language requires the grammar writer to
think more in terms of the parsing technology, rather than the intended gram-
mar. Finally, maintaining a deterministic grammar is problematic. A real-world
example is the grammar of Java. In the first version of the Java Language Spec-
ification [4], the grammar was represented in an LALR(1) form, but this format

http://dx.doi.org/10.1007/978-3-662-46663-6_5
http://www.cwi.nl/sen1

has been abandoned in later versions, most likely due to the di�culties of main-
taining an LALR(1) grammar as the language evolved.

Generalized LR (GLR) [5] is an extension of LR parsing that e↵ectively
handles shift/reduce conflicts in separate stacks, merged as a Graph Structured
Stack (GSS) to trim exponentiality. As GLR parsers can deal with any context-
free grammar, there is no restriction on the grammar. Moreover, GLR can behave
linearly on LR grammars, and therefore, it is possible to build practical GLR
parsers for programming languages [6,7].

Although GLR parsers accept any context-free grammar, they have a com-
plicated execution model, inherited from LR parsing. LR parsing is based on the
LR-automata, which is usually large and di�cult to understand. As a result, LR
parsers are hard to modify, and it is hard to produce good error messages. Many
major programming languages have switched from LR-based parser generators,
such as Yacc, to hand-written recursive-descent parsers. For example, GNU’s
GCC and Clang, two major C++ front-ends, have switched from LR(k) parser
generators to hand-written recursive-descent parsers1.

Recursive-descent (RD) parsers are a procedural interpretation of a gram-
mar, directly encoded in a programming language. The straightforward execu-
tion model of RD parsers makes them easy to understand and modify. However,
RD parsers do not support left-recursive rules and have worst-case exponen-
tial runtime. Generalized LL (GLL) [8] is a generalization of RD parsing that
can deal with any context-free grammar, including the ones with left recur-
sive rules, in cubic time and space. GLL uses GSS to handle multiple function
call stacks, which also solves the problem of left recursion by allowing cycles
in the GSS. GLL parsers maintain the direct relationship with the grammar
that RD parsers have, and therefore, provide an easy to understand execution
model. Finally, GLL parsers can be written by hand and can be debugged in
a programming language IDE. This makes GLL parsing attractive for parsing
programming languages.

Contributions. We first identify a problem with the GSS in GLL parsing that
leads to ine�cient sharing of parsing results, and propose a new GSS that pro-
vides better sharing. We show that the new GSS results in significant perfor-
mance improvement, while preserving the worst-case cubic complexity of GLL
parsing. Second, we discuss a number of other optimizations that further im-
prove the performance of GLL parsing. Third, we demonstrate how common
lexical disambiguation filters, such as follow restrictions and keyword exclusion,
can be implemented in a GLL parser. These filters are essential for scannerless
parsing of real programming languages. The new GSS, the optimizations, and
the lexical disambiguation filters are implemented as part of the Iguana parsing
framework, which is available at https://github.com/cwi-swat/iguana.

Organization of the paper. The rest of this paper is organized as follows. GLL
parsing is introduced in Section 2. The problem with the original GSS in GLL

1
http://clang.llvm.org/features.html#unifiedparser

http://gcc.gnu.org/wiki/New_C_Parser

2

https://github.com/cwi-swat/iguana
http://clang.llvm.org/features.html#unifiedparser
http://gcc.gnu.org/wiki/New_C_Parser

parsing is explained in Section 2.3, and the new, more e�cient GSS is intro-
duced in Section 3. Section 4 gives a number of optimizations for implementing
faster GLL parsers. Section 5 discusses the implementation of common lexical
disambiguation mechanisms in GLL. Section 6 evaluates the performance of GLL
parsers with the new GSS, compared to the original GSS, using a highly am-
biguous grammar and grammars of real programming languages such as Java,
C# and OCaml. Section 7 discusses related work on generalized parsing and dis-
ambiguation. Finally, Section 8 concludes this paper and discusses future work.

2 GLL parsing

2.1 Preliminaries

A context-free grammar is composed of a set of nonterminals N , a set of terminals
T , a set of rules P , and a start symbol S which is a nonterminal. A rule is written
as A ::= ↵, where A (head) is a nonterminal and ↵ (body) is a string in (T [N)⇤.
Rules with the same head can be grouped as A ::= ↵1 | ↵2 | . . . | ↵p, where each
↵k is called an alternative of A. A derivation step is written as ↵A�)↵��,
where A ::= � is a rule, and ↵ and � are strings in (T [N)⇤. A derivation is a

possibly empty sequence of derivation steps from ↵ to � and is written as ↵
⇤)�.

A derivation is left-most if in each step the left most nonterminal is replaced by
its body. A sentential form is a derivation from the start symbol. A sentence
is a sentential form that only consists of terminal symbols. A sentence is called
ambiguous if it has more than one left-most derivation.

2.2 The GLL parsing algorithm

The Generalized LL (GLL) parsing algorithm [8] is a fully general, worst-case
cubic extension of recursive-descent (RD) parsing that supports all context-free
grammars. In GLL parsing, the worst-case cubic runtime and space complex-
ities are achieved by using a Graph-Structured Stack (GSS) and constructing
a binarized Shared Packed Parse Forest (SPPF). GSS allows to e�ciently han-
dle multiple function call stacks, while a binarized SPPF solves the problem of
unbounded polynomial complexity of Tomita-style SPPF construction [9]. GLL
solves the problem of left recursion in RD parsing by allowing cycles in the GSS.

GLL parsing can be viewed as a grammar traversal process guided by the
input string. At each point during execution, a GLL parser is at a grammar slot
(grammar position) L, and maintains three variables: cI for the current input
position, cU for the current GSS node, and cN for the the current SPPF node. A
grammar slot is of the form X ::= ↵ · � and corresponds to a grammar position
before or after any symbol in the body of a grammar rule, similar to LR(0)
items. A GSS node corresponds to a function call in an RD parser, and is of the
form (L, i), where L is a grammar slot of the form X ::= ↵A · �, i.e., after a
nonterminal, and i is the current input position when the node is created. Note
that the grammar slot of a GSS node e↵ectively records the return grammar

3

position, needed to continue parsing after returning from a nonterminal. A GSS
edge is of the form (v, w, u), where v and u are the source and target GSS nodes,
respectively, and w is an SPPF node recorded on the edge.

GLL parsers produce a binarized SPPF. In an SPPF, nodes with the same
subtrees are shared, and di↵erent derivations of a node are attached via packed
nodes. A binarized SPPF introduces intermediate nodes, which e↵ectively group
the symbols of an alternative in a left-associative manner. An example of a
binarized SPPF, resulting from parsing "abc" using the grammar S ::= aBc | Ac,
A ::= ab, B ::= b is as follows:

a, 0, 1

b, 1, 2

A, 0, 2A ::= aB · c, 0, 2

S, 0, 3

c, 2, 3

B, 1, 2

A binarized SPPF has three types of nodes. Symbol nodes of the form (x, i, j),
where x is a terminal or nonterminal, and i and j are the left and right extents,
respectively, indicating the substring recognized by x. Intermediate nodes of
the form (A ::= ↵ · �, i, j), where |↵|, |�| > 0, and i and j are the left and
right extents, respectively. Terminal nodes are leaf nodes, while nonterminal
and intermediate nodes have packed nodes as children. A packed node (shown as
circles in the SPPF above) is of the form (A ::= ↵ · �, k), where k, the pivot, is
the right extent of the left child. A packed node has at most two children, both
non-packed nodes. A packed node represents a derivation, thus, a nonterminal
or intermediate node having more than one packed node is ambiguous.

As mentioned before, a GLL parser holds a pointer to the current SPPF
node, cN , and at the beginning of each alternative, cN is set to the dummy
node, $. As the parser traverses an alternative, it creates terminal nodes by
calls getNodeT(t, i, j), where t is a terminal, and i and j are the left and right
extents, respectively. Nonterminal and intermediate nodes are created by calls
getNodeP(A ::= ↵ · �, w, z), where w and z are the left and right children, re-
spectively. This function first searches for an existing nonterminal node (A, i, j),
if |�| = 0, or intermediate node (A ::= ↵ ·�, i, j), where i and j are the left extent
of w and the right extent of z, respectively. If such a node exists, it is retrieved,
otherwise created. Then, w and z are attached to the node via a packed node,
if such a packed node does not exist.

In GLL parsing, when the parser reaches a non-deterministic point, e.g., a
nonterminal with multiple alternatives, it creates descriptors, which capture the
parsing states corresponding to each choice, and adds them to a set, so that
they can be processed later. A descriptor is of the form (L, u, i, w), where L
is a grammar slot, u is a GSS node, i is an input position, and w is an SPPF
node. A GLL parser maintains two sets of descriptors: R for pending descriptors,

4

and U for storing all the descriptors created during the parsing, to eliminate the
duplicate descriptors. A descriptor is added to R, via a call to function add, only
if it does not exist in U . In addition, a set P is maintained to store and reuse the
results of parsing associated with GSS nodes, i.e., the elements of the form (u, z),
where z is an SPPF node. A GLL parser has a main loop that in each iteration,
removes a descriptor from R, sets cU , cI , and cN to the respective values in the
descriptor, and jumps to execute the code associated with the grammar slot of
the descriptor. An example of a GLL parser is given below for the grammar �0:
A ::= aAb | aAc | a.

R := ?;P := ?;U := ?
cU := (L0, 0); cI := 0; cN := $

L0 :if(R 6= ?) LA :add(A ::= .aAb, cU , cI , $)
remove(L, u, i, w) from R add(A ::= .aAc, cU , cI , $)
cU := u; cI := i; cN := w; goto L add(A ::= .a, cU , cI , $)

else if (there exists a node (A, 0, n)) goto L0

report success
else report failure

L·aAb :if(I[cI] = a) L·aAc :if(I[cI] = a)
cN := getNodeT(a, cI , cI + 1) cN := getNodeT(a, cI , cI + 1)

else goto L0 else goto L0

cI := cI + 1 cI := cI + 1
cU := create(A ::= aA · b, cU , cI , cN) cU := create(A ::= aA · c, cU , cI , cN)
goto LA goto LA

LaA·b :if(I[cI] = b) LaA·c :if(I[cI] = c)
cR := getNodeT(b, cI , cI + 1) cR := getNodeT(c, cI , cI + 1)

else goto L0 else goto L0

cI := cI + 1 cI := cI + 1
cN := getNodeP(A ::= aAb·, cN , cR) cN := getNodeP(A ::= aAc·, cN , cR)
pop(cU , cI , cN); goto L0 pop(cU , cI , cN); goto L0

We describe the execution of a GLL parser by explaining the steps of the parser
at di↵erent grammar slots. Here, and in the rest of the paper, we do not include
the check for first/follow sets in the discussion. We also assume that the input
string, of length n, is available as an array I. Parsing starts by calling the start
symbol at input position 0. At this moment, cU is initialized by the default
GSS node u0 = (L0, 0), where L0 does not correspond to any actual grammar
position. Let X be a nonterminal defined as X ::= ↵1 | ↵2 | . . . | ↵p. A GLL parser
starts by creating and adding descriptors, each corresponding to the beginning
of an alternative: (X ::= ·↵k, cU , cI , $). Then, the parser goes to L0.

Based on the current grammar slot, a GLL parser continues as follows. If
the grammar slot is of the form X ::= ↵ · t�, the parser is before a terminal.
If I[cI] 6= t, the parser jumps to L0, terminating this execution path, otherwise
a terminal node is created by getNodeT(t, cI , cI + 1). If |↵| � 1, the terminal
node is assigned to cR, and an intermediate or nonterminal node is created by

5

getNodeP(X ::= ↵t · �, cN , cR), and assigned to cN . The parser proceeds with
the next grammar slot.

If the grammar slot is of the form X ::= ↵ ·A�, i.e., before a nonterminal, the
create function is called with four arguments: the grammar slot X ::= ↵A · �,
cU , cI , and cN . First, create either retrieves a GSS node (X ::= ↵A · �, cI) if
such a node exists, or creates one. Let v be (X ::= ↵A · �, cI). Then, a GSS
edge (v, cN , cU) is added from v to cU , if such an edge does not exists. If v was
retrieved, the currently available results of parsing A at cI are reused to continue
parsing: for each element (v, z) in P, a descriptor (X ::= ↵A·�, cU , h, y) is added,
where y is the SPPF node returned by getNodeP(X ::= ↵A · �, cN , z), and h
is the right extent of z. Finally, the call to create returns v, which is assigned
to cU . Then, the parser jumps to the definition of A and adds a descriptor for
each of its alternatives.

If the grammar slot is of the form A ::= ↵·, the parser is at the end of an
alternative, and therefore, should return from A to the calling rule and continue
parsing. This corresponds to the return from a function call in an RD parser. The
pop function is called with three arguments: cU , cI , cN . Let (L, j) be the label
of cU . First, the element (cU , cN) is added to set P. Then, for each outgoing
edge (cU , z, v) from cU , a descriptor of the form (L, v, cI , y) is created, where
y is the SPPF node returned by getNodeP(L, z, cN). Parsing terminates and
reports success if all descriptors in R are processed and an SPPF node labeled
(S, 0, n), corresponding to the start symbol and the whole input string, is found,
otherwise reports failure.

2.3 Problems with the original GSS in GLL parsing

To illustrate the problems with the original GSS in GLL parsing, we consider the
grammar �0 (Section 2.2) and the input string "aac". Parsing this input string
results in the GSS shown in Figure 1(a). The resulting GSS has two separate
GSS nodes for each input position, 1 and 2, and each GSS node corresponds to
an instance of A in one of the two alternatives: aAb or aAc. This implies that,
for example, the following two descriptors, corresponding to the beginning of the
first alternative of A, are created and added to R: (A ::= ·aAb, u1, 1, $), which is
added after creating u1, and (A ::= ·aAb, u2, 1, $), which is added after creating
u2. Although both descriptors correspond to the same grammar position and
the same input position, they are distinct as their parent GSS nodes, u1 and
u2, are di↵erent. The same holds for the following descriptors corresponding
to the other alternatives of A: (A ::= ·aAc, u1, 1, $), (A ::= ·aAc, u2, 1, $) and
(A ::= ·a, u1, 1, $), (A ::= ·a, u2, 1, $). This example demonstrates that, although
the results of parsing A only depend on the alternatives of A and the current
input position, GLL creates separate descriptors for each instance of A, leading
to multiple executions of the same parsing actions.

However, the calls corresponding to di↵erent instances of A at the same
input position are not completely repeated. As can be seen, sharing happens
one level deeper in GSS. For example, processing (A ::= ·aAb, u1, 1, $) or (A ::=
·aAb, u2, 1, $) matches a, increases input position to 2 and moves the grammar

6

L0, 0

u1

A ::= aA · b, 1

A ::= aA · c, 1 A ::= aA · c, 2
u3

A ::= aA · b, 2

u2

u4

(a) Original GSS

A, 0 A, 1 A, 2

A ::= aA · b A ::= aA · b

A ::= aA · c A ::= aA · c

(b) New GSS

Fig. 1: Original and new GSS for parsing "aac" using A ::= aAb | aAc | a.

pointer before A, leading to the call to the same instance of A at input position
2, which is handled by the same GSS node u4 connected to u1 and u2. This
sharing, however, happens per nonterminal instance. For example, if we consider
the input string "aaacc", a can be matched at input position 2, and therefore,
the same result but associated with di↵erent instances of A will be stored in set
P as (u3, (A, 2, 3)) and (u4, (A, 2, 3)). Both nodes u3 and u4 will pop with the
same result (A, 2, 3), and given that both u3 and u4 are shared by u1 and u2,
descriptors that, again, encode the same parsing actions, but account for di↵erent
parent GSS nodes, will be created: (A ::= aA·b, u1, 3, w1), (A ::= aA·b, u2, 3, w1)
and (A ::= aA·c, u1, 3, w2), (A ::= aA·c, u2, 3, w2), where w1 = (A ::= aA·b, 0, 3)
and w2 = (A ::= aA · c, 0, 3).

3 More e�cient GSS for GLL parsing

In this section, we propose a new GSS that, compared to the original GSS,
provides a more e�cient sharing of parsing results in GLL parsing. We use the
fact that all calls corresponding to the same nonterminal and the same input
position should produce the same results, and therefore, can be shared, regardless
of a specific grammar rule in which the nonterminal occurs. The basic idea is
that, instead of recording return grammar positions in GSS nodes, i.e., grammar
slots of the form X ::= ↵A ·�, names of nonterminals are recorded in GSS nodes,
and return grammar positions are carried on GSS edges. Figure 1(b) illustrates
the new GSS resulting from parsing "aac" using �0.

First, we introduce new forms of GSS nodes and edges. Let X ::= ↵ · A� be
the current grammar slot, i be the current input position, u be the current GSS
node, and w be the current SPPF node. As in the original GLL, at this point, a
GSS node is either retrieved, if such a node exists, or created. However, in our
setting, such a GSS node is of the form (A, i), i.e., with the label that consists
of the name of a nonterminal, in contrast to X ::= ↵A · � in the original GSS,
and the current input position. Let v be a GSS node labeled as (A, i). As in the
original GLL, a new GSS edge is created from v to u. However, in our setting,
a GSS edge is of the form (v, L, w, u), where, in addition to w as in the original
GSS, the return grammar position L, i.e., X ::= ↵A · �, is recorded.

Second, we remove the default GSS node u0 = (L0, 0), which requires a
special label that does not correspond to any grammar position. In our setting,

7

the initial GSS node is of the form (S, 0) and corresponds to the call to the
grammar start symbol S at input position 0, e.g., (A, 0) in Figure 1(b).

Finally, we re-define the create and pop functions of the original GLL to
accommodate the changes to GSS. We keep the presentation of these functions
similar to the ones of the original GLL algorithm [8], so that the di↵erence
between the definitions can be easily seen. The new definitions of the create and
pop functions are given below, where L is of the form X ::= ↵A · �, |↵|, |�| � 0,
u and v are GSS nodes, and w, y, z are SPPF nodes.

create(L, u, i, w) {
if (there exists a GSS node labeled (A, i)) {

let v be the GSS node labeled (A, i)
if (there is no GSS edge from v to u labeled L,w) {

add a GSS edge from v to u labeled L,w
for ((v, z) 2 P) {

let y be the SPPF node returned by getNodeP(L,w, z)
add(L, u, h, y) where h is the right extent of y

}
}

} else {
create a new GSS node labeled (A, i)
let v be the newly-created GSS node
add a GSS edge from v to u labeled L,w
for (each alternative ↵k of A) { add(A ::= ·↵k, v, i, $) }

}
return v

}

pop(u, i, z) {
if ((u, z) is not in P) {

add (u, z) to P
for (all GSS edges (u, L,w, v)) {

let y be the SPPF node returned by getNodeP(L,w, z)
add(L, v, i, y)

}
}

}

The create function takes four arguments: a grammar slot L of the form X ::=
↵A · �, a GSS node u, an input position i, and an SPPF node w. If a GSS
node (A, i) exists (if-branch), the alternatives of A are not predicted at i again.
Instead, after a GSS edge (v, L, w, u) is added, if such an edge does not exist,
the currently available results of parsing A at i, stored in P, are reused. For each
result (v, z) in P, an SPPF node y is constructed, and a descriptor (L, u, h, y)
is added to continue parsing with the grammar slot X ::= ↵A · � and the next
input position h, corresponding to the right extent of y. If a GSS node (A, i) does
not exist (else-branch), such a node is first created, then, an edge (v, L, w, u) is
added, and finally, a descriptor for each alternative of A with the input position
i and parent node v is created and added.

8

The pop function takes three arguments: a GSS node u, an input position i,
and an SPPF node z. If an entry (u, z) exists in P, the parser returns from the
function. Otherwise, (u, z) is added to P, and, for each outgoing GSS edge of u,
a descriptor is added to continue parsing with the grammar slot recorded on the
edge, the current input position and the SPPF node constructed from w and z.

As the signatures of the create and pop functions stay the same as in the
original GLL, replacing the original GSS with the new GSS does not require
any modification to the code generated for each grammar slot in a GLL parser.
Also note that the new GSS resembles the memoization of function calls used
in functional programming, as a call to a nonterminal at an input position is
represented only by the name of the nonterminal and the input position.

3.1 Equivalence

As illustrated in Sections 2 and 3, in the original GLL, sharing of parsing results
for nonterminals is done at the level of nonterminal instances. On the other
hand, in GLL with the new GSS, the sharing is done at the level of nonterminals
themselves, which is more e�cient as, in general, it results in less descriptors
being created and processed. In Section 6 we present the performance results
showing that significant performance speedup can be expected in practice. In
this section we discuss the di↵erence between GLL parsing with the original
and new GSS for the general case, and show that the two GLL versions are
semantically equivalent.

The use of the new GSS, compared to the original one, prevents descriptors
of the form (L, u1, i, w) and (L, u2, i, w) to be created. These descriptors have the
same grammar slot, the same input position, the same SPPF node, but di↵erent
parent GSS nodes. In GLL with the original GSS, such descriptors may be added
to R when, in the course of parsing, calls to di↵erent instances of a nonterminal,
say A, at the same input position, say i, are made. Each such call corresponds to
a parsing state where the current grammar slot is of the form X ::= ⌧ · Aµ (i.e.,
before A), and the current input position is i. To handle these calls, multiple
GSS nodes of the form (X ::= ⌧A · µ, i), where the grammar slot corresponds to
a grammar position after A, are created during parsing. We enumerate all such
grammar slots with Lk, and denote GSS nodes (Lk, i) as uk.

When a GSS node uk is created, descriptors of the form (A ::= ·�, uk, i, $)

are added. If a1a2 . . . an is the input string and A
⇤) ai+1 . . . aj , uk will pop at

j, and processing descriptors of the form (A ::= ·�, uk, i, $) will lead to creation
of descriptors of the form (A ::= ↵B ·�, uk, l, w), i  l  j, i.e., in an alternative
of A, and of the form (A ::= �·, uk, j, (A, i, j)), i.e., at the end of an alternative
of A. All these descriptors encode the parsing actions that do not semantically
depend on a specific uk. Indeed, starting from the same grammar position in an
alternative of A, say A ::= ↵ ·�, regardless of a specific uk, the parsing continues
with the next symbol in the alternative and the current input position, and either
produces an (intermediate) SPPF node, which does not depend on uk, moving
to the next symbol in the alternative, or fails. Finally, when descriptors of the

9

form (A ::= �·, uk, j, (A, i, j)) are processed, the same SPPF node (A, i, j) will
be recorded in set P for each uk.

In the original GLL, when uk is being popped, for each (uk, z) in set P,
where z is of the form (A, i, j), and each outgoing edge (uk, w, v), a descriptor
(Lk, v, j, y), where y is the SPPF node returned by getNodeP(Lk, w, z), is added
to continue parsing after A. Let v be a GSS node with index h, then h and j are
the left and right extents of y, respectively. In the following we show how using
the new GSS, descriptors equivalent to (Lk, v, j, y) are created, but at the same
time, the problem of repeating the same parsing actions is avoided.

In GLL with the new GSS, when calls to di↵erent instances of a nonterminal,
say A, at the same input position, say i, are made, a GSS node u = (A, i) is
retrieved or created. Similar to the original GLL, when u is created, descriptors
of the form (A ::= ·�, u, i, $) are added, and if A

⇤) ai+1 . . . aj , descriptors of the
form (A ::= ↵B · �, u, l, w), i  l  j, and of the form (A ::= �·, u, j, (A, i, j))
will also be added. The essential di↵erence with the original GLL is that the
label of u is A, and therefore, the descriptors corresponding to parsing A at i
are independent of the context in which A is used. Upon the first call to A at
i, regardless of its current context, such descriptors are created, and the results
are reused for any such call in a di↵erent context. Finally, when descriptors of
the form (A ::= �·, u, j, (A, i, j)) are processed, the SPPF node z = (A, i, j) is
recorded as a single element (u, z) in set P.

In GLL parsing with the new GSS, whenever the parser reaches a state with
a grammar slot of the form X ::= ⌧ · Aµ, and the input position i, there will be
an edge (u, Lk, w, v) added to u, where Lk is of the form X ::= ⌧A · µ. Finally,
for each (u, z) in set P and each edge (u, Lk, w, v), the descriptor (Lk, v, j, y) will
be added, where y is the SPPF node returned by getNodeP(Lk, w, z).

3.2 Complexity

In this section we show that replacing the original GSS with the new GSS does
not a↵ect the worst-case cubic runtime and space complexities of GLL parsing.
To introduce the new GSS into GLL parsing, we changed the forms of GSS
nodes and edges. We also re-defined the create and pop functions to accommo-
date these changes. However, all these modifications had no e↵ect on the SPPF
construction, the getNode functions, and the code of GLL parsers that uses
create and pop to interact with GSS. Specifically, this implies that when the
main loop of a GLL parser executes, and the next descriptor is removed from
R, the execution proceeds in the same way as in the original GLL parsing until
the call to either create or pop is made.

First, we show that the space required for the new GSS is also at most
O(n3). In the new GSS, all GSS nodes have unique labels of the form (A, i),
where 0  i  n. Therefore, the new GSS has at most O(n) nodes. In the new
GSS, all GSS edges have unique labels of the form (u, L,w, v), where L is of the
form X ::= ↵A · �, the source GSS node u is of the form (A, i), and the target
GSS node v is of the form (X, j). The label of an edge in the new GSS consists
of L and w, where w has j and i as the left and right extents, which are also

10

the indices of v and u, respectively. Given that 0  j  i  n, the number of
outgoing edges for any source GSS node u is at most O(n), and the new GSS
has at most O(n2) edges. Thus the new GSS requires at most O(n) nodes and
at most O(n2) edges.

The worst-case O(n3) runtime complexity of the original GLL follows from
the fact that there are at most O(n2) descriptors, and processing a descriptor
may take at most O(n) time, by calling pop or create. Now, we show that
the worst-case complexity of both create and pop is still O(n), and the total
number of descriptors that can be added to R is still at most O(n2). All elements
in set P are of the form (v, z), where v is of the form (A, i), and z has i and j
as the left and right extents, respectively, where 0  i  j  n. Therefore, the
number of elements in P, corresponding to the same GSS node, is at most O(n).
Since a GSS node has at most O(n) outgoing edges, P has at most O(n) elements
corresponding to a GSS node, and the new GSS and P can be implemented using
arrays to allow constant time lookup, both create and pop have the worst-case
complexity O(n).

Finally, a descriptor is of the form (L, u, i, w), where w is either $ or has j
and i as the left and right extents, respectively, and j is also the index of u. Thus
the total number of descriptors that can be added to R is at most O(n2).

4 Optimizations for GLL implementation

The GLL parsing algorithm [8] is described using a set view, e.g., U and P, which
eases the reasoning about the worst-case complexity, but leaves open the chal-
lenges of an e�cient implementation. The worst-case O(n3) complexity of GLL
parsing requires constant time lookup, e.g., to check if a descriptor has already
been added. Constant time lookup can be achieved using multi-dimensional ar-
rays of size O(n2), however, such an implementation requires O(n2) initialization
time, which makes it impractical for near-linear parsing of real programming lan-
guages, whose grammars are nearly deterministic.

For near-linear parsing of real programming languages we need data struc-
tures that provide amortized constant time lookup, without excessive overhead
for initialization. One way to achieve this is to use a combination of arrays and
linked lists as described in [10]. In this approach the user needs to specify, based
on the properties of the grammar, which dimensions should be implemented as
arrays or linked lists.

In this section we propose an e�cient hash table-based implementation of
GLL parsers. We show how the two most important lookup structures, U and P,
can be implemented using local hash tables in GSS nodes. The idea is based on
the fact that the elements stored in these data structures have a GSS node as a
property. Instead of having a global hash table, we factor out the GSS node and
use hash tables that are local to a GSS node. In an object-oriented language, we
can model a GSS node as an object that has pointers to its local hash tables.
In the following, we discuss di↵erent implementations of U and P. We consider

11

GLL parsing with new GSS, and assume that n is the length of the input, and
|N | and |L| are the number of nonterminals and grammar slots, respectively.

Descriptor elimination set (U): set U is used to keep all the descriptors created
during parsing for duplicate elimination. A descriptor is of the form (L, u, i, w),
where L is of the form A ::= ↵·�, u is of the form (A, j), and w is either a dummy
node, or a symbol node of the form (x, j, i), when ↵ = x, or an intermediate node
of the form (L, j, i). As can be seen, in a descriptor, the input index of the GSS
node is the same as the left extent of the SPPF node, and the input index of the
descriptor is the same as the right extent of the SPPF node. Also note that the
label of the GSS and SPPF node is already encoded in L. Thus we can e↵ectively
consider a descriptor as (L, i, j). We consider three implementations of U :

– Global Array : U can be implemented as an array of size |L| ⇥ n ⇥ n, which
requires O(n2) initialization time.

– Global hash table: U can be implemented as a single global hash table holding
elements of the form (L, i, j).

– Local hash table in a GSS node: U can be implemented as a local hash table
in a GSS node. This way, we only need to consider a descriptor as (L, i).

Popped elements (P): The set of popped elements, P, is defined as a set of (u, w),
where u is a GSS node of the form (A, i), and w is an SPPF node of the form
(A, i, j). For eliminating duplicates, P can e↵ectively be considered as a set of
(A, i, j). We consider three implementations of P:

– Global Array : P can be implemented as an array of size |N | ⇥ n ⇥ n, which
requires O(n2) initialization time.

– Global hash table: P can be implemented as a global hash table holding
elements of the form (A, i, j).

– Local hash table in a GSS node: P can be implemented as a local hash table
in a GSS node. This way we can eliminate duplicate SPPF nodes using a
single integer, the right extent of the SPPF node (j).

Hash tables do not have the problem of multi-dimensional arrays, as the initial-
ization cost is constant. However, using a global hash table is problematic for
parsing large input files as the number of elements is in order of millions, leading
to many hash collisions and resizing. For example, for a C# source file of 2000
lines of code, about 1,500,000 descriptors are created and processed.

Using local hash tables in GSS nodes instead of a single global hash table
provides considerable speedup when parsing large inputs with large grammars.
First, by distributing hash tables over GSS nodes, we e↵ectively reduce the num-
ber of properties needed for hash code calculation. Second, local hash tables will
contain fewer entries, resulting in fewer hash collisions and requiring fewer resiz-
ing. In the Iguana parsing framework we use the standard java.util.HashSet

as the implementation of hash tables. Our preliminary results show that, for
example, by using a local hash table for implementing U instead of a global one,
we can expect speedup of factor two. Detailed evaluation of the optimizations
presented in this section, and their e↵ect on memory usage, is future work.

12

There are two algorithmic optimizations possible that further improve the per-
formance of GLL parsers. These optimizations remove certain runtime checks
that can be shown to be redundant based on the following properties:

1) There is at most one call to the create function with the same arguments.
Thus no check for duplicate GSS edges is needed.
The properties of a GSS edge (v, L, w, u) are uniquely identified by the arguments
to create: L, u, i, w, where L is of the form X ::= ↵A · �, and v = (A, i).
Therefore, if it can be shown that there is at most one call to create with the
same arguments, the check for duplicate GSS edges can be safely removed.

Let us consider a call create(X ::= ↵A ·�, u, i, w). This call can only happen
if a descriptor of one of the following forms has been processed, where ⌧ is a
possibly empty sequence of terminals and j  i: (1) (X ::= ·↵A�, u, j, $) when
↵ = ⌧ ; or (2) (X ::= �B · ⌧A�, u, j, z) when ↵ = �B⌧ , |�| � 0. Therefore, for the
call to happen more than once, the same descriptor has to be processed again.
However, this can never happen as all the duplicate descriptors are eliminated.

2) There is at most one call to the getNodeP function with the same arguments.
Thus no check for duplicate packed nodes is needed.
Let us consider a call getNodeP(A ::= ↵ ·�, w, z), where w is either $ or a non-
packed node having i and k as the left and right extents, and z is a non-packed
node having k and j as the left and right extents. This call may create and add a
packed node (A ::= ↵ ·�, k) under the parent node, which is either (A, i, j) when
|�| = 0, or (A ::= ↵ · �, i, j) otherwise. Clearly, the same call to getNodeP will
try to add the same packed node under the existing parent node.

Now suppose that the same call to getNodeP happens for the second time.
Given that a GSS node is ensured to pop with the same result at most once
(set P and pop), the second call can only happen if a descriptor of one of the
following forms has been processed for the second time, where u = (A, i) and
⌧ is a possibly empty sequence of terminals: (1) (A ::= ·↵�, u, i, $) when either
↵ = ⌧ or ↵ = ⌧X; or (2) (A ::= �B · ��, u, l, y), i  l  k, when ↵ = �B�,
|�| � 0, and either � = ⌧ or � = ⌧X. This can never happen as all the duplicate
descriptors are eliminated.

Note that the second optimization is only applicable for GLL parsers with
the new GSS. In the original GLL, u can be of the form (X ::= µA · ⌫, i),
and therefore, multiple descriptors with the same grammar slot, the same input
position, the same SPPF node, but di↵erent parent nodes, corresponding to
multiple instances of A, can be added, resulting in multiple calls to getNodeP
with the same arguments.

5 Disambiguation filters for scannerless GLL parsing

Parsing programming languages is often done using a separate scanning phase
before parsing, in which a scanner (lexer) first transforms a stream of characters
to a stream of tokens. Besides performance gain, another important reason for
a separate scanning phase is that deterministic character-level grammars are

13

virtually nonexistent. The main drawback of performing scanning before parsing
is that, in some cases, it is not possible to uniquely identify the type of tokens
without the parsing context (grammar rule in which they appear). An example is
nested generic types in Java, e.g., List<List<T>>. Without the parsing context,
the scanner cannot unambiguously detect the type of >> as it can be either a
right-shift operator or two closing angle brackets.

Scannerless parsing [11,12] eliminates the need for a separate scanning phase
by treating the lexical and context-free definitions the same. A scannerless parser
solves the problems of identifying the type of tokens by parsing each character in
its parsing context, and provides the user with a unified formalism for both syn-
tactical and lexical definitions. This facilitates modular grammar development
at the lexical level, which is essential for language extension and embedding [13].

A separate scanning phase usually resolves the character-level ambiguities
in favor of the longest matched token and excludes keywords from identifiers.
In absence of a separate scanner, such ambiguities should be resolved during
parsing. In the rest of this section we show how most common character-level
disambiguation filters [14] can be implemented in a GLL parser.

To illustrate character-level ambiguities, we use the grammar below, which
is adapted from [14]. This grammar defines a Term as either a sequence of two
terms, an identifier, a number, or the keyword "int". Id is defined as one or
more repetition of a single character, and WS defines a possibly empty blank.

Term ::= Term WS Term | Id | Num | "int"

Id ::= Chars

Chars ::= Chars Char | Char

Char ::= 'a' | .. | 'z'
Num ::= '1' | .. |'9'
WS ::= ' ' | ✏

This grammar is ambiguous. For example, the input string "hi" can be parsed
as either Term(Id("hi")), or Term(Term(Id("h")),Term(Id("i"))). Follow-
ing the longest match rule, the first derivation is the intended one, as in the sec-
ond one "h" is recognized as an identifier, while it is followed by "i". We can use
a follow restriction (/��) to disallow an identifier to be followed by another char-
acter: Id ::= Chars -/- Char. Another ambiguity occurs in the input string
"intx" which can be parsed as either Term(Id("intx")) or Term(Term("int"),
Term(Id("x"))). We can solve this problem by adding a precede restriction (\��)
as follows: Id ::= Char -\- Chars, specifying that Id cannot be preceded by
a character. Finally, we should exclude the recognition of "int" as Id. For this,
we use an exclusion rule: Id ::= Chars \"int".

Below we formally define each of these restrictions and show how they can be
integrated in GLL parsing. For follow and precede restrictions we only consider
the case where the restriction is a single character, denoted by c. This can be
trivially extended to other restrictions such as character ranges or arbitrary
regular expressions. We assume that I represents the input string as an array of
characters and i holds the current input position.

14

Follow restriction. For a grammar rule A ::= ↵x�, a follow restriction for the
symbol x is written as A ::= ↵x /�� c�, meaning that derivations of the form

�A�)�↵x��
⇤)�↵xc⌧ are disallowed. For implementing follow restrictions, we

consider the grammar position A ::= ↵x·�. If x is a terminal, the implementation
is straightforward: if i < |I| and I[i] = c, the control flow returns to the main
loop, e↵ectively terminating this parsing path. If x is a nonterminal, we consider
the situation where a GLL parser is about to create a descriptor for A ::= ↵x ·�.
This happens when pop is executed for a GSS node (x, j) at i. While iterating
over the GSS edges, if a GSS edge labeled A ::= ↵x · � is reached, the condition
of the follow restriction associated with this grammar position will be checked.
If I[i] = c, no descriptor for this label will be added.

Precede Restriction. For a grammar rule A ::= ↵x�, a precede restriction for
the symbol x is written as A ::= ↵c \�� x�, meaning that derivations of the

form �A�)�↵x��
⇤)⌧cx�� are disallowed. The implementation of precede re-

strictions is as follows. When a GLL parser is at the grammar slot A ::= ↵ · x�,
if i > 0 and I[i � 1] = c, the control flow returns to the main loop, e↵ectively
terminating this parsing path.

Exclusion. For a grammar rule A ::= ↵X�, the exclusion of string s from the
nonterminal X is written as A ::= ↵X\s�, meaning that the language accepted
by the nonterminal X should not contain the string s, i.e., L(X\s) = L(X) �
{s}, where L defines the language accepted by a nonterminal. Similar to the
implementation of follow restrictions for a nonterminal, when a GSS node (X, j)
is popped at i, and the parser iterates over the outgoing GSS edges, if an edge
A ::= ↵X · � is found, the condition of the exclusion is checked. If the substring
of the input from j to i matches s, no descriptor for the grammar position
A ::= ↵X · � is added, which e↵ectively terminates this parsing path.

6 Performance evaluation

To evaluate the e�ciency of the new GSS for GLL parsing, we use a highly
ambiguous grammar and grammars of three real programming languages: Java,
C# and OCaml. We ran the GLL parsers generated from Iguana in two di↵erent
modes: new and original, corresponding to the new and original GSS, respec-
tively. Iguana is our Java-based GLL parsing framework that can be configured
to run with the new or original GSS, while keeping all other aspects of the algo-
rithm, such as SPPF creation, the same. The optimizations given in Section 4,
with the exception of removing checks for packed nodes, which is only applicable
to GLL parser with the new GSS, are applied to both modes.

We ran the experiments on a machine with a quad-core Intel Core i7 2.6 GHz
CPU and 16 GB of memory running Mac OS X 10.9.4. We executed the parsers
on a 64-Bit Oracle HotSpotTM JVM version 1.7.0 55 with the -server flag. To
allow for JIT optimizations, the JVM was first warmed up, by executing a large
sample data, and then each test is executed 10 times. The median running time
(CPU user time) is reported.

15

0 100 200 300 400

0
20

00
0

40
00

0

Number of b's

C
P

U
 u

se
r

ti
m

e
(m

ill
is

ec
on

ds
)

Original GSS
New GSS

Fig. 2: Running the GLL parsers for grammar S ::= SSS | SS | b

size
time (ms) # GSS nodes # GSS edges

new original new original new original

50 6 35 51 251 3877 18 935
100 45 336 101 501 15 252 75 360
150 151 1361 151 751 34 127 169 285
200 386 4080 201 1001 60 502 300 710
250 791 9824 251 1251 94 377 469 635
300 1403 18 457 301 1501 135 752 676 060
350 2367 32 790 351 1751 184 627 919 985
400 3639 50 648 401 2001 241 002 1 201 410

Table 1: The result of running highly ambiguous grammar on strings of b’s.

6.1 Highly ambiguous grammar

To measure the e↵ect of the new GSS for GLL parsing on highly ambiguous
grammars, we use the grammar S ::= SSS | SS | b. The results of running a
GLL parser with the new and original GSS for this grammar on strings of b’s
is shown in Figure 2. As can be seen, the performance gain is significant. The
median and maximum speedup factors for the highly ambiguous grammar, as
shown in Figure 3, are 10 and 14, respectively. To explain the observed speedup,
we summarize the results of parsing the strings of b’s in Table 1. Note that
the number of nodes and edges for the original GSS are slightly more than the
numbers reported in [8], as we do not include the check for first and follow sets.
As can be seen, GLL with the new GSS has n+1 GSS nodes for inputs of length
n, one for each call to S at input positions 0 to n. For GLL with the original
GSS, there are 5 grammar slots that can be called: S ::= S · SS, S ::= SS · S,
S ::= SSS·, S ::= S · S, and S ::= SS·, which lead to 5n + 1 GSS nodes. In
such a highly ambiguous grammar, most GSS nodes are connected, therefore,

16

●● ●● ●● ●● ●● ●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ● ●●●●●●●●● ● ●● ● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●

● ●●● ●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●●● ●● ●●● ●●●●● ● ● ●● ●● ●●●●● ●● ●● ●●●●●●● ● ●● ●● ●●● ●●● ●●● ● ●●● ●●●●●●●● ●●●●●

●●●● ●●●●●●
A

m
b

O
C

am
l

C
#

Ja
va

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 3: Comparing the speedup factor of the new and original GSS.

the iteration operations over edges in the create and pop functions will take
much more time, as explained in Section 3.1.

6.2 Grammars of programming languages

To measure the e↵ect of the new GSS on the grammars of real programming
languages, we have chosen the grammars of three programming languages from
their language reference manual.

Java: We used the grammar of Java 7 from the Java Language Specification [15]
(JLS). The grammar contains 329 nonterminals, 728 rules, and 2410 grammar
slots. We have parsed 7449 Java files from the source code of JDK 1.7.0 60-b19.
As shown in Figure 3, the median and maximum speedup factors for Java are
1.5 and 2.3, respectively.

C#: We used the grammar of C# 5 from the C# Language Specification [16].
The grammar contains 534 nonterminals, 1275 rules, and 4195 grammar slots.
The main challenge in parsing C# files was dealing with C# directives, such as
#if and #region. C# front ends, in contrast to C++, do not have a separate
preprocessing phase for directives. Most C# directives can be ignored as com-
ment, with the exception of the conditional ones, as ignoring them may lead to
parse error. As the purpose of this evaluation was to measure the performance of
GLL parsers on C# files, and not configuration-preserving parsing, we ran the
GNU C preprocessor on the test files to preprocess the conditional directives.
The rest of the directives were treated as comments. We have parsed 2764 C#
files from the build-preview release of the Roslyn Compiler. As shown in Figure 3,
the median and maximum speedup factors for C# are 1.7 and 3, respectively.

OCaml: We used the grammar of OCaml 4.0.1 from the OCaml reference manual
[17]. The grammar of OCaml is di↵erent from Java and C# in two aspects.

17

First, OCaml is an expression-based language, as opposed to Java and C#.
This provides us with a grammar with di↵erent characteristics for testing the
e↵ectiveness of the new GSS. Second, the reference grammar of OCaml is highly
ambiguous, having numerous operators with di↵erent associativity and priority
levels. We used a grammar rewriting technique [18] to obtain an unambiguous
grammar. The rewritten grammar contains 685 nonterminals, 5728 rules, and
27294 grammar slots. We have parsed 871 files from the OCaml 4.0.1 source
release. As shown in Figure 3, the median and maximum speedup factors for
OCaml are 5.2 and 13, respectively. The rewriting technique used in [18] to
encode precedence rules leads to more rules. This can be one reason for the
more significant speedup for the OCaml case, compared to Java and C#. The
other possible reason is the nature of OCaml programs that have many nested
expressions, requiring high non-determinism. The case of OCaml shows that the
new GSS is very e↵ective for parsing large, complex grammars, such as OCaml.

7 Related work

For many years deterministic parsing techniques were the only viable option
for parsing programming languages. As machines became more powerful, and
the need for developing parsers in other areas such as reverse-engineering and
source code analysis increased, generalized parsing techniques were considered
for parsing programming languages. In this section we discuss several related
work on applying generalized parsing to parsing programming languages.

Generalized parsing. Generalized parsing algorithms have the attractive property
that they can behave linearly on deterministic grammars. Therefore, for the
grammars that are nearly deterministic, which is the case for most programming
languages, using generalized parsing is feasible [19]. For example, the ASF+SDF
Meta-Environment [7] uses a variation of GLR parsing for source code analysis
and reverse engineering.

The original GLR parsing algorithm by Tomita [5] fails to terminate for some
grammars with ✏ rules. Farshi [20] provides a fix for ✏ rules, but his fix requires
exhaustive GSS search after some reductions. Scott and Johnstone [21] provide
an alternative to Farshi’s fix, called Right Nulled GLR (RNGLR), which is more
elegant and more e�cient. GLR parsers have worst-case O(nk+1) complexity,
where k is the length of the longest rule in the grammar [9]. BRNGLR is a
variation of RNGLR that uses binarized SPPFs to enable GLR parsing in cubic
time. Elkhound [6] is a GLR parser, based on Farshi’s version, that switches to
the machinery of an LR parser on deterministic parts of the grammar, leading
to significant performance improvement. Another faster variant of GLR parsing
is presented by Aycock and Horspool [22], which uses a larger LR automata,
trading space for time.

Disambiguation. Disambiguation techniques that are used in di↵erent parsing
technologies can be categorized in two groups: implicit or explicit disambigua-
tion. Implicit disambiguation is mostly used in parsing techniques that return

18

at most one derivation tree. Perhaps the name nondeterminism-reducer is a
more correct term, as these techniques essentially reduce non-determinism dur-
ing parsing, regardless if it leads to ambiguity or not. Yacc [3], PEGs [23] and
ANTLR [24] are examples of parsing techniques that use implicit disambiguation
rules. For example, in Yacc, shift/reduce conflicts are resolved in favor of shift,
and PEGs and ANTLR use the order of the alternatives. These approaches do
not work in all cases and may lead to surprises for the language engineer.

Explicit disambiguation is usually done using declarative disambiguation
rules. In this approach, the grammar formalism allows the user to explicitly
define the disambiguation rules, which can be applied either during parsing, by
pruning parsing paths that violate the rules, or be applied after the parsing is
done, as a parse forest processing step. Post-parse filtering is only possible when
using a generalized parser that can return all the derivations in form of a parse
forest. Aho et. al show how to modify LR(1) parsing tables to resolve shift/re-
duce conflicts based on the the priority and associativity of operators [25]. In
Scannerless GLR (SGLR) which is used in SDF2 [26], operator precedence and
character-level restrictions such as keyword exclusion are implemented as parse
table modifications, but some other disambiguation filters such as prefer and
avoid as post-parse filters [14]. Economopoulos et al. [27] investigate the imple-
mentation of SDF disambiguation filters in the RNGLR parsing algorithm and
report considerable performance improvement.

8 Conclusions

In this paper we presented an essential optimization to GLL parsing, by propos-
ing a new GSS, which provides a more e�cient sharing of parsing results.
We showed that GLL parsers with the new GSS are worst-case cubic in time
and space, and are significantly faster on both highly ambiguous and near-
deterministic grammars. As future work, we plan to measure the e↵ect of the new
GSS and the optimizations presented in Section 4 on memory, and to compare
the performance of our GLL implementation with other parsing techniques.

Acknowledgments. We thank Alex ten Brink who proposed the modification
to the GSS in GLL recognizers. Special thanks to Elizabeth Scott and Adrian
Johnstone for discussions on GLL parsing, and to Jurgen Vinju for his feedback.

References

1. Knuth, D.E.: On the Translation of Languages from Left to Right. Information
and control 8(6) (1965) 607–639

2. Deremer, F.L.: Practical Translators for LR(k) Languages. PhD thesis, Mas-
sachusetts Institute of Technology (1969)

3. Johnson, S.C.: Yacc: Yet Another Compiler-Compiler AT&T Bell Laboratories,
http://dinosaur.compilertools.net/yacc/.

4. Gosling, J., Joy, B., Steele, G.L.: The Java Language Specification. 1st edn.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1996)

19

http://dinosaur.compilertools.net/yacc/

5. Tomita, M.: E�cient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Norwell, MA, USA (1985)

6. McPeak, S., Necula, G.C.: Elkhound: A Fast, Practical GLR Parser Generator.
In: Compiler Construction, 13th International Conference, CC 2004. (2004) 73–88

7. van den Brand, M., Heering, J., Klint, P., Olivier, P.A.: Compiling language defi-
nitions: the ASF+SDF compiler. ACM Trans. Program. Lang. Syst. 24 (2002)

8. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Pro-
gramming 78(10) (October 2013) 1828–1844

9. Johnson, M.: The Computational Complexity of GLR Parsing. In Tomita, M., ed.:
Generalized LR Parsing. Springer US (1991) 35–42

10. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In: Software
Language Engineering - Third International Conference, SLE 2010. (2010) 42–61

11. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) Parsing of Programming
Languages. In: Programming Language Design and Implementation. PLDI ’89
(1989) 170–178

12. Visser, E.: Scannerless Generalized-LR Parsing. Technical report, University of
Amsterdam (1997)

13. Bravenboer, M., Tanter, É., Visser, E.: Declarative, Formal, and Extensible Syntax
Definition for AspectJ. In: Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2006. (2006) 209–228

14. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation Filters for
Scannerless Generalized LR Parsers. In: Compiler Construction, 11th International
Conference, CC 2002. (2002) 143–158

15. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language
Specification Java SE 7 Edition (February 2013)

16. Microsoft Corporation: C# Language Specification Version 5.0. (2013)
17. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml

system release 4.01: Documentation and user’s manual. (September 2013)
18. Afroozeh, A., van den Brand, M., Johnstone, A., Scott, E., Vinju, J.J.: Safe Spec-

ification of Operator Precedence Rules. In: Software Language Engineering - 6th
International Conference, SLE. (2013) 137–156

19. Johnstone, A., Scott, E., Economopoulos, G.: Generalised parsing: Some costs. In:
Compiler Construction, 13th International Conference, CC 2004. (2004) 89–103

20. Nozohoor-Farshi, R.: GLR Parsing for ✏-Grammers. In Tomita, M., ed.: General-
ized LR Parsing. Springer US (1991) 61–75

21. Scott, E., Johnstone, A.: Right Nulled GLR Parsers. ACM Trans. Program. Lang.
Syst. 28(4) (2006) 577–618

22. Aycock, J., Horspool, R.N.: Faster Generalized LR Parsing. In: Compiler Con-
struction, 8th International Conference, CC’99. (1999) 32–46

23. Ford, B.: Parsing Expression Grammars: A Recognition-Based Syntactic Founda-
tion. In: Principles of programming languages. POPL ’04 (2004) 111–122

24. Parr, T., Harwell, S., Fisher, K.: Adaptive LL(*) Parsing: The Power of Dynamic
Analysis. In: Object Oriented Programming Systems Languages and Applications.
OOPSLA ’14, ACM (2014) 579–598

25. Aho, A.V., Johnson, S.C., Ullman, J.D.: Deterministic Parsing of Ambiguous
Grammars. In: Principles of Programming Languages. POPL ’73 (1973) 1–21

26. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam (1997)

27. Economopoulos, G., Klint, P., Vinju, J.J.: Faster Scannerless GLR Parsing. In:
Compiler Construction, 18th International Conference, CC 2009. (2009) 126–141

20

	Faster, Practical GLL Parsing

