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OF MARKOV FIELDS 

BY J. VAN DEN BERG AND C. MAES 

CW! and K. U. Leuven 

Recently, one of the authors (van den Berg) has obtained a uniqueness 
condition for Gibbs measures, in terms of disagreement percolation involv­
ing two independent realizations. In the present paper we study the de­
pendence of Markov fields on boundary conditions by taking a more suit­
able coupling. This coupling leads to a new uniqueness condition, which 
improves the one mentioned above. We also compare it with the Dobrushin 
uniqueness condition. 

In the case of the Ising model, our coupling shares certain properties with 
the Fortuin-Kasteleyn representation: It gives an explicit expression of the 
boundary effect on a certain vertex in terms of percolation-like probabilities. 

1. Introduction. In this paper we study the influence of a boundary 
condition (which we abbreviate as b.c.) on the state of a Markov field in terms 
of disagreement percolation. This is done by constructing a coupling between 
two realizations of the Markov field under different b.c.'s. The effect of the b.c. 
is then estimated in terms of percolation-like probabilities. 

Our main result (Theorems 1 and 2) is a precise formulation of various 
properties of this coupling. It allows us to derive upper bounds for the bound­
ary effects (Corollary 1) and a new uniqueness condition for Gibbs measures 
(Corollary 2). This is presented in Section 2. Depending on the nature of the 
interaction, this condition is sometimes better or worse than other existing 
criteria for uniqueness. Section 3 is devoted to applications, examples and 
comparisons. Proofs are collected in Section 4. 

We start, however, by reminding the reader of some key concepts that will 
play a crucial role in our constructions. 

Graphs. Take a graph G which is finite, or countably infinite and locally finite 
(the last means that every vertex has finitely many edges). Examples include 
the triangular lattice, the d-dimensional hypercubic lattice (which, with some 
abuse of notation, we denote by zd) and many others. The vertex set of G is 
denoted by V. Vertices are denoted by i, j, v, w, ... , possibly with a subscript. 
We use the notation v "'w to indicate that two vertices v and ware adjacent, or 
neighbors, which means that there is an edge between them. The neighborhood 
Ni of a vertex i is the set of allj "' i. For B c V, IBI denotes its cardinality (B is 
finite iflBI < oo), and the boundary 8B of Bis the set of all vertices which are not 
in B but adjacent to some vertex in B. By a path we mean a (finite or infinite) 
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sequence of distinct vertices v1, v2 , ... in which the consecutive vertices are 
adjacent. For W c V not containing vertex v, a path from v to W is a finite path 
whose first vertex is v and whose last vertex is in aw. (Note that, in contrast 
to part of the literature, we do not require that the last vertex of the path itself 
belongs to W.) 

Percolation. Suppose now that to each vertex a value 0 or 1 is assigned, 
according to some probability measure µ on the product space { 0, 1} v. A vertex 
with value 1 is called open (depending on the context, people sometimes call it 
occupied, or accessible-in this paper it will represent some sort of disagree­
ment). Percolation theory deals with the study of certain open paths, that is, 
paths on which all the vertices take the value 1. We say that there is percolation 
for µ if it assigns positive probability to the event that there exists an infinite 
open path. · 

The simplest and most studied example is the case whereµ is a Bernoulli 
measure with density p. In that case each vertex, independent of all the other 
vertices, is open with probability p and closed(= O) with probability 1- p. This 
measure will be denoted in this paper by Pp. The critical probability is then 
defined by 

(1.1) Pc= inf {p E [O, 1]: Pp[there exists an infinite open path] > 0} 

as the threshold for percolation. Since Pc depends on G, we sometimes write 
Pc(G). The availability of lower bounds for Pc is important in this paper. It is 
known [Hammersley (1957)] that always 

(1.2) 
1 

Pc> I I . - supi Ni - l 

In many cases strict inequality holds, for example, ford > 1, 

d 1 
(1.3) Pc('Z ) > 2d - l' 

Asymptotically, the r.h.s. of (1.3) gives the correct behavior in the sense that 

(1.4) 

[see Kesten (1990) for this and more detailed asymptotic results]. However, 
in low dimensions larger than 1,pc is considerably larger than the r.h.s. of 
(1.3), and this will appear to be important in this paper. For instance, ac­
cording to an early result in percolation theory [Harris (1960) combined with 
Hammersley (1961)], 

(1.5) 

Strict inequality was proved by Higuchi (1982), that is, PcC'll..2) > 1/2. This, in 
turn, was further improved by the lower bound 0.503 ... of Toth (1985). More 
recently, Menshikov and Pelikh ( 1989) have obtained a computer-assisted proof 
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of the lower bound 0.54 .... Nonrigorous methods suggest that Pc ~ 0.593 for 
this lattice. 

In the above percolation models, the randomness involves the vertices, and 
therefore we speak of site percolation. If, instead, the randomness involves the 
edges, we speak of bond percolation. For further study, see Kesten (1982) and 
Grimmett (1989). 

Markov fields and Gibbs measures. Let S be a finite set and define n = 
sv. Elements of n are called configurations and will usually be denoted by 
a= (a(i), i E V) if it concerns the random field, and by 1J, rJ', ... if we consider a 
fixed configuration. We will also use this notation for elements of SB, with B a 
subset of V. (It will always be clear from the context which set B is meant.) If 
A c B c V, TJ, 1)1 E S8 and 1)(i) = TJ'(i) for all i in A, we write "'r/ = 1)1 on A." 

We consider certain probability measures on n [or, more precisely, on the 
sigma field generated by the collection of sets {a En: a(i) = s}, i e V, s e S]. A 
measure /.1 is called a Markov field if, for each finite A c V and each 'r/ e SA, 

(1.6) v[a = 1J on A I a(i), i eAc] = v[a = 'rJ on A I a(i), i E 8A], 1.1-a.s. 

In many applications the conditional probabilities in the r.h.s. of (1.6) are 
known and the problem is to "determine" the probability measures /.1 which 
satisfy (1.6). This approach leads to the introduction of a so-called specification 
(YA(·, 1]), Ac v, 'r/ E s8A), whichisacollectionofprobabilitymeasures,indexed 
by the finite sets A c V and the possible configurations 1J on 8A. These probabil­
ity measures are interpreted as conditional distributions of the configurations 
on the finite sets, given the configuration on their boundary. [Of course, this 
collection of probability measures must satisfy certain consistency conditions: 
See, e.g., Georgii (1988) for details.] Denote by S~A the set of all 1)' E S 8A for 
which v[a = 1)1 on 8A] > 0. Formally, the problem then is to "determine" the 
Markov fields /.1 which satisfy, for all finite A C V, all 'rJ E SA and all TJ' E S~A, 

(1.7) v[a = 'r/ onA I()"= 'f/1 on aA] = YA(TJ,'T}1). 

These Markov fields are called the Gibbs measures of the specification Y. 
In case G is infinite, a specification may have more than one Gibbs measure, 

in which case we say that there is a phase transition. [Dobrushin (1968a) is one 
of the earliest papers where such a phase transition is rigorously established.] 
An important problem is to formulate useful conditions under which this does 
not occur. In this paper we focus on this problem. 

REMARK. There is a one-to-one relation between the above-mentioned 
specifications and so-called nearest-neighbor potentials. In fact, in many ap­
plications (especially in the context of statistical physics), one starts with a 
given potential function, which, via its Hamiltonian gives rise to a specifica­
tion and its Gibbs measures. The reverse is also true: For each Markov field 
a suitable potential function exists [see, e.g., Grimmett (1973)]. However, this 
relation is not essential for our main results (Section 2) and therefore we will 
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not treat it here in more detail. For the discussion in Section 3 , some familiar­
ity with certain special models, like the Ising model, is desirable. For further 
study and background, we refer the reader to the earlier-mentioned book by 
Georgii (1988) or (as a gentle introduction) Kindermann and Snell (1980). 

Coupling, variational distance and stochastic domination. We summarize 
here some of the tools we need. They can be found in or reconstructed from the 
standard references on coupling, such as Lindvall (1992). 

Let L be a finite set and letX1 andX2 be two L-valued random variables with 
distribution p1 and p2 , respectively. The variational distance of X1 and X2 (or, 
equivalently, of p1 and p2) is defined by 

(1.8) 
1 

d(p1, P2) = 2 L IP1(a)- P2(a)I. 
a EL 

An equivalent definition is 

(1.9) 

If (Xi, X2) i~ an L x L-valued random variable such thatX1 equals X1 in distri­
bution and X2 equals X2 in distribution, then we call it a coupling of X1 and X2 
(or, with some abuse oftermin~logy,_?f p1 and p2 ). It is well known (and easily 
seen) that the probability thatX1 ':f X2 is always at least d(pi, p2). It is also well 
known that there exists an optimal coupling, for which equality holds, that is, 
if we denote the distribution for such a coupling by P, then 

(1.10) 

Another result we will use is the following: If the probability distribution p1 

is a mixture (or, convex combination) of p]. and P1, and p2 is a mixture of P2 and 
p~, say P1 = a1p~ + (1 - a1)P1 and P2 = 0!2P2 + (1 - a2)p~, then 

d(pi, P2) :::; a1a2d (p]., P2) + 0!1 (1 - a2)d(p]., p~) 

(l.11) + (1- a1)a2d(p1,P2) + (1- a1)(l - a2)d(p1,p~) 

:::; max { d (p]., p~), d (p]., p~), d (P1, P~), d (P1, P~)} · 

(The first inequality follows from the definitions and properties mentioned 
above, by taking as coupling of Pi and p2 the appropriate mixture of optimal 
couplings between p]. and p~, between p]. and p~, etc.; the second inequality 
is trivial.) 

A similar result holds for mixtures of more than two distributions. 
Now suppose that Lis equipped with a total order -<.This induces, for n = 

1, 2, ... , a partial order (also denoted by -<) on Ln: Ifs = (si, ... , sn) and s' = 
(s]., ... , s~), then s -< s' means that si -< s; for all i = 1, ... , n. A real-valued 
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function f on Ln is called increasing if x -< y implies f(x) s; f( y). If X and Y are 
Ln-valued random variables, we say thatX is stochastically dominated by Y if, 
for each increasing{, E[ f(X)] s; E[ f(Y)]. (We also say that then the distribution 
of X is dominated by that of Y.) A classical result, which goes back to Strassen 
(1965), says that this holds if and only if there exists a coupling of X and Y 
which is optimal in the sense defined above [i.e., (l.10) holds] and, moreover, 
has the property that 

(1.12) -P[i-< ¥] =i. 

The "if" part of this result is obvious, and the "only-if" part will only be used in 
this paper for the case that n = 1 (in which case the proof is easy). 

If L c Z, then, unless explicitly stated otherwise, the order on L will always 
be the "ordinary" total order inherited from Z. 

If the single-vertex state space of a Markov field v is ordered, then v is 
called monotone if, for all finite A c V and all 'T/l -< 'T/2 E S~A, the probability 
distribution v[a = · on A I a = 'T/1 on BA] is dominated by v[a = · on A I a = 'T/2 
on 8A]. 

2. Main results. As in Section 1, let G be a finite or countably infinite, 
locally finite graph and let S be a finite set. Let v be a Markov field on n = sv. 

Define, for each finite A c V and each b.c. 'T/ E S~A, the following conditional 
Markov field on sA: 

(2.1) QA ( ·, 'TJ) = v[a = · on A I a = 77 on BA]. 

(If A consists of one element i, we will write Qi instead of Q {i} .) 

Now define the parameters 

(2.2) 

which will play a major role in what follows. 
For two configurations 771, 'T/2 E SA, a path of disagreement is a path of which 

all vertices i are in A and satisfy 771 (i) f: 772(i). 

THEO REM 1. For each finite A c V and each pair 'f/1, 'f/2 E S~A, there exists 
a coupling ((0"1 (i), a 2(i)), i E A) (whose distribution we denote by P) of QA ( ·, 'f/1) 
and QA ( ·, 'T/2) such that: 

(i) The random field (I(a1(i) f: a 2(i)), i EA) is stochastically dominated by a 
family (Xi, i EA) of independent Bernoulli trials with density qi, where the q/s 
are as defined in (2.2). Here I(·) denotes the indicator function. 

(ii) For each i E A, O"l (i) f: 0"2(i) if and only if there is path of disagreement 
from i to 8A(P-a.s.). 

We get extra properties for this coupling when applied to monotone Markov 
fields. This is contained in the following result. 
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THEOREM 2. If Sis ordered and v is monotone, then, if T/1 -< TJ2, the cou­
pling P of Theorem 1 can be taken in such a way that, besides (i) and (ii) the 
following hold: 

(iii) For each i EA, u 1(i) -< a2(i) (P-a.s.). 
(iv) For each i EA, 

d( QA(u(i) = -.1J1),QA(a(i) = · ,TJ2)) 

(2.3) :::; P[there is a path of disagreement from i to 8A] 

:::; (ISI - l)d( QA(a(i) = ·, 1/1), QA (u(i) = ., 1/2)). 

In particular, if ISI = 2, we have equality in (2.3). 

Suppose now that A c A is some set of vertices in A and let E be an event 
involving only the vertices in A [i.e., measurable with respect to the sigma 
algebra generated by the (u(i), i E A)]. 

Using the same notation as before, we now estimate the difference in the 
probabilities of the event E for the two conditional distributions in Theorem 1. 

COROLLARY 1. 

(2.4) 
\QA(E, TJ1) - QA(E, 1}2)\ 

:5 P {qi} [ there is an open path from some vertex in A to 8A], 

where P {q;} is the product measure under which each vertex is open with proba­
bility qi and is closed with probability l - qi. 

Finally, we tum the situation around. Instead of starting from a Markov field 
v as we did above, we pick up the discussion that followed after (1.6) and want 
to say something about the solutions to (1. 7) for the prescribed right-hand side. 
So let Y be a specification as in Section 1, and define, analogously to (2.2), 

(2.5) 

Our result on uniqueness of Gibbs measures is then as follows. 

COROLLARY 2. If 

(2.6) P {pi} [there is an infinite open path] = 0, 

then the specification Y has at most one Gibbs measure. In particular [see (1.1)], 
this holds if 

(2.7) SUP Pi <Pc· 
i 
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3. Discussion. 

1. Our results were motivated by a uniqueness condition of van den Berg 
(1993), who gave a successful application to certain models (see Example 2 
below). The uniqueness condition given by Corollary 1 of van den Berg has 
much in common with our Corollary 2, with p/s which are defined by taking 
the same maximum as in (2.5), but with the product coupling [while (2.5) takes 
an optimal coupling]. More precisely, the uniqueness condition of van den Berg 
is the following: 

(3.1) 

[In fact, the condition in van den Berg ( 1993) does not have the restriction 77 ':/; 77 1 

in its maximum, but it was pointed out in van den Berg and Steif (1994) that, 
for adding this restriction, the proof needs only a minor adaptation.] 

In view of the remarks following (1.9), the l.h.s. of(3.l) is larger than or equal 
to Pi and hence our current condition is clearly an improvement of the former. 
A shortcoming of the former condition was the existence of natural examples 
where Yi(·, 77) does not depend on 77 (so that uniqueness is trivial), but for which 
the condition failed. It is clear that the present condition is satisfied in such 
examples (since then pi = 0). 

It is also useful to compare our criterion with the more standard Dobrushin 
(1968b) single-site uniqueness condition, which, in our notation, takes the form 

(3.2) 

[See Georgii (1988) for references and details.] Here the constraint "77 = 771 offj" 
means that we consider configurations 77, 771 which differ only at the vertexj. It 
may happen that for every j E Ni the maximum is actually the same as without 
this constraint in which case (3.2) equals supi !Nd Pi· This scenario is likely to 
occur for systems with a hard-core exclusion or for certain antiferromagnetic 
models; see the examples below. For a regular lattice (and all p/s equal to a 
single valuep), say G = 'lli, the Dobrushin condition would then hep< 1/(2d) 
while our criterion would be p <Pc [which is an improvement by (1.3)]. In par­
ticular, in the case d = 2 our condition takes advantage of lower bounds for Pc 
which differ considerably from 1/(2d) [see (1.5) and the remarks following (1.5)]. 
The opposite happens when the constrained maximum in (3.2) is much smaller 
than the unconstrained maximum. This happens, for example, for ferromag­
netic Ising models. In those cases Dobrushin's condition is usually better. 

By the arguments above we expect that, roughly speaking, our uniqueness 
criterion (2. 7) will usually perform relatively well for "constrained" models (or 
systems with strong repulsive interactions) involving low-dimensional lattices 
(or graphs with small !Nil's) for which reasonable lower bounds are available 
for the critical probability Pc· The examples below are intended to illustrate 
these points. 
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EXAMPLE 1 (The hard-core lattice gas model). The single-vertex state space 
is S = {O, l}. This model has one parameter, the activity a. The single-vertex 
specification Yi(l, ry) equals a/(a + 1) if T/ = 0, and is 0 otherwise. One can 
easily check that for this model our condition (2. 7) gives exaclty the same result 
[namely, uniqueness for a <Pc/(1-Pc)] as condition (3.1) [which, for this model, 
was applied in van den Berg and Steif (1994)]. Apparently, here the product 
coupling plays a special role. This is also reflected by some other results of 
van den Berg and Steif (1994) for this model, which are similar to part (iv) of 
Theorem 2, but obtained in a different manner and with P equal to the product 
coupling QA( ·, ry1) x QA( ·, T/2). If we study the proof of Theorem 1 in the special 
case ofthis model, this leads, in essence, also to the product coupling. 

EXAMPLE 2 (The two-dimensional Ising antiferromagnet). This example is 
treated at length in van den Berg (1993). Our present uniqueness result gives 
an improvement over the results for this model obtained there. However, in 
the interesting limit case which was of particular interest in that paper and 
in Dobrushin, Kolafa and Shlosman (1985), this model leads to the hard-core 
lattice gas model for which, as said above, our condition gives the same result 
as the one in van den Berg (1993). 

EXAMPLE 3 (The Widom-Rowlinson lattice gas model). See, for example, 
Georgii (1988). The single-vertex state space is S = {O, -1,+l}. The states 
± 1 are interpreted as two sorts of particles that can occupy a vertex and 0 
represents an empty site. The model corresponds to putting particles on the 
vertices with activity a > 0, with the constraint that no two particles of opposite 
sign can be on adjacent vertices. More precisely, the single-vertex specification 
is given by 

(3.3) Yi(s,ry) = il(sry(j) rf -1 for allj"' i) ifs= ±1 

=1/Z ifs=O, 
where Z = Z(ry,a) is a normalizing constant and!(·) denotes the indicator func­
tion. Calculating (2.5) gives Pi = 2a/(1 + 2a) if vertex i has at least two adjacent 
vertices, and pi = a /(1 + a)if i has only one adjacent vertex. Thus, by Corollary 2, 
for a< pc/(2(1-p0 )) there is a unique Gibbs measure for this specification. It is 
not difficult to check that in this model the condition (3.1) gives a result which 
is strictly worse. If G is a graph in which each vertex has z ~ 2 neighbors, then 
the Dobrushin single-site condition (3.2) gives uniqueness for a < 1/(z - 1). 
For G = Z2 ,z = 4, this is certainly improved by our criterion because of (1.5). 
However, for the hypercubic lattice in sufficiently large dimension, Dobrushin's 
condition is better because of (1.4). 

EXAMPLE 4 (Communication networks). Here the graph represents a net­
work, at the nodes of which calls are generated according to independent Poisson 
processes with rate .A. The durations of the calls are independent, exponentially 
distributed random variables with mean T. For the transmission of a call, all 
edges (links) of the corresponding node are needed. However, the number of 
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calls that can be handled simultaneously by a link is at most n, where n is a 
parameter of the model. A call generated at a node i is therefore ignored (lost) if, 
for somej ""'i, the sum of the ongoing calls at i andj is n. For more information 
on such models, see Kelly (1991), Louth (1990) and Kelbert and Suhov (1990). 

The temporal evolution of the finite system is a continuous-time Markov chain 
with state space { 0, ... , n} v. It is easy to check that its stationary distribution 
vis given by 

(3.4) 1 a"• 
v(71) = z fI (l!l('T) is feasible), 

iEV 1/i 

where a = >..T, feasible means that for all i and allj ,..., i, 1/i + 1/j ::; n and Z is a 
normalizing constant. It is also easy to see that this is the Gibbs measure for 
the following specification Y: 

(3.5) 
ifs ::; n - m(71), 

otherwise. 

Here m(7J) = maxi~i 7J{j). Note that for n = 1 we have the hard-core lattice gas 
model mentioned earlier. 

Studying the infinite case (iVj) = oo) leads to the question whether the above 
specification has a unique Gibbs measure. Now note that the maximum in the 
calculation of the p/s in (2.5) is obtained when T/ = 0 and r/{j) = 0 for allj 
except one, for which it equals n. Hence 1/ and 711 differ at only one vertex and 
thus, as explained before, here our criterion performs better than the Dobrushin 
criterion. More explicitly, on zd our condition (2. 7) guarantees uniqueness when 

(3.6) 

The Dobrushin criterion (3.2) for this case is the above inequality, but with pc 
replaced by 1/(2d), which is worse [by (1.3)]. As mentioned before, our bound 
can especially take advantage in d = 2 of the available lower bounds (1.5) and 
thereafter for Pc· The criterion (3.1) of van den Berg (1993) is, for these models 
with n > 1, usually strictly worse than ours, since the maximum in (3.1) is not, 
in general, achieved by the same pair 71, 11' as above. 

2. The Fortuin-Kasteleyn (1972) representation is one of the most appre­
ciated methods connecting problems between ferromagnetic Potts models and 
percolation models. To be specific, we consider the nearest-neighbor ferromag­
netic Ising model (at inverse temperature /3) on a graph G. It has S = { -1, + 1} 
and single-site specification Yi(+l, 71) = !(1+tanh[/JI.:i~i7J{j)]), where we sum 
over all neighborsj of i. On a finite set A c V, we take "plus"-b.c.: Put 71{j) = 
+l, V j E 8A. Denote by (u(u)}i the expectation of the spin at a vertex u EA for 
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this Ising model in volume A. The FK-representation involves a (dependent) 
bond percolation model on A u 8A, for which 

(3.7) (a(v))A_ = Prob[there is an open path from Vto DA]. 

Now in our notation, the l.h.s. of(3.7) equals 

v [ o-(v) = + I a- = + on aA] - v [ o-(v) = - I o- = + on 8A J, 

which, by the symmetry between+ and-, equals 

v [ a(v) = + I a = + on BAJ - v [ a(v) = + I a = - on BAJ. 

Since S has only two values, this last expression is exactly the variational 
distance between v[a(v) = ·I a =+on 8A] and v[a(v) = ·I a = - on 8A]. Fur­
ther, this is a monotone Markov field, so we may apply part (iv) of Theorem 2, 
which yields 

(3.8) (o-(v))A_ = P[there is a path of disagreement from 11 to ()A]. 

In other words, we get an expression which is similar in spirit to (3. 7). However, 
our expression involves site (instead of bond) percolation, and we do not know 
how to make a precise connection with the FK-representation. 

3. The Dobrushin-Shlosman (1985) constructive uniqueness criterion is of 
the form: "If the specification is such that a condition Cv holds for some finite 
volume V, then there is a unique Gibbs measure." It is believed that, for a 
large class of models, by checking sufficiently large boxes, uniqueness can be 
proved in this way whenever it holds (except in the so-called critical region). In 
practice, the usefulness is, of course, bounded by computer power: For instance, 
the computer-assisted result for the two-dimensional Ising antiferromagnet in 
Dobrushin, Kolafa and Shlosman (1985) is weaker than the aforementioned 
result based on the criterion in van den Berg (1993). A natural question is 
whether the notion of disagreement percolation also leads to some constructive 
uniqueness criterion. This seems indeed to be the case for monotone models, 
but we have not yet carefully studied its properties, and therefore will not treat 
this subject here in more detail. 

4. The main purpose of this paper is to show how the notion of disagree­
ment percolation in van den Berg (1993) can be fruitfully combined with cou­
pling ideas. We have not searched for the most general or most optimal results. 
For instance, throughout this paper we have assumed that the single-site state 
space S is finite. Almost everything goes through unaltered if S is countably 
infinite. However, since all our relevant applications have finite S, we have 
ignored the countably infinite case. When S is uncountable, new ideas are 
needed and a proper alternative of the notion "path of disagreement" has to 
be found. Another possible direction of improvement is indicated in Remark 2 
at the end of the proof of Theorem 1. 
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4. Proofs. 

PROOF OF THEOREM l. For convenience, we extend the field to 8A, that 
is, we construct a collection (a1 (i), a2(i), i E AU 8A). First, naturally, we set 
for each j E BA, a1 (j) = '1'}1 ( j) and a2(j) = '1'}2(j). Before we proceed, we put 
an arbitrary order on the set A. Next, we assign step by step a a 1 (i) and a 2(i) 
value to the vertices i E A. Each step goes as follows. Let W denote the set of 
vertices which have already obtained their value; in particular, W = BA at the 
beginning. Further let, for eachj E W, a1(j), n2(j) ES be the a 1- and a 2-value, 
respectively, whichj has obtained. Now take the smallest (with respect to the 
above-mentioned order on A) vertex v E A \ W with the property that there 
exists aj E W adjacent to v, for which a 1(j) t a 2(j). If no such vertex exists, 
we relax the required property and just take the smallest element v of A\ W. 
If this last set is empty we have finished our construction. 

Having found the above vertex v, consider the following two probability 
distributions: 

(4.1) 
v[a(v) =·I a(j) = a1(j), j E WJ, 
v[a(v) =·I a(j) = a2(j), j E W]. 

We take an optimal coupling [as in (l.10)] of these two distributions, draw a 
pair (a, b) ES x S according to this distribution and set a1(v) =a, a2(v) =b. 

We continue these steps until each vertex i EA has obtained its (a1, a 2)-value. 
To see that the random field (a1 (i), a2(i), i EA) we have now obtained is indeed 

a coupling of QA ( ·, '1'}1 ) and QA ( ·, ry2 ) (i.e., that it has the correct marginals), we 
use induction on the number of vertices in A. If IAI = 1, it follows immediately 
from the construction. Suppose that it holds for all A' c V with IA'I = n and n 
some fixed number. Suppose we now have a set A c V, for which IAI = n + 1. For 
a fixed pair of b.c.'s T/i, ry2 , the first vertex that is chosen in A is unambiguously 
determined by the order we have chosen. Call this vertex v and write A = 
A' u { v} with IA' I = n. Once the earlier described construction of the random 
field (a1 (i), a 2(i), i E A) (whose distribution we denote by P11·'12 ) is finished, 
consider the probability of a certain realization a 1 of a1: 

x P11>'1z [a1(v) = n1(v), a2(v) = a2(v)]. 

Now the first factor is of the form P1~ ·'1~ [a1 = a1 on A'], where ry]. denotes the 
configuration for which 17]. = ry1 on BA' \ { v }, and ry]. (v) = a1 (v ). Hence, by the 
induction hypothesis, it equals v[a = a 1 on A' I a = TJ]. on 8A'], which, by the 
definition of TJ]., equals 11 [a = a:1 on A' I a = 111 on oA' \ { v}, a(v) = 0::1 (v )] . Finally, 
by the Markov property, this equals 

(4.3) v[a = a1 on A' I a= T/I on BA, a(v) = a1(v)]. 
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The second factor in the r.h.s. of (4.2) is determined from the one-step coupling 
procedure described after ( 4.1) and, by definition, has the correct marginals. 
Hence its sum over a 2(v) equals v[O'(u) = o:1(v) I O' == r71 on 8A]. Multiplying this 
with the expression (4.3) yields 

11 [ O' = a1 on A I O' := r11 on BA] , 

as required. Analogously, it can be checked that 0'2 has the correct distribution. 
Part (i) of the theorem follows from the observation that, due to the Markov 

property, each of the two distributions in (4.1) is a mixture of distributions 
of the form v[a-(v) = · I O' = a on Nd, a E Sfju. Hence, using (1.11), no matter 
what happened earlier in the construction, the probability that a-1 (i) :f a-2(i) 
is always at most qi [with qi as in (2.2)]. Hence, one can construct a coupling 
with a Bernoulli field (Xi,i EA), as defined in the theorem, such that, with 
probability 1, 0'1 (i) :f a-2(i) implies xi = 1. 

As to part (ii), consider the first step in the construction above that the se­
lected vertex v has no neighborjwhich has already obtained a value (a1 ( j), a2( j)) 
with a 1(j) (:. a 2(j). Apparently, at that step, we have a 1(j) = a2(}) for all 
j E 8(A \ W) and hence, using the Markov property, the two distributions in (4.1) 
which are to be coupled at that step are equal. Since we take an optimal cou­
pling, the 0'1- and the 0'2-values assigned to v are also equal (almost surely). 
But this means that, in the next step, we are in the same situation, that is, the 
a-1 - and a-r values assigned at that step are again equal, and so on. Thus, if 
a-1 (i) f. O'z(i), either i E 8A or i has a neighboring vertex j which obtained its 
value in an earlier step and has a 1 ( j) (:. a-2( j). D 

REMARK 1. The coupling we have constructed here depends on the order in 
which we choose to add vertices. There are simple examples where different 
orders indeed lead to different couplings (i.e., to different probability measures 
P statisfying Theorem 1). Instead of a fixed chosen order, there are many other 
possibilities. For instance, we could, at very step in the coupling procedure, 
choose a vertex v randomly from the set An &{j E W: a 1 (j) f. a 2(j)}. 

REMARK 2. A direction of possible improvement is the following: In the proof 
of part (i) of Theorem 1, we have applied the inequality between the first and 
the last expression in (l.11). The reason is that, in our application, we have 
little control over the factors a;. However, if, for certain models, we carefully 
exploit the little knowledge we do have about these a/s, some improvement can 
be made by using the first inequality in (1.11). 

PROOF OF THEOREM 2. The proof of part (iii) follows from standard argu­
ments: For the first vertex v EA which is selected in the procedure described 
above in the proof of Theorem 1, we have W = 8A and hence a 1 = r11 and 
a2 = 7)2 on W so that, by assumption, a 1 -< az. Hence, by the definition of mono­
tone Markov field, the probability distribution in the l.h.s. of(4.1) is dominated 
by that in the r.h.s. Therefore [see (l.12)], we can take the optimal coupling 
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of these distributions in such a way that a -< b [i.e., cr1 (v) -< cr2(v )] with prob­
ability 1. Now for the next selected vertex v' we have W = 8A u {v} and we 
have again that al -< a2 on W. So in exactly the same way as for v, we get 
cr1 (v') -< cr2(v'), and so on. 

Finally, we prove part (iv). The first inequality follows immediately from 
part (ii) and the remark just before (1.10). As to the second inequality, let m 
denote the maximal element of S. Since, by (iii), cr1 (i) -< cr2(i)('P-a.s.), we have 

'P [ a1 (i) rf a2(i)] = 'P [ LJ ( a1 (i) -< s, o-2(i) ft, s )] 
sES,s;i!m 

:5 L 'P[a1(i)-<s,cr2(i)f!,s)] 
sES,s;i!m 

= L {'P[a1(i)-< s] - 'P[a2(i)-< s]} 
sES,s;i!m 

:5 <!SI - l)d(a1(i),a2(i)). 

The last inequality follows from (1.9). Using part (ii), the result now follows 
immediately. o 

PROOF OF COROLLARY 1. Let 'P denote the distribution of the coupling 
((o-1(i), a2(i)), i E A) of Theorem 1. Then, applying the definition of coupling 
and Theorem 1 [first part (ii) and then part (i)], 

IQA(E, '1'}1) - QA(E, 112>! 

= IP[E x n] - P[n x E] I 
= IP[E x en \E>J -P[m \E) x E] 1 

(4.4) ::::; max { 'P [Ex en\ E)], 'P [en\ E) x E]} 
:5 'P [ a1 (i) rf a2(i) for some i E A] 
= 'P [there is a path of disagreement from A to 8A] 

::::; P{q;} [there is an open path from A to 8A]. o 

PROOF OF COROLLARY 2. Let 111 and !12 be Markov fields for the specification 
Y. To reformulate the problem in such a way that Corollary 1 can be applied, 
we introduce an auxiliary Markov field µ, which is a convex combination of 111 

and 112, sayµ= ~v1 + ~v2 . Clearly,µ is also a Markov field for specification Y. 
It is sufficient to show that for every event E as in Corollary 1, 111[EJ = v2[EJ. 

Take a nested sequence A = Ao c · · · c An c · · · , n = 1, 2, ... , of finite subsets 
ofV such that u An= V. We obviously have 

(4.5) 

vi[E] - v2[E] = L vi[cr ='I'} on 8AnlYAn(E,17) 

- L v2[cr = 17 on 8An]YA.(E,17). 

11ese:· 
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The second factor in both summands is clearly smaller than or equal to 

(4.6a) 

and larger than or equal to 

(4.6b) 

Hence (since in both summands the sum of the first factors equals 1), we have 

(4.7a) 

Noting that in that r.h.s. of (4.7a) we can replace YA.(E, T/) and YA 0 (E, T/1) by 
µ[EI u = T/ on 8Anl and µ[EI u = T/1 on 8Anl, respectively, allows us to use 
Corollary 1 which yields 

(4.7b) lvi[E] - v2[E] I ~ P{qi} [there is an open path from A to 8Anl. 

where 

(4.8) 

However, for each i, qi ~Pi, with Pi as in (2.5). Therefore, 

(4.9) lv1 [E] - v2[E] I~ P{pi}[there is an open path from A to 8Anl· 

Under the hypothesis of the corollary, taking n i oo in (4.9) yields vi[E] = 
v2[El. 0 

NOTE ADDED IN PROOF. For a large class of regular graphs, including the 
hypercubic lattices, our method, combined with a well-known result for sub­
critical percolation (exponential tail decay of the radius of an open cluster), 
shows that condition (2.7) implies not only uniqueness of the Gibbs measure 
but even complete analyticity. We thank R. Schonmann for this observation. 
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