
Towards Model Checking Cryptographic
Protocols with Dynamic Epistemic Logic

Malvin Gattinger1 and Jan van Eijck2

1 ILLC, Amsterdam, The Netherlands, malvin@w4eg.de
2 ILLC and CWI, Amsterdam, The Netherlands, jve@cwi.nl

Abstract. We present a variant of Kripke models to model knowledge
of large numbers, applicable to cryptographic protocols. Our Epistemic
Crypto Logic is a variant of Dynamic Epistemic Logic to describe com-
munication and computation in a multi-agent setting. It is interpreted
on register models which efficiently encode larger Kripke models. As an
example we formalize the well-known Diffie-Hellman key exchange. The
presented register models also motivate a Monte Carlo method for model
checking which we compare against a standard algorithm, using the key
exchange as a benchmark.

1 Introduction

Cryptographic protocols deal with the knowledge of secrets which can usually
be represented as numbers. The established semantics for logics of knowledge
are Kripke models, consisting of a set of possible worlds on which each agent
is assigned a relation that represents her knowledge. Our question is whether
we can use such semantics to analyze cryptographic protocols and — as a first
step — the knowledge of numbers. Thus, our work is in the tradition of Dynamic
Epistemic Logic (DEL) [1,2] rather than process logic [18].

Our approach differs from existing methods for model checking protocols
based on interpreted systems [3,20] in which possible states are connected by a
temporal relation or transition function. In contrast, our Kripke models are purely
epistemic: Relations between possible worlds represent the knowledge of agents.
Time is not part of our models but only given implicitly by commands and their
interpretation as action models. Another difference is that many frameworks,
including [7] which is also based on DEL, introduce cryptographic primitives like
keys or nonces to the syntax and semantics. This is not necessary here, we only
need numeric variables.

The paper is structured as follows. In Section 2 we argue that ordinary Kripke
semantics are not suited for modeling ignorance of large numbers because the
models quickly become too large. We therefore introduce register models which
only distinguish one actual value of a variable from all other possibilities. Section
3 presents the syntax and semantics of Epistemic Crypto Logic, a language that
is able to capture directed communication and computation and is interpreted on
register models. We then describe a Monte Carlo method for model checking in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section 4 and formalize a cryptographic protocol from the literature in Section
5. Section 6 concludes with model checking results and suggestions for further
research.

2 Register Models

To introduce the idea of register models which was first presented in [9], consider
the following number guessing game, played between Jan and his twin daughters
Gaia and Rosa. Jan says: “I have a number in mind, in the range from one to ten.
You may take turns guessing. Whoever guesses the number first wins.” Gaia and
Rosa agree and after a number of rounds, Jan announces: “Rosa, you have won.”

A naive representation of this game can be given as a multi-agent Kripke
model with ten possible worlds. In Figure 1a the actual world — where the
number is 6 — is indicated by a box, and dashed lines represent the ignorance of
the twins. Note that if Jan and the twins were to play the game with numbers
up to 100 our model would become much larger. Now suppose the following
exchange takes place: Gaia: “Eight?” . . . Jan: “No”. This results in an update of
the model: The possibility 8 drops out, and this is common knowledge among the
twins because they both heard Jan’s reply. The result can be seen in Figure 1b.

6

1

2
3

4

5

7
8

9

10

(a) Beginning of the game.

6

1

2
3

4

5

7 9

10

(b) After a first wrong guess.

Fig. 1: A naive representation of the guessing game.

And so on until one of them guesses the correct number. But at some point
the twins start to complain, and refuse to play the guessing game in this way:
“How can we know you are not cheating on us? Please write down the number,
so you can show it to us afterwards as a proof.” When the secret number gets
written down, the important notion of a register arises. It allows Jan to prove
that he really knew the number because he had fixed it beforehand — and did
not just accept Rosa’s to make her win.

So what is it that Jan knew when we say that he knew the number? Let us
say: Jan can see the difference between a register with the correct number written
in it, and the same register with some different number written on it. If someone
else would change the number on the piece of paper, Jan would spot it, but Gaia
and Rosa would not.

To represent the game in a Kripke model it therefore suffices to distinguish
two possibilities: In the actual world the register p has the value 6 and in the

0: p
p = 6

1:
1 ≤ p ≤ 10
p 6∈ {6}

Gaia

Rosa

(a) Beginning of the game.

0: p
p = 6

1:
1 ≤ p ≤ 10
p 6∈ {6, 10}

Gaia

Rosa

(b) After a first wrong guess.

Fig. 2: Modeling the guessing game with register models.

other world it can be anything else in the range which was agreed upon earlier.
Jan knows p, the two children do not know p. This leads to the register model in
Figure 2a which can be seen as a translation of Figure 1a. Here 0 is a world that
has register p, with number 6 stored in it, while 1 differs from 0 in that it also
has this register, but with all the possible values in it that differ from 6. Gaia
(dots) and Rosa (dashes) do not have access to the register.

Suppose the register model from Figure 2a gets updated with Gaia: “Ten?”
and Jan: “No”. Then 10 drops out of the range of p and we obtain the model
shown in Figure 2b. If we would now go on with Rosa: “Six?” and Jan: “Yes”,
the model would be restricted to world 0.

Also interesting are incorrect guesses. Figure 3a shows the moment when Gaia
prepares to announce a guess but has not yet revealed it. She introduced the new
register q and knows that its value is 5, but Jan (solid) and Rosa (dashed) do
not know it yet. If Gaia reveals her guess by means of the announcement q = 5,
the model of Figure 3a changes into that of Figure 3b. Jan can now state that
the guess is wrong, by means of the announcement p 6= q. The result is a model
just like Figure 3b, except for the constraint p 6∈ {5, 6} at 1.

Without registers, Figure 3a blows up to a model with 100 worlds. More
generally, to model k registers, each of m bits to allow numbers between 0 and
2m, we get a blow-up from 2k to (2k)m possibilities.

0: q, p
q = 5
p = 6

1: q
q = 5

1 ≤ p ≤ 10
p 6∈ {6}

2: p
1 ≤ q ≤ 10
q 6∈ {5}
p = 6

3:
1 ≤ q ≤ 10
q 6∈ {5}

1 ≤ p ≤ 10
p 6∈ {6}

(a) Gaia is preparing her guess.

0: q, p
q = 5
p = 6

1: q
q = 5

1 ≤ p ≤ 10
p 6∈ {6}

(b) Gaia revealed her guess.

Fig. 3: Models with two registers.

A sound and complete axiomatization of the resulting Guessing Game Logic
can be found in [10] and a detailed discussion in [12]. Here we will directly present
an extended framework for which [10] only gives the syntax and an example.

3 Epistemic Crypto Logic

The idea of register models introduced in the previous section can also be used to
analyze cryptographic protocols. In this section we define Epistemic Crypto Logic,
a dynamic language to describe knowledge, communication and computation.

3.1 Syntax

Definition 1. Let i range over a finite set of agents I, p over a set of propositions
and N over N. The language of epistemic crypto logic extends the language of
guessing games and consists of the following formulas, commands and expressions.

φ ::= > | p | Li | p = E | ¬φ | φ ∧ φ | Kiφ | [C]φ | PrimeE | CoprimeEE

C ::= p←iE |?φ | !p | !p = p | !p = N | !p 6= p | !p 6= N | Openi | Closei
E ::= p | N | E + E mod E | E × E mod E | EE mod E

Besides atomic propositions and standard boolean connectives we have Li
meaning that agent i is currently listening to announcements, p = E saying that
register p and expression E have the same value, Kiφ meaning that i knows
φ and [C]φ saying that after any execution of C, φ will hold. The connectives
Prime and Coprime say that the value of an expression is prime and that the
values of two expressions are coprime, respectively.

The command p←iE creates a new register p only known to agent i with the
value of E in it. The intended meaning of the other commands are testing whether
a formula holds, announcement of propositions, equalities and inequalities and
opening and closing channels to modify the listener set, explained in Section 3.2.

Expressions can be registers, natural numbers and modular addition, multi-
plication and exponentiation of other expressions. A motivation for this selection
of operators is given in Section 3.3.

The precise semantics for the full language are then given in Section 3.4.

3.2 Communication: Local Listening

In the guessing game announcements always reach all the agents. For crypto-
graphic protocols we usually want to model more complex situations, e.g. com-
munication via private channels or eavesdropping. Hence we use the following
idea from [8]. Our models include a local sets of listeners: For each w ∈W there
is a Lw ⊆ I describing who is listening to announcements in this world w.

This also allows us to model different knowledge about who is listening. Alice
and Bob might believe that they are communicating privately when actually Eve

is spying on them. In fact local listener sets are too general and we therefore follow
[8] in adding a constraint that all agents are self-aware about their attention:
Everyone should know whether they are listening or not. Formally, this boils
down to ∀i ∈ I : ∀s, t ∈W : (Rist→ (i ∈ Ls ↔ i ∈ Lt)).

The listener set should also determine what happens when new information
is announced. Hence our interpretations of announcements are not just model
restrictions as known from public announcement logic. Instead, modifications
of the model are done on copies of the previous worlds. Then we update the
knowledge relations such that all listeners can distinguish these new worlds from
their originals but everyone who was not paying attention still confuses them.

For example, suppose during the game Rosa gets distracted. In Figure 4a
only Jan and Gaia are listening (and everyone knows this). Now suppose p 6= 5 is
announced. Since Rosa is not listening, the model changes into that of Figure
4b. Only Gaia learned something, while Rosa (dashed) did not get any new
information.

0: p
p = 6

{Jan,Gaia}

1:
1 ≤ p ≤ 10
p 6∈ {6}
{Jan,Gaia}

(a) Rosa is not listening.

0: p
p = 6

{Jan,Gaia}

1:
1 ≤ p ≤ 10
p 6∈ {5, 6}
{Jan,Gaia}

2: p
p = 6

{Jan,Gaia}

3:
1 ≤ p ≤ 10
p 6∈ {6}
{Jan,Gaia}

(b) Rosa did not learn anything.

Fig. 4: Announcement with local listeners

To explain the remaining commands, we show how a whole act of communi-
cation can be encoded in our language. To say that “a sends φ to b”, the whole
sequence of commands is: ?Kaφ; Openb; !φ; Closeb.

– ?Kaφ tests whether Kaφ is true in the actual world: The agent a can only
communicate φ if she knows it.

– Openb adds b to the set of agents that are listening. Besides b herself, exactly
those who were already listening will know that b is now paying attention.

– !φ is the announcement of φ. For simplicity we only allow announcements
of atomic propositions and equalities and inequalities, so φ is of the form
p, p = E or p 6= E where E is a register or natural number. This means
announcements like !p = q + q mod 23 are not allowed. However, they can
be modeled by creating a new register r with the value q + q mod 23 and
then announcing !p = r.

– Closeb removes b from the set of agents that are listening. Again, this will be
known by b and everyone else who is listening, but nobody else.

We note that, as far as b is concerned, the information φ could come from
anywhere, which means our models provide no authentication. Furthermore, also
anyone besides b who is listening receives φ, i.e. the channel is not secret.

3.3 Computation: Fast Modular Arithmetic

We also want to model feasible computation, in order to refine the meaning
of “knowing a number” to two different conditions that can both be checked
on register models: I know (i) the numbers that I can look up in an accessible
register, and (ii) the numbers that I can feasibly compute from numbers I know.

A criterion for what is feasible is the existence of fast algorithms. Those exist
for primality testing (e.g., the probabilistic Miller-Rabin test [15,17]), co-primality
testing and finding modular inverses (Euclid’s extended GCD algorithm) as well
as addition, multiplication and exponentiation modulo (see [4,16]). We therefore
include primality testing and a fragment of modular arithmetic in our language.

Note that by not including other operations we implicitly import common
articles of faith from public key cryptography, that for example factorization and
discrete logarithm are not feasible.

3.4 Semantics

Definition 2. A crypto model is a tuple M = (W,R, V) where

– (W,R) is a multi-agent S5 frame for I,
– V is a valuation function for some Q ⊆ P (the global set of used variables):

It assigns to each world w ∈W a valuation (Pw, Lw, fw, C
+
w , C

−
w) where

• Pw ⊆ P (the basic propositions true at w),
• Lw ⊆ I (the agents listening at w) satisfying self-awareness: For all

agents i and all v and w such that vRiw we have i ∈ Lv iff i ∈ Lw.
• fw is a function on Q that assigns to each q ∈ Q a triple (n,m,X) (the

range of q at w) with n,m ∈ N, n ≤ m, X ⊆ N, such that:
(i) if q ∈ Pw then for fw(q) = (n,m,X) we have n = m and X = ∅

(ii) if q ∈ Pv ∩ Pw for v, w ∈W then fv(q) = fw(q)
• C+

w ⊆ Q2 and C−w ⊆ Q2 (the in/equality constraints of w) such that no
(p, q) ∈ C−w is in the transitive symmetric reflexive closure of C+

w .

Given a model, we also refer to the reflexive-transitive closure of the union of
all relations by R∗ :=

(⋃
i∈I Ri

)∗
. Given fw(q) = (n,m,X) we also write f0w(q),

f1w(q) and f2w(q) for n, m and X respectively.

Definition 3. An assignment is a partial function h : P→ N. It agrees with a
world w, written w(h, if dom(h) = Q and (i) for all q ∈ Q: f0w(q) ≤ h(q) ≤
f1w(q) and h(q) 6∈ f2w(q), (ii) (p, q) ∈ C+

w implies h(p) = h(q) and (iii) (p, q) ∈ C−w
implies h(p) 6= h(q). In this case we also write h for the natural continuation of
h on the set set of all expressions built out of elements of Q and N.

Definition 4. We say that an expression E is determined at world w in M iff
for all h and h′ that agree with w we have h(E) = h′(E). If this is the case we
also write JEKM,w for the value of E at w in M.

Definition 5. Let M = (W,R, V) be a crypto model, w ∈W and h an assign-
ment that agrees with w. We define the satisfaction relation M, w, h |= φ saying
that φ is true at w with regard to h. Models with superscripts are from Definition
8 which runs in parallel to this one.

M, w, h |= > always
M, w, h |= p iff p ∈ Pw
M, w, h |= Li iff i ∈ Lw
M, w, h |= p = E iff h(p) = h(E)
M, w, h |= ¬φ iff not M, w, h |= φ
M, w, h |= φ1 ∧ φ2 iff M, w, h |= φ1 and M, w, h |= φ2
M, w, h |= Kiφ iff wRiw

′ and h′ (w′ imply M, w′, h′ |= φ
M, w, h |= Gφ iff wR∗w′ and h′ (w′ imply M, w′, h′ |= φ
M, w, h |= 〈Openi〉φ iff MOpeni , (w,α), h |= φ where α is from Def. 8.
M, w, h |= 〈Closei〉φ iff MClosei , (w,α), h |= φ where α is from Def. 8.
M, w, h |= 〈! p〉φ iff M, w, h |= p and M!p, (w,α), h |= φ
M, w, h |= 〈! p = E〉φ iff M, w, h |= p = E and M!p=E , (w,α), h |= φ
M, w, h |= 〈! p 6= E〉φ iff M, w, h |= p 6= E and M!p 6=E , (w,α), h |= φ

M, w, h |= 〈p←iN〉φ iff M, w, h |= G¬p and Mp←iN , (w,α), h′ |= φ
where h′ := h ∪ {(p,N)}

M, w, h |= 〈?ψ〉φ iff M, w, h |= ψ ∧ φ
M, w, h |= 〈A1;A2〉φ iff M, w, h |= 〈A1〉〈A2〉φ
M, w, h |= Prime E iff h(E) is a prime number
M, w, h |= Coprime E1E2 iff h(E1) and h(E2) are coprime

To define the models MOpeni , MClosei , M!p=E and M!p 6=E we use action
models with factual change. The following is an adaption of [2], the main difference
being that we model factual change with functions operating directly on the
valuation instead of substitutions. As shown in [6, Corollary 17] this is equally
expressive in general. Also note that the action models in Definition 7 below
are given with respect to a certain Kripke model which they will be applied to.
While this is not standard in the literature, the local listener sets make it both
necessary and natural: The meaning of announcements and an operator Openi
simply depends on who is listening.

Definition 6. An action model is a tuple (A,R) where A is a set of so-called
action tokens, R = (Ri)i∈I is a family of equivalence relations on A and further-
more for any α ∈ A we have a formula pre(α), called the precondition of α, and
a function changeα which maps valuations to valuations.

An action is a triple (A,R, α) where (A,R) is an action model and α is an
element α ∈ A. We also write just α to refer to (A,R, α).

Definition 7. The product update given by an action (A,R, α) is a function
on pointed models defined as follows.

(W,R, V), w 7→ (W ′,R′, V ′), (w,α) where
W ′ := {(w,α) ∈W ×A | w � pre(α)}
(w,α)R′i(v, β) :⇐⇒ wRiv and αRiβ
V ′(w,α) := (changeα ◦ V)(w)

We write Mα for the result of updating M with the action α.

Definition 8. For any pointed model M, w satisfying the appropriate precondi-
tions we define the models MOpeni , MClosei , M!p=E and M!p 6=E as the result of
the product update of M with the following actions. See below for an informal
explanation what these action models do.

(i) If E is determined at w the action p←iE is given by ({α, β},R, α) where

N := JEKM,w

pre(α) := pre(β) := G¬p
changeα(P,L, f, C+, C−) := (P ∪ {p}, L, f ∪ {(p, (N,N,∅))}, C+, C−)
changeβ(P,L, f, C+, C−) := (P,L, f ∪ {(p, (0, regsize, {N}))}, C+, C−)

αRiβ iff i 6= a

Here regsize is a globally fixed maximum which registers can store, say 10
in the guessing game or 2n to model n-bit registers in electronic systems.

(ii) Openi is given by ({α, β},R, α) where

pre(α) := > changeα(P,L, f, C+, C−) := (P,L ∪ {i}, f, C+, C−)
pre(β) := > changeβ := id

αRjβ iff j 6∈ Lw ∪ {i}

(iii) Closei is given by the same action structure as Openi but with the different
function changeα(P,L, f, C+, C−) := (P,L \ {i}, f, C+, C−).

(iv) The command !p = N is given by ({α, β},R, α) where

pre(α) := (p = N) changeα := id
pre(β) := ¬(p = N) changeβ := id
αRiβ iff i 6∈ Lw

(v) The command !p = q is given by ({α, β, γ},R, α) where

pre(α) := p ∧ q ∧ (p = q) changeα := id
pre(β) := ¬p ∧ ¬q changeβ(P, f, C+, C−) := (P, f, C+ ∪ {(p, q)}, C−)
pre(γ) := > changeγ := id
αRiβ for all i αRiγ and βRiγ iff i 6∈ Lw

(vi) The command !p 6= N is given by ({α, β, γ},R, α) where

pre(α) := p ∧ (p 6= N) changeα := id
pre(β) := ¬p changeβ(P, f, C+, C−) := (P, f ′, C+, C−)
pre(γ) := > changeγ := id
αRiβ for all i αRiγ and βRiγ iff i 6∈ Lw

f ′(q) :=

{
(f0(p), f1(p), f2(p) ∪ {N}) if q = p

f(q) otherwise

(vii) The command !p 6= q is given by ({α, β, γ},R, α) where

pre(α) := p ∧ q ∧ (p 6= q) changeα := id
pre(β) := ¬(p ∧ q) changeβ(P, f, C+, C−) := (P, f, C+, C− ∪ {(p, q)})
pre(γ) := > changeγ := id
αRiβ for all i αRiγ and βRiγ iff i 6∈ Lw

Definition 8 captures the intended meanings from Section 3.1 as follows.
Register creation p←iE makes two copies for all worlds in the previous model.

It then sets p to the value of E in the actual world and allows p to have any
other value than E in the other copies. The copies can only be distinguished for
i, the agent for whom the register was created. Note that the value of E and
not E itself is put in the register and the expression only has to be determined
at the current world. This means that i does not need to have all the necessary
information to evaluate the expression.

The commands Open and Close modify the listener set. Because a call for
attention should also be heard by other listeners, these modifications are also
done on copies of the worlds. The event is noticed by the agent who is addressed
and the current listeners. Hence the order of Open commands matters: After
executing OpenAlice ; OpenBob, Alice will know that Bob is listening but not
necessarily vice versa. This also implies that OpenAlice ; OpenBob is different from
an alternative operator one might consider like Open{Alice,Bob} which would call
for the attention of a group.

The four announcements behave similar to those in public announcement logic,
e.g. they have to be truthful, but we have two modifications: First, announcements
are received only by the current listeners and therefore also create copies of all
worlds unless everyone is listening. Only in one copy the set of worlds are restricted
to those where the announcement is true. However, as a consequence of using S5,
our announcements are not fully secret: Also non-listening agents will consider
it possible that other agents learned something after an announcement. Second,
the last three action models do not remove whole worlds but instead change
their valuation, effectively removing agreeing assignments. This reflects that our
register models are encodings of larger Kripke models. Adding a constraint to the
valuation of a world in a register model is the same as deleting the corresponding
worlds in a larger Kripke model.

We conclude this section with a definition of world-level truth and validity.

Definition 9. For any φ we define:

M, w |= φ iff ∀h with w(h :M, w, h |= φ

A formula φ is valid iff for all M, w we have that M, w � φ. We then write � φ.

A sound and complete axiomatization of the resulting logic will be future
work. Given that our commands are special cases of action models with factual
change, we think that this will be feasible using the general ideas of [1,2,8] and
standard axioms for modular arithmetic.

4 Monte Carlo Model Checking

So far, the register models are merely an encoding of larger Kripke models:
Instead of many possible worlds we will still have go through lots of assignments
to check a formula. But register models also motivate the following Monte Carlo
method.

If we pick assignments uniformly at random, we see that situations where
registers do not contain the correct information are vastly more probable than
the situation where the registers are filled with the correct values. Figure 5 shows
the number of agreeing assignments for each world, given a register size of n bits.

0: p
p = X

1:
1 ≤ p ≤ 2n

p 6∈ {X}

1 2n − 1

Fig. 5: Two worlds and the number of agreeing assignments.

This observation can be used to simplify model checking on our register
models. In a world where p is false, it can be assigned almost any value by the
agreeing assignments of that world. Thus, equality statements like p = X will be
false for almost all assignments. Hence equality and inequality statements can
be checked by means of an approximate Monte Carlo model checking algorithm.
The Monte Carlo method is based on a simple assumption:

probably M, w |= φ iff for “enough” h with w(h :M, w, h |= φ.

To specify “enough” we choose some k ∈ N. Then to evaluate a formula φ we
first randomly generate a list of k agreeing assignments h1, . . . , hk for w. Then
we check M, w, hi |= φ for each hi in the list. We then say that φ is true/false
iff it is true/false for all i ≤ k while in any mixed case it is undefined. Figure 6
shows an equality and an inequality statement and their estimated truth values.

0: p
p = 6

1:
1 ≤ p ≤ 264

p 6∈ {6}

0 6� p = 7 p = 7 is almost false in 1.
0 � p 6= 7 p 6= 7 is almost true in 1.

Fig. 6: Estimating the truth.

The probability of disagreement be-
tween this Monte Carlo method and
the “real” truth value which would be
obtained by checking all assignments
depends on the shape of the formula.
However, for many formulas including
simple equality statements and knowl-
edge thereof it can be made arbitrar-
ily small by using a larger k. Hence
the choice of k provides a trade-off be-
tween computation time and reliability
of the model checking results.

The probabilistic view on register models also suggest two extensions of our
work: First, we could interpret a language on them that combines probability
theory with epistemic operators, similar to [11,13,14]. Second, we could define a
probabilistic satisfaction relation, making “almost false” explicit.

5 Diffie-Hellman in Dynamic Epistemic Logic

Whitfield Diffie and Martin Hellman revolutionized the field of cryptography
with their proposal for public key encodings [5]. Here is their famous protocol for
key exchange over an insecure channel which is widely used on the Internet:

1. Alice and Bob agree on a large prime p and a base g < p such that g and
p− 1 are co-prime.

2. Alice picks a secret a and sends ga mod p = A to Bob.
3. Bob picks a secret b and sends gb mod p = B to Alice.
4. Alice calculates ka = Ba mod p.
5. Bob calculates kb = Ab mod p.
6. They now have a shared key ka = kb.

This is because (ga)b = (gb)a mod p.

This protocol is known to be secure against passive eavesdropping in the followsing
sense: Note that a, b, ka and kb are never sent over the channel. Furthermore, we
assume that computing discrete logarithms is hard, i.e. anyone who sees p, g, ga

and gb will not be able to efficiently compute a, b or (ga)b. Hence the established
key ka = kb can be used by Alice and Bob to encrypt and decrypt messages
before and after they are sent, respectively.

The language given in Definition 1 allows us to formulate the complete
Diffie-Hellman key exchange as a protocol to be executed on register models:

1. ? Prime p ; ? g ∈ [1..p] ; ? Coprime g (p− 1) ;

2. a
Alice← N ; A

Alice← ga mod p ;

OpenBob ; !A ; CloseBob ;

3. b
Bob← M ; B

Bob← gb mod p ;

OpenAlice ; !B ; CloseAlice ;

4. ka
Alice← Ba mod p ;

5. kb
Bob← Ab mod p ;

6. ?ka = kb

Moreover, the goal of the key exchange can be stated as a register language
formula: The values of s1 and s2 should be equal, Alice and Bob should know
them but a passive eavesdropper (who is traditionally called Eve) should not:

(ka = kb) ∧ (KAliceka ∧KBobkb) ∧ (¬KEveka ∧ ¬KEvekb)

6 Results and Future Work

Register models make it feasible to implement knowledge of and communication
about large numbers with Kripke semantics. Our models are more succinct than
ordinary Kripke models which would need (2k)m many worlds instead of 2k in
our setting to represent k registers with values ranging from 0 to 2m. While
general-purpose methods of abstraction might achieve similar compression rates,
our framework has the conceptual advantage that it explicitly models which
possible situations do not have to be distinguished. The big models never have
to be generated in the first place.

We implemented a standard and a Monte Carlo model checking algorithm
and compared their performance. Table 1 shows how many seconds it takes both
algorithms to check one execution of the Diffie Hellman protocol as formalized
in the previous section. As initial model we used a one-world model where it is
common knowledge that Eve is listening but no other facts are known.

Increasing the register size substantially slows down the standard algorithm
as expected but only has a slight effect on the Monte Carlo method which only
checks a few randomly picked assignments at each world. The small non-monotone
increase is probably due to the generation of random numbers within a bigger
interval.

Register size Standard Monte Carlo

28 1.07 2.74

29 1.36 2.82

210 2.13 3.41

211 3.59 3.24

212 5.17 2.80

213 11.56 3.28

214 22.66 3.57

215 44.44 4.10

216 81.26 3.52

Table 1: Runtime of both algorithms in seconds.

The presented ideas should serve as a starting point for more research. As a
conclusion we present the following program for Epistemic Crypto Logic.

1. Find a sound and complete axiomatization for the extended language for
cryptographic protocols, building on the axiomatization for guessing games
given in [10].

2. Use a set of reduction axioms to implement a formula-rewriting scheme. The
results could then be fed into existing model checkers for S5.

3. Optimize the model checkers for register languages. A promising approach for
model checking DEL is to translate it to quantified boolean formulas which
are equivalent on so-called knowledge structures as presented in [19].

4. Explore the computational complexity of the presented languages and the
model checking problem.

Our work also raises the question what exactly it means to verify a crypto-
graphic protocol. A common answer to this is to show that certain attacks on
the protocol are impossible. In our framework attacks on cryptographic proto-
cols can be viewed as planning problems, so it provides a connection between
cryptography, epistemic model checking and epistemic planning.

Concluding, we would like to stress that this work can be useful not just
for reasoning about communication and cryptography but also provides lessons
for epistemic model checking and epistemic planning itself. There is no need to
confine ourselves to muddy children and similar puzzles. Debates about DEL
and its variants might profit from real life cryptographic examples, e.g. when
comparing different notions of knowledge.

Acknowledgments

Thanks to Alexandru Baltag, Johan van Benthem, Joshua Sack and Kaile Su
who all provided valuable feedback to this work at different stages. We also thank
the anonymous LAMAS referees for their useful comments and suggestions.

References

1. A. Baltag, L. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. In I. Bilboa, editor, Proceedings of TARK’98,
pages 43–56, 1998.

2. J. v. Benthem, J. v. Eijck, and B. Kooi. Logics of communication and change.
Information and computation, 204(11):1620–1662, 2006.

3. I. Boureanu, M. Cohen, and A. Lomuscio. Automatic verification of temporal-
epistemic properties of cryptographic protocols. Journal of Applied Non-Classical
Logics, 19(4):463–487, 2009.

4. H. Delfs and H. Knebel. Introduction to Cryptography: Principles and applications.
Springer, 2002.

5. W. Diffie and M. Hellman. New directions in cryptography. Information Theory,
IEEE Transactions on, 22(6):644–654, 1976.

6. H. P. v. Ditmarsch and B. P. Kooi. Semantic results for ontic and epistemic
change. In G. Bonanno, W. v. d. Hoek, and M. Wooldridge, editors, Logic and the
Foundations of Game and Decision Theory (LOFT 7), volume 3 of Texts in Logic
and Games, pages 88–118. Amsterdam University Press, 2006.

7. H. v. Ditmarsch, J. v. Eijck, I. Hernández-Antón, F. Sietsma, S. Simon, and F. Soler-
Toscano. Modelling Cryptographic Keys in Dynamic Epistemic Logic with DEMO.
In J. B. Pérez, M. A. Sánchez, P. Mathieu, J. M. C. Rodŕıguez, E. Adam, A. Ortega,
M. N. Moreno, E. Navarro, B. Hirsch, H. Lopes-Cardoso, and V. Julián, editors,
Highlights on Practical Applications of Agents and Multi-Agent Systems, volume
156 of Advances in Intelligent and Soft Computing, pages 155–162. Springer Berlin
Heidelberg, 2012.

8. H. v. Ditmarsch, A. Herzig, E. Lorini, and F. Schwarzentruber. Listen to Me! Public
Announcements to Agents That Pay Attention — or Not. In D. Grossi, O. Roy,
and H. Huang, editors, Logic, Rationality, and Interaction, volume 8196 of Lecture
Notes in Computer Science, pages 96–109. Springer Berlin Heidelberg, 2013.

9. J. v. Eijck. Elements of Epistemic Crypto Logic. Slides from a talk at the LogiCIC
Workshop, Amsterdam, Dec. 2013. Available online at http://homepages.cwi.nl/

~jve/papers/13/pdfs/eeclTALK.pdf.
10. J. v. Eijck and M. Gattinger. Elements of Epistemic Crypto Logic (Extended

Abstract). In Proceedings of the 14th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2015), 2015.

11. J. v. Eijck and F. Schwarzentruber. Epistemic Probability Logic Simplified. In
R. Goré, B. Kooi, and A. Kurucz, editors, Advances in Modal Logic, volume 10,
pages 158–177, 2014.

12. M. Gattinger. Dynamic Epistemic Logic for Guessing Games and Cryptographic
Protocols. Master’s thesis, University of Amsterdam, 2014.

13. J. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge, MA, USA, 2003.
14. B. P. Kooi. Knowledge, Chance, and Change. PhD thesis, Groningen University,

2003.
15. G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of computer

and system sciences, 13(3):300–317, 1976.
16. C. Paar and J. Pelzl. Understanding cryptography: a textbook for students and

practitioners. Springer, 2010.
17. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of number

theory, 12(1):128–138, 1980.
18. P. Ryan, S. Schneider, M. Goldschmidt, G. Lowe, and B. Roscoe. Modelling and

Analysis of Security Protocols. Addison Wesley, 2001.
19. K. Su, A. Sattar, and X. Luo. Model Checking Temporal Logics of Knowledge Via

OBDDs. The Computer Journal, 50(4):403–420, 2007.
20. P. F. Syverson and P. C. Van Oorschot. A unified cryptographic protocol logic.

Technical report, DTIC Document, 1996.

http://homepages.cwi.nl/~jve/papers/13/pdfs/eeclTALK.pdf
http://homepages.cwi.nl/~jve/papers/13/pdfs/eeclTALK.pdf

	Towards Model Checking Cryptographic Protocols with Dynamic Epistemic Logic

