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Abstract

Based on the ratio of two block maxima, we propose a large sample test for the length of
memory of a stationary symmetric α-stable discrete parameter random field. We show
that the power function converges to 1 as the sample-size increases to ∞ under various
classes of alternatives having longer memory in the sense of Samorodnitsky (2004).
Ergodic theory of nonsingular Z

d -actions plays a very important role in the design and
analysis of our large sample test.
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1. Introduction and preliminaries

A random field X = {X(t), t ∈ Z
d} is called a stationary, symmetric α-stable (SαS)

random field if every finite linear combination
∑k

i=1 aiXti+s is an SαS random variable whose
distribution does not depend on s. Here we will consider the non-Gaussian case (i.e. 0 < α < 2)
unless mentioned otherwise.

Long-range dependence is a very important property that has been observed in many real-life
processes. By long-range dependence of the random field X, we mean the dependence between
the observations X(t) which are well separated in t . This concept was introduced in order to
study the measurements of the water flow in the Nile river by the famous British hydrologist
H. E. Hurst (see [8] and [9]). Most of the classical definitions of long-range dependence
appearing in the literature are based on the second-order properties (e.g. covariance, spectral
density, variance of partial sum, and so on) of stochastic processes. For example, one of the
most widely accepted definitions of long-range dependence for a stationary Gaussian process
is the following: we say that a stationary Gaussian process has long-range dependence (also
known as long memory) if its correlation function is not summable. In the heavy-tails case,
however, this definition becomes ambiguous because a correlation function may not even exist
and even if it exists, it may not have enough information about the dependence structure of the
process. For a detailed discussion on long range dependence, we refer the reader to [25] and
the references therein.

Received 6 December 2016; revision received 15 August 2017.
∗ Postal address: Stochastics group, CWI, Amsterdam, North Holland, 1098XG, Netherlands.
Email address: ayanbhattacharya.isi@gmail.com
∗∗ Postal address: Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, RVCE Post,
Bangalore, 560059, India.

179

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.12
Downloaded from https://www.cambridge.org/core. Centrum Wiskunde & Informatica, on 10 Apr 2018 at 13:40:09, subject to the Cambridge Core terms of use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.appliedprobability.org
mailto:ayanbhattacharya.isi@gmail.com?subject=J. Appl. Prob.%20paper%2016493
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.12
https://www.cambridge.org/core


180 A. BHATTACHARYA AND P. ROY

In the context of stationary SαS processes (0 < α < 2), instead of looking for a substitute for
a correlation function, in the seminal work [24], Samorodnitsky suggested a new approach for
long-range dependence through a dichotomy in the long-run behaviour of the partial maxima.
A partition of the underlying parameter space (formally defined later) has been suggested in the
aforementioned reference which causes the dichotomy. This dichotomy has been studied for
d ≥ 2 in [23]. Phase transitions in many other probabilistic features of stationary SαS random
fields have been connected to the same partition of the parameter space; see e.g. [6], [14], [16],
[18], and [22].

The fact that the law of X is invariant under the group action of a shift transformation on the
index set Z

d (stationarity) and certain rigidity properties of Lα spaces (0 < α < 2) were used in
[20] (for d = 1) and [21] (for d ≥ 2) to show that there always exists an integral representation
of the form

X(t)
d=

∫
E

ct (x)

(
dm ◦ φt

dm
(x)

)1/α

f ◦ φt (x)M(dx), (1.1)

where M is an SαS random measure on a standard Borel space (E, E) with σ -finite control
measure m, f ∈ Lα(E, m) (a deterministic function), {φt } is a nonsingular Z

d -action on (E, m)

(i.e. each φt : E → E is measurable and invertible, φ0 is the identity map, φt1 ◦ φt2 = φt1+t2

for all t1, t2 ∈ Z
d and each m ◦ φ−1

t is an equivalent measure of m), and {ct } is a measurable
cocycle for the nonsingular action {φt } taking values in {+1, −1} (i.e. each ct : E → {+1, −1}
is measurable map such that, for all t1, t2 ∈ Z

d , ct1+t2(x) = ct2(x)ct1(φt2(x)) for all x ∈ E).
As a stationary SαS random field can be uniquely specified in terms of a function inLα(E, m),

a nonsingular action, and a cocycle, we consider the following parameter space for a stationary
SαS random field:

� = {(f, {φt }, {ct }) : f ∈ Lα(E, m), {φt } is a nonsingular action , {ct } is a cocycle}.
Now based on the nonsingular action, we can obtain a decomposition of E (into two subsets)
which is known as a Hopf decomposition as described below. A set W is called a wandering set
for the nonsingular Z

d -action {φt } on (E, m) if {φt (W) : t ∈ Z
d} is a pairwise disjoint collection

of subsets of E. Following Proposition 1.6.1 of [1], we find that E can be decomposed into
two disjoint and invariant (with respect to {φt }) subsets C and D such that for some wandering
set W ⊂ E, D = ⋃

t∈Zd φt (W) and C does not have any wandering sets of positive measure.
The subsets C and D are called the conservative and dissipative parts of {φt }, respectively.
If E = C then we call the nonsingular Z

d -action {φt } conservative. If E = D then {φt } is called
dissipative. An example of a dissipative Z

d -action is the shift action: take E = R
d (with m

being the Lebesgue measure) and, for each t ∈ Z
d , define φt (s) = s + t, s ∈ R

d . Section 3
contains examples of conservative Z

d -actions. Roughly speaking, conservative actions tend to
come back often while dissipative actions tend to move away.

Following [20], [21], and [23], and denoting the integrand in (1.1) by ft (x),

X(t)
d=

∫
C

ft (x)M(dx) +
∫

D
ft (x)M(dx) =: XC(t) + XD (t), t ∈ Z

d , (1.2)

where XC = {XC(t), t ∈ Z
d} and XD = {XD (t), t ∈ Z

d} are two independent stationary
SαS random fields generated by conservative and dissipative nonsingular Z

d -actions, respec-
tively. It is important to note that the stationary SαS random field generated by a dissipative
nonsingular Z

d -action admits mixed moving average representation (see [28] and (1.3) below).
Based on the notion of partial block maxima, it was established in [23] and [24] that stationary

SαS random fields generated by conservative actions have longer memory than those generated
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Large sample test for length of memory of stable fields 181

by a nonsingular action with a nontrivial dissipative part. This has formalized the intuition
that ‘conservative action keeps coming back’ (i.e. the same value of the random measure M

contributes to the observations X(t) which are well separated in t) and, hence, induces longer
memory. Let, for all n ∈ N,

box(n) = {j = (j1, . . . , jd) ∈ Z
d : |ji | ≤ n for 1 ≤ i ≤ d}

be the block containing the origin with size (2n+1)d in Z
d . We define the partial block maxima

for the stationary SαS random field X as

Mn = max
j∈box(n)

|X(j)|, n ∈ N.

The asymptotic behaviour of the partial block maxima Mn is related to the deterministic
sequence

Bn =
(∫

E

max
j∈box(n)

|fj (x)|αm(dx)

)1/α

.

Note that, by Corollary 4.4.6 of [26], Bn is completely specified by the parameters associated to
the SαS random field and does not depend on the choice of the integral representation. We will
recall the results on rate of growth of {Bn} from Proposition 4.1 of [23]. It is expected that the
the rate of growth of Bn will be slower if the underlying group action is conservative. Indeed,
if {φt : t ∈ Z

d} is conservative then

lim
n→∞

1

(2n + 1)d/α
Bn = 0.

In the other case, we need the mixed moving average representation to describe the limit.
A stable random field is called a mixed moving average (see [28]) if it is of the form

X
d=

{∫
W×Zd

f (u, s − t)M(du, ds) : t ∈ Z
d

}
, (1.3)

where f ∈ Lα(W × Z
d , ν ⊗ l), l is the counting measure on Z

d , ν is a σ -finite measure on a
standard Borel space (W, W), and the control measure m of M is equal to ν ⊗ l. It was shown
in [20], [21], and [23] that a stationary SαS random field is generated by a dissipative action if
and only if it is a mixed moving average with the integral representation (1.3). In this case,

lim
n→∞

1

(2n + 1)d/α
Bn =

(∫
W

(g(u))αν(du)

)1/α

∈ (0, ∞), (1.4)

where, for every u ∈ W,

g(u) = max
s∈Zd

|f (u, s)|.
We will denote the right-hand side of (1.4) by KX which depends solely on X and not on the
integral representation.

Using the above facts, it has been established that if the SαS random field is not generated
by the conservative action then

(2n + 1)−d/αMn �⇒ C1/α
α KXZα, (1.5)

where KX is as above, Zα is a standard Fréchet(α) random variable with distribution function

P(Zα ≤ z) =
{

e−z−α
if z > 0,

0 if z ≤ 0,
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182 A. BHATTACHARYA AND P. ROY

and

Cα =
(∫ ∞

0
x−α sin x dx

)
=

⎧⎪⎨
⎪⎩

1 − α

�(2 − α) cos(πα/2)
if α 
= 1,

2

π
if α = 1.

(1.6)

On the other hand, if the underlying group action is conservative then

(2n + 1)−d/αMn
P−→ 0. (1.7)

See Theorem 4.3 of [23] and Theorem 4.1 of [24].
Note that the dichotomy between (1.5) and (1.7) can be justified by the intuitive reasoning

that the longer memory prevents erratic changes in Xt causing the maxima to grow more slowly.
In the Gaussian case, this phenomenon can be explained in the form of a comparison lemma;
see, e.g. Corollary 4.2.3 of [13].

The effect of a transition from conservative to dissipative actions has been investigated for
various other features of stationary SαS random fields. For example, the ruin probability of a
negative drifted random walk with steps from a stationary ergodic stable processes was studied
in [14]. It was observed that the ruin is more likely if the group action is conservative. The point
processes associated to a stationary SαS random field were analysed in [18] (for d = 1) and
[22] (for d ≥ 2). It was observed that the point process converges weakly to a Poisson cluster
process if the group action is not conservative and in the conservative case it does not remain
tight due to the presence of clustering. The large deviation issues for point process convergence
were addressed in [6], where different large deviation behaviour was observed depending on
the ergodic theoretic properties of the underlying nonsingular actions.

Stationary SαS random fields have also been studied from a statistical perspective (see [10],
[11], and [26]). Different inference problems associated to the long-range dependence for finite
and infinite variance processes have been addressed in the literature; see, e.g. [2], [3], [5], [7],
[15], [19], and [27] and the references therein. There are real-life data such as teletraffic data
(see [4]) which exhibits heavy-tail phenomenon and long-range dependence. Motivated by all
these works, the decomposition of the parameter space suggested in [23] and its effect on various
probabilistic aspects of SαS random fields, a natural question comes to mind: is it possible
to design a hypothesis testing problem which will detect the presence of long memory in the
observed stationary SαS random field? In the following paragraph, we formulate the problem.

Motivated by [23] and [24] and the other related works mentioned above, we will consider
the following decomposition of the parameter space � into �0 and �1. We define �1 as

�1 = {(f, {φt }, {ct }) ∈ � : {φt } is conservative}
and �0 = � \ �1. In this paper our aim is to design a large sample statistical test in order to
test

H0 : θ ∈ �0 against H1 : θ ∈ �1, (1.8)

where θ = (f, {φt }, {ct }) is the parameter associated to the observed stationary SαS random
field defined by (1.1).

This paper is organized as follows. In Section 2 we will present a large sample test (based on
the ratio of two appropriately scaled block maxima) in order to test H0 against H1 along with
the asymptotics under both null and alternative hypotheses. In particular, our test will become
consistent for a reasonably broad class of alternatives. Examples of such alternatives are given
in Section 3 followed by numerical experiments in Section 4. Finally, proofs of our results are
discussed in Section 5.
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Large sample test for length of memory of stable fields 183

2. Proposed large sample test based on block maxima

Let {ei : 1 ≤ i ≤ d} be the d unit vectors in Z
d such that the ith component of ei is 1 and

the other components are 0. Fix 0 < 
 < 1. Let

Un = (2n+1)−d/α max
j∈box(n)

|X(j)| and Vn = (2[n
]+1)−d/α max
j∈(2n+[n
])e1+box([n
]) |X(j)|.

In other words, Un is the properly scaled block maxima for box(n) containing the origin as
the centre and Vn is the properly scaled block maxima for shifted box([n
]) whose centre is
sufficiently separated from box(n). To test hypotheses (1.8), we define the test statistic Tn as
the ratio of two partial block maxima Un and Vn, that is,

Tn = Un

Vn

=
(

2[n
] + 1

2n + 1

)d/α maxj∈box(n) |X(j)|
maxj∈(2n+[n
])e1+box([n
]) |X(j)| .

We will derive the weak limit of the test statistic Tn under the null hypothesis with the help of
following theorem.

Theorem 2.1. Suppose that the stationary SαS random field X is generated by a noncon-
servative action and, hence, the dissipative part XD admits a nontrivial moving average
representation (1.3). Then

(Un, Vn) �⇒ (Y1, Y2),

where the Yi are independent copies of Y with distribution function

P(Y ≤ y) =
{

exp{−CαKα
Xy−α} if y > 0,

0 if y ≤ 0,

with Cα defined in (1.6).

Corollary 2.1. Under the assumptions of Theorem 2.1, Tn �⇒ T , where T has the distribution
function

FT (t) := P(T ≤ t) = 1

1 + t−α
. (2.1)

Proof. Using the continuous mapping theorem and the fact that Y2 > 0 almost surely, we
obtain

Tn �⇒ T := Y1

Y2
.

The distribution of T will be derived using the joint distribution of Y1 and Y2. It is clear that
the joint probability density function is

hY1,Y2(y1, y2) = (CαKα
Xα)2(y1y2)

−α−1e−CαKα
X(y−α

1 +y−α
2 ), y1, y2 > 0.

We follow a standard substitution procedure by setting t = y1y
−1
2 and v = y2 which, in turn,

gives us y1 = tv and y2 = v. It is very easy to check that the associated modulus of the
Jacobian of the transformation is v as v > 0. Hence, we obtain the joint distribution of (T , Y2)

as
hT,Y2(t, y2) = (αCαKα

X)2t−α−1y−2α−1
2 e−CαKα

Xy−α
2 (1+t−α), t > 0, y2 > 0.
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184 A. BHATTACHARYA AND P. ROY

Now in order to obtain the distribution of T , we have to integrate on the whole range for y2.
Again using the standard substitution

z = y−α
2 (1 + t−α)CαKα

X,

we obtain

hT (t) = α
t−α−1

(1 + t−α)2

∫ ∞

0
z2−1e−z dz = αt−α−1

(1 + t−α)2 , t > 0.

Hence, it is easy to see that (2.1) holds for all t > 0. �
We want to compute τβ such that P(T < τβ) = β. An easy computation yields that

τβ =
(

β

1 − β

)1/α

. (2.2)

Remark 2.1. Note that the distance between the two blocks is not visible in the asymptotics
of Tn under the null hypothesis because the shorter memory (i.e. weaker dependence) is making
the two blocks almost independent in the long run. Therefore, the asymptotic null distribution of
the test statistic becomes rather simple (the ratio of two independent and identically distributed
(i.i.d.) random variables as seen in Corollary 2.1) and the computation of the critical value (2.2)
becomes very easy.

Remark 2.2. Even though our random field has many of unknown parameters (more precisely,
the function f ∈ Lα(E, m), the cocycle {ct }t∈Zd , and the group action {φt }t∈Zd ), only the
underlying group action plays a role in the asymptotic test procedure described in this work.
Even this parameter does not need to be explicitly estimated in our method of testing. Therefore,
our test is free of any estimation procedure and all our asymptotic results work well without
any additional correction making this test applicable to real-life situations.

In the following theorem we provide the asymptotics for the test statistic Tn for a very broad
class of alternatives.

Theorem 2.2. Let X be generated by a conservative Z
d -action {φt }. If there exists an increas-

ing sequence of positive real numbers, {dn} such that

dn = nd/α−ηL(n),

where 0 < η ≤ d/α, L(n) is a slowly varying function of n, and {d−1
n Mn}n≥1 and {dnM

−1
n }n≥1

are tight sequences of random variables, then we have Tn
P−→0.

So we reject the null hypothesis H0 against the class of alternatives considered in Theorem 2.2
if Tn < τβ . This provides a large sample level-β test for H0 against H1. Theorem 2.2 ensures
that such a test is consistent. In the following section, we will discuss some examples which
satisfy the conditions stated in above theorem. We also derive the empirical power in a few
examples based on numerical experiments.

3. Important classes of alternatives

In this section we present a few important examples from the alternatives which satisfy the
hypotheses of Theorem 2.2 and, hence, our test becomes consistent.
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Large sample test for length of memory of stable fields 185

Example 3.1. We consider a stationary SαS random field indexed by Z
2, with the Z

2-action
{φ(i,j)}(i,j)∈Z2 on E = R given by

φ(i,j)(x) = x + i + j
√

2, x ∈ R,

with m as Lebesgue measure on R. From Example 6.3 of [23], it is clear that

1

n1/α
Mn �⇒ ((1 + √

2)Cα)1/αZα.

Hence, Theorem 2.2 with dn = n1/α applies and we have

Tn
P−→ 0 as n → ∞.

So the test rejects the null hypothesis H0 if Tn < τβ is consistent.

Example 3.2. Consider a random field which has an integral representation of the following
form:

X(j) =
∫

RZd
gj dM, j ∈ Z

d ,

where M is an SαS random measure on R
Z

d
whose control measure m is a probability measure

under which the projections {gj : j ∈ Z
d} are i.i.d. random variables with finite absolute αth

moment.
First we consider the case where under m, {gj : j ∈ Z

d} are i.i.d. positive Pareto random
variables with

m(g0 > x) =
{

x−γ if x ≥ 1,

1 if x < 1,

for some γ > α. From Example 6.1 of [23], we obtain

Bn ∼ c
1/α
p,γ 2d/γ nd/γ as n → ∞

for some positive constant cp,γ , and B−1
n Mn converges weakly to a Frechét random variable.

So Theorem 2.2 applies with dn = nd/γ and we have

Tn
P−→ 0 as n → ∞.

Hence, the level-β test rejects H0 when Tn < τβ , is consistent.
Now we consider the special case where under m, {gj : j ∈ Z

d} is a sequence of i.i.d.
standard normal random variables. Then {Xj }j∈Zd has the same distribution as the process
{cαA1/2Gj }j∈Zd , where the Gj are i.i.d. standard Gaussian random variables, A is a positive
α/2-stable random variable independent of {Gj : j ∈ Z

d} with Laplace transform E(e−tA) =
e−tα/2

, and cα = √
2(E(|G0|α))1/α; see [26, Section 3.7]. Then, from Example 6.1 of [23], we

obtain
Bn ∼ √

2d log 2n

such that
B−1

n Mn �⇒ A1/2,

which is a positive random variable.
So we can apply Theorem 2.2 with dn = √

2d log 2n to obtain

Tn
P−→ 0 as n → ∞.

Hence, the level-β test that rejects H0 if Tn < τβ is consistent.
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186 A. BHATTACHARYA AND P. ROY

Example 3.3. We will first review the basic notions and notation from [23]. Note that the group
R = {φt : t ∈ Z

d} of invertible nonsingular transformations on (E, m) is a finitely generated
abelian group. Define the group homomorphism � : Z

d → R such that �(t) = φt for all
t ∈ Z

d . The kernel of this group homomorphism is ker(�) = {t ∈ Z
d : φt = idE}, where

‘idE’ denotes the identity map on E. Being a subgroup of Z
d , ker(�) is a free abelian group.

By the first isomorphism theorem of groups, we have

R � Z
d/ ker(�)

Due to the structure theorem for finitely generated abelian groups (Theorem 8.5 of [12]), R

can be written as the direct sum of a free abelian group F̄ (the free part) and a finite abelian
group N̄ (the torsion part). So we obtain

R = F̄ ⊕ N̄ .

We assume that 1 ≤ rank(F̄ ) = p < d. Since F̄ is free, there exists an injective group
homomorphism � : F̄ → Z

d such that � ◦ � = idF̄ . Clearly, F = �(F̄ ) is a free subgroup
of Z

d of rank p.
Note that F should be regarded as the effective index set and its rank p becomes the effective

dimension of the random field. It was shown in [23] that

1

(2n + 1)p/α
Mn �⇒

{
CXZα if {φt }t∈F is not conservative,

0 if {φt }t∈F is conservative.

In the above setup, if 1 ≤ p < d , and {φt }t∈Zd is not conservative, then using Theorem 2.2
with dn = (2n + 1)p/α , we obtain

Tn
P−→ 0 as n → ∞.

Hence, the level-β test that rejects when Tn < τβ is consistent.

4. Numerical experiments

In this section we consider some examples where the underlying group action is conservative.
We will simulate the empirical power of the proposed test of level β = 10% in those particular
cases. It will be clear from the tables below that if we use small values of 
, then the rejection
will be very frequent and, hence, our test will become less reliable. On the other hand, a large
value of 
 results in fewer rejections and, hence, the power decreases for each fixed α. We will
also observe that the empirical power decreases as α increases for every fixed 
. So it seems
that we need to choose a smaller value of 
 as α increases. So there is an inverse relation
between 
 and α. In all the examples, however, as n increases, the empirical power increases
to 1 for all values of 
 and α confirming the consistency of the proposed test.

Numerical Experiment 1. Consider the set up described in Example 3.2. For the purposes of
the simulation, we consider the following alternative representation of the sub-Gaussian random
field. Suppose that {Gj : j ∈ Z

2} is a collection of i.i.d. standard Gaussian random variables
and A is a positive α/2-stable random variable independent of the collection {Gj : j ∈ Z

2}
with Laplace transform

E(e−tA) = etα/2
.
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Let cα = √
2(E(|G0|α))1/α . The sub-Gaussian random field has the same distribution as

the collection of random variables {cαA1/2Gj : j ∈ Z
2}. It easy to simulate the i.i.d. standard

Gaussian random variables, and the random variable A is simulated following the method given
in [29, p. 3]. In Tables 1–3, we present the results for the empirical power of the proposed test
of level 10% based on the ratio of maxima taken over two disjoint blocks.

Numerical Experiment 2. In this example, we consider a stationary SαS random field {X(t) :
t = (t1, t2, t3) ∈ Z

3} admitting the following integral representation:

X(t) =
∫

Z

f(t1,t2,t3)(x)M(dx) =
∫

Z

f (x − t1 + t2)M(dx), (4.1)

where M is an SαS random measure on Z with a counting measure as the control measure and
f : Z → R such that

f (u) =
{

1 if u = 0,

0 otherwise.

Note that in this case, for each t = (t1, t2, t3) ∈ Z
3,

φ(t1,t2,t3)(x) = (x − t1 + t2), x ∈ Z.

This is a special case of Example 3.3 and the effective dimension of the underlying group action
is 1.

It is clear that for every fixed integer c, the random variables X(t) are the same as long as
t = (t1, t2, t3) lies on the plane t1 − t2 = c. Also, as c runs over Z, these random variables form
an i.i.d. collection. Based on this observation, we simply simulate i.i.d. SαS random variables
(following the method stated in [29, p. 3]) indexed by Z and use them appropriately for our
test. In Tables 4–6 we present the results for the simulated empirical power of the proposed
test conducted at 10% level of significance.

Numerical Experiment 3. Next, we consider another example of a stationary SαS random
field admitting the integral representation (4.1) with f : Z → R such that

f (u) =
{

1 if u = 0, −1,

0 otherwise.

This example is similar to the previous one with the same effective dimension 1. In this case
also, for each fixed c ∈ Z, the collection {X(t) : t1−t2 = c} consists of a single random variable.
However, as c runs over Z, these random variables no longer remain independent. Rather, they
form a moving average process of order 1 with SαS innovations and unit coefficients. Using
this observation, we simulate the random field easily. In Tables 7–9 we present the results of
the simulated empirical power of the proposed test of level 10%.

Remark 4.1. For real data, we need to choose the blocksize (i.e. 
 ∈ (0, 1)) before performing
this test. Even though α and the best performing 
 have an inverse relationship (as explained
at the beginning of this section), it is observed in the above tables that 
 ≈ 0.65 seems to
perform well for a broad class of alternatives. Therefore, in the absence of further knowledge,
we prescribe 
 = 0.65 to be used for our test.
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Table 1: Empirical power for α = 0.7 and 0.9.

α = 0.7 α = 0.9



n = 80 n = 90 n = 100 n = 80 n = 90 n = 100

0.61 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.62 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.63 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.64 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.65 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.66 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.67 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.68 1.0000 1.0000 1.0000 0.9975 1.0000 1.0000
0.69 1.0000 1.0000 1.0000 0.9975 1.0000 1.0000
0.70 1.0000 1.0000 1.0000 0.9875 0.9975 1.0000

Table 2: Empirical power for α = 1.1 and 1.3

α = 1.1 α = 1.3



n = 80 n = 90 n = 100 n = 80 n = 90 n = 100

0.61 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.62 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.63 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.64 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.65 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.66 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.67 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000
0.68 0.9950 1.0000 1.0000 0.9750 0.9875 0.9875
0.69 0.9850 1.0000 0.9975 0.9500 0.9575 0.9875
0.70 0.9600 0.9975 0.9900 0.8775 0.9375 0.9775

Table 3: Empirical power for α = 1.5 and 1.7.

α = 1.5 α = 1.7



n = 80 n = 90 n = 100 n = 80 n = 90 n = 100

0.61 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.62 1.0000 1.0000 1.0000 1.0000 1.0000 0.9975
0.63 0.9975 1.0000 1.0000 1.0000 1.0000 0.9950
0.64 0.9975 1.0000 1.0000 0.9925 1.0000 0.9950
0.65 0.9925 1.0000 1.0000 0.9875 0.9925 0.9975
0.66 0.9950 1.0000 0.9950 0.9650 0.9725 0.9875
0.67 0.9700 0.9825 0.9975 0.9125 0.9825 1.0000
0.68 0.9325 0.9650 0.9925 0.8700 0.9300 0.9575
0.69 0.8825 0.9150 0.9600 0.7625 0.8925 0.9175
0.70 0.7625 0.8650 0.9375 0.6800 0.8125 0.8725

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.12
Downloaded from https://www.cambridge.org/core. Centrum Wiskunde & Informatica, on 10 Apr 2018 at 13:40:09, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.12
https://www.cambridge.org/core


Large sample test for length of memory of stable fields 189

Table 4: Empirical power for α = 0.7 and 0.9.

α = 0.7 α = 0.9



n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

0.61 0.9750 0.9650 0.9750 0.9525 0.967 50 0.981 25
0.62 0.9550 0.9625 0.9800 0.9450 0.967 50 0.983 75
0.63 0.9475 0.9725 0.9750 0.9475 0.962 50 0.973 75
0.64 0.9525 0.9600 0.9675 0.9250 0.950 00 0.948 75
0.65 0.9275 0.9600 0.9325 0.9325 0.956 25 0.950 00
0.66 0.9175 0.9600 0.9525 0.9425 0.952 50 0.950 00
0.67 0.9225 0.9425 0.9325 0.9125 0.923 75 0.938 75
0.68 0.9100 0.9200 0.9300 0.9075 0.912 50 0.942 50
0.69 0.8875 0.9150 0.9275 0.9225 0.923 75 0.928 75
0.70 0.8800 0.9075 0.9200 0.9000 0.916 25 0.912 50

Table 5: Empirical power for α = 1.1 and 1.3.

α = 1.1 α = 1.3



n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

0.61 0.955 00 0.972 50 0.972 50 0.961 25 0.981 25 0.982 50
0.62 0.952 50 0.970 00 0.976 25 0.952 50 0.955 00 0.973 75
0.63 0.942 50 0.971 25 0.967 50 0.931 25 0.951 50 0.968 75
0.64 0.945 00 0.967 50 0.965 00 0.932 50 0.956 25 0.956 25
0.65 0.925 00 0.952 50 0.971 25 0.937 50 0.958 75 0.963 75
0.66 0.917 50 0.943 75 0.946 25 0.917 50 0.938 75 0.943 75
0.67 0.911 25 0.942 50 0.953 75 0.903 50 0.935 00 0.966 25
0.68 0.911 25 0.941 25 0.935 00 0.880 00 0.931 25 0.950 00
0.69 0.895 00 0.903 75 0.950 00 0.903 75 0.935 00 0.933 75
0.70 0.863 75 0.887 50 0.926 25 0.875 00 0.880 00 0.916 25

Table 6: Empirical power for α = 1.5 and 1.7.

α = 1.5 α = 1.7



n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

0.61 0.961 25 0.977 50 0.981 25 0.962 50 0.980 00 0.980 00
0.62 0.962 50 0.975 00 0.971 25 0.966 25 0.973 75 0.976 25
0.63 0.950 00 0.956 25 0.976 25 0.966 25 0.968 75 0.957 50
0.64 0.956 25 0.961 25 0.961 25 0.948 75 0.962 50 0.961 25
0.65 0.935 00 0.952 50 0.948 75 0.942 50 0.953 75 0.971 25
0.66 0.916 25 0.936 25 0.960 00 0.938 75 0.957 50 0.957 50
0.67 0.926 25 0.941 25 0.941 25 0.910 00 0.936 25 0.947 50
0.68 0.908 75 0.938 75 0.937 50 0.898 75 0.910 00 0.947 50
0.69 0.913 75 0.926 25 0.916 25 0.897 50 0.950 00 0.910 00
0.70 0.893 75 0.891 25 0.920 00 0.891 25 0.903 75 0.920 00
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Table 7: Empirical power for α = 0.7 and 0.9.

α = 0.7 α = 0.9



n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

0.61 0.967 50 0.968 75 0.970 00 0.957 50 0.970 00 0.976 25
0.62 0.958 75 0.952 50 0.972 50 0.955 00 0.962 50 0.983 75
0.63 0.955 00 0.952 50 0.980 00 0.953 75 0.956 25 0.975 00
0.64 0.955 00 0.952 50 0.967 50 0.948 75 0.963 75 0.958 75
0.65 0.920 00 0.947 50 0.962 50 0.946 25 0.946 25 0.956 25
0.66 0.918 75 0.938 75 0.948 75 0.926 25 0.940 00 0.961 25
0.67 0.923 75 0.937 50 0.943 75 0.935 00 0.940 00 0.951 25
0.68 0.917 50 0.918 75 0.922 50 0.918 75 0.918 75 0.940 00
0.69 0.900 00 0.922 50 0.937 50 0.907 50 0.926 25 0.925 00
0.70 0.895 00 0.905 00 0.916 25 0.881 25 0.892 50 0.915 00

Table 8: Empirical power for α = 1.1 and 1.3.

α = 1.1 α = 1.3



n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

0.61 0.972 50 0.980 00 0.977 50 0.970 00 0.981 25 0.981 25
0.62 0.957 50 0.958 75 0.971 25 0.955 00 0.957 50 0.972 50
0.63 0.957 50 0.962 50 0.972 50 0.955 00 0.953 75 0.961 25
0.64 0.937 50 0.952 50 0.968 75 0.953 75 0.972 50 0.962 50
0.65 0.942 50 0.950 00 0.968 75 0.937 50 0.955 00 0.957 50
0.66 0.936 25 0.936 25 0.956 25 0.932 50 0.942 50 0.950 00
0.67 0.915 00 0.917 50 0.938 75 0.927 50 0.936 25 0.938 75
0.68 0.916 25 0.927 50 0.950 00 0.915 00 0.908 75 0.927 50
0.69 0.902 50 0.938 75 0.933 75 0.888 75 0.907 50 0.923 75
0.70 0.882 50 0.902 50 0.926 25 0.885 00 0.883 75 0.930 00

Table 9: Empirical power for α = 1.5 and 1.7.

α = 1.5 α = 1.7



n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

0.61 0.978 75 0.970 00 0.982 50 0.961 25 0.978 75 0.972 50
0.62 0.957 50 0.980 00 0.972 50 0.950 00 0.981 25 0.952 50
0.63 0.958 75 0.973 75 0.966 25 0.956 25 0.976 25 0.951 25
0.64 0.953 75 0.960 00 0.963 75 0.938 75 0.962 50 0.958 75
0.65 0.947 50 0.963 75 0.965 00 0.951 25 0.955 00 0.963 75
0.66 0.921 25 0.940 00 0.963 75 0.936 25 0.971 25 0.941 25
0.67 0.913 75 0.955 00 0.960 00 0.901 25 0.948 75 0.928 75
0.68 0.900 00 0.930 00 0.948 75 0.918 75 0.948 75 0.920 00
0.69 0.902 50 0.926 25 0.930 00 0.903 75 0.922 50 0.916 25
0.70 0.876 25 0.905 00 0.936 25 0.868 75 0.886 25 0.916 25
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5. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Without loss of generality, we will assume that X admits a moving
average representation. This is because under our hypothesis, we can use the decomposition
(1.2) with a nontrivial dissipative part and the conservative part does not contribute to the
maxima after scaling. In particular, this means that

X(j) =
∫

W

∫
Zd

f (u, v − j)M(du, dv), j ∈ Z
d ,

where M is an SαS random measure on W × Z
d with the control measure m = ν ⊗ l on

B(W × Z
d), where l is a counting measure on Z

d . Also f ∈ Lα(W × Z
d , ν ⊗ l). Let

box(L) = {j ∈ Z
d : |j1| ≤ L, . . . , |jd | ≤ L} i.e. it is an L neighbourhood around the origin.

Define

X(j , L) =
∫

W

∫
Zd

f (u, v − j) 1W×box(L)(w, v − j)M(du, dv) (5.1)

for all positive integer, L, where 1A is the indicator function on the event A. Define

Mn(L) = max{|X(j , L)| : j ∈ box(n)},
Mn(L) = max{|X(j , L)| : j ∈ (2n + [n
])e1 + box([n
])}.

Fix L ∈ N. It is important to observe that, as an easy consequence of Theorem 4.3 of [23],
we have

1

(2n + 1)d/α
Mn(L) �⇒ Y1(L),

where Y1(L) is a positive random variable with distribution function

P(Y1(L) ≤ y) = exp{−CαKα
X(L)y−α} (5.2)

with

Kα
X(L) =

∫
W

sup
j∈box(L)

|f (w, j)|αν(dw). (5.3)

Similar facts lead to the observation that (2[n
] + 1)−d/αMn converges weakly to a random
variable with the same distribution as that of Y1(L). It is important to note that for all n ≥ 2L+1,
we have {X(j , L) : j ∈ box(n)} and {X(j , L) : j ∈ (2n+[n
])e1+box([n
])} are independent
random vectors, which follows from Theorem 3.5.3 of [26]. So Mn and Mn are independent
for all n ≥ 2L + 1. Combining these facts, we obtain(

1

(2n + 1)d/α
Mn(L),

1

(2[n
] + 1)d/α
Mn(L)

)
�⇒ (Y1(L), Y2(L)),

where Y1(L) and Y2(L) are i.i.d. with law as specified in (5.2). It is easy to see that as L → ∞,
KX(L) → KX. So we have

(Y1(L), Y2(L)) �⇒ (Y1, Y2) as L → ∞.

Now it only remains to show that, for every fixed ε > 0,

lim
L→∞ lim sup

n→∞
P

(
1

(2n + 1)d/α
|Mn − Mn(L)| + 1

(2[n
] + 1)
d/α
|Mn − Mn(L)| > ε

)
= 0.

(5.4)
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To prove (5.4), it is enough to show that

lim
L→∞ lim sup

n→∞
P

(
1

(2n + 1)d/α
|Mn − Mn(L)| >

ε

2

)
= 0.

Recall that

Bn =
(∫

E

max
j∈box(n)

∣∣∣f (w, j)

∣∣∣αm(dw)

)1/α

and define a new probability measure λn on E = W × Z
d for every fixed n,

dλn

dm
(w, j) = B−α

n max
j∈box(n)

|f (w, j)|α.

Using Theorem 3.5.6 and Corollary 3.10.4 of [26], we know that, for j ∈ box(n),

X(j)
d= C1/α

α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j), j ∈ box(n),

where Cα is a constant as specified in (1.6), {εi : i ≥ 1} is a collection of i.i.d. {±1}-valued
symmetric random variables, {�i : i ≥ 1} is the collection of arrival times of the unit-rate
Poisson process, and {(U(n)

i , V
(n)
i ) : i ≥ 1} is a collection of i.i.d. E = W ×Z

d -valued random
variables with common law λn for every fixed n. It is straightforward to check that

X(j , L)
d= C1/α

α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j) 1W×box(L)(U

(n)
i , V

(n)
i − j), j ∈ box(n).

Now note that

max
j∈box(n)

|X(j)| − max
j∈box(n)

|X(j , L)|

= max
j∈box(n)

∣∣∣∣X(j , L) + C1/α
α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j) 1W×(box(L))c

× (U
(n)
i , V

(n)
i − j)

∣∣∣∣ − max
j∈box(n)

|X(j , L)|

≤ max
j∈box(n)

∣∣∣∣C1/α
α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j) 1W×(box(L))c (U

(n)
i , V

(n)
i − j)

∣∣∣∣, (5.5)

where the last inequality follows from the fact that

max
j∈Zd

(aj + bj ) ≤ max
j∈Zd

aj + max
j∈Zd

bj

for two sequences {aj : j ∈ Z
d} and {bj : j ∈ Z

d} of positive real numbers. Also note that

max
j∈box(n)

|X(j)| − max
j∈box(n)

|X(j , L)|

= max
j∈box(n)

|X(j)| − max
j∈box(n)

∣∣∣X(j) − C1/α
α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j)

× 1W×(box(L))c (U
(n)
i , V

(n)
i − j)

∣∣∣
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≥ − max
j∈box(n)

∣∣∣C1/α
α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j) 1W×(box(L))c (U

(n)
i , V

(n)
i − j)

∣∣∣
(5.6)

using the fact that any two sequence of real numbers {aj : j ∈ Z
d} and {bj : j ∈ Z

d} satisfy
the following inequality:

max
j∈Zd

|aj | − max
j∈Zd

|aj − bj | ≥ − max
j∈Zd

|bj |.

Now combining the upper bound in (5.5) and the lower bound obtained in (5.6), we have∣∣∣ max
j∈box(n)

|X(j)| − max
j∈box(n)

|X(j , L)|
∣∣∣ ≤ max

j∈box(n)
|X(c)(j , L)|,

where

X(c)(j , L) = C1/α
α

∞∑
i=1

εi�
−1/α
i f (U

(n)
i , V

(n)
i − j) 1W×(box(L))c (U

(n)
i , V

(n)
i − j).

It is easy to verify that {X(c)(j , L) : j ∈ box(n)} is a stationary SαS random field which admits
a mixed moving average representation. Hence, we can again use Theorem 4.3 of [23] to obtain

1

(2n + 1)d/α
max

j∈box(n)
|X(c)(j , L)| �⇒ C1/α

α K
(c)
X (L)Zα,

where Zα is a Frechet random variable with distribution function P(Zα < x) = e−x−α
and

K
(c)
X (L) =

∫
W

sup
j∈Zd\box(L)

|f (w, j)|αν(dw).

Finally, we have

lim sup
n→∞

P

(
(2n + 1)−d/α|Mn − Mn(L)| >

ε

2

)

= lim sup
n→∞

P

(
(2n + 1)−d/α

∣∣∣ max
j∈box(n)

|X(j)| − max
j∈box(n)

|X(j , L)|
∣∣∣ >

ε

2

)

≤ lim sup
n→∞

P

(
(2n + 1)−d/α max

j∈box(n)
|X(c)(j , L)| >

ε

2

)

= P

(
C1/α

α K
(c)
X (L)Zα >

ε

2

)
. (5.7)

It is easy to see that as L → ∞, K
(c)
X (L) → 0 and, hence, the expression in (5.7) vanishes.

This completes the proof of (5.4) and the theorem. �
Proof of Theorem 2.2. From the fact that {d−1

n Mn} and {dnM
−1
n } are tight sequences, it

follows using stationarity that {(d([n
]))−1Mn} and {d([n
])M−1
n } are tight sequences, where

d(n) := dn. Note that, as a product of two tight sequences,

d([n
])
dn

Mn

Mn

(5.8)
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is also a tight sequence of random variables. Observe that

d([n
])
d(n)

∼ n(d/α−η)(
−1) L([nρ])
L(n)

as n → ∞.

Note also that

Tn =
(

2[n
] + 1

2n + 1

)d/α
Mn

Mn

∼ nd/α(
−1) Mn

Mn

∼ L(n)

L([n
])n
η(
−1) d([n
])

d(n)

Mn

Mn

,

from which the result follows since (5.8) is tight and

L(n)

L([n
])n
η(
−1) → 0

using Potter bounds (see, e.g. [17]). �
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[28] Surgailis, D., Rosiński, J., Mandrekar, V. and Cambanis, S. (1993). Stable mixed moving averages. Prob.

Theory Relat. Fields 97, 543–558.
[29] Weron, A. and Weron, R. (1995). Computer simulation of Lévy α-stable variables and processes. In Chaos—

The Interplay Between Stochastic and Deterministic Behaviour, Springer, Berlin, pp. 379–392.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.12
Downloaded from https://www.cambridge.org/core. Centrum Wiskunde & Informatica, on 10 Apr 2018 at 13:40:09, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.12
https://www.cambridge.org/core

	1 Introduction and preliminaries
	2 Proposed large sample test based on block maxima
	3 Important classes of alternatives
	4 Numerical experiments
	5 Proofs of Theorems 2.1 and 2.2
	Acknowledgements
	References

