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ABSTRACT

Recent years have seen wireless networks increasing in scale,
interconnecting a vast number of devices over large areas.
Due to their size these networks rely on distributed algo-
rithms for control, allowing each node to regulate its own
activity. A popular such algorithm is Carrier-Sense Multi-
Access (CSMA), which is at the core of the well-known
802.11 protocol. Performance analysis of CSMA-based net-
works has received significant attention in the research lit-
erature in recent years, but focused almost exclusively on
saturated networks where nodes always have packets avail-
able.

However, one of the key features of emerging large-scale
networks is their ability to transmit packets across large dis-
tances via multiple intermediate nodes (multi-hop). This
gives rise to vastly more complex dynamics, and to phe-
nomena not captured by saturated models. Consequently,
performance analysis of multi-hop random-access networks
remains elusive. Based on the observation that emerging
multi-hop networks are typically dense and contain a large
number of nodes, we consider the mean-field limit of multi-
hop CSMA networks. We show that the equilibrium point
of the resulting initial value problem provides a remarkably
accurate approximation for the pre-limit stochastic network
in stationarity, even for sparse networks with few nodes. Us-
ing these equilibrium points we investigate the performance
of linear networks under different back-off rates, which gov-
ern how fast each node transmits. We find the back-off rates
which provide the best end-to-end throughput and network
robustness, and use these insights to determine the optimal
back-off rates for general networks. We confirm numeri-
cally the resulting performance gains compared to the cur-
rent practice of assigning all nodes the same back-off rate.
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1. INTRODUCTION

Wireless devices are increasingly part of every aspect of
our lives, and are expected to spread even more, being at
the heart of the so-called Internet of Things (IoT) [9]. The
resulting increase in the number of wireless devices requires
careful sharing of the available medium, in order to mitigate
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interference. This is done by the Medium access control
(MAC) mechanism, which establishes the nodes that may
transmit at any instant. Due to their size these networks rely
on distributed algorithms for control, allowing each node to
regulate its own activity.

A popular distributed MAC algorithm is CSMA (Carrier-
Sense Multiple-Access), which underlies the IEEE 802.11
and 802.15.4 standards. The popularity of CSMA is due
to its simplicity and efficiency, and its key features are its
back-off and sensing mechanisms. Each node needs to obey
a random back-off period between successive transmissions,
and collisions are avoided by freezing the back-off process
whenever the node senses potential interference.

Due to its widespread use, the CSMA algorithm has been
extensively studied in the research literature in recent years.
Most of this research assumes saturation (i.e., nodes always
have packets available for transmission), see, e.g. [2, 23, 8].
The resulting models are simple yet elegant, and provide
throughput estimates that match remarkably well with ex-
perimental results for saturated IEEE 802.11-based systems
[16].

Emerging large-scale wireless networks violate this satu-
ration assumption in two important ways: (i) traffic is in-
termittently generated over time, so nodes may be empty
for a non-negligible amount of time (unsaturation); and (ii)
packets may be transmitted over large distances through
intermediate nodes (multi-hop). These two properties sig-
nificantly complicate the dynamics of the network, since the
packet arrival process produces queueing dynamics and the
buffers may empty from time to time. Nodes without pack-
ets temporarily refrain from the medium contention and thus
the activity process and the queueing dynamics of the buffer
contents are strongly intertwined.

As a result, unsaturated CSMA models are drastically
more complicated, and in general are untractable. Even the
simplest instance of such model, where each node has its own
arrival process, and packets are not forwarded (single-hop),
only a few partial results are known, all in the case of a full
interference graph (all nodes interfere with each other) [4,
20]. In [20] it is demonstrated that in an unsaturated net-
work, even if the arrival rates at the individual nodes are
less than their saturation throughput, the network may still
be unstable. This counterintuitive result demonstrates that,
due to the complex interactions between the nodes’ buffer
contents, the saturation throughput cannot be reliably used
to explain the performance of unsaturated networks. In gen-
eral, stability conditions do not admit a close-form expres-
sion [4].
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Figure 1: Example of a multi-hop network with
many nodes, where packets are forwarded through
the network.

Multi-hop networks are even more complex than single-
hop networks, so only a few results are available. In [1] the
authors studied a multi-hop CSMA network using ns-2 sim-
ulations and experiments, and showed that the end-to-end
throughput may decrease as the exogenous arrival increases,
due to congestion. This phenomenon is unique to multi-hop
networks, and cannot be captured by saturated systems or
single-hop models. In [15] stability and throughput results
are obtained for multi-hop networks, under the assumption
that a node freezes its arrival process during a back-off pe-
riod, and in the regime that all nodes are unsaturated. The
behavior of a three-node linear multi-hop network is com-
puted in [18], but the approach used there cannot be ex-
tended to larger, more realistic networks.

In order to circumvent these complex and untractable
models, we observe that emerging large-scale wireless net-
works are often dense, and consist of many nodes. This sug-
gests a mean-field scaling regime, where nodes are grouped
in classes, and the number of nodes grows large, see Figure 1.
In this regime, any tagged node is subject to an averaged
effect (the mean-field) obtained aggregating the influence of
all other nodes. Thus, the high-dimensional stochastic pro-
cess describing the queueing dynamics exhibits a state-space
aggregation and is shown to converge to the solution of a
deterministic initial-value problem (IVP). The equilibrium
point of the IVP is often used to obtain accurate approxi-
mations for the performance metrics of the system with a
finite number of nodes.

Such mean-field approach has recently been successfully
applied to single-hop networks, see [3, 5, 6, 7]. In [7] the au-
thors discuss sufficient conditions for asymptotic accuracy of
such approximations. Via this approach, in [3] an approx-
imation for the stability region of the system is obtained
and in [5, 6] the stationary queue length and packet delay
performance are discussed. In the context of random-access
networks the mean-field regime not only provides analytical
tractability, but is also highly relevant due to the envisioned
massive numbers of IoT devices.

In the present paper we consider for the first time the
mean-field limit for multi-hop CSMA networks. We show
that the stochastic process converges to an initial-value prob-
lem (IVP) as the network is scaled in an appropriate way,
and characterize the equilibrium point of that IVP. We show
numerically that the equilibrium point provides an excellent
approximation for the stationary behavior of the pre-limit
stochastic network, even for small numbers of nodes. We
then focus on linear networks, where we can solve the equi-
librium points in closed form for certain back-off rates (i.e.,
the reciprocal of the mean duration of a back-off period).
We show that the choice of back-off rates has significant im-
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pact on the end-to-end throughput, and determine which set
of back-off rates gives the best performance. That is, they
maximize the end-to-end throughput as well as providing
robustness, meaning that the throughput does not decrease
when the network is in overload. We then use these insights
to design optimal back-off rates for general networks, and
show numerically that these perform well.

It is worth remarking upon that our main result is not
the proof of the mean-field convergence of the CSMA model
to the IVP, which is an extension of an earlier result in [6].
Rather, our contribution lies in the characterization and uti-
lization of the equilibrium points of the new IVP, which is
particularly challenging due to (i) the increased interaction
between nodes compared to single-hop networks; and (ii)
the presence of local bottlenecks. Summarizing, our main
contributions are:

- We characterize the equilibrium point of the mean-field
limit, and show that this is an excellent approximation
for the pre-limit network. This is the first accurate and
closed-form approximation for such networks;

- We find the vector of back-off rates which is optimal in
the mean-field regime, and show that this works very
well for the pre-limit network as well.

The remainder of this paper is structured as follows. In
Section 2 we introduce the stochastic model for multi-hop
CSMA networks, and give some background on saturated
CSMA models required for our analysis. In Section 3 we
discuss the mean-field regime, and characterize the equilib-
rium points of the resulting IVP. These equilibrium points
are further studied in Sections 4 and 5 for linear networks.
In Section 4 we solve the equilibrium point in closed-form
under various choices of back-off rates, and in Section 5 we
determine the optimal back-off rate vectors. These results
are then used in Section 6 to design good back-off rates for
general networks. We conclude in Section 7, and outline
some open problems and future research directions.

2. MODEL
We consider a CSMA network of N nodes grouped into
C classes, and denote C = {1,...,C}. Class ¢ contains

N. nodes, such that N = )7 N.. The network structure
is characterized by an undirected interference graph (C, &),
with the vertices in the graph corresponding to the classes,
and two classes share an edge if they interfere. Two nodes
within the same class or neighboring classes are prevented
from simultaneous activity.

The transmission of a packet in a class-c node requires an
exponentially distributed random time with parameter 1. In
between two consecutive transmissions, each node remains
silent for a random back-off period. The duration of this
period is exponentially distributed with parameter 1/£N> =
ve/Ne, for some v, > 0. We refer to V£N> as the back-off
rate of a class-c node, and denote v = (v1,...,vc). At the
end of its back-off period, a class-c node senses the medium
and either starts a transmission if it senses no activiy from
neighboring nodes in the graph, or it starts new back-off
period otherwise. Because at most one node can be active
per class, we can represent the activity state of the network
by

YY) e, Q={we{0,1}°: wws =0v{c,}eE}
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where YC(N)(t) = 1 if a node in class c¢ is transmitting at
time ¢, and YC(N)(t) = 0 otherwise.

Each node is equipped with a buffer of infinite size, with
QS\Q (t) denoting the queue length of the k-th node in class ¢
at time ¢, not including the packet potentially in transmis-
sion. Here we denote Q) (t) = (Q(M( t))cec;k=1,...,N.- The
queue length of a node is increased by one whenever a new
packet arrives, and is decreased by one whenever this node
starts a new transmission. A transmission is always assumed
to be successful. In multi-hop networks, packets arrive and
need to be transmitted by a sequence of nodes before leav-
ing the system. Packets arrive at class 1 according to an
exogenous Poisson arrival process with rate A\, and arriv-
ing packets are assigned uniformly at random to one of the
N1 nodes. When a packet transmission is completed at a
class-c node with ¢ < C, it is forwarded to a node of class
¢ + 1 selected uniformly at random. When a class-C' node
completes a transmission, the packet leaves the system. As
we shall see, choosing to route packets uniformly at random
will result in a tractable limit that provides an accurate ap-
proximation for pre-limit models, even for few of nodes.

For every class ¢, we define the following subsets of €2:

Qc={weQ:w.=0,wg =0Vds.t. {c,d} € E},
Qe ={weQ:w.=1}

This means that w € Q_. if and only if in the class activity
state w none of the nodes belonging to class ¢ or to a class
interfering with class c are active, while w € Q. if and only
if a class-c node is active.

The process (Q™N)(t),Y ™ (t));>0 is a Markov process,
with the following transitions:
e A new packet arrives in the system and joins the buffer
of the k-th node in class 1. This happens at rate \/Ni. It
generates the transition

ol - o+

e The k-th node in class ¢ completes a back-off period and
begins a transmission. This happens at rate v./N. and only
if ng\,i) >0and YM eQ .. It generates the transition

QY — Q-1 ¥ - 1

e A node in class ¢ < C completes a transmission and the
packet joins the buffer of the k’-th node in class ¢+ 1. This
happens at rate 1/N.41 and only if Y™ € Q.. It gener-
ates the transition

N N
oM L oW

(N)
c+1,k’ c+1, k’ YC — 0.

e A node in class C' completes a transmission and a packet
leaves the system. This happens at rate 1 and only if Y V) ¢
Q4 c. It generates the transition

YC(N) — 0.

Unfortunately, the complex interactions between the nodes
make the process (Q™)(t), Y V) (t));>¢ intractable. Several
partial attempts at understanding this process have been
made in the past few years, but these are limited to small
networks under specific assumptions [1, 18|. Instead we use
mean-field limits to get a better understanding of the net-
work. As we shall see this limit provides a remarkably good
approximation of the network.
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2.1 Preliminary results for saturated networks

Before we turn towards the mean-field limit, we first present
some background on saturated networks, i.e., networks where
all nodes have an infinite supply of packets available for
transmission. These results will turn out to play a key
role in the analysis of the mean-field limit. We denote the
aggregate back-off rate of the nodes in class ¢ by a. and
a = (ai,...,ac). Because nodes have an infinite supply of
packets available they always compete for the medium, and
the network is fully described by Y V) (t), which keeps track
of whether or not each class has an active node.

It turns out that in this case {Y ™) (¢)} in isolation is a
Markov process, and has a product-form stationary distri-
bution [2, 20, 23]:

c
m(wia) = Z(a) [ et” weQ, (1)
c=1
where Z(a) = > cq H _, ag° denotes the normalization
constant.

We define

T(Qpeio) = Y

weN ¢

Qg a) = Z

wWEQ_.

m(w; ).

Similar to the unsaturated network discussed at the begin-
ning of Section 2, we are interested in the throughput of
the network 8(a) = (01(),...,0c(a)), defined as 0.(a) =
T(Qge; ).

In [14] it has been shown that the range of the throughput
mapping 0 is equal to the convex hull " of all feasible activity
vectors. Moreover, in [21] this mapping was shown to be
globally invertible, so for every 4 € int(I'), there exists a
unique vector o(v) € RY such that

0(o(v) =~. (2)

3. MEAN-FIELD ANALYSIS

Because the Markov process (Q™) (t), Y ™) (t));>0 defined
in Section 2 is not tractable, we focus on the mean-field anal-
ysis of the model. That is, we let N — co and study the
limiting process. In the remainder of this paper we shall
demonstrate that this limit proves an excellent approxima-
tion for the pre-limit network, even for small V.

Before proceeding to this, we first introduce some addi-
tional notation. The queue length process QY )(t) uniquely
defines the population process X(N)(t) = (Xen(t))eeesneng
where

XS0 (#) NZJI{Q“V) n}

denotes the fraction of class-c nodes with n packets in the
buffer at time ¢. Observe that (X (¢), Y ™) (t));>0 is still
a Markov process with state space within E' x Q, where

Y= {x = (Ten)eccneny ¢ Y Ten =1, Ve €C)  (3)

n=0

Given x € E', denote @y = {c0}eec € [0,1]°. Denote
also by e the vector with every component equal to 1, and
let e;,; be the matrix with all 0 components except for a
1 at coordinate (j,1). We denote by - the component-wise
multiplication, so that for instance (e — o) - v = ((1 —
x1,0)V1,---, (1 —xc0)ve)
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We are interested in the mean-field analysis of the model,
i.e., we consider the regime where N grows to infinity and
denote p. = limy 00 Ne/N > 0. We then obtain the follow-
ing result.

THEOREM 1. Assume X V) (0) 2%, 2 € E'. Then

the sequence of processes

(XM(Nt)) € Dg1]0, 0)

weakly converges to x(t) € Cg1[0,00) which is determined
by the unique solution of the initial-value problem

dz.(t)
dt
where the function H(-) = (H1(:),...

= H.(x(t)), z(0)==z, (4)

,Hc(Y)) is defined by

Hy(x) = ()\2361 n(€1,n+1 — €1,n) (5)
n=0

+ 17 (Q-1;(e — xo) Z$1n€1n 1= eln))
1

Hc($):;( (Q+c 17(8_:130 chn ecn+1_ecn)
+VC7T(Q 67.’.B() Zxcn €cn—1 — ecn))

(6)
for any ¢ > 1.

ProoF. The proof of this theorem is analogous to that of
[6, Thm. 1] for single-hop networks, with the class instan-
taneous arrival rate (A1,..., A¢) replaced by

(A, Y™ e}, 1 {y™Me e Q+(c_1)})

at time ¢t. [

Note that H.(2) in (5) and (6) consist of two parts. The
first summand describes the changes in the population pro-
cess as a new packet arrives, while the second describes
the changes as a back-off period is completed, i.e., a packet
leaves the buffer. The impact of the activity process is cap-
tured by the stationary distribution of the saturated network
with per class back-off rates (e — @o) - v. In particular, in
the mean-field regime the activity process reaches stationar-
ity before the population process changes. For this reason,
m(Q—c; (e — @o) - v) denotes the stationary measure of the
activity states allowing class-c nodes to back-off, and sim-
ilarly 7(24¢; (e — @o) - v) denotes the stationary measure
of the activity states allowing class-c nodes to transmit. It
is worth remarking that the interaction between different
classes only depends on @ through xo, which will turn out
to be a crucial property in our analysis.

3.1 Equilibrium points

We are interested in the analysis of the model in station-
arity, hence we now focus on the equilibrium points «* of
the differential equation (4). We stress that convergence to
the equilibrium point is not addressed in this work. This is
a challenging problem which has only been solved in single-
hop networks for the case where (C, £) is the complete graph
(so all classes interfere with each other) [6].
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Before we discuss our characterization of the equilibrium
points of (4), we first introduce the following system of load
equations for our network. Denote p = (p1,...,pc), where
the p. € R+ are a solution to

A
" @i ) "
o 71—(94»(671); P 1/) _
Pc—m: c=2,...,C, (8)

with p < e componentwise. It turns out that the p. can
be interpreted as the load of each class in the equilibrium
point: the right-hand side of both (7) and (8) consists of
the quotient of the rate that traffic arrives into that class
and the service rate of that class, assuming that each class
operates as a single node in a saturated network with back-
off rates p - v < v. This intuition leads us to the following
characterization of the equilibrium points.

PROPOSITION 1. x* € E' is an equilibrium point of (4)
if and only if there exists a solution p to (7) and (8) with
p < e, such that

To, = (1 - pc)pe, ceC, n€Np. (9)
ProOOF. Let &* € E' be an equilibrium point of (4), so
it satisfies He(x*) = 0,c =1,...,C. After some manipula-
tions, this system of equations can be written as
_)\xin + 1/171'(971; (e - mg) . V)xirH—l = 07 (10)
(et (e—1); (€ — 20) V)T

+rem(Qoc; (e —xg) - V)xhyr1 =0, Ve>1, (11)

for n € Ny. Using successive substitution we can solve (10)
as
A

i (Q; (e — @5) - v)’

Tin =T10p1, 1= (12)

for every n € Ng. Because * € E!, we have that ST =
1. Plugging in (12), this can be written as

oo *
1= * n o Z1,0
= Zml,om =71 )
n=0 —p

which yields 27 g = 1 — p1. Substituting this into (12) we
obtain

iff P1 <17

x’]‘j,n:(lfpl)p?y VneNo

We can repeat the above steps for ¢ > 2 using (11) to
obtain
T(Qpe—1); (e — x5) - V)

Pe = (@i (e —ap) ) )

for every ¢ > 1 and n € No, and thus it holds that
Too=1-pc, VeeCl. (14)

By (14) we see that e — 5 = p, so the p. defined in (12)
and (13) are indeed equivalent to (7) and (8), concluding one
direction of the proof. The other direction can be verified by
substituting the proposed solution (9) into (10) and (11). O

x:,n = (1 - pC)p?7

So we know that each solution of (7) and (8) generates one
equilibrium point, and that for each equilibrium point the
population process is geometric. Note that the equilibrium
point (1) does not contain p., so it is independent of the
pre-limit class sizes N..
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One of the performance metrics of interest is the through-
put of each class, defined as the rate at which it is transmit-
ting packets. Since packets have unit length, this is equiv-
alent to the fraction of time each class is transmitting. We
know from Proposition 1 that in the mean-field limit the
network behaves as a saturated CSMA networks with back-
off rates p - v. Thus, with 0. the throughput of a saturated
network defined in Section 2.1, the multi-hop throughput 6.
can be written as

6c(pi M) = 0e(p - v). (15)

We are particularly interested in the stationary end-to-end
throughput 6 of the network, i.e., the throughput of class C:

0(p; A, v) =0c(p; A v).

We denote 8(p; A\, v) = (01(p; \,v),...,0c(p; A\, v)), and
when the solution p is unique, we remove p from the through-
put notation.

Using the characterization presented in Proposition 1 we
can gain a better understanding of the equilibrium points.
Recall that I' denotes the capacity region of the correspond-
ing saturated network, defined in Section 2.1.

PRoOPOSITION 2. Given network structure (C,E), arrival
rate A\, and back-off rates v we have that:

(i) If e & Int(T"), then (4) has no equilibrium points

(i) If e € Int(T"), there exists at most one equilibrium
point of (4).

(4ii) This equilibrium point is such that all nodes have the
same throughput 0.(\,v) = X\ for every c € C.

PROOF. Since the equilibrium points of (4) are charac-
terized by solutions to (7) and (8) with p < e, we are
interested in such solutions. Using that n(Q4c;p - v) =
Vepem(Q—c; p - V), we can rearrange (7) and (8) to obtain

T(Qie; prv) = A, VYeeC. (16)

So if an equilibrium point exists it satisfies (16), proving
item (iii).

Recall from Section (2.1) that 7(Qye;p - v) = 0:(p - V),
the throughput of class c in the fully saturated network with
back-off vector p - v. Thus we know from [21] that there
exist a unique solution p € (0,00)¢ such that 8(p-v) = le
for any Ae € I'. This proves item (ii). Finally, item (i) is
proven by the observation that by [21], there is no solution
to O(p-v) = Ae outside of T. [J

3.2 Partial equilibrium points

Propositions 1 and 2 characterize the limiting behavior
of (4) in the case that p < e, i.e., all classes are stable
and all nodes have the same throughput. However, from
a practical perspective we are particularly interested in the
case where p. > 1 for some ¢, so one or more classes are
overloaded. These kinds of local bottlenecks are typical for
multi-hop networks, and are the cause of many performance
issues. As we shall see, by taking into account the possibility
of local bottlenecks, the analysis of the equilibrium point
becomes much more complex and is no longer equivalent to
single-hop networks.

When p. > 1, the drift of the queue length at class-c
nodes is positive, and as a result zcn,(t) — 0 (¢t — o0)
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for all n € Ng. In particular, we have that x.o — 0 for
these unstable classes, so all nodes in this class have packets
available for transmission.

To accommodate analysis of these partially stable sys-
tems, we introduce the concept of partial equilibrium points,
where certain classes may be in equilibrium in the tradi-
tional sense, while other classes are unstable, so all their
nodes have infinite backlog. We define p~ = (p7,...,p5),
where p; = min{1, p.}, and modify the load equations (7)
and (8) as

A

pP1 = 1/17T(Qfl§p7 B V)7 (17)

7T(Q+(c—1)§l)_ V)
.= . c=2,....C. 1
P (@ vy © ¢ 18)

We then define partial equilibrium points as follows.

DEFINITION 1. We say «* is a partial equilibrium point
of (4) if there exists a p-solution to (17) and (18) such that

*

Ic,n = (1 - pC)p?7
xz,n = 07

if p. <1,
if pe > 1.

From Definition 1 we see that partial equilibrium points
are fully characterized by the p solutions to (17) and (18).

We say that this point has a load configuration s = (s1,...,sc),

where s = U if p. < 1, and s. = S otherwise.
To accommodate the search for partial equilibrium points,

let us rewrite these equations slightly. Define p = min{1, p; '},

and observe from the stationary distribution of the saturated
network (1) that

T(Qee;p” V) = (Vepe) 7 (Qies p” - W),

Substituting this into (17) and (18) and rearranging, we
obtain

Q1507 V) = Ap1 /p1,
W(Q+C;p7 ' V) = W(Q+(C*1);p7 : V)P;/Pc, c=2,...,C,

It is readily seen that p- /p. = pd, and successive substitu-
tion yields

T(Qie;p” V) =T(Qpe1)ip” - V)pL
=1 Qe-2ip V)pipii=-=X]]ri, (19
d=1

which is equivalent to (17) and (18).

The right-hand side of (19) is equal to the total arrival
rate times the fraction of load which is transmitted by classes
1,...,c, which corresponds to the throughput of class c it-
self. On the other hand, the left-hand side can be interpreted
as the fraction of time that class-c is transmitting. So (19)
states that the flow out of class ¢ has to be equal to the
fraction of time the class is active.

Note that the equilibrium points from Proposition 1 are a
special case of the partial equilibrium points introduced in
Definition 1, with all p. < 1. The throughput for the partial
equilibrium point can be obtained similarly to (15), with
p replaced by p~. In the remainder of this paper we are
only interested in partial equilibrium points rather than the
‘pure’ equilibrium points discussed in Proposition 1. Going
forward, we refer to them simply as equilibrium points.

Finding equilibrium points by solving (19) is not straight-
forward, it is in fact as difficult as solving a nonlinear com-
plementarity problem (NLCP), for which even conditions for

113



existence and uniqueness of solutions are not yet known in
general [11]. However, we can show that (19) always has a
solution, thus ensuring the existence of a equilibrium point
of (4) for any network.

ProposITION 3. For any network structure (C,E), ar-
rival rate A, and back-off rates v, there exists a solution
to (19).

The proof of this proposition can be found in Section A.1.

In addition to the throughput 0 introduced in Section 3.1,
our second performance metric of interest is how much traffic
the network can sustain, measured as the maximum arrival
rate such that the network is still stable:

A*(v) = sup {3 solution p to (19) s.t. p < e}.
A>0

We can characterize \* as follows.

ProrosiTION 4. It holds that
A*(v) = sup {a()\e) < I/}.
A>0
Proor. This result immediately follows from the defini-
tion of o (+) in (2), in fact

A (v) =sup{Ip<est. le= é(p~1/)}
A>0

=supqdp<est. olle)=p- u} =supqo(le) < V}.

A>0 A>0

O

It turns out that the equilibrium point from Definition 1
provides an excellent approximation for the pre-limit (stochas-
tic) CSMA network in stationarity. To illustrate this, con-
sider a linear network with three classes where class 2 inter-
feres with both classes 1 and 3, with v. =6, ¢c=1,2,3. In
Figure 2(a) we plot the end-to-end throughput against the
arrival rate, for both the mean-field limit and for the stochas-
tic network (obtained through simulation of the model in
Section 2) for N. = 1,10,100. Note that the mean-field so-
lution reflects the decrease in end-to-end throughput when
the network is in overload, and that the point of overload
A" is almost identical for the mean-field and the stochas-
tic cases. In Figure 2(b) we take A = 0.5, so that p =
(0.6009, 1.3838, 0.2171). We plot the fraction of nodes
with 0 and 4 packets for both classes 1 and 3, for both
the mean-field system (dashed) and the stochastic system
(marked). The x-axis shows N, for the stochastic system,
and we see that the geometric queue-length distribution seen
in the mean-field limit accurately captures the behavior of
the stochastic model, even for moderate N..

4. PERFORMANCE ANALYSIS OF LINEAR
NETWORKS

In this section we use the equilibrium points of the mean-
field limit (4) to gain a better understanding of the net-
work. We restrict ourselves to linear networks with nearest-
neighbor blocking where class-c nodes prevent nodes in classes
¢+ 1 to activate, ie.,, C = {1,...,C} and &€ = {{¢,c +
1}}e=1,....c—1. Special attention will be given to the influ-
ence of the back-off rates on the performance of the system.
For convenience, we introduce R()\, V) as the set of solutions
to (19) for a given X and v. We consider various cases where
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Figure 2: Comparing the equilibrium point of the
mean-field limit with stochastic CSMA networks.

we show that the equilibrium point of (4) is unique, and can
be solved explicitly.

In Section 4.1 we consider a linear network with general
back-off rates, and derive A*(v) as well as the maximum end-
to-end throughput achievable. In the subsequent sections we
provide a more detailed analysis for linear networks in the
following specific cases. In Sections 4.2 and 4.3 we consider
a network with C' classes with back-off rates v* = (v,...,v)
and v¥ = (v,v(1 4+ v),...,v(1 + v),v) respectively, and in
Section 4.4 a 3-class network with general back-off rates, in
oversaturation (A — 00).

4.1 Maximal throughput in linear networks

We start by rewriting (19) for linear networks with gen-
eral back-off rates. These networks are acyclic and we may
exploit [12, Thm. 1], which concerned saturated CSMA net-
works. Specifically, A[]5_, pz{ can be interpreted as the tar-
get throughput of the c-th class of nodes, whose back-off rate
is veps . Thanks to this interpretation, p solves (19) if and
only if it solves

- Aot
1% = s 20
T TN (Ut ) 20)
- M5 g (1= A5 pd)
VePe = =1 7 ¥ c ¥ NN
(1_>‘H1 pg (L+ pe ))(1_)‘1_[1911 (1+Pc+1))
c=2,...,C—1, (21)
MIS o
vopg = L1, pd (22)

L= AT pd (L+p8)

Using this refined characterization we can study the A\*(v)
for linear networks with general back-off rates. In the argu-
ment we will use the following lemma, which follows immedi-
ately from [12, Thm. 1| with target throughput Ae. Recall
that o is the throughput inverse for the saturated CSMA
model, introduced in Section 2.1.

LEMMA 1. For any A < %, it holds that

X A1-))
a(re) = (1—2,\’(1—2A)2""

AM1=X) A
(1—2)0)2' 1 —2)\)'
(23)

Observe that, due to Equations (20)-(22), for any solution
p € R(\v) with p < e it necessarily holds that p-v =
o(Xe). The theorem below follows immediately from Propo-
sition 4 and (23).
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THEOREM 2. Given a C-node linear network with back-
off rates v, it holds that

V1 vo 17 1
1420 142002 21+ dv,

As discussed in the introduction and Section 3, the through-
put of these linear multi-hop networks decreases in the of-
fered load once a class becomes saturated. This is formalized
in the the following theorem, which states that A* is in fact
the maximum end-to-end throughput of the network.

/\*(V):min{ 1<c<C’}.

THEOREM 3. Given a C-node linear network with back-
off rates v, it holds that

r;\lg(})(@(p;)\,u) =\"(v), VpeR(\v).
The proof of Theorem 3 is provided in Appendix A.2. The-
orems 2 and 3 immediately imply the following result.

COROLLARY 1. Giwen a C-node linear network, it holds
that

lim (ma(z)<0(p;/\,u)) = %, Vp e R(\v).

v— 00 A>

This shows that if unrestricted in the choice of back-off rates,
one can make any linear network throughput-optimal and
maximally stable. However, the result does not provide any
insight into what happens as A\ grows larger than \*(v),
where the throughput could drastically drop. The next sec-
tion provides an example of such a situation (see Corollary
2). In general we see that both A* and the behavior for
A > \* strongly depend on v.

4.2 Linear networks with uniform back-off
rates

In this section we fix v > 0 and let the vector of back-off

rates be v* = (v,...,v). First, it follows from Theorem 2
that in this case

1 1
N == — ———.
") 2 21+ 4v

We introduce the following constant:

v(l+ 2v)
1+3v)(1+v)’
It is readily verified that \*(v*) < A**(v) for every v > 0.
The following theorem, whose proof is provided in Appendix

A.3, completely characterizes the stationary performance of
a linear network with these uniform back-off rates.

N () =

THEOREM 4. Given a C-node linear network with back-
off rates v* = (v,...,v) and arrival rate A, there exists a
unique solution p € R(A\,v*). For A < \*(v"), it holds that
s=(U,...,U) and

o(xe)=v" - p.
For X*(v*) < A < A" (v), it holds that s = (U,8,U,...,U)
and

_ A(1=X) _Ae(\ ) (1 — Xe(A,v))
PL= U@ —a—aene)) P97 o —2xe(hy))

(1 —=X=2xe(Av))

= c = ) =9y - ]-a
=) T Ty 0 T
I+(B-20v—/0-2 )22 +2v+1

2(1+2\v) '

c(\,v) =
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For A > \**(v), it holds that s = (8,8,U,...,U) and

A1+ v)((1+3v) 142
pr= v(l+2v) B
1 1+ 2v
_ = 3 C-1
Pe=Try p (1+v)? ¢

The result of Theorem 4 describes the behavior of the
system as )\ increases, and can be understood as follows.

- Because classes 2, . .., (C—1 face more competition than
the outer classes, the middle classes saturate first, at
A= A"(v").

- From this point onwards, class 2 acts as a bottleneck,
reducing the arrival rate at the successive classes of
nodes whose load decreases as A increases. Specifically,
note that ¢(\,v) decreases in A and consequently p.
decreases for ¢ = 3,...,C. On the other hand, as A
grows, p1 increases and when the arrival rate matches
A**(v), class 1 also saturates.

- For A > X\**(v) the system is oversaturated and in-
creasing the load only further decreases p;.

Since the end-to-end stationary throughput is given by
0(Nvh) =X HS:1 pZ, the next corollary follows from The-
orem 4.

COROLLARY 2. Given a C-node linear network with back-
off rates v* and arrival rate \, it holds that

A A €0, A*(v")]
O(NvY) =< ce(hr) e (N (@), (V)]
T A > AT(v).

The corollary above implies that

: u _— 1 . * %k . 2
VILIEOH()\,V (v) = 3 VA> Van;o/\ (v) = 3
This illustrates the drop in the end-to-end throughput of the
linear network with uniform back-off rates when one of the

classes saturates.

4.3 Linear networks with fair back-off rates

In this section we fix a v > 0 and consider a linear net-
work with back-off rates given by v = (v,v(1+v),...,v(1+
v),v). It is known (see [21]) that these back-off rates guar-
antee fairness (i.e. equal throughputs of all nodes) in the
saturated single-hop linear network. Hence, we refer to these
as the ‘fair’ rates, and we conjecture that they may provide
good performance in the multi-hop setting as well. This will
be given a rigorous meaning and shown in Section 5.

It follows from Theorem 2 that in this case

. 1 1
A (v)) A .
2y/1+4v(1+v)
The following theorem completely characterizes the sta-
tionary performance of a linear network with fair back-off
rates.

T1tr2w 2

THEOREM 5. Given a C-node linear network with fair
back-off rates v¥ and arrival rate X, there exists a unique
solution p € R(\,v?). For X < X*(v'), it holds that s =
(U,...,U) and

B B A _ Al =X)
PE=Pe=0a =y P T ) — 202
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Figure 3: Throughput 6(\,v) as a function of A\ for
v = v*, v’ with ¢ = 3. The mean-field approxima-
tions are plotted in solid blue and red. Simulation
results for N, = 1,10,100 nodes per class are marked.

with ¢ = 2,...,C — 1. For A > X*(vf), it holds that s =
(8,U,...,U) and

A1+ 2v)

pPr=—"""
v

pe=1, 2<c<C.

The argument of the proof follows the same structure as the
proof of Theorem 4 and is not presented in this paper due
to space restrictions.

Intuitively, when the back-off rates are equal to v7, all the
classes saturate simultaneously when the arrival rate is equal
to A*(vf). This is possible since classes with more neighbors
have shorter back-off periods. Then, as A grows further,
class 1 acts as a bottleneck, but since the system is already
in oversaturation, this does not affect the throughput of the
nodes in the system and only p; further increases.

Theorem 5 allows us to characterize the end-to-end sta-
tionary throughput 8(\; 7).

COROLLARY 3. Given a C-node linear network with back-
off rates v¥ and arrival rate \, it holds that

G(A;uf) - {A’V

14207

A< A (vh),
A > A (vf).

Uniform vs optimal back-off rates. In Figure 3 we
plot the end-to-end throughput of a 3-class linear network
against the offered load at class 1. We compare the uni-
form and fair rates, with v* = (6,6,6) and v¥ = (3,12, 3).
We show both the results from the mean-field limit (from
Corollaries 2 and 3) and simulation results for the network
with N. = 1,10,100 nodes per class. Note that > v¢ =
S°.vl = 18 and therefore it seems reasonable to compare
the performance of the networks with these back-off vectors.

The figure provides further confirmation that the equilib-
rium point of the mean-field limit provides a good approxi-
mation for the pre-limit network, even for small N.. We also
see that carefully selecting the back-off rates yields a rele-
vant improvement both in the throughput and the stability
performance. In fact, from from Corollaries 2 and 3 we see
that A\*(vf) = 3/7 > 2/5 = \*(v"), and O(\; 7)) > 0 (\; %)
for every A > 0.

4.4 Linear networks in oversaturation
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In this section we restrict ourselves to the case with C' = 3,
and let A — oo so class 1 is saturated. This allows us to find
the equilibrium point for general v. We stress that even a
simple case like this one is only partially tractable for finite
N, see [18].

Let us introduce the following subsets of R3,

V2 V2 V2
S = > < So={—— = <
1 {1 Lt v <vs}, So {1 o< Vl,l/s},
V2 V2 V2
= > g =
Ss {1+1/3_V1’V1>V3}’ S {1+1/3<V1’1+V1

which provide a partition of ]Ri’_.

THEOREM 6. Consider a 3-class linear network with back
off rates v € Ri, in oversaturation there exists a unique
solution p for (19) and

veS = s=(5U0), veS, =

s=(8,U,8),

s = (8,8,U),

vesSs = veSi = s=(s,8,9).
The detailed description of the unique solution p for (19)
is provided in the proof given in Appendix A.4. Hence, the

following corollary immediately follows.

COROLLARY 4. Consider a 3-class linear network with
back off rates v € Ri, then

vi
2071 +1° v e S,
v2
—_—2 vES,
s . _ 14v1 42090 ’
O = iy ves:
(1+2u1)(<1+u3)) ’ 3
v3(14vq
1+vi+tvetrvzt+rivs? v € S

5. OPTIMAL BACK-OFF RATES FOR LIN-
EAR NETWORKS

In Section 4 we provided a detailed analysis of linear net-
works with different back-off rates. In particular, in Sec-
tion 4.3 we observed that the ‘fair’ back-off rates (i.e., those
rates that provide strict fairness in the setting where all
nodes are saturated) outperform uniform back-off rates, both
in the sense that the network can sustain higher loads, and
that it behaves better in overload. In this section we inves-
tigate what are the ‘best’ back-off rates. We still restrict
ourselves to linear networks with nearest-neighbor blocking,
although many of the results derived here hold more gen-
erally. It is worth repeating that we believe a unique fixed
point exists for all A and v, i.e., |R(A,v)| = 1, although we
cannot prove this. We now introduce two desirable proper-
ties of back-off rates: robustness and throughput optimality.

5.1 Robust back-off rates

In Section 4.2, it is shown that for uniform back-off rates,
the throughput of a linear network decreases when it is in
overload. This is detrimental to the network performance,
and we aim to find so-called ‘robust’ back-off rates such that
the throughput performance of the system in overload is
identical to the case with arrival rate A*(v).

DEFINITION 2. The back-off rates v are robust if and only
if for every A > X*(v) there exists a solution p € R(\, V)
such that 0(p; \,v) = \*(v).

We first present the following sufficient condition for back-
off rates to be robust.
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ProrosiTION 5. If 1 < ve and
121 < l _ 1
14+20 — 2 2/1+4dv.
then the back-off rates v are robust.

Proor. Note that p(A\) € R(\,v) for every A < \*(v),
where p(\) - v = o(\e) and o(\e) as in Lemma 1. Due to
the hypothesis, it holds that

PN W) = (LN @), .. he (N (1)) <e.

Now, for every A > A\*(v), define p(A) as

A ~ * ~ *
p(N) = (ng()\ @), e (N @),
and we now show that p(A) € R(\,v) and 6(p(A); A\, v) =
A*(v). For ¢ =1, it holds that
A

c=2,...,C0—-1,

Apr(N)T = =X() = 0(p(\"(v)) ) = 01(p(N) " V),

(N
and for ¢ > 1, it holds that

Il
(¢}
3
S
T
S

AT a7 =X () =0e(p(X () - v)
d=1

where the last equality is due to the definition of p()).
Hence, p(\) € R(A,v) and yields throughput 0(p(\); A, v) =
Oc(p(N)” -v)=A"(v). O

We would like to point out that robust back-off rates are
also fair in the sense that the various classes transmit for
the same fraction of time with the system in equilibrium. In
Proposition 2 we observed that when the network is stable,
ie., A < A*(v), the network self-regulates and behaves in
a fair way, in fact 6.(\,v) = A, for every class ¢ € C. In
general, the fairness of the network breaks for A > A\*(v),
however, that is not the case when the back-off rates are
robust. Consider A > A*(v) and the solution p € R(\,v)
presented in the proof of Proposition 5. It holds that

Oe(p; \v) =0.(p” -v) =\ (v), Veel.

5.2 Throughput-optimal back-off rates

In Corollary 1 we observed that the maximum through-
put achievable approaches 1/2 when all the coordinates of
v grow to infinity. However, in practice the back-off rates
are bounded by physical constraints. Otherwise, with non-
negligible probability, there will be arbitrarily small gaps
between the ends of back-off periods of neighboring nodes,
which may lead to collisions. We model this as an upper
bound on the aggregate back-off rates allocated among the
nodes. Putting an upper bound on the back-off rate of each
node would lead to similar results as those presented below.

Hence, we impose a budget V' > 0, and consider the set of
admissible back-off rates v to be V = {v € RY : chzl ve <
V}. Among the admissible back-off rates, we can identify
those for which the maximum throughput is the highest.

DEFINITION 3. The back-off rates v’ are throughput-optimal

in the set V if and only if \* (V') = maxpev{\ (v)}.

Denote by A* = max,ep{\*(v)} the maximum through-
put achievable over all back-off rates and arrival rates. Let
us now consider the fair back-off rates already introduced
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in Section 4.3, and recall v¥(v) = (v,v(1 +v),...,v(1 +
v),v), v > 0. Define v* as the unique positive solution of
V = |[vf (v*)|]1, and v* = vf ("), i.e., the highest possible
fair rates allowed by the budget. We can show that v™ is
both robust and throughput-optimal.

THEOREM 7. The back-off rates v* are both robust and
throughput-optimal.

PROOF. The robustness follows immediately from Propo-
sition 5. In fact, vy = v¢& and

vy I _1_ 1 _l_ 1
T+2vf 1420 2 2T+ dw(v+1) 2 2/T+4vF

forc=2....,C—1.

It remains to be proved that A*(v*) = A*. Consider p €
R(\*,v) with v € V" and p < e. Define o = p-v. We will
show that & = v*. Since ¥ < e, we have 0.(e- ) = 0.(p -
v) = X\ for all ¢ € C, so that & € V*. Since e € R(\", D),
there necessarily exist v > 0 such that & = v/, so

N () =X ) > @ () = A (@) = A

Since v* € V, we also have A*(v*) < X*, and therefore

I =A*. O

As a consequence of the above result, we deduce that for
every arrival rate A, the back-off rates v* outperform any
other v € V. In fact, for any A there exists p* € R(\,v™")
such that for every p € R(\,v*), if A < A* it holds that

O(p" A v") =A>0(p; A v),
while, if A > A" we have that
O(p" A7) =X > X(v) > 0(p; A v).

6. GENERAL NETWORKS

The detailed analysis of linear networks in Sections 4 and 5
highlights the importance of the choice of back-off rates
when operating a multi-hop network. In this section we
exploit the results and intuition from these sections to find
optimal back-off rate vectors for general networks, subject to
a budget for the aggregate rates. We then compare this with
the uniform back-off rates and we show substantial gains
achieved both in terms of throughput and stability.

6.1 Heuristic optimal back-off rates

We have seen in Sections 4 and 5 that for linear networks,
all fair rates are robust, and that the highest fair rates al-
lowed by our budget are also throughput-optimal. The in-
tuition behind this is that under the fair rates all classes
saturate simultaneously, which both ensures robustness, and
that the point of saturation A\* is as high as possible.

This seems to suggest that for general networks, too, the
highest possible fair rates are both robust and throughput-
optimal. Although we cannot prove this, we can compute
these rates numerically, and show that they perform very
well compared to uniform rates. Recall that o denotes the
inverse throughput mapping for saturated networks, so that
for any A > 0 such that Ae € int(T"), the fair rates such that
each class has throughput A are given by o(Ae). The key is
then to find the highest possible such A that can be afforded
from our budget:

(P) : max{X:V > |lo(Xe)||1}. (24)
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In general networks, explicit formulae for v* are not avail-
able. Instead, in Section 6.2 we solve (24) by bisection,
where the o(\e) in each iteration is solved numerically or
through approximations described briefly below. In Section
6.2 we will discuss the performance of multi-hop networks
with back-off rates v* computed via the different methods.

6.1.1 Exact method

In [21] a numerical algorithm is presented that computes
o (7). The main drawback of such algorithm is that it needs
to know all the independent sets of the interference graph
whose number grows exponentially in C'. We stress that this
problem is NP-Hard and the method works only when C is
reasonably small.

6.1.2 Approximation methods

Due to the computational complexity of the exact method,
there has been recently a lot of interest in obtaining accu-
rate approximation for the back-off rates yielding a target
throughput, see [12, 13, 19, 24]. The most popular meth-
ods are based on free energy approximations due to Bethe
[24] and Kikuchi [12, 19] which are shown to be exact for
acyclic and chordal networks respectively. In [13] a theoret-
ical framework covering both methods is presented.

6.2 Numerical examples

In this section, we test the performance of the heuristic
method presented above and compare it with the uniform
back-off rates. We aim to demonstrate that the back-off
rates obtained by solving (24) exhibit great performance
not only in linear networks, but in networks with general
interference graphs as well.

6.2.1 Small network

Consider the 5-class multi-hop network in Figure 4(a).
We fix V = 10, and as the network is small, we compute
v* via the numerical method described in [21] and obtain
v* = [1.075,3.642,1.76,1.763,1.76] On the other hand, the
uniform back-off rates are v* with v = 2 for each class.

In Figure 5 we present the end-to-end throughput perfor-
mance for the system with the different back-off rates and
both 1 and 100 nodes per class. First of all, we observe the
striking similarity of these two plots, the qualitative behav-
ior of the end-to-end throughput as a function of the arrival
rate A is nearly identical. For this small network, the fixed-
point iterative method applied to (25) converges quickly for
every choice of X and both v* and v*. We compare the sim-
ulated results with the throughput expected from the equi-
librium point of the mean-field differential equation. There
is a slight difference in the end-to-end throughput for N, = 1
and v = v for A > 0.3, but the accuracy of the mean-field
approximation is nevertheless impressive.

In Figure 4(b) we show the throughput of the different
classes with arrival rate A = 0.5. We display the scenario
with a single node per class, the case with 100 nodes per class
exhibits similar behavior. Note that the system initialized
with v = v™ is extremely fair even in such an oversaturated
regime, corroborating the idea that the heuristic method we
proposed is robust. When v = v*, the throughput of class-
1 nodes is very high (it matches the arrival rate A = 0.5),
however the packets are then stuck in the buffer of class-
2 nodes which are not equipped to sustain the incoming
flow. Note that since class 1 is still unsaturated, a further
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Figure 4: (a) 5-class network, (b) Per-class through-
put with back-off rates v*,v* and N. = 1 node per
class.
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Figure 5: End-to-end throughput performance as a
function of X for back-off rates v*,v". (a) N. =1 (b)
N. = 100.

worsening of the performance is foreseeable as the arrival
rate grows larger.

6.2.2 Large network

Consider now a large network with 20 classes with aver-
age number of neighbors per class equal to 10.4 and maxi-
mum clique dimension equal to 6. We fix V = 100, however
the graph is too large to use the exact method described
in [21], we thus rely on Kikuchi’s method described in [12]
and obtain the back-off rates ™. The graph considered is
not chordal, but we expect Kikuchi’s approximation to be
fairly accurate since there are no long cycles without inter-
nal chords. The uniform back-off rates v“ have vy =5 for
every c=1,...,20.

We simulate the network with N. = 100 nodes per class.

End-to-end throughput Throughput - A = 0.3

0.08

0.1
0.04 .

0.04 0.08 0.12 16 4 8 12 16 20
. . . A ' . . Classes

Figure 6: 20-class network with N. = 100 nodes per
class. (a) End-to-end throughput performance as a
function of )\ for back-off rates v and v". (b) Per-
class throughput performance for back-off rates v%
and v" with arrival rate A = 0.3.
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In Figure 6(a) we show the end-to-end throughput perfor-
mance of the system as A increases. Note that up to arrival
rate A = 0.12 the networks with both back-off rates are sta-
ble and the end-to-end throughput rate coincides with the
arrival rate. As A grows further, in the system with uniform
back-off rates some classes saturate and act as bottlenecks,
since the network is not in oversaturation, i.e., class 1 is still
stable, the performance drastically deteriorates. To better
appreciate this, in Figure 6(b) we show the throughput of the
various classes with arrival rate A = 0.3. Observe that the
throughput profile for the network with back-off rates v is
quite fair and 6; (A, %) — a0 (X, 1) is relatively small. The
throughput profile for the network with back-off rates v* is
very different. Nodes 3,4,5,14 are clearly bottlenecks and
block a large fraction of the incoming flow. The difference
01(A\, ™) — O20(A,v") is now very large. Note that class-1
is still unsaturated, hence as A grows further we expect the
end-to-end throughput to exhibit further deterioration. Al-
ready with A = 0.3, the network with v = v* transmits
roughly twice the number of packets that the network with
v =v" does.

7. CONCLUSION AND OUTLOOK

In this paper we considered random-access networks where
packets may be forwarded between nodes before eventually
leaving the network. This multi-hop structure causes var-
ious performance issues, and makes the exact analysis of
the underlying stochastic process intractable. In this pa-
per we considered the mean-field regime, where the number
of nodes grows large. We showed that in this regime the
stochastic process converges to an IVP, and introduced the
concept of partial equilibrium points, where certain classes
of nodes may be in a stable equilibrium, while other classes
are unstable. The mean-field regime is inspired by emerging,
highly dense random-access networks such as mesh networks
and the device-to-device mode in 5G, but we showed numer-
ically that the equilibrium points of the mean-field limit also
provide an excellent approximation for sparse networks with
fewer nodes.

We then used the mean-field limit to better understand
multi-hop networks, and to improve their performance. We
first considered linear networks, and showed that the end-
to-end throughput as a function of the offered load is the
highest at the point when the first class of nodes saturates,
and that this saturation point and the behavior in overload
depend on the back-off rates of the nodes. We fully char-
acterized the behavior at the equilibrium points for uniform
back-off rates and ‘fair’ back-off rates, i.e., those that pro-
vide equal throughputs in the case all nodes are saturated.
The uniform back-off rates turned out out to display a de-
crease in throughput when the network is overloaded, while
the fair rates are robust, in the sense that the throughput
remains the same in overload. We then looked at the prob-
lem of finding the best back-off rates given a certain total
budget (representing for instance physical constraints on the
back-off processes), and proved that the fair back-off rates
are indeed optimal in the sense that they are both robust
and give the largest stability region. We then used these re-
sults to devise a heuristic method for choosing back-off rates
in general multi-hop networks, and we showed numerically
that these rates perform well compared to uniform back-off
rates.
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7.1 Outlook

Although multi-hop random-access networks are becom-
ing increasingly widespread and form the backbone of future
technologies such as mesh networks, IoT and 5G, their per-
formance is still poorly understood. The results presented in
this paper may be viewed as a first step towards developing
tools for the performance analysis and optimization of such
networks. Below we outline some possible future research
directions.

Rigorous treatment of partial stability. Although the
partial equilibrium points defined in Definition 1 are nu-
merically verified to be the correct choice, we would like to
derive them in a more rigorous manner, analogous to the
‘pure’ equilibrium points from Proposition 1. This may be
done by relying on the literature on partially stable ODEs
(cf. [22]), which covers ODEs that are stable only in certain
dimensions.

Extension beyond linear networks. Sections 4 and 5
are concerned with the partial equilibrium points for lin-
ear networks with nearest neighbor blocking. Many of the
results here can be readily extended to general linear net-
works, but the key challenge will be to extend it beyond
linear networks. For instance the proof of Theorem 3 relies
on the Markov random field representation of the network,
which cannot be used in general.

Networks with multiple traffic flows. Here we lim-
ited ourselves to a single flow of traffic traversing the net-
work, but the derivation of the mean-field limit (4) can be
readily extended to networks with multiple traffic flows, al-
though the derivation of the partial equilibrium points (19)
becomes more complex. This raises several very interesting
new questions, for instance whether the uniqueness of p-
solutions to (4) we observed numerically still holds for two
or more flows, or if there are multiple configurations possible
with different bottlenecks and a dominant flow.

Adaptive CSMA algorithms in multi-hop networks.
The past decade has seen the emergence of a class of adap-
tive CSMA algorithms that allow nodes in saturated or single-
hop networks to find their optimal back-off rate in a dis-
tributed manner, see, e.g., [14, 10, 17]. It is unclear how
well these algorithms work in multi-hop networks, and how
the resulting coupling of departure and arrival processes of
neighboring nodes affects their performance. The mean-field
framework here could be extended to state-dependent back-
off rates (see [6]), which would allow insights in these adap-
tive algorithms in a more realistic multi-hop setting.
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APPENDIX
A. REMAINING PROOFS

A.1 Proof of Proposition 3

ProOF. Define the continuous function F : RY — RY
where
M52y pd
Fu(p) = d=1-d 25
=(p) vem(Q—c; p~ - V)’ (25)
and observe that (19) can we rewritten to Fe(p) = pc. Define

the convex and bounded set U C RY as

A

= RCI < c< c c = ————.
U={peR] :0< p. < U, VeceC}, U (0 0)

Below we show that F(-) maps RY in ¢. Hence the result
then follows from Brouwer’s Theorem which establishes that
there must exist a solution for F(p) = p in U.

Given p € Rf, we have to show that 0 < F.(p) < U, for
every ¢ € C. Observe that 0 < F.(p) clearly follows from
the non-negativity of all the terms on the right hand side
of (25). On the other hand, since p* < e and 0 € Q_,, it
holds that

A A
Fe(p) <

v (Qp v)

Ve p v
We conclude that F.(p) < U. since p~ > 0 and thus

1 e we 1
wop o)~ 2 L) = 2 1 = ooy

weN ceC weN ceC

O

This proof also indicates that solutions p to (19) can be
found through fixed-point iteration of (25). Although we
cannot show that this iteration converges, numerically we
see this always is the case.

A.2 Proof of Theorem 3

Proor. Let us look at all the possible scenarios where
the back-off rate of class ¢ is equal to p.(A, V) ve = Ue <
ve. The idea is to show that for any set of throughputs
0., (D),.. .,0_0(17) such that 6_?6(17) > 9_c+1(17) we will have
Oc(¥) < X*(v). If we show that, we will show that the
throughputs after saturation cannot be bigger than \*(v)
which is an achievable throughput before saturation. Let us
fix  and drop it from the notation.

We use formulae from the proof of [21, Prop. 3|. In partic-
ular, consider a saturated network with C' nodes and back-
off rates ¥, and denote a. = P{Y. = 0|Y.—1 = 0} and 9. =
P{Y.—1 =0} with c=2,...,C. Since 0. = P{Y.—1 = 1}, we
have 6, = (1 —ac)te and fe=1—1ci1

Consider now ¢ = C, it holds that

Oc =1 —ac)e=0—ac)1—0c_1) < (1 —ac)1—-0c),
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which leads to

~ 1—ac 1—20c
Oc < ac < ——=.
C_Q—ac’ ¢ = 1—06¢

Since 1 — ac = Veac, e, ac = 1/(1+Vc), we get
5 vc [ Ze;
Oc < < .
“=T1%2c ~ 1+2vc

Consider now any ¢ =2,...,C — 1. From [21, Eqn. (34)]
we have

(26)

1—a.= Vclelet1, (27)
and hence,
e = (1 = ac)pe = (1 —ac)(1 = fe—1) < (1 —ac)(1—6e),
which leads to
~ 1—ac < 1— 26,

g, < , ST e
~— 2—ac — 1-6.

From (27), we have a. = (1 +Deac41) "+, which we can plug
into the inequality for the throughput to have
~ ~ 1-— Qe vcac-&-l
Ocr1 <0, < =
=T =y ae T 14 2Weaess
(1 — 20,417,
T 1 =01 +2(1 = 20011)0c

This leads to a quadratic inequality implying

1 1
= 2 2 2y/T+dv.
It remains to deal with the case ¢ = 1. For that, [21, Eqn.
(33)] gives us

(29)

Plaz < Pl(l —20_2)

02 < 0, = _ —
P T T Dlas T 1— 02 + 7 (1 — 20,)

from (28). The last inequality gives us 0c < s < 14-77191 <
1:211/1 :
Combining the last inequality with (26) and (29), we see

Oc () < X*(v) for every o <v. O
A.3 Proof of Theorem 4

PROOF. In the proof we will use the characterization in
(20)-(22) with ve =v forc=1,...,C.

We first show that the configurations different from (U, ..., U),
(U,8,U...,U), and (8,S,U...,U) do not admit a feasible so-
lution.

e s such that sc = S. Consider the ratio between (22) and
(20). It holds that

1 MIT pa (1= i (1+pf))
pr (L=ATIT ' pd (14 p5)) Aoy

(1= Xof (L+ pI) TIS oo

(1= ATl (1 +pd)

which yields a contradiction since

C _

T e | R R )
[Iri =
2

py (1= Xpf (14 p3))

c—
LA i (408)
T - (tps) T
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e s such that s =S forc=3,...,C —1. Consider the ratio
between the equations in (21) for the c-th and the 2nd class.
Simple algebra yields

1 TI5p7(1—Lo)(1 — Ly — La)(1 — Ly — Ls)
g B (1= La)(1—Le—1 — Le)(1 = Le — Lega)

where L., = A\ H';, pj, and observe that Ly > Lg4+1 for every
d=1,...,C — 1. Hence,

c

Hp+ _ i (1 - L2)(1 e Lc)(l — Lc — Lc+1)
5 ¢ p; (1—Le)(1—Li—La)(1 — Ly — La)
S (1= Le—1—Le) (1= Lo)(1 — Le — Leta)
- ( 7L27L3) (lfLC)(lflq?Lg)
Cl CZ
Observe now that C1 > 1 iff Lo + L3 > Le—1 + L., which
holds since ¢ > 3. Similarly Co > 1 iff L1(1 — L) >

Lcy1(1 — L2) which holds since L1 > Ley1 and Lo > Le.
Therefore, this yields a contradiction since []; p}' <pl <1

e s such that s; = S and s; = U. Consider the ratio between
the equations in (20) and (21) for ¢ = 2. It holds that

L (=Xip3(1+p])

Py ps (1 =Xpfp3)
which yields a contradiction since
P G Mips (Lt pg)  1=2pips = Aolpipy _
(T=2pipz)  ~ 1= Apipy

At this point, we prove that for each of the feasible states
there exists a solution p which corresponds to the one given
in the theorem.

e s=(U,...,U): Immediately from Lemma 1.
e s = (U,8,U,...,U): From Equation (21) for ¢ = 2, we
obtain that

_ Aoz (1= Ap3)
(L=X=2p3)(1 =2Xp5)
which yields
L B=20r+ 1+ /A -20)22 + 2w +1
P2 = 2(1 + 2\w)

It holds that c+(A\,v) > c—(\,v) for every A\,v > 0, that
both are strictly decreasing in A, and that

=c+(\ V).

1 1 1
+
= =1 =4z
P2 C+()\7l/) A A 2+2 1+40°
1 1 1
+ _ — — - _ =,

ps =c—(Av)=1 < )\—2 N 114

From Equations (20),(22), and (21) for ¢ # 2, we obtain

- A A

TV eh) T A (W)
o = Aoy (L=2p3) _ Aps (1= Ap3)(1 =X —Xpy)
v =208) w1 -2003)2(1 - A= A03)
== dcx(\,v)
o 1-2Xxex(\v)
_ Apd Ae(\, v)
Pc = =

w1 =20pf)  v(l—=2Xcx(A,v))’
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Consider ci (A, v) = c1(A,v), in order to have p < 1 it
requires that A > 1/2, however

_ 2A(1 + 2v)
P (=20 +0) — /It 20 1 (1-20%2)

Hence, the only feasible solution is given by c+(A,v) =

< 0.

c—(\v).
e s = (8,8,U,...,U): From Equations (20) and (21) for
¢ = 2, we obtain that

L Aot _ Aot ps (1= Aoy py)
L=l = Apfps (L= Apf = Apip3)(1— 2007 p3)

which yields

4 14+v 4 v(l+2v) v(l+2v)

P2 = P1 =

1420 A1+ 4v + 3v2)

Hence, from (22) we have that

6 — )\p—l‘rp;— — 1+V3V _ 1
v(l1—2Xpip3) v(l-235;) 1+v

while from (21) for ¢ =3,...,C — 1, we obtain

~_olps (L= ebpd) _ e (- o)

Cov =20 pf)? v(-205)?

P

1+2v
(1+v)2

The last step of the proof consists in showing that the
value of A uniquely identifies the load configuration, and
hence the solution p € R(A,v"). Consider the unsaturated
configuration, we require A < 1/2 otherwise p; < 0. Hence,
consider c€ 2,...,C —1 and ¢’ € {1,C},

1 A1-N _1-X 1
=L = Py = Pos VA< .
Pe = =2z  Pei—axn = "e <3

A solution in load configuration (U,...,U) exists if and only

if A < A the load at which p; =1 force2,...,C — 1.

Consider now the load configuration (8,8,U...,U), it holds
that p < 1iff A > A®. Moreover, for every A > \? it
holds that pJ < 1 and p; < 1 for every c=3,...,C.

Consider now the load configuration (U,S,U...,U), it is
sufficient to show that both for A < A and for A > A,
the solution is unfeasible. In fact, since a solution needs
to exists even for A € (A, A®] it necessarily is in load
configuration (U,S,U...,U). We can conclude since pj < 1
iff A> A and p; <1ifA<A®. O

A.4 Proof of Theorem 6

Before showing this we need the following auxiliary result,
showing that each possible oversaturated load configuration
has a unique solution, whose admissibility depends on the
subset S; such that v € Sj.

ProPOSITION 6. For every load configuration s € S X
{U,8}? there exists a unique solution p for (19). If s =
(S,U,U) it holds that

V1 _ v + Z/f V1

+—7 = .y = —
P1 = )\(21/1—1—1)7 P2 vy P3 s’

if s = (S,8,U) it holds that

2
v +vi +vive

pl =

L )\(1—|—l/1 +2I/2)(1—|—I/1)’

+ 1/2(1+I/1) _ 1%}

P2 = ) P3 = )
vi(14 v + 1) v3(1 4 v1)
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XA+ )1 +3v)

if s = (8,U,8) it holds that

+ 1% - V1(1+7/3) + V3(1+7/1)
pl - >\(1—|—2V1)’ p2 - 125] ’ p3 - I/1(1—|—l/3).
if s =(S,8,8) it holds that
+ v1(1+4v3)
PL= A1+ v +ve +vs +vivs)’
7 +_ 31 +wv)
P2 _V1(1—|—I/3)’ 3 1%} ’
Proor. Consider Equations (20)-(22) with C' = 3 and
set p; = 1. We separately look at the four oversaturation
possibilities.

e 5=(S,U,U), ie., pi,pd =1,

(20) = (22) = 1 =vsp; = pgzl’j—;.
2
(20 = (21) = p; =211
V2
21 Ay = 2
(21) = Apj 20, 11
e 5=(8,8,U),ie., py,pd =1,
_ _ _ 1]
21) = (22 = =2
(21) = (22) = v2=u3p; +11v3ps = p;3 V(L + 1)

v va(l + v
(21)/@0) = pf = —2 - _wlin)
V1 + v1v3pg vy + vy + rive

v+ I/f + vive
A1+ +2)(1+11)

(21) = pf =

e 5=(S,U,8),ie, pf,p5 =1,

_ _ 1
(20) =(21) = vi+urivs=r12p; = po :M
2

3 1+l/1)

29)/(20) = pi = 2LE)

( )/( ) P3 V1(1+I/3)

+_
(20) = Mol = 5

e s=(8,8,8),ie., py,p3 =1,

+ Vst unus

(22)/(21) = p3 =
V2
21)/(20) = pf = — 2 .
(U/20) = pf =
(20) = pf = nE s

- A1 +wv1+ve +vs+vivs)
O

We now present the proof of Theorem 6

PROOF. It is a simple exercise to show that the sets Si,
S2, S3 and Sy form a partition of Ri. Now, observe that
these solutions are feasible if and only if p < 1 and p; < 1
for ¢ = 1,2,3. However, since A > 0, it holds that pf < 1.
Hence, so as for the solution with s = (8,U, U) to be feasible,
we require

L P
1% 143

which corresponds to v € S;. Similarly, we can show that

the solutions with s = (8,S,U), s = (8,U,S), and s =

(8,8,8), are feasible if and only if v € S, v € S3, and

v € S4 respectively. [
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