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Abstract. We analyse the computational complexity of finding Nash
equilibria in stochastic multiplayer games with ω-regular objectives.
While the existence of an equilibrium whose payoff falls into a certain
interval may be undecidable, we single out several decidable restrictions
of the problem. First, restricting the search space to stationary, or pure
stationary, equilibria results in problems that are typically contained in
PSPace and NP, respectively. Second, we show that the existence of an
equilibrium with a binary payoff (i.e. an equilibrium where each player
either wins or loses with probability 1) is decidable. We also establish that
the existence of a Nash equilibrium with a certain binary payoff entails
the existence of an equilibrium with the same payoff in pure, finite-state
strategies.

1 Introduction

We study stochastic games [22] played by multiple players on a finite, directed
graph. Intuitively, a play of such a game evolves by moving a token along
edges of the graph: Each vertex of the graph is either controlled by one of
the players, or it is stochastic. Whenever the token arrives at a non-stochastic
vertex, the player who controls this vertex must move the token to a successor
vertex; when the token arrives at a stochastic vertex, a fixed probability
distribution determines the next vertex. A measurable function maps plays
to payoffs. In the simplest case, which we discuss here, the possible payoffs
of a single play are binary (i.e. each player either wins or loses a given play).
However, due to the presence of stochastic vertices, a player’s expected payoff
(i.e. her probability of winning) can be an arbitrary probability.

Stochastic games with ω-regular objectives have been successfully ap-
plied in the verification and synthesis of reactive systems under the influence
of random events. Such a system is usually modelled as a game between
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the system and its environment, where the environment’s objective is the
complement of the system’s objective: the environment is considered hostile.
Therefore, the research in this area has traditionally focused on two-player
games where each play is won by precisely one of the two players, so-called
two-player zero-sum games. However, the system may comprise of several com-
ponents with independent objectives, a situation which is naturally modelled
by a multiplayer game.

The most common interpretation of rational behaviour in multiplayer
games is captured by the notion of a Nash equilibrium [21]. In a Nash equi-
librium, no player can improve her payoff by unilaterally switching to a
different strategy. Chatterjee et al. [7] gave an algorithm for computing a
Nash equilibrium in a stochastic multiplayer games with ω-regular winning
conditions. We argue that this is not satisfactory. Indeed, it can be shown that
their algorithm may compute an equilibrium where all players lose almost
surely (i.e. receive expected payoff 0), while there exist other equilibria where
all players win almost surely (i.e. receive expected payoff 1).

In applications, one might look for an equilibrium where as many players
as possible win almost surely or where it is guaranteed that the expected
payoff of the equilibrium falls into a certain interval. Formulated as a decision
problem, we want to know, given a k-player game G with initial vertex v0 and
two thresholds x, y ∈ [0, 1]k, whether (G, v0) has a Nash equilibrium with
expected payoff at least x and at most y. This problem, which we call NE for
short, is a generalisation of the quantitative decision problem for two-player zero-
sum games, which asks whether in such a game player 0 has a strategy that
ensures to win the game with a probability that lies above a given threshold.

In this paper, we analyse the decidability of NE for games with ω-regular
objectives. Although the decidability of NE remains open, we can show that
several restrictions of NE are decidable: First, we show that NE becomes
decidable when one restricts the search space to equilibria in positional (i.e.
pure, stationary), or stationary, strategies, and that the resulting decision
problems typically lie in NP and PSPace, respectively (e.g. if the objectives
are specified as Muller conditions). Second, we show that the following
qualitative version of NE is decidable: Given a k-player game G with initial
vertex v0 and a binary payoff x ∈ {0, 1}k, decide whether (G, v0) has a Nash
equilibrium with expected payoff x. Moreover, we prove that, depending on
the representation of the objective, this problem is typically complete for one
of the complexity classes P, NP, coNP and PSPace, and that the problem is
invariant under restricting the search space to equilibria in pure, finite-state
strategies.

Our results have to be viewed in light of the (mostly) negative results
we derived in [27]. In particular, it was shown in [27] that NE becomes
undecidable if one restricts the search space to equilibria in pure strategies (as
opposed to equilibria in possibly mixed strategies), even for simple stochastic
multiplayer games. These are games with simple reachability objectives. The
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undecidability result crucially makes use of the fact that the Nash equilibrium
one is looking for can have a payoff that is not binary. Hence, this result
cannot be applied to the qualitative version of NE, which we show to be
decidable in this paper. It was also proven in [27] that the problems that
arise from NE when one restricts the search space to equilibria in positional
or stationary strategies are both NP-hard. Moreover, we showed that the
restriction to stationary strategies is at least as hard as the problem SqrtSum
[1], a problem which is not known to lie inside the polynomial hierarchy.
This demonstrates that the upper bounds we prove for these problems in this
paper will be hard to improve.

Related Work. Determining the complexity of Nash equilibria has attracted
much interest in recent years. In particular, a series of papers culminated
in the result that computing a Nash equilibrium of a two-player game in
strategic form is complete for the complexity class PPAD [12, 8]. However,
the work closest to ours is [26], where the decidability of (a variant of) the
qualitative version of NE in infinite games without stochastic vertices was
proven. Our results complement the results in that paper, and although our
decidability proof for the qualitative setting is structurally similar to the one
in [26], the presence of stochastic vertices makes the proof substantially more
challenging.

Another subject that is related to the study of stochastic multiplayer
games are Markov decision processes with multiple objectives. These can be
viewed as stochastic multiplayer games where all non-stochastic vertices are
controlled by a single player. For ω-regular objectives, Etessami et al. [16]
proved the decidability of NE for these games. Due to the different nature of
the restrictions, this result is incomparable to our results.

2 Preliminaries

The model of a (two-player zero-sum) stochastic game [9] easily generalises to
the multiplayer case: Formally, a stochastic multiplayer game (SMG) is a tuple
G = (Π, V, (Vi)i∈Π , ∆, (Wini)i∈Π) where

• Π is a finite set of players (usually Π = {0, 1, . . . , k− 1});
• V is a finite, non-empty set of vertices;
• Vi ⊆ V and Vi ∩Vj = ∅ for each i 6= j ∈ Π;
• ∆ ⊆ V × ([0, 1] ∪ {⊥})×V is the transition relation;
• Wini ⊆ Vω is a Borel set for each i ∈ Π.

The structure G = (V, (Vi)i∈Π, ∆) is called the arena of G, and Wini is called
the objective, or the winning condition, of player i ∈ Π. A vertex v ∈ V is
controlled by player i if v ∈ Vi and a stochastic vertex if v 6∈ ⋃i∈Π Vi.

We require that a transition is labelled by a probability iff it originates
in a stochastic vertex: If (v, p, w) ∈ ∆ then p ∈ [0, 1] if v is a stochas-
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tic vertex and p = ⊥ if v ∈ Vi for some i ∈ Π. Additionally, for each
pair of a stochastic vertex v and an arbitrary vertex w, we require that
there exists precisely one p ∈ [0, 1] such that (v, p, w) ∈ ∆. Moreover,
for each stochastic vertex v, the outgoing probabilities must sum up to
1: ∑(p,w):(v,p,w)∈∆ p = 1. Finally, we require that for each vertex the set
v∆ := {w ∈ V : exists p ∈ (0, 1] ∪ {⊥} with (v, p, w) ∈ ∆} is non-empty, i.e.
every vertex has at least one successor.

A special class of SMGs are two-player zero-sum stochastic games (2SGs).
These are SMGs played by only two players (player 0 and player 1) and
one player’s objective is the complement of the other player’s objective, i.e.
Win0 = Vω \Win1. An even more restricted model are one-player stochastic
games, also known as Markov decision processes (MDPs), where there is only
one player (player 0). Finally, Markov chains are SMGs with no players at all,
i.e. there are only stochastic vertices.

Strategies and strategy profiles. In the following, let G be an arbitrary
SMG. A (mixed) strategy of player i in G is a mapping σ : V∗Vi → D(V)
assigning to each possible history xv ∈ V∗Vi of vertices ending in a vertex
controlled by player i a (discrete) probability distribution over V such that
σ(xv)(w) > 0 only if (v,⊥, w) ∈ ∆. Instead of σ(xv)(w), we usually write
σ(w | xv). A (mixed) strategy profile of G is a tuple σ = (σi)i∈Π where σi is a
strategy of player i in G. Given a strategy profile σ = (σj)j∈Π and a strategy τ

of player i, we denote by (σ−i, τ) the strategy profile resulting from σ by
replacing σi with τ.

A strategy σ of player i is called pure if for each xv ∈ V∗Vi there exists
w ∈ v∆ with σ(w | xv) = 1. Note that a pure strategy of player i can be
identified with a function σ : V∗Vi → V. A strategy profile σ = (σi)i∈Π is
called pure if each σi is pure.

A strategy σ of player i in G is called stationary if σ depends only on the
current vertex: σ(xv) = σ(v) for all xv ∈ V∗Vi. Hence, a stationary strategy
of player i can be identified with a function σ : Vi → D(V). A strategy profile
σ = (σi)i∈Π of G is called stationary if each σi is stationary.

We call a pure, stationary strategy a positional strategy and a strategy pro-
file consisting of positional strategies only a positional strategy profile. Clearly,
a positional strategy of player i can be identified with a function σ : Vi → V.
More generally, a pure strategy σ is called finite-state if it can be implemented
by a finite automaton with output or, equivalently, if the equivalence relation
∼ ⊆ V∗ × V∗ defined by x ∼ y if σ(xz) = σ(yz) for all z ∈ V∗Vi has only
finitely many equivalence classes. Finally, a finite-state strategy profile is a
profile consisting of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the
game. We call the tuple (G, v0) an initialised SMG. A strategy (strategy profile)
of (G, v0) is just a strategy (strategy profile) of G. In the following, we will
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use the abbreviation SMG also for initialised SMGs. It should always be clear
from the context if the game is initialised or not.

Given an initial vertex v0 and a strategy profile σ = (σi)i∈Π, the condi-
tional probability of w ∈ V given the history xv ∈ V∗V is the number σi(w | xv)
if v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ ∆ if v is a stochastic
vertex. We abuse notation and denote this probability by σ(w | xv). The
probabilities σ(w | xv) induce a probability measure on the space Vω in
the following way: The probability of a basic open set v1 . . . vk · Vω is 0 if
v1 6= v0 and the product of the probabilities σ(vj | v1 . . . vj−1) for j = 2, . . . , k
otherwise. It is a classical result of measure theory that this extends to a
unique probability measure assigning a probability to every Borel subset of
Vω, which we denote by Prσ

v0
.

Given a strategy σ and a sequence x ∈ V∗, we define the residual strategy
σ[x] by σ[x](yv) = σ(xyv). If σ = (σi)i∈Π is a strategy profile, then the
residual strategy profile σ[x] is just the profile of the residual strategies σi[x].
The following two lemmas are taken from [28].

Lemma 1. Let σ and τ be two strategy profiles of G, equal over a prefix-
closed set X ⊆ V∗. Then Prσ

v0
(B) = Prτ

v0
(B) for every Borel set B all of whose

prefixes belong to X.

Lemma 2. Let σ be any strategy profile of G, xv ∈ V∗V a history of G, and
B ⊆ Vω a Borel set. Then Prσ

v0
(B ∩ xv · Vω) = Prσ

v0
(xv · Vω) · Prσ[x]

v (B[x]),
where B[x] := {α ∈ Vω : xα ∈ B}.

For a strategy profile σ, we are mainly interested in the probabilities
pi := Prσ

v0
(Wini) of winning. We call pi the (expected) payoff of σ for player i

and the vector (pi)i∈Π the (expected) payoff of σ.

Subarenas and end components. Given an SMG G, we call a set U ⊆ V a
subarena of G if 1. U 6= ∅; 2. v∆∩U 6= ∅ for each v ∈ U, and 3. v∆ ⊆ U for
each stochastic vertex v ∈ U.

A set C ⊆ V is called an end component of G if C is a subarena, and
additionally C is strongly connected: for every pair of vertices v, w ∈ C
there exists a sequence v = v1, v2, . . . , vn = w with vi+1 ∈ vi∆ for each
0 < i < n. An end component C is maximal in a set U ⊆ V if there is no end
component C′ ⊆ U with C ( C′. For any subset U ⊆ V, the set of all end
components maximal in U can be computed by standard graph algorithms in
quadratic time (see e.g. [13]).

The central fact about end components is that, under any strategy profile,
the set of vertices visited infinitely often is almost surely an end component.
For an infinite sequence α, we denote by Inf(α) the set of elements occurring
infinitely often in α.

Lemma 3 ([13, 10]). Let G be any SMG, and let σ be any strategy profile of G.
Then Prσ

v ({α ∈ Vω : Inf(α) is an end component}) = 1 for each vertex v ∈ V.
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Moreover, for any end component C, we can construct a stationary
strategy profile σ that, when started in C, guarantees to visit all (and only)
vertices in C infinitely often.

Lemma 4 ([13, 11]). Let G be any SMG, and let C be any end component
of G. There exists a stationary strategy profile σ with Prσ

v ({α ∈ Vω : Inf(α) =
C}) = 1 for each vertex v ∈ C.

Values, determinacy and optimal strategies. Given a strategy τ of
player i in G and a vertex v ∈ V, the value of τ from v is the number
valτ(v) := infσ Prσ−i ,τ

v (Wini), where σ ranges over all strategy profiles of G.
Moreover, we define the value of G for player i from v as the supremum of
these values, i.e. valGi (v) = supτ valτ(v), where τ ranges over all strategies
of player i in G. Intuitively, valGi (v) is the maximal payoff that player i can
ensure when the game starts from v. If G is a two-player zero-sum game,
a celebrated theorem due to Martin [20] states that the game is determined,
i.e. valG0 = 1 − valG1 (where the equality holds pointwise). The number
valG(v) := valG0 (v) is consequently called the value of G from v.

Given an initial vertex v0 ∈ V, a strategy σ of player i in G is called
optimal if valσ(v0) = valGi (v0). A globally optimal strategy is a strategy that is
optimal for every possible initial vertex v0 ∈ V. Note that optimal strategies
do not need to exist since the supremum in the definition of valGi is not
necessarily attained. However, if for every possible initial vertex there exists
an optimal strategy, then there also exists a globally optimal strategy.

Objectives. We have introduced objectives as abstract Borel sets of infinite
sequences of vertices; to be amendable for algorithmic solutions, all objectives
must be finitely representable. In verification, objectives are usually ω-regular
sets specified by formulae of the logic S1S (monadic second-order logic on
infinite words) or LTL (linear-time temporal logic) referring to unary predi-
cates Pc indexed by a finite set C of colours. These are interpreted as winning
conditions in a game by considering a colouring χ : V → C of the vertices in
the game. Special cases are the following well-studied conditions:

• Büchi (given by a set F ⊆ C): the set of all α ∈ Cω such that Inf(α) ∩ F 6=
∅.

• co-Büchi (given by set F ⊆ C): the set of all α ∈ Cω such that Inf(α) ⊆ F.
• Parity (given by a priority function Ω : C →N): the set of all α ∈ Cω such

that min(Inf(Ω(α))) is even.
• Streett (given by a set Ω of pairs (F, G) where F, G ⊆ C): the set of all

α ∈ Cω such that for all pairs (F, G) ∈ Ω with Inf(α) ∩ F 6= ∅ it is the
case that Inf(α) ∩ G 6= ∅.

• Rabin (given by a set Ω of pairs (F, G) where F, G ⊆ C): the set of all
α ∈ Cω such that there exists a pair (F, G) ∈ Ω with Inf(α) ∩ F 6= ∅ but
Inf(α) ∩ G = ∅.

6



• Muller (given by a family F of sets F ⊆ C): the set of all α ∈ Cω such
that there exists F ∈ F with Inf(α) = F.

Note that any Büchi condition is a parity condition with two priorities, that
any parity condition is both a Streett and a Rabin condition, and that any
Streett or Rabin condition is a Muller condition. (However, the translation
from a set of Streett/Rabin pairs to an equivalent family of accepting sets is,
in general, exponential.) In fact, the intersection (union) of any two parity
conditions is a Streett (Rabin) condition. Moreover, the complement of a Büchi
(Streett) condition is a co-Büchi (Rabin) condition and vice versa, whereas
the class of parity conditions and the class of Muller conditions are closed
under complementation. Finally, note that any of the above condition is
prefix-independent: for every α ∈ Cω and x ∈ C∗, α satisfies the condition iff
xα does.

Theoretically, parity and Rabin conditions provide the best balance of
expressiveness and simplicity: On the one hand, any SMG where player i has
a Rabin objective admits a globally optimal positional strategy for this player
[4]. On the other hand, any SMG with ω-regular objectives can be reduced to
an SMG with parity objectives using finite memory (see [25]). An important
consequence of this reduction is that there exist globally optimal finite-state
strategies in every SMG with ω-regular objectives. In fact, there exist globally
optimal pure strategies in every SMG with prefix-independent objectives [18].

In the following, for the sake of simplicity, we will only consider games
where each vertex is coloured by itself, i.e. C = V and χ = id. We would like
to point out, however, that all our results remain valid for games with other
colourings. For the same reason, we will usually not distinguish between a
condition and its finite representation.

Decision problems for two-player zero-sum games. The main computa-
tional problem for two-player zero-sum games is computing the value (and
optimal strategies for either player, if they exist). Rephrased as a decision
problem, the problem looks as follows:

Given a 2SG G, an initial vertex v0 and a rational probability p,
decide whether valG(v0) ≥ p.

A special case of this problem arises for p = 1. Here, we only want to know
whether player 0 can win the game almost surely (in the limit). Let us call the
former problem the quantitative and the latter problem the qualitative decision
problem for 2SGs.

Table 1 summarises the results about the complexity of the quantitative
and the qualitative decision problem for two-player zero-sum stochastic games
depending on the type of player 0’s objective. For MDPs, both problems are
decidable in polynomial time for all of the aforementioned objectives (i.e. up
to Muller conditions) [3, 13].
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Quantitative Qualitative

(co-)Büchi NP∩ coNP [6] P-complete [14]

Parity NP∩ coNP [6] NP∩ coNP [6]

Streett coNP-complete [4, 15] coNP-complete [4, 15]

Rabin NP-complete [4, 15] NP-complete [4, 15]

Muller PSPace-complete [3, 19] PSPace-complete [3, 19]

Table 1. The complexity of deciding the value in 2SGs.

3 Nash equilibria and their decision problems

To capture rational behaviour of (selfish) players, John Nash [21] introduced
the notion of, what is now called, a Nash equilibrium. Formally, given a strategy
profile σ in an SMG (G, v0), a strategy τ of player i is called a best response to σ

if τ maximises the expected payoff of player i: Prσ−i ,τ′
v0 (Wini) ≤ Prσ−i ,τ

v0 (Wini)
for all strategies τ′ of player i. A Nash equilibrium is a strategy profile
σ = (σi)i∈Π such that each σi is a best response to σ. Hence, in a Nash
equilibrium no player can improve her payoff by (unilaterally) switching to
a different strategy. For two-player zero-sum games, a Nash equilibrium is
nothing else than a pair of optimal strategies.

Proposition 5. Let (G, v0) be a two-player zero-sum game. A strategy profile
(σ, τ) of (G, v0) is a Nash equilibrium iff both σ and τ are optimal. In particu-
lar, every Nash equilibrium of (G, v0) has payoff (valG(v0), 1− valG(v0)).

Proof. (⇒) Assume that both σ and τ are optimal, but that (σ, τ) is not a
Nash equilibrium. Hence, one of the players, say player 1, can improve
her payoff by playing some strategy τ′. Hence, valG(v0) = Prσ,τ

v0
(Win0) >

Prσ,τ′
v0

(Win0). However, since σ is optimal, it must also be the case that
valG(v0) ≤ Prσ,τ′

v0
(Win0), a contradiction. The reasoning in the case that

player 0 can improve is analogous.
(⇐) Let (σ, τ) be a Nash equilibrium of (G, v0), and let us first assume

that σ is not optimal, i.e. valσ(v0) < valG(v0). By the definition of valG ,
there exists another strategy σ′ of player 0 such that valσ(v0) < valσ′(v0) ≤
valG(v0). Moreover, since (σ, τ) is a Nash equilibrium:

Prσ,τ
v0

(Win0) ≤ valσ(v0) < valσ′(v0) = infτ Prσ′ ,τ
v0

(Win0) ≤ Prσ′ ,τ
v0

(Win0) .

Thus player 0 can improve her payoff by playing σ′ instead of σ, a contradic-
tion to the fact that (σ, τ) is a Nash equilibrium. Now, if we assume that τ

is not optimal, we can analogously show the existence of a strategy τ′ that
player 1 can use to improve her payoff. q.e.d.

So far, most research on finding Nash equilibria in infinite games has
focused on computing some Nash equilibrium [7]. However, a game may
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have several Nash equilibria with different payoffs, and one might not be
interested in any Nash equilibrium but in one whose payoff fulfils certain
requirements. For example, one might look for a Nash equilibrium where
certain players win almost surely while certain others lose almost surely. This
idea leads to the following decision problem, which we call NE:1

Given an SMG (G, v0) and thresholds x, y ∈ [0, 1]Π , decide whether
there exists a Nash equilibrium of (G, v0) with payoff ≥ x and ≤ y.

Of course, as a decision problem the problem only makes sense if the game
and the thresholds x and y are represented in a finite way. In the following,
we will therefore assume that the thresholds and all transition probabilities
are rational, and that all objectives are ω-regular.

Note that NE puts no restriction on the type of strategies that realise the
equilibrium. It is natural to restrict the search space to equilibria that are
realised in pure, finite-state, stationary, or even positional strategies. Let us
call the corresponding decision problems PureNE, FinNE, StatNE and PosNE,
respectively.

In a recent paper [27], we studied NE and its variants in the context of
simple stochastic multiplayer games (SSMGs). These are SMGs where each
player’s objective is to reach a certain set T of terminal vertices: v∆ = {v}
for each v ∈ T. In particular, such objectives are both Büchi and co-Büchi
conditions. Our main results on SSMGs can be summarised as follows:

• PureNE and FinNE are undecidable;
• StatNE is contained in PSPace, but NP- and SqrtSum-hard;
• PosNE is NP-complete.

In fact, PureNE and FinNE are undecidable even if one restricts to instances
where the thresholds are binary, but distinct, or if one restricts to instances
where the thresholds coincide (but are not binary). Hence, the question
arises what happens if the thresholds are binary and coincide. This question
motivates the following qualitative version of NE, a problem which we call
QualNE:

Given an SMG (G, v0) and x ∈ {0, 1}Π , decide whether (G, v0) has a
Nash equilibrium with payoff x.

In this paper, we show that QualNE, StatNE and PosNE are decidable
for games with arbitrary ω-regular objectives, and analyse the complexities
of these problems depending on the type of the objectives.

4 Stationary equilibria

In this section, we analyse the complexity of the problems PosNE and StatNE.
Lower bounds for these problems follow from our results on SSMGs [27].

1In the definition of NE, the ordering ≤ is applied componentwise.
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Theorem 6. PosNE is NP-complete for SMGs with Büchi, co-Büchi, parity,
Rabin, Streett, or Muller objectives.

Proof. Hardness was already proven in [27]. To prove membership in NP, we
give a nondeterministic polynomial-time algorithm for deciding PosNE. On
input G, v0, x, y, the algorithm simply guesses a positional strategy profile σ

(which is basically a mapping
⋃

i∈Π Vi → V). Next, the algorithm computes
the payoff zi of σ for each player i by computing the probability of the event
Wini in the Markov chain (Gσ, v0), which arises from G by fixing all transitions
according to σ. Once each zi is computed, the algorithm can easily check
whether xi ≤ zi ≤ yi. To check whether σ is a Nash equilibrium, the algorithm
needs to compute, for each player i, the value ri of the MDP (Gσ−i , v0), which
arises from G by fixing all transitions but the ones leaving vertices controlled
by player i according to σ (and imposing the objective Wini). Clearly, σ is a
Nash equilibrium iff ri ≤ zi for each player i. Since we can compute the value
of any MDP (and thus any Markov chain) with one of the above objectives
in polynomial time [3, 13], all these checks can be carried out in polynomial
time. q.e.d.

To prove the decidability of StatNE, we appeal to results established for
the Existential Theory of the Reals, ExTh(R), the set of all existential first-order
sentences (over the appropriate signature) that hold in R := (R, +, ·, 0, 1,≤).
The best known upper bound for the complexity of the associated decision
problem is PSPace [2], which leads to the following theorem.

Theorem 7. StatNE is in PSPace for SMGs with Büchi, co-Büchi, parity, Rabin,
Streett, or Muller objective.

Proof. Since PSPace = NPSpace, it suffices to provide a nondeterministic
algorithm with polynomial space requirements for deciding StatNE. On
input G, v0, x, y, where w.l.o.g. G is an SMG with Muller objectives Fi ∈ 2V ,
the algorithm starts by guessing the support S ⊆ V×V of a stationary strategy
profile σ of G, i.e. S = {(v, w) ∈ V ×V : σ(w | v) > 0}. From the set S alone,
by standard graph algorithms (see [3, 13]), one can compute (in polynomial
time) for each player i the following sets:

1. the union Fi of all end components (i.e. bottom SCCs) C of the Markov
chain Gσ that are winning for player i, i.e. C ∈ Fi;

2. the set Ri of vertices v such that Prσ
v (Reach(Fi)) > 0;

3. the union Ti of all end components of the MDP Gσ−i that are winning for
player i.

After computing all these sets, the algorithm evaluates an existential
first-order sentence ψ, which can be computed in polynomial time from G,
v0, x, y, (Ri)i∈Π, (Fi)i∈Π and (Ti)i∈Π over R and returns the answer to this
query.

10



It remains to describe a suitable sentence ψ. Let α = (αvw)v,w∈V , r =
(ri

v)i∈Π,v∈V and z = (zi
v)i∈Π,v∈V be three sets of variables, and let V∗ =⋃

i∈Π Vi be the set of all non-stochastic vertices. The formula

ϕ(α) :=
∧

v∈V∗

( ∧
w∈v∆

αvw ≥ 0 ∧
∧

w∈V\v∆

αvw = 0∧ ∑
w∈v∆

αvw = 1
)
∧

∧
v∈V\V∗

w∈V

αvw = pvw ∧
∧

(v,w)∈S

αvw > 0∧
∧

(v,w) 6∈S

αvw = 0 ,

where pvw is the unique number such that (v, pvw, w) ∈ ∆, states that the
mapping σ : V → D(V) defined by σ(w | v) = αvw constitutes a valid
stationary strategy profile of G whose support is S. Provided that ϕ(α) holds
in R, the formula

ηi(α, z) :=
∧

v∈Fi

zi
v = 1∧

∧
v∈V\Ri

zi
v = 0∧

∧
v∈V\Fi

zi
v = ∑

w∈v∆

αvwzi
w

states that zi
v = Prσ

v (Wini) for each v ∈ V, where σ is defined as above. This
follows from a well-known results about Markov chains, namely that the
vector of the aforementioned probabilities is the unique solution of the given
system of equations. Finally, the formula

ϑi(α, r) :=
∧

v∈V
ri

v ≥ 0∧
∧

v∈Ti

ri
v = 1∧

∧
v∈Vi
w∈v∆

ri
v ≥ ri

w ∧
∧

v∈V\Vi

ri
v = ∑

w∈v∆

αvwri
w

states that r is a solution of the linear programme for computing the maximal
payoff that player i can achieve when playing against the strategy profile σ−i.
In particular, the formula is fulfilled if ri

v = supτ Pr(σ−i ,τ)
v (Reach(Ti)) =

supτ Pr(σ−i ,τ)
v (Wini) (where the latter equality follows from Lemmas 3 and 4),

and every other solution is greater than this one (in each component).
The desired sentence ψ is the existential closure of the conjunction of

ϕ and, for each player i, the formulae ηi and ϑi combined with formulae
stating that player i cannot improve her payoff and that the expected payoff
for player i lies in between the given thresholds:

ψ := ∃α ∃r ∃z
(

ϕ(α) ∧
∧

i∈Π

(ηi(α, z) ∧ ϑi(α, r) ∧ ri
v0
≤ zi

v0
∧ xi ≤ zi

v0
≤ yi)

)
.

It follows that ψ holds in R iff (G, v0) has a stationary Nash equilibrium
with payoff at least x and at most y whose support is S. Consequently, the
algorithm is correct. q.e.d.

5 Equilibria with a binary payoff

In this section, we prove that QualNE is decidable. We start by characterising
the existence of a Nash equilibrium with a binary payoff in any game with
prefix-independent objectives.
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5.1 Characterisation of existence

For a subset U ⊆ V, we denote by Reach(U) the set V∗ ·U ·Vω; if U = {v},
we just write Reach(v) for Reach(U). Finally, given an SMG G and a player i,
we denote by V>0

i the set of all vertices v ∈ V such that valGi (v) > 0. The
following lemma allows to infer the existence of a Nash equilibrium from the
existence of a certain strategy profile. The proof uses so-called threat strategies
(also known as trigger strategies), which are the basis of the folk theorems in the
theory of repeated games (cf. [23, Chapter 8]).

Lemma 8. Let σ be a pure strategy profile of G such that, for each player i,
Prσ

v0
(Wini) = 1 or Prσ

v0
(Reach(V>0

i )) = 0. Then there exists a pure Nash
equilibrium σ∗ with Prσ

v0
= Prσ∗

v0
. If, additionally, all winning conditions are ω-

regular and σ is finite-state, then there exists a finite-state Nash equilibrium σ∗

with Prσ
v0

= Prσ∗
v0

.

Proof. Consider the 2SG Gi = ({i, Π \ {i}}, V, Vi,
⋃

j 6=i Vj, ∆, Wini, Vω \Wini)
where player i plays against the coalition Π \ {i} of all other players. Since the
set Wini is prefix-independent, there exists a globally optimal pure strategy τi

for the coalition in this game. For each player j 6= i, this strategy induces
a pure strategy τj,i in G. To simplify notation, we also define τi,i to be an
arbitrary finite-state strategy of player i in G. Player i’s strategy σ∗i in σ∗ is
defined as follows:

σ∗i (xv) =

σi(xv) if Prσ
v0

(xv ·Vω) > 0,

τi,j(x2v) otherwise,

where, in the latter case, x = x1x2 with x1 being the longest prefix of xv
such that Prσ

v0
(x1 · Vω) > 0 and j ∈ Π being the player that has deviated

from σ, i.e. x1 ends in Vj; if x1 is empty or ends in a stochastic vertex, we set
j = i. Intuitively, σ∗i behaves like σi as long as no other player j deviates from
playing σj, in which case σ∗i starts to behave like τi,j.

If each Wini is ω-regular, then τ can be chosen to be a finite-state profile.
Consequently, each τj,i can be assumed to be finite-state. If additionally σ is
finite-state, it is easy to see that the strategy profile σ∗, as defined above, is
also finite-state.

Note that Prσ∗
v0

= Prσ
v0

. We claim that σ∗ is a Nash equilibrium of (G, v0).

Let ρ be any strategy of player i in G; we need to show that Pr
σ∗−i ,ρ
v0 (Wini) ≤

Prσ∗
v0

(Wini).
Let us call a history xvw ∈ V∗ ·Vi ·V a deviation history if Prσ

v0
(xv ·Vω) >

0, but σi(xv) 6= w and ρ(w | xv) > 0; we denote the set of all deviation
histories by X.

Claim. Pr
σ∗−i ,ρ
v0 (B \ X ·Vω) ≤ Prσ

v0
(B) for every Borel set B.

Proof. The claim is obviously true for the basic open sets B = w ·Vω (where w ∈
V∗) and thus also for finite, disjoint unions of such sets, which are precisely

12



the clopen sets (i.e. sets of the form W ·Vω for finite W ⊆ V∗). Since the class
of clopen sets is closed under complements and finite unions, by the monotone
class theorem [17], the closure of the class of all clopen sets under taking limits
of chains contains the smallest σ-algebra containing all clopen sets, which is
just the Borel σ-algebra. Hence, it suffices to show that whenever we are given
measurable sets A1, A2, . . . ⊆ Vω with A1 ⊆ A2 ⊆ . . . or A1 ⊇ A2 ⊇ . . .
such that the claim holds for each An, then the claim also holds for limn An,
where limn An =

⋃
n∈N An or limn An =

⋂
n∈N An, respectively. So assume

that A1, A2, · · · ⊆ Vω is a chain such that Pr
σ∗−i ,ρ
v0 (An \ X ·Vω) ≤ Prσ

v0
(An) for

each n ∈N. Clearly, (limn An) \X ·Vω = limn(An \X ·Vω). Moreover, since
measures are continuous from above and below:

Pr
σ∗−i ,ρ
v0 (lim

n
(An \ X ·Vω))

= lim
n

Pr
σ∗−i ,ρ
v0 (An \ X ·Vω)

≤ lim
n

Prσ
v0

(An)

= Prσ
v0

(lim
n

An) . q.e.d.

As usual in probability theory, if P is a probability measure and A and
B are measurable sets such that P(B) > 0, then we denote by P(A | B) the
conditional probability of A given B, defined by P(A | B) = P(A∩B)

P(B) .

Claim. Pr
σ∗−i ,ρ
v0 (Wini | xvw ·Vω) ≤ valGi (w) for every xvw ∈ X.

Proof. By the definition of the strategies τj,i, we have that Pr
(τj,i)j 6=i ,ρ
v (Wini) ≤

valGi (v) for every vertex v ∈ V and every strategy ρ of player i. On the other
hand, if xvw is a deviation history, then for each player j the residual strategy
σ∗j [xv] is equal to τj,i on histories that start in w. Hence, by Lemma 2, and
since the set Wini is prefix-independent, we get:

Pr
σ∗−i ,ρ
v0 (Wini | xvw ·Vω)

= Pr
σ∗−i ,ρ
v0 (Wini ∩ xvw ·Vω) / Pr

σ∗−i ,ρ
v0 (xvw ·Vω)

= Pr
σ∗−i [xv],ρ[xv]
w (Wini)

= Pr
(τj,i)j 6=i ,ρ[xv]
w (Wini)

≤ valGi (w) q.e.d.

Using the previous two claims, we can prove that Pr
σ∗−i ,ρ
v0 (Wini) ≤

Prσ
v0

(Wini) = Prσ∗
v0

(Wini) as follows:

Pr
σ∗−i ,ρ
v0 (Wini)

= Pr
σ∗−i ,ρ
v0 (Wini \ X ·Vω) + ∑

xvw∈X
Pr

σ∗−i ,ρ
v0 (Wini ∩ xvw ·Vω)

≤ Prσ
v0

(Wini) + ∑
xvw∈X

Pr
σ∗−i ,ρ
v0 (Wini ∩ xvw ·Vω)

13



= Prσ
v0

(Wini) + ∑
xvw∈X

Pr
σ∗−i ,ρ
v0 (Wini | xvw ·Vω) · Pr

σ∗−i ,ρ
v0 (xvw ·Vω)

≤ Prσ
v0

(Wini) + ∑
xvw∈X

valGi (w) · Pr
σ∗−i ,ρ
v0 (xvw ·Vω)

≤ Prσ
v0

(Wini) + ∑
xvw∈X

valGi (v) · Pr
σ∗−i ,ρ
v0 (xvw ·Vω)

= Prσ
v0

(Wini) ,

where the last equality follows from Prσ
v0

(Reach(V>0
i )) = 0, which implies

that valGi (v) = 0 for each v ∈ V such that Prσ
v0

(Reach(v)) > 0. q.e.d.

Finally, we can state the main result of this section.

Proposition 9. Let (G, v0) be any SMG with prefix-independent winning
conditions, and let x ∈ {0, 1}Π . Then the following statements are equivalent:

1. There exists a Nash equilibrium with payoff x;
2. There exists a strategy profile σ with payoff x such that

Prσ
v0

(Reach(V>0
i )) = 0 for each player i with xi = 0;

3. There exists a pure strategy profile σ with payoff x such that
Prσ

v0
(Reach(V>0

i )) = 0 for each player i with xi = 0;
4. There exists a pure Nash equilibrium with payoff x.

If additionally all winning conditions are ω-regular, then any of the above
statements is equivalent to each of the following statements:

5. There exists a finite-state strategy profile σ with payoff x such that
Prσ

v0
(Reach(V>0

i )) = 0 for each player i with xi = 0;
6. There exists a finite-state Nash equilibrium with payoff x.

Proof. (1. ⇒ 2.) Let σ be a Nash equilibrium with payoff x. We claim that
σ is already the strategy profile we are looking for: Prσ

v0
(Reach(V>0

i )) =
0 for each player i with xi = 0. Towards a contradiction, assume that
Prσ

v0
(Reach(V>0

i )) > 0 for some player i with xi = 0. Since V is finite, there
exists a vertex v ∈ V>0

i and a history x such that Prσ
v0

(xv · Vω) > 0. Let
τ be an optimal strategy for player i in the game (G, v), and consider her
strategy σ′ defined by

σ′(yw) =

σ(yw) if xv � yw,

τ(y′w) otherwise,

where, in the latter case, y = xy′. Clearly, Prσ
v0

(xv ·Vω) = Pr(σ−i ,σ′)
v0 (xv ·Vω).

Moreover, Prσ
v0

(Wini \ xv ·Vω) = Pr(σ−i ,σ′)
v0 (Wini \ xv ·Vω): this follows from

Lemma 1 by taking X = V∗ \ xv · V∗. Using Lemma 2, we can infer that

Pr(σ−i ,σ′)
v0 (Wini) > 0 as follows:

Pr(σ−i ,σ′)
v0 (Wini)

= Pr(σ−i ,σ′)
v0 (Wini ∩ xv ·Vω) + Pr(σ−i ,σ′)

v0 (Wini \ xv ·Vω)
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= Pr(σ−i ,σ′)
v0 (xv ·Vω) · Pr(σ−i ,σ′)[x]

v (Wini) + Prσ
v0

(Wini \ xv ·Vω)

= Prσ
v0

(xv ·Vω) · Pr(σ−i [x],τ)
v (Wini) + Prσ

v0
(Wini \ xv ·Vω)

≥ Prσ
v0

(xv ·Vω) · valGi (v) + Prσ
v0

(Wini \ xv ·Vω)

> 0

Hence, player i can improve her payoff by playing σ′ instead of σi, a contra-
diction to the fact that σ is a Nash equilibrium.

(2. ⇒ 3.) Let σ be a strategy profile of (G, v0) with payoff x such that
Prσ

v0
(Reach(V>0

i )) = 0 for each player i with xi = 0. Consider the MDPM
that is obtained from G by removing all vertices v ∈ V such that v ∈ V>0

i for
some player i with xi = 0, merging all players into one, and imposing the
objective

Win =
⋂

i∈Π
xi=1

Wini ∩
⋂

i∈Π
xi=0

Vω \Wini .

The MDPM is well-defined since its domain is a subarena of G. Moreover,
the value valM(v0) ofM is equal to 1 because the strategy profile σ induces
a strategy σ in M satisfying Prσ

v0
(Win) = 1. Since each Wini is prefix-

independent, so is the set Win. Hence, there exists a pure, optimal strategy τ

in (M, v0). Since the value is 1, we have Prτ
v0

(Win) = 1, and τ induces a pure
strategy profile of G with the desired properties.

(3. ⇒ 4.) Let σ be a pure strategy profile of (G, v0) with payoff x such
that Prσ

v0
(Reach(V>0

i )) = 0 for each player i with xi = 0. By Lemma 8, there
exists a pure Nash equilibrium σ∗ of (G, v0) with Prσ

v0
= Prσ∗

v0
. In particular,

σ∗ has payoff x.
(4.⇒ 1.) Trivial.
Under the additional assumption that all winning conditions are ω-

regular, the implications (2.⇒ 5.) and (5.⇒ 6.) are proven analogously; the
implication (6.⇒ 1.) is trivial. q.e.d.

As an immediate consequence of Proposition 9, we can conclude that
finite-state strategies are as powerful as arbitrary mixed strategies as far as the
existence of a Nash equilibrium with a binary payoff in SMGs with ω-regular
objectives is concerned. (This is not true for Nash equilibria with a non-binary
payoff [26].)

Corollary 10. Let (G, v0) be any SMG with ω-regular objectives, and let
x ∈ {0, 1}Π . There exists a Nash equilibrium of (G, v0) with payoff x iff there
exists a finite-state Nash equilibrium of (G, v0) with payoff x.

Proof. The claim follows from Proposition 9 and the fact that every SMG with
ω-regular objectives can be reduced to one with prefix-independent ω-regular
(e.g. parity) objectives. q.e.d.
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5.2 Computational complexity

We can now describe an algorithm for deciding QualNE for games with
Muller objectives. The algorithm relies on the characterisation we gave in
Proposition 9, which allows to reduce the problem to a problem about a
certain MDP.

Formally, given an SMG G = (Π, V, (Vi)i∈Π, ∆, (Fi)i∈Π) with Muller
objectives Fi ⊆ 2V , and a binary payoff x ∈ {0, 1}Π, we define the Markov
decision process G(x) as follows: Let Z ⊆ V be the set of all v such that
valGi (v) = 0 for each player i with xi = 0; the set of vertices of G(x) is
precisely the set Z, with the set of vertices controlled by player 0 being
Z0 := Z ∩ ⋃i∈Π Vi. (If Z = ∅, we define G(x) to be a trivial MDP with the
empty set as its objective.) The transition relation of G(x) is the restriction
of ∆ to transitions between Z-states. Note that the transition relation of G(x)
is well-defined since Z is a subarena of G. We say that a subset U ⊆ V has
payoff x if U ∈ Fi for each player i with xi = 1 and U 6∈ Fi for each player i
with xi = 0. The objective of G(x) is Reach(T) where T ⊆ Z is the union of
all end components U ⊆ Z that have payoff x.

Lemma 11. Let (G, v0) be any SMG with Muller objectives, and let x ∈ {0, 1}Π .
Then (G, v0) has a Nash equilibrium with payoff x iff valG(x)(v0) = 1.

Proof. (⇒) Assume that (G, v0) has a Nash equilibrium with payoff x. By
Proposition 9, this implies that there exists a strategy profile σ of (G, v0) with
payoff x such that Prσ

v0
(Reach(V \Z)) = 0. We claim that Prσ

v0
(Reach(T)) = 1.

Otherwise, by Lemma 3, there would exist an end component C ⊆ Z such
that C 6∈ Fi for some player i with xi = 1 or C ∈ Fi for some some player i
with xi = 0, and Prσ

v0
({α ∈ Vω : Inf(α) = C}) > 0. But then, σ cannot have

payoff x, a contradiction. Now, since Prσ
v0

(Reach(V \ Z)) = 0, σ induces a
strategy σ in G(x) such that Prσ

v0
(B) = Prσ

v0
(B) for every Borel set B ⊆ Zω . In

particular, Prσ
v0

(Reach(T)) = 1 and hence valG(x)(v0) = 1.
(⇐) Assume that valG(x)(v0) = 1 (in particular, v0 ∈ Z), and let σ be

an optimal strategy in (G(x), v0). From σ, using Lemma 4, we can devise
a strategy σ′ such that Prσ′

v0
({α ∈ Vω : Inf(α) has payoff x}) = 1. Finally,

σ′ can can be extended to a strategy profile σ of G with payoff x such that
Prσ

v0
(Reach(V \ Z)) = 0. By Proposition 9, this implies that (G, v0) has a Nash

equilibrium with payoff x. q.e.d.

Since the value of an MDP with reachability objectives can be computed
in polynomial time (via linear programming, cf. [24]), the difficult part lies
in computing the MDP G(x) from G and x (i.e. its domain Z and the target
set T).

Theorem 12. QualNE is in PSPace for games with Muller objectives.

Proof. Since PSPace = NPSpace, it suffices to give a nondeterministic algo-
rithm with polynomial space requirements. On input G, v0, x, the algorithm
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starts by computing for each player i with xi = 0 the set of vertices v with
valGi (v) = 0, which can be done in polynomial space (see Table 1). The
intersection of these sets is the domain Z of the Markov decision process G(x).
If v0 is not contained in this intersection, the algorithm immediately rejects.
Otherwise, the algorithm proceeds by guessing a set T′ ⊆ Z and for each
v ∈ T′ a set Uv ⊆ Z with v ∈ Uv. If, for each v ∈ T′, the set Uv is an end com-
ponent with payoff x, the algorithm proceeds by computing (in polynomial
time) the value valG(x)(v0) of the MDP G(x) with T′ substituted for T and
accepts if the value is 1. In all other cases, the algorithm rejects.

The correctness of the algorithm follows from Lemma 11 and the fact
that Prσ

v0
(Reach(T′)) ≤ Prσ

v0
(Reach(T)) for any strategy σ in G(x) and any

subset T′ ⊆ T. q.e.d.

Since any SMG with ω-regular can effectively be reduced to one with
Muller objectives, Theorem 12 implies the decidability of QualNE for games
with arbitrary ω-regular objectives (e.g. given by S1S formulae). Regarding
games with Muller objectives, a matching PSPace-hardness result appeared
in [19], where it was shown that the qualitative decision problem for 2SGs
with Muller objectives is PSPace-hard, even for games without stochastic
vertices. However, this result relies on the use of arbitrary colourings.

To solve QualNE for games with Streett objectives, we will make use of
the following procedure StreettEC(U), which computes for a game G with
Streett objectives Ωi, i ∈ Π, and a binary payoff x ∈ {0, 1}Π the union of all
end components with payoff x that are contained in U ⊆ V.

procedure StreettEC(U)
Z := ∅
Compute (in polynomial time) all end components of G maximal in U
for each such end component C do

S := {i ∈ Π : xi = 1 and ex. (F, G) ∈ Ωi s.th. C ∩ F 6= ∅ and C ∩ G = ∅}
R := {i ∈ Π : xi = 0 and (C ∩ F = ∅ or C ∩ G 6= ∅) for all (F, G) ∈ Ωi}
if S = R = ∅ then

Z := Z ∪ C
else if S 6= ∅ then

Y := C ∩⋂i∈S
⋂

(F,G)∈Ωi ,C∩G=∅ C \ F
Z := Z ∪ StreettEC(Y)

else if R 6= ∅ and C ∩ F 6= ∅ for all (F, G) ∈ Ωi, i ∈ R then
Y := C ∩⋂i∈R

⋂
(F,G)∈Ωi

C \ G
Z := Z ∪ StreettEC(Y)

end if
end for
return Z

end procedure

Note that on input U, StreettEC calls itself at most |U| times; hence, the
procedure runs in polynomial time. Moreover, we can obtain a polynomial-
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time procedure RabinEC that computes the same output for games with
Rabin objectives Ωi by switching xi = 0 and xi = 1 in the definitions of S
and R.

Theorem 13. QualNE is NP-complete for games with Streett objectives.

Proof. Hardness was already proven in [26]. To prove membership in NP, we
describe a nondeterministic, polynomial-time algorithm: On input G, v0, x,
the algorithm starts by guessing a subarena Z′ ⊆ V and, for each player i
with xi = 0, a positional strategy τi of the coalition Π \ {i} in the 2SG Gi,
as defined in the proof of Lemma 8. In the next step, the algorithm checks
(in polynomial time) whether valτi (v) = 1 for each vertex v ∈ Z′ and each
player i with xi = 0. If not, the algorithm rejects immediately. Otherwise,
the algorithm proceeds by calling the procedure StreettEC to determine the
union T′ of all end components with payoff x that are contained in S′. Finally,
the algorithm computes (in polynomial time) the value valG(x)(v0) of the
MDP G(x) with Z′ substituted for Z and T′ substituted for T. If this value
is 1, the algorithm accepts; otherwise, it rejects.

It remains to show that the algorithm is correct: On the one hand, if
(G, v0) has a Nash equilibrium with payoff x, then the run of the algorithm
where it guesses Z′ = Z and globally optimal positional strategies τi (which
exist since in the games Gi the coalition has a Rabin objective) will be accepting
since then T′ = T and, by Lemma 11, valG(x)(v0) = 1. On the other hand,
in any accepting run of the algorithm we have Z′ ⊆ Z and T′ ⊆ T, and
the value that the algorithm computes cannot be higher than valG(x)(v0);
hence, valG(x)(v0) = 1, and Lemma 11 guarantees the existence of a Nash
equilibrium with payoff x. q.e.d.

Theorem 14. QualNE is coNP-complete for games with Rabin objectives.

Proof. Hardness is proven by a slight modification of the reduction for demon-
strating NP-hardness of QualNE for games with Streett objectives (see the
appendix). To show membership in coNP, we describe a nondeterministic,
polynomial-time algorithm for the complement of QualNE. On input G, v0, x,
the algorithm starts by guessing a subarena Z′ ⊆ V and, for each player i
with xi = 0, a positional strategy σi of player i in G. In the next step, the algo-
rithm checks whether for each vertex v ∈ Z′ there exists some player i with
xi = 0 and valσi (v) > 0. If not, the algorithm rejects immediately. Otherwise,
the algorithm proceeds by calling the procedure RabinEC to determine the
union T′ of all end components with payoff x that are contained in V \ Z′.
Finally, the algorithm computes (in polynomial time) the value valG(x)(v0) of
the MDP G(x) with V \ Z′ substituted for Z and T′ substituted for T. If this
value is not 1, the algorithm accepts; otherwise, it rejects.

The correctness of the algorithm is proven in a similar fashion as in the
proof of the previous theorem. q.e.d.
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Since any parity condition can be turned into both a Streett and a Rabin
condition where the number of pairs is linear in the number of priorities, we
can immediately infer from Theorems 13 and 14 that QualNE is in NP∩ coNP
for games with parity objectives.

Corollary 15. QualNE is in NP∩ coNP for games with parity objectives.

It is a major open problem whether the qualitative (or even the quanti-
tative) decision problem for 2SGs with parity objectives is in P. This would
imply that QualNE is decidable in polynomial time for games with parity
objectives since this would allow us to compute the domain of the MDP G(x)
in polynomial time. For each d ∈N, a class of games where the qualitative
decision problem is provably in P is the class of all 2SGs with parity objectives
that uses at most d priorities [5]. For d = 2, this class includes all 2SGs with
a Büchi or a co-Büchi objective (for player 0). Hence, we have the following
theorem.

Theorem 16. For each d ∈N, QualNE is in P for games with parity winning
conditions that use at most d priorities. In particular, QualNE is in P for
games with (co-)Büchi objectives.

6 Conclusion

We have analysed the complexity of deciding whether a stochastic multiplayer
game with ω-regular objectives has a Nash equilibrium whose payoff falls into
a certain interval. Specifically, we have isolated several decidable restrictions
of the general problem that have a manageable complexity (PSPace at most).
For instance, the complexity of the qualitative variant of NE is usually not
higher than for the corresponding problem for two-player zero-sum games.

Apart from settling the complexity of NE (where arbitrary mixed strate-
gies are allowed), two directions for future work come to mind: First, one
could study other restrictions of NE that might be decidable. For example,
it seems plausible that the restriction of NE to games with two players is
decidable. Second, it seems interesting to see whether our decidability results
can be extended to more general models of games, e.g. concurrent games or
games with infinitely many states like pushdown games.
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Appendix

Theorem. QualNE is coNP-hard for games with Rabin objectives.

Proof. The proof is a variant of the proof for NP-hardness of the problem of
deciding whether player 0 has a winning strategy in a two-player zero-sum
game with a Rabin objective [15] and by a reduction from the unsatisfiability
problem for Boolean formulae.

Given a Boolean formula ϕ in conjunctive normal form, we construct
a two-player SMG Gϕ without any stochastic vertex as follows: For each
clause C the game Gϕ has a vertex C, which is controlled by player 0, and for
each literal X or ¬X occurring in ϕ there is a vertex X or ¬X, respectively,
which is controlled by player 1. There are edges from a clause to each literal
that occurs in this clause, and from a literal to every clause occurring in ϕ.
Player 1’s objective is given by the single Rabin pair (V, ∅), i.e. she always
wins, whereas player 0’s objective consists of all Rabin pairs of the form
({X}, {¬X}) and ({¬X}, {X}).

Obviously, Gϕ can be constructed from ϕ in polynomial time. We claim
that ϕ is unsatisfiable if and only if (Gϕ, C) has a Nash equilibrium with
payoff (0, 1) (where C is an arbitrary clause).

(⇒) Assume that ϕ is not satisfiable. We claim that player 1 has a
strategy τ to ensure that player 0’s objective is violated. Consequently, for any
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strategy σ of player 0, the strategy profile (σ, τ) is a Nash equilibrium with
payoff (0, 1). Otherwise, let σ be a positional optimal strategy for player 0. By
determinacy, this strategy ensures that player 0’s objective is satisfied. But a
positional strategy σ of player 1 chooses for each clause a literal contained in
this clause. Since ϕ is unsatisfiable, there must exist a variable X and clauses
C1 and C2 such that σ(C1) = X and σ(C2) = ¬X. Player 2’s counter strategy
is to play from X to C2 and from any other literal to C1. So the strategy σ is
not optimal, a contradiction.

(⇐) Assume that ϕ is satisfiable. Consider player 1’s positional strategy
σ of playing from a clause to a literal that satisfies this clause. This ensures
that for each variable X at most one of the literals X or ¬X is visited infinitely
often. The value of σ from any vertex is 1; hence, there can be no Nash
equilibrium with payoff (0, 1). q.e.d.
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