
Measuring Refactoring Benefits: A Survey of the Evidence

Mel Ó Cinnéide
School of Computer Science

University College Dublin
Ireland

mel.ocinneide@ucd.ie

Aiko Yamashita
Dept. of Computer Science

Høgskolen i Oslo og Akershus
Norway

Aiko.Yamashita@hioa.no

Steve Counsell
School of Information Systems

Brunel University
United Kindom

Steve.Counsell@brunel.ac.uk

ABSTRACT
Refactoring has become a standard technique for software
developers to use when trying to improve or evolve the de-
sign of a program. It is a key component of Agile methods,
the most popular family of software development method-
ologies in industrial practice. Refactoring has also been the
subject of much attention from researchers and many prac-
titioner textbooks have been written on the topic. It would
be natural to assume then that the benefits of refactoring
would be easy agree upon, and easy to measure. In this po-
sition paper we review a selection of the empirical studies
that have attempted to measure the benefits of refactoring
and find the situation to be quite unclear. The evidence sug-
gests that what motivates developers to refactor, and what
benefits accrue from refactoring, are open issues that require
further research.

CCS Concepts
•Software and its engineering → Software design engi-
neering;

Keywords
Refactoring; Empirical studies

1. INTRODUCTION
The practice of software refactoring is probably as old as

programming itself, although the term ‘refactoring’ first ap-
peared only in 1990 in a paper by Opdyke and Johnson [23].
Much of the early research work on refactoring took place at
the University of Illinois [22] and it became recognised as a
key software practice with the advent of Agile methods [3].
Fowler wrote the seminal refactoring handbook [10], and
since then many textbooks have been written on the topic.

Refactoring has been claimed to remove code smells and to
improve software quality including code extensibility, mod-
ularity, reusability, complexity, maintainability, efficiency
etc. [18], and a number of research studies have investigated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWoR’16, September 03-07, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-4509-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2975945.2975951

these claims. Given the obvious popularity of refactoring,
one might expect that its benefits could easily be measured.
In this paper we examine a number of the most-commonly
made claims about refactoring:

• Refactoring is employed to eradicate code smells from
the code base (Section 2).

• Refactoring is employed to improve the values of soft-
ware quality metrics (Section 3).

• Refactoring is employed to improve flexibility, main-
tainability, extensibility etc. (Section 4).

The aim of this workshop paper is to summarise some of the
key work in the area of refactoring assessment, point out
the anomalies in this work and provide a basis for further
discussion. It is not a formal meta-analysis of the existing
results; neither is it a systematic literature review. The
papers cited were chosen on the basis of the experience of
the authors, and were not selected to support any particular
side of the argument.

2. DOES REFACTORING REDUCE CODE
SMELLS?

The notion that refactoring is used to eradicate code smells
is very prevalent, no doubt partly due to the fact that this
idea is strongly espoused in Fowler’s handbook [10]. It is also
a very appealing idea: we establish a set of code smells (the
‘baddies’) and then define refactoring sequences (the ‘good-
ies’) that convert these malignant structures into harmless
ones. It is precisely because this idea is deeply appealing
that we should be more alert to it being, in the terminology
of Bossavit [4], a software leprechaun, i.e. a widely-believed
‘ground truth’ that is in fact false.

Counsell et al. studied five open source systems and one
proprietary system to explore to what extent refactoring is
used to eradicate code smells [7]. In the open source sys-
tems studied, they identified a total of 891 refactorings and
22 well-known code smells. Only two of the identified code
smells were clearly removed by the refactorings, and these
were smells that required only a small number of refactorings
to remedy. This echoes the earlier result reported by Chatzi-
georgiou and Manakos [6] who tracked the evolution of three
code smells in two open source systems and found that of
the 648 smells identified in the systems, only five could be
determined to have been unambiguously removed by refac-
toring. These results provide evidence that the refactorings
applied by developers are not strongly motivated by a desire
to remove smells.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

IWoR’16, September 4, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-4509-5/16/09...$15.00

http://dx.doi.org/10.1145/2975945.2975948

9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301656183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Empirical studies that support the refactoring/smells model
also exist. Tsantalis et al. [29] studied the refactoring his-
tory of three well-known projects, namely JUnit, HTTP-
Core, and HTTPClient. One of the research questions they
investigated was what was the purpose of the refactorings
applied? In total, 280 refactoring instances were manually
inspected of which 40% were determined by the authors to
have been related to code smell removal. This seemingly
contradicts the earlier studies; smells are driving refactorings
to a significant degree. How can these results be resolved?

Firstly, there is little agreement on what precisely is, and
is not, a code smell [9]. Taking one of the simplest code
smells as an example, Long Method, Robert Martin sets
20 lines of code as a maximum for a method and admires
Kent Beck’s style where each method contains only two to
four lines of code [16], while Steve McConnell states that
methods of up to 200 lines are fine [17]. Of course the truth
is that while a method may indeed be ‘too long,’ and this
is one of smells developers best agreed upon in a study by
Palomba et al. [24], the existence of a true Long Method
code smell cannot be determined simply by counting the
number of lines in the method.

Secondly, how bad are code smells anyway? Sjøberg et
al. [26] investigated the effects of 12 code smells on main-
tenance effort at file level, and found that, after adjusting
for file size and the number of changes (revisions) as quality
predictors, none of the code smells remained a significant
driver of effort. Rather bizarrely, the Refused Bequest code
smell [10] actually contributed significantly to less effort.
Yamashita and Moonen [31] analysed the data from the same
projects and also found the impact of code smells on overall
maintainability to be relatively minor. Hall et al. [11] inves-
tigated the relationship between bugs and five little-studied
smells in three open-source systems finding that some smells
indicate fault-prone code in some circumstances, but that
the effect size is small. Some of their finding were again
counter-intuitive to say the least: Message Chains that oc-
curred in larger files reduced faults and Data Clumps cor-
related with reduced faults in Apache and Eclipse. Their
overall conclusion was that arbitrary refactoring is unlikely
to significantly reduce fault-proneness, and in some cases
may increase fault-proneness. An earlier literature review
by similar authors [32] concluded that there is little evidence
currently available to justify using code smells.

Given the uncertainty in defining and identifying code
smells, all empirical studies in this area suffer a significant
threat to construct validity. Even where developers agree
that a code smell exists, it may not actually cause a problem,
e.g. where the smelly code is non-volatile. Furthermore, in
two of the works cited above it seems that code smells can
be beneficial in some cases! Finally, even when a code smell
does cause a problem, a cost-benefit analysis may indicate
that suffering its existence is less costly than fixing it.

3. DOES REFACTORING IMPROVE SOFT-
WARE QUALITY METRICS?

Researchers have also examined if refactoring leads to a
measurable improvement in software quality metrics, such as
coupling and cohesion. Stroggylos and Spinellis analyzed the
version control system logs of several popular open source
software systems to determine the impact refactorings have
on software metrics, and found that, contrary to popular

belief, refactoring did not cause the metrics to improve [28].
However this work relied upon the use of commit messages
to detect refactorings, an approach that was later discred-
ited [20]. In his study of open source software, Alshayeb
observed that refactoring has a positive effect on several co-
hesion metrics [2], but his later work showed that this effect
was not necessarily positive in terms of other external soft-
ware quality attributes such as reusability, understandabil-
ity, maintainability, testability and adaptability [1]. Soetens
and Demeyer analysed the evolution of an open source Java
project and found that periods of refactoring activity did
not affect the cyclomatic complexity of the software [27].

Evidence to show that refactoring can improve software
quality metrics is also to be found. A study by Moser
et al. [19] explored if refactoring improved developer pro-
ductivity or software quality metrics. The study involved
an Agile software project that had two episodes of explicit
refactoring, where user stories where created solely based
on refactoring activity. The authors found that developer
productivity improved after both these refactoring episodes,
and that for the metrics examined, CBO, WMC, RFC, and
LCOM, refactoring was found to improve them to some de-
gree. A similar result, that refactoring leads to some increase
in software quality metrics, was reported by Kim et al. [14]
as described in Section 4.

Simons et al. [25] conducted a survey with software profes-
sionals to investigate the relationship between popular SBSE
refactoring metrics and the subjective opinions of software
engineers. The empirical study results suggest that (i) there
is little or no correlation between the two, and (ii) a simple
static view of software is insufficient to assess software qual-
ity, and that software quality is dependent on factors that
are not amenable to measurement via metrics.

Recent work by Ó Cinnéide et al. also casts grave doubt
on the ability of structural software metrics to measure the
software properties that they purport to measure [21]. In
a study involving over 78,000 refactorings, they show that
there is little agreement between a collection of popular co-
hesion metrics on whether a refactoring improves or dis-
improves cohesion. This means that whether a particular
refactoring instance is deemed to improve or disimprove co-
hesion depends heavily on which cohesion metric is employed
to make the decision. In the light of this result, discussing
whether refactoring improves software quality metrics seems
futile: it will and it won’t depending on the metric employed.

4. DOES REFACTORING IMPROVE NON-
FUNCTIONAL REQUIREMENTS?

Non-functional requirements such as maintainability, flex-
ibility etc. (referred to informally as the ‘ilities’) are ar-
guably better ways of assessing if refactoring has truly im-
proved software quality. After all, if refactoring can make
software more maintainable, who cares if code smells are
removed or structural cohesion improves?

Wilking et al. [30] performed a study with 12 students
where each participant was asked to develop a simple game
program in C. Half of the participants were encouraged to
refactor and the other half encouraged to document their
code. After the development was completed, the partici-
pants were asked to correct a number of injected bugs and
were given a number of new requirements to implement. The
time taken to complete these tasks was measured and com-

10

pared. The refactored code displayed no significant improve-
ment in either maintainability or modifiability.

Kim et al. [13] investigated the role of API-level refactor-
ings during the evolution of several open source applications,
namely Eclipse, jEdit and Columba. One aspect they stud-
ied is the impact refactoring has on bug rate and on the time
taken to fix bugs. They found that refactoring reduced the
time taken to fix bugs, in keeping with the popular opinion
that refactored code is more maintainable. However they
found that the bug rate actually increased after refactoring,
and a significant number of these bugs (50%) were as a re-
sult of the refactoring activities themselves. So refactoring
improved maintainability, but at a price of a higher bug rate
– probably not a trade-off acceptable to most practitioners.

Kannangara and Wijayanake report on a controlled study
investigating the impact of refactoring on internal and ex-
ternal software quality [12]. A small C# application was
refactored to remove code smells and the refactored and un-
refactored versions were presented to two developer cohorts
who were asked to answer a questionnaire about the code
and to perform a number of fixes of injected bugs. The
refactored code was not found to be superior to the unrefac-
tored code in any of the areas examined. Interestingly, this
paper was posted to the Linkedin Refactoring Group [15], a
group of over 3,000 software professionals with an interest in
refactoring, where it was largely vilified by practitioners who
clearly see the practical value of refactoring and disbelieve
an empirical study that suggests otherwise.

Again, studies exist that support the notion that refactor-
ing can improve the ‘ilities.’ Canfora et al. [5] carried out an
exploratory study on the evolution of four open source sys-
tems, namely ArgoUML, Eclipse-JDT, Mozilla, and Samba,
with the aim of analyzing the relationship between source
code ‘change entropy’ and refactoring activities (amongst
others). They found that refactoring activity led to a re-
duction in change entropy, which can be interpreted as an
improvement in maintainability.

In one of the most comprehensive refactoring field studies
to date, Kim et al. [14] surveyed 328 professional software
engineers at Microsoft, interviewed six members of a team
tasked with refactoring Windows 7, and conducted a quan-
titative analysis of the Windows 7 version history. When
surveyed, the developers cited the main benefits of refactor-
ing to be: improved readability (43%), improved maintain-
ability (30%), improved extensibility (27%) and fewer bugs
(27%). When asked what provokes them to refactor, the
main reason provided was poor readability (22%). Only one
‘official’ code smell was mentioned, that being code duplica-
tion (13%). In the subsequent interviews, the main reason
given for the radical refactoring of Windows 7 was depen-
dency reduction. In their quantitative study of Windows 7
their findings relevant to this paper were (1) refactoring is
correlated with the decrease of inter-module dependencies,
(2) some complexity measures were improved by refactor-
ing (e.g., fan-in), but this did not apply to all complexity
measures (3) larger modules (in terms of LOCs) were not
more likely to be refactored, and refactoring tended to make
modules larger (4) modules exhibiting greater code churn
were not more likely to be refactored, and the decrease in
code churn for refactored code was less than that of unrefac-
tored code (5) modules exhibiting a greater degree of cross-
cutting changes (effectively shotgun surgery) were not more
likely to be refactored, and refactored modules tended to

exhibit an increased degree of crosscutting changes. Find-
ing 1 fits the traditional view that refactoring is used to
decrease inter-module dependency and Finding 2 partially
fits the traditional view that refactoring reduces complexity
measures. However, Findings 3, 4 and 5 all contradict the re-
ceived wisdom that refactoring should decrease module size,
reduce churn and reduce the degree of crosscutting changes.
It is possible to explain these results, e.g. Kim et al. suggest
that the modules that most require refactoring exhibit little
churn as developers are afraid to touch them, and, by exten-
sion the relative post-refactoring increase in churn is due to
the ease of extending these modules. While such a nuanced
argument may transpire to be valid, to accept it would re-
quire a radical rethinking of what is currently regarded as
indicators of software quality.

5. DISCUSSION AND CONCLUSIONS
In summary, a significant number of works attempt to

evaluate the impact of refactoring on various aspects of code
quality, but in general the results fail to show a clear link
between refactoring and either a reduction in code smells or
an improvement in overall quality. Nevertheless refactoring
appears to be a very popular practice in the software indus-
try and the likelihood is that the studies to date have not
captured the full picture of refactoring praxis.

As already observed, there is no agreement on what is
and is not a code smell, and software metrics cannot be
accepted as reliable measures of what they purport to mea-
sure. Worse again, there is no consensus on what is and is
not a refactoring, both in terms of what practitioners re-
gard as refactoring [14] and the fact that researchers have
no agreed approach to refactoring detection [8, 20]. Given
that the treatments that are being applied cannot be deter-
mined with 100% precision and recall and that effects that
are being measured are similarly vague, it is not surprising
that empirical studies in the refactoring area have yielded a
‘mixed bag’ of sometimes conflicting results.

If we are to really understand the benefits/risks of refac-
toring and hence be able to perform appropriate cost/benefit
analysis, we propose that the following steps are essential:

1. We need to create more direct measurements of soft-
ware quality, e.g. effort, number of defects, etc. instead of
proxy measures like code smells, cohesion, coupling, main-
tainability index, etc.

2. We need to be more systematic when it comes to de-
scribing the context in which refactoring takes place, in order
to know under which circumstances refactoring proves to be
beneficial and when not.

3. We need to perform more long-term studies where
refactorings, maintenance problems and the aforementioned
direct measures are available in order to understand better
where in the evolution process refactorings are triggered, for
which reasons, and what their effects are in later stages of
the system’s evolution.

Overall, it is better to identify actual problems experi-
enced by developers during maintenance and observe how
they are addressed in their real context rather than to pro-
pose further artificial constructs based on our assumptions
of what constitutes a code smell or a refactoring. By using
a more inductive approach to research we could perhaps be
more successful at operationalising more realistic constructs
of code smells and refactorings, and hence build more effec-
tive tool support.

11

6. REFERENCES
[1] M. Alshayeb. Empirical investigation of refactoring

effect on software quality. Information & Software
Technology, 51(9):1319–1326, 2009.

[2] M. Alshayeb. Refactoring effect on cohesion metrics.
In International Conference on Computing,
Engineering and Information, Apr. 2009.

[3] K. Beck. Manifesto for Agile Software Development,
2001.

[4] L. Bossavit. The Leprechauns of Software Engineering.
Leanpub, 2014.

[5] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta.
How changes affect software entropy: an empirical
study. Empirical Software Engineering, 19(1):1–38,
2014.

[6] A. Chatzigeorgiou and A. Manakos. Investigating the
Evolution of Bad Smells in Object-Oriented Code. In
International Conference on the Quality of
Information and Communications Technology
(QUATIC’2010), pages 106–115. IEEE, Sept. 2010.

[7] S. Counsell, R. M. Hierons, H. Hamza, S. Black, and
M. Durrand. Exploring the Eradication of Code
Smells: An Empirical and Theoretical Perspective.
Advances in Software Engineering, 2010:1–12, 2010.

[8] F. A. Fontana, P. Braione, and M. Zanoni. Automatic
detection of bad smells in code: An experimental
assessment. Journal of Object Technology, 11(2):1–38,
2012.

[9] F. A. Fontana, J. Dietrich, W. Bartosz, A. Yamashita,
and M. Zanoni. Antipattern and code smell false
positives: Preliminary conceptualization and
classification. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), March 2016.

[10] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[11] T. Hall, M. Zhang, D. Bowes, and Y. Sun. Some code
smells have a significant but small effect on faults.
ACM Trans. Softw. Eng. Methodol., 23(4):33:1–33:39,
Sept. 2014.

[12] S. H. Kannangara and W. Wijayanayake. An
Empirical Evaluation of Impact of Refactoring on
Internal and External Measures of Code Quality.
International Journal of Software Engineering &
Applications, 6(1), Jan. 2015.

[13] M. Kim, D. Cai, and S. Kim. An empirical
investigation into the role of API-level refactorings
during software evolution. In Proceedings of the 33rd
International Conference on Software Engineering,
ICSE ’11, pages 151–160, New York, 2011. ACM.

[14] M. Kim, T. Zimmermann, and N. Nagappan. An
empirical study of refactoring challenges and benefits
at Microsoft. IEEE Trans. Softw. Eng., 40(7):633–649,
July 2014.

[15] Linkedin Refactoring Group, 2016.

[16] R. C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall, 2008.

[17] S. McConnell. Code Complete: A Practical Handbook
of Software Construction. Microsoft Press, 2004.

[18] T. Mens and T. Tourwé. A survey of software
refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, 2004.

[19] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti,
and G. Succi. A case study on the impact of
refactoring on quality and productivity in an agile
team. In B. Meyer, J. R. Nawrocki, and B. Walter,
editors, Balancing Agility and Formalism in Software
Engineering, pages 252–266. Springer-Verlag, 2008.

[20] E. Murphy-hill, C. Parnin, and A. P. Black. How We
Refactor, and How We Know It. IEEE Transactions
on Software Engineering, 38(1):5–18, 2012.

[21] M. Ó Cinnéide, I. Hemati Moghadam, M. Harman,
S. Counsell, and L. Tratt. An experimental
search-based approach to cohesion metric evaluation.
Empirical Software Engineering, pages 1–38, 2016.

[22] W. F. Opdyke. Refactoring: A Program Restructuring
Aid in Designing Object-Oriented Application
Frameworks. PhD thesis, Department of Computer
Science, Champaign, IL, USA, 1992.

[23] W. F. Opdyke and R. E. Johnson. Refactoring: An
Aid in Designing Application Frameworks and
Evolving Object-Oriented Systems. In Proceedings of
the Symposium on Object Oriented Programming
Emphasizing Practical Applications. ACM, Sept. 1990.

[24] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and
A. D. Lucia. Do they really smell bad? A study on
developers’ perception of bad code smells. In Software
Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, Sept 2014.

[25] C. Simons, J. Singer, and D. R. White. Search-based
refactoring: Metrics are not enough. In M. Barros and
Y. Labiche, editors, Search-Based Software
Engineering, volume 9275 of Lecture Notes in
Computer Science, pages 47–61. Springer, 2015.

[26] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus,
and T. Dyba. Quantifying the Effect of Code Smells
on Maintenance Effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156, Aug. 2013.

[27] Q. Soetens and S. Demeyer. Studying the effect of
refactorings: A complexity metrics perspective. In
Seventh International Conference on the Quality of
Information and Communications Technology
(QUATIC’2010), pages 313–318, Sept 2010.

[28] K. Stroggylos and D. Spinellis. Refactoring–does it
improve software quality? In Proceedings of the 5th
International Workshop on Software Quality, WoSQ
’07. IEEE Computer Society, 2007.

[29] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle. A
multidimensional empirical study on refactoring
activity. In Proceedings of the 2013 Conference of the
Center for Advanced Studies on Collaborative
Research, CASCON ’13, pages 132–146, Riverton, NJ,
USA, 2013. IBM Corp.

[30] D. Wilking, U. Khan, and S. Kowalewski. An
Empirical Evaluation of Refactoring. e-Informatica
Software Engineering Journal, 1(1), 2007.

[31] A. Yamashita and L. Moonen. To what extent can
maintenance problems be predicted by code smell
detection? - an empirical study. Information and
Software Technology, 55(12):2223–2242, 12 2013.

[32] M. Zhang, T. Hall, and N. Baddoo. Code bad smells:
a review of current knowledge. Journal of Software
Maintenance and Evolution: Research and Practice,
23(3):179–202, 2011.

12

