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Large deviations of infinite intersections of events in
Gaussian processes

ABSTRACT
The large deviations principle for Gaussian measures in Banach space is given by the
generalized Schilder's theorem. After assigning a norm ||f|| to paths f in the reproducing kernel
Hilbert space of the underlying Gaussian process, the probability of an event A can be studied
by minimizing the norm over all paths in A. The minimizing path f*, if it exists, is called the most
probable path and it determines the corresponding exponential decay rate. The main objective
of our paper is to identify the most probable path for the class of sets A that are such that the
minimization is over a closed convex set in an infinite-dimensional Hilbert space. The
`smoothness' (i.e., mean-square differentiability) of the Gaussian process involved has a crucial
impact on the structure of the solution. Notably, as an example of a non-smooth process, we
analyze the special case of fractional Brownian motion, and the set A consisting of paths f at or
above the line t in [0,1]. For H>1/2, we prove that there is an s such that 0<s<1/2 and that the
optimum path is at the "diagonal" on [0,s] and at t=1, whereas it is strictly above the diagonal for
on (s,1); for H<1/2 an analogous result is derived. For smooth processes, such as integrated
Ornstein-Uhlenbeck, f* has an essentially different nature, and is found by imposing conditions
also on the derivatives of the path.
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Large deviations of infinite intersections of events in Gaussian processes

Abstract The large deviations principle for Gaussian measures in Banach space is given by the generalized Schilder’s
theorem. After assigning a norm|| f || to pathsf in the reproducing kernel Hilbert space of the underlying Gaussian process,
the probability of an eventA can be studied by minimizing the norm over all paths inA. The minimizing pathf ∗, if it exists, is
called themost probable pathand it determines the corresponding exponential decay rate. The main objective of our paper is
to identify f ∗ for the class of setsA that are such that the minimization is over a closed convex set in an infinite-dimensional
Hilbert space. The ‘smoothness’ (i.e., mean-square differentiability) of the Gaussian process involved has a crucial impact
on the structure of the solution. Notably, as an example of a non-smooth process, we analyze the special case of fractional
Brownian motion, and the setA consisting of pathsf such thatf (t) ≥ t for t ∈ [0,1]. ForH > 1

2 , we prove that there is an
s∗ ∈ (0, 1

2) such that the optimum path isat the diagonal fort ∈ [0,s∗]∪{1}, whereas it isstrictly abovethe diagonal for
t ∈ (s∗,1); for H < 1

2 an analogous result is derived. For smooth processes, such as integrated Ornstein-Uhlenbeck,f ∗ has
an essentially different nature, and is found by imposing conditions also on the derivatives of the path.

Key words. Sample-path large deviations, Schilder’s theorem, busy period, reproducing kernel Hilbert space,
optimization

1. Introduction

The large deviation principle (LDP) for Gaussian measures in Banach space, usually known as the (generalized)
Schilder’s theorem, has been established more than two decades ago by Bahadur and Zabell [3], see also [2,4].
In this LDP, a central role is played by the norm|| f || of paths f in the reproducing kernel Hilbert space of the
underlying Gaussian process. More precisely, the probability of the Gaussian process being in some closed set
A has exponential decay rate1

2|| f
∗||2, where f ∗ is the path inA with minimum norm, i.e., argminf∈A|| f ||. The

path f ∗ has the interpretation of themost probable path(MPP) inA: if the Gaussian process happens to fall in
A, with overwhelming probability it will be close tof ∗.

For various specific setsA the MPP has been found. Addieet al. [1] consider a queueing system fed by a
Gaussian process with stationary increments, and succeed in finding the MPP leading to overflow. This problem
is relatively easy as the overflow event can be written as an infiniteunionof eventsA = ∪t>0At , such that the
decomposition

inf
f∈A

|| f ||= inf
t>0

inf
f∈At

|| f ||

applies. HereAt corresponds to the event of overflow at timet, and due to the fact that the infimum overAt turns
out to be straightforward, the problem can be solved. In this paper we look at the intrinsically more involved
situation thatA is anintersection, rather than a union, of events:A = ∩tAt ; decay rates, and the corresponding
MPPs, of these intersections are then usually considerably harder to determine. In our setting the norm has to
be minimized over a convex set in an infinite-dimensional Hilbert space.

Few results are known on MPPs of these infinite intersections of events. In Norros [11] it was shown that
the event of a queue with fractional Brownian motion (fBm) input having a busy period longer than, say, 1,
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corresponds to an infinite intersection of events; the setA consists of allf such thatf (t) ≥ t for all t ∈ [0,1].
However, the shape of the MPP inA remained an open problem in [11]. Interestingly, it was shown that the
straight line, i.e., the pathf (t) = t, is not optimal, unlike in the case of Markovian input, see [14, Thm. 11.24].
In [8,9] buffer overflow in tandem, priority, and generalized processor sharing queues was analyzed: first it was
shown that in these queues overflow relates to an infinite intersection of events, and then explicit lower bounds
on the minimizing norm (corresponding to upper bounds on the overflow probability) were given. Conditions
were given under which this lower bound is tight – in that case obviously the path corresponding to the lower
bound is also the MPP.

An important element in our analysis is the ‘smoothness’ of the Gaussian process involved. Here we rely on
results from Tutubalin and Freidlin [15] and Piterbarg [13], showing that the infinitesimal space of a Gaussian
processZ (at time t) is essentially a finite-dimensional space generated by the valueZt of the process itself,

but in addition also its derivatives att, say,Z′t , Z′′t ,. . . ,Z(k)
t . The implication of this result is that in our study,

processes without derivatives (such as fBm) had to be treated in another way than smooth processes (such as
the so-called integrated Ornstein-Uhlenbeck process).

This paper is organized as follows. Section 2 presents preliminaries on Gaussian processes and a number of
other prerequisites. In Section 3 we focus on the most probable path in the set of pathsf such thatf (t)≥ ζ (t),
for a functionζ and t in some compact setS⊂ R. Our general result characterizes the MPP in this infinite
intersection of events. In case the Gaussian process does not have derivatives, the MPP can be expressed as
a conditional mean. Section 4 gives explicit results for the caseζ (t) = t andS= [0,1], i.e., the busy-period
problem. We illustrate the impact of the smoothness by focusing on examples of both a process without (fBm)
and with (integrated Ornstein-Uhlenbeck) derivatives. In the case of fBm, we prove that forH > 1

2 the MPP is
at the diagonal in some interval[0,s∗], and evidently also at the end of the busy period, butstrictly abovethe
diagonal in between (corresponding to a positive queue length); forH < 1

2 an analogous result is derived. In the
case of integrated Ornstein-Uhlenbeck, we show how the MPP is derived by imposing conditions at two points,
namely the derivative att = 0 and the value of the function att = 1.

2. Preliminaries

This section describes some prerequisites, e.g., some fundamental results on Gaussian processes.

2.1. Gaussian process, path space, and reproducing kernel Hilbert space

The following framework will be used throughout the paper. LetZ = (Zt)t∈R be a centered Gaussian process
with stationary increments, completely characterized by its variance functionv(t) .= Var(Zt). The covariance
function ofZ can be written as

Γ (t,s) .= Cov(Zt ,Zs) =
1
2
(v(s)+v(t)−v(s− t)).

For a finite subsetS of R, denote byΓ (S, t) the column vector{Γ (s, t) : s∈ S}, by Γ (t,S) the corresponding
row vector, and byΓ (S) the matrix

Γ (S) .= {Γ (s, t) : s∈ S, t ∈ S} .

In addition to the basic requirement thatv(t) results in a positive semi-definite covariance function, we
impose the following assumptions onv(t):

(i) v(t) is continuous, andΓ (S) is non-singular for any finite subsetSof R with distinct elements;
(ii) there is a numberα0 ∈ (0,2] such thatv(h)/hα0 is bounded forh∈ (0,1);

(iii) lim t→∞ v(t) = ∞, and limt→∞ v(t)/tα∞ = 0 for someα∞ ∈ (0,2).

The assumption (ii) guarantees the existence of a version with continuous paths, by virtue of Kolmogorov’s
lemma. Denote byΩ the function space

Ω
.=

{
ω : ω continuousR→ R, ω(0) = 0, lim

t→∞

ω(t)
1+ |t|

= lim
t→−∞

ω(t)
1+ |t|

= 0

}
.
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Equipped with the norm

‖ω‖Ω

.= sup

{
|ω(t)|
1+ |t|

: t ∈ R
}

,

Ω is a separable Banach space. We chooseΩ as our basic probability space by lettingP be the unique probability
measure on the Borel sets ofΩ such that the random variablesZt(ω) = ω(t) form a realization ofZ.

The reproducing kernel Hilbert space Rrelated toZ is defined by starting from the functionsΓ (t, ·) and
defining an inner product by〈Γ (s, ·),Γ (t, ·)〉 = Γ (s, t). The space is then closed with linear combinations, and
completed with respect to the norm‖ · ‖2 = 〈·, ·〉. Thus, the mapping

Zt 7→ Γ (t, ·) (1)

is extended to an isometry between the Gaussian spaceG of Z, i.e., the smallest closed linear subspace ofL2

containing the random variablesZt , and the function spaceR. The inner product definition generalizes to the
reproducing kernel property:

〈 f ,Γ (t, ·)〉= f (t), f ∈ R. (2)

The topology ofR is finer than that corresponding to a weighted supremum distance between the paths: by
Cauchy-Schwarz and (2),

sup
t∈R

| f (t)|
1+ |t|

≤ ‖ f‖ ·sup
t∈R

‖Γ (t, ·)‖
1+ |t|

, (3)

where the supremum on the right hand side is finite by (iii). We see that all elements ofR are continuous
functions,R is a subset ofΩ , and the topology ofR is finer than that ofΩ .

2.2. Large deviations: generalized Schilder’s theorem

The generalization of Schilder’s theorem on large deviations of Brownian motion to Gaussian measures in a
Banach space is originally due to Bahadur and Zabell [3] (see also [2,4]). Here is a formulation appropriate to
our case; for the definition ofgoodrate function, see, e.g., [4, Section 2.1].

Theorem 1.The function I: Ω → [0,∞],

I(ω) .=
{

1
2‖ω‖2

R, if ω ∈ R,
∞, otherwise,

(4)

is a good rate function for the centered Gaussian measureP, andP satisfies the large deviations principle:

for F closed inΩ : limsup
n→∞

1
n

logP
(

Z√
n
∈ F

)
≤− inf

ω∈F
I(ω);

for G open inΩ : liminf
n→∞

1
n

logP
(

Z√
n
∈G

)
≥− inf

ω∈G
I(ω).

We call a functionf ∈ A such thatI( f ) = infω∈A I(ω) < ∞ a most probable pathof A. A most probable
path can be intuitively understood as a point of maximum likelihood, although there is no counterpart to the
Lebesgue measure onΩ . If A is convex and closed and has a non-empty intersection withR, then the most
probable path exists and is unique.

2.3. Notes on optimization

The following standard fact from optimization theory is crucial in our analysis, see, e.g., Exercise 3.13.23 in
[7].

Proposition 1. Let H be a Hilbert space. Consider a set A= {x∈ H : 〈x,yi〉 ≥ ai , i ∈ I} , where I is a finite
index set and yi ∈ H. Assume that x∗ = argmin{‖x‖ : x∈ A} and denote I∗ = {i ∈ I : 〈x∗,yi〉= ai} . Then x∗ ∈
Span{yi : i ∈ I∗}.
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The intuitive content of Proposition 1 is that conditions which are not tightly met (i.e., satisfied with equality)
at the optimal point do not appear in the solution. If the finite set of linear conditions is replaced by an infinite
one, the result does not hold without further assumptions. One particular generalization will be considered in
Section 3.

We also need the following basic infinite-dimensional result.

Proposition 2. Let H be a Hilbert space, and let yi ∈ H, ai ∈ R, i = 1,2, . . ., and denote

An = {x∈ H : 〈x,yi〉 ≥ ai , i = 1, . . . ,n} ,

A∞ = {x∈ H : 〈x,yi〉 ≥ ai , i = 1,2, . . .} .

Assume that the convex set A∞ is non-empty and let

αn = argminx∈An‖x‖, n = 1,2, . . . ,∞.

Thenlimn→∞ αn = α∞.

Proof. Obviously‖αn‖ ≤ ‖α∞‖. We show first that‖αn‖ → ‖α∞‖. The closed ballB(0,‖α∞‖) is weakly com-
pact. Letα0 be a weak accumulation point of the sequenceαn. By definition of the weak topology, for eachn,
there is a subsequencemj such that

〈α0,yn〉= lim
j→∞

〈αmj ,yn〉 ≥ an.

Thus,α0 ∈ An for everyn. It follows thatα0 ∈ A∞ and, since the sequence‖αn‖ is non-decreasing, that‖αn‖↗
‖α∞‖.

Now, by a basic characterization of minimum norm elements in closed convex sets, we have〈αn,α∞−αn〉 ≥
0, sinceα∞ ∈ A∞ ⊆ An andαn is the minimum norm element ofAn. But then

‖αn−α∞‖2 = ‖α∞‖2−‖αn‖2−2〈αn,α∞−αn〉 ≤ ‖α∞‖2−‖αn‖2 → 0.

�

2.4. Derivatives and the infinitesimal space

We call the Gaussian processZ smoothat t, if it has a mean-square derivative att, that is, there exists a random
variableZ′t ∈G such that

lim
h→0

E

{(
Zt+h−Zt

h
−Z′t

)2
}

= 0.

It follows from the stationarity of increments that ifZ is smooth at 0, then it is smooth at allt ∈R. On the other
hand, applying the above definition att = 0, we see that processZ is non-differentiable if limh→0v(h)/h2 = ∞.

Here are some more properties of a smooth Gaussian process with stationary increments. The proofs are
straightforward and left as an exercise.

Proposition 3. Assume that Z is smooth. Then

(i) Γ (s, t) has partial derivatives, and the isometry counterpart of Z′
t in R is the function

Γ
′(s, t) .=

d
ds

Γ (s, t);

(ii) all functions f ∈ R are differentiable at every point, and evaluation of a derivative at t can be obtained by
taking an inner product withΓ ′(t, ·):

f ′(t) = 〈 f ,Γ ′(t, ·)〉, f ∈ R, t ∈ R;

(iii) the variance function v is twice differentiable everywhere, and

Var
(
Z′0

)
=

1
2

v′′(0);
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(iv) for any s, t ∈ R,

〈Γ ′(s, ·),Γ ′(t, ·)〉=
v′′(t−s)

2
.

For any subsetA of a Banach spaceX, denote by SpanA the smallest closed linear subspace ofX containing
the setA. For any setV ⊆ R, denote

GV
.= Span{Zt : t ∈V} , RV

.= Span{Γ (t, ·) : t ∈V} .

The infinitesimal spaceof the Gaussian processZ at timepointt is defined as

Gt±
.=

⋂
u>0

G[t−u,t+u].

By the stationarity of increments, the structure ofGt±−Zt is the same for allt. In R, we denote byRt± the
isometry counterpart ofGt±.

A subspaceGV (resp.RV ) augmented with the infinitesimal spaces at all points inV is denoted byGo
V (resp.

Ro
V ):

Go
V

.= Span
⋃
t∈V

Gt± Ro
V

.= Span
⋃
t∈V

Rt±. (5)

The infinitesimal space of a stationary Gaussian processX was characterized by Tutubalin and Freidlin [15].
Under a mild spectral condition,Gt± is a finite-dimensional space generated by the random variableXt and the

derivatives of the process att, sayX′
t , X′′

t ,. . . ,X(k)
t . Moreover, the corresponding ‘infinitesimalσ -algebra’ is

also generated by these random variables, and some sets of measure zero. Note also that, by this result, the
infinitesimalσ -algebra is the same for one- and two-sided neighborhoods in the definition.

The generalization to non-stationary Gaussian processes is by Piterbarg [13]. Denote byD the Schwarz
space (i.e., the space ofC∞(R) functions f (x), such that thek-th derivative f (k)(x) vanishes faster than any
inverse power, forx→ ∞ and anyk ∈ {0,1, . . .}). Let H be the closure of functions inD with respect to the
inner product〈φ1,φ2〉=

∫
R2 Γ (s, t)φ1(s)φ2(t)dsdt. The following result is due to Piterbarg [13, Th. 1].

Theorem 2.Suppose that

(i) D ⊂ R and the embedding is continuous and dense;
(ii) The space H is closed under local shifts; see for the precise definition[13, Thm. 1];

(iii) In the region{(s, t) : s, t ∈ R, s 6= t}, the functionΓ (s, t) has mixed partial derivatives of any order.

Then Gt± equals the closed linear hull of all existing mean-square derivatives of Z at t.

Note that ifZ has continuously differentiable paths and the spectral density ofZ′, denoted byf (λ ), satisfies
f (λ )≥ 1/λ p for somep > 0, then the characterization ofGt± is immediately obtained from [15].

WhenZ is a Brownian motion, it follows easily from the independence of increments that the infinitesimal
space is trivial, i.e.,Gt± = {Zt}. This implies the same property for fractional Brownian motions with self-
similarity parameterH ∈ (0,1). Indeed, the transformed process

Mt =
∫ t

0
s

1
2−H(t−s)

1
2−H dZt , t ≥ 0,

is a process with independent increments and Span{Ms : s∈ [0, t]}= G[0,t], see [10,12].

2.5. A note on conditional expectations

For a finite-dimensional Gaussian vectorX, the conditional distribution with respect to any linear condition
AX = a is again Gaussian. Moreover, the mean of this distribution is linear ina, whereas its variance is inde-
pendent ofa. It is less obvious how conditional distributions and expectations with respect to linear conditions
should be defined in the infinite-dimensional case. In this subsection we show how certain conditional expecta-
tions with respect to infinite-dimensional linear conditions can be defined in an elementary way.

Let S⊂ R be a non-empty finite set of timepoints. For anyu∈ R, the conditional expectation ofZu given
the vectorZS has the expression

E [Zu |ZS] = Γ (u,S)Γ (S)−1ZS.
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Thus, we have for any particular vectorx a natural expression for a particular condition (although evidently the
probability of the condition is zero):

E [Zu |ZS = x] = Γ (u,S)Γ (S)−1x.

Note that the expression is linear inx. We give another point of view to the above formula by defining for each
x a random variable

Yx = xT
Γ (S)−1ZS. (6)

We obtain, for the one particular condition{ZS = x}, the conditional expectations of allZu’s as covariances
with one and the same random variableYx:

E{YxZu}= E [Zu |ZS = x] for all u∈ R. (7)

Further, the isometry counterpart ofYx in R is the elementf that satisfies

〈 f ,Γ (u, ·)〉= E{YxZu} for all u∈ R.

By the reproducing kernel property, this element is the function

u 7→ E [Zu |ZS = x] .

From this, we deduce the following characterization of the most probable path going through a finite number of
specified points.

Proposition 4. For any finite S⊂R and anyx ∈R|S|, the conditional expectation given the values on S and the
most probable path satisfying f(S) = x are equal, i.e.,

f ∗(u) = E [Zu |ZS = x] for all u ∈ R.

Proof. As shown above, the random variableYx defined in (6) is the random variable with smallest variance
that satisfiesE{YxZs} = E [Zs|ZS = x] for all s∈ S. By this minimum variance characterization, its isometry
counterpart inR is the most probable pathf ∗. The claim follows now from (7). �

Remark 1.In the case thatZ is smooth, Proposition 4 still holds if there appear as conditions also values ofZ′

at some points, or those of higher derivatives if they exist. The generalization to those cases is straightforward
and we skip the details.

It is not clear for us how far Proposition 4 can be generalized to an infinite-dimensional setting. We now
show how this can be done when the conditions are inR.

Proposition 5. Let S be a closed subset ofR and letζ ∈ R. Let f∗ be the most probable path satisfying f(s) =
ζ (s) for every s∈ S. Then, for every increasing sequence of finite subsets of S such that

⋃
nSn = S, and for every

u∈ R,
f ∗(u) = lim

n→∞
E [Zu |Zs = ζ (s) ∀s∈ Sn] .

Proof. Take any sequenceSn and denoteAn = { f ∈ R : f (s) = ζ (s) ∀s∈ Sn},

fn = argminf∈An‖ f‖, n = 1,2, . . . ,

andA =
⋂

nAn. Since an equality can be obtained as a pair of non-strict inequalities in opposite directions, and
since f ∗ ∈ A∞, we can apply Proposition 2 to see thatfn → f ∗ asn→ ∞. The expression offn(u) is obtained
from Proposition 4. �

Consequently, it is unambiguous to define, for any closed setS⊂ R and anyζ ∈ R,

E [Zu |Zs = ζ (s) ∀s∈ S] .= lim
n→∞

E [Zu |Zs = ζ (s) ∀s∈ Tn] , (8)

whereTn is any sequence of finite sets that approachesS from within.
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2.6. The Gaussian queue

Our motivation for doing this study came from queues with Gaussian input, where we encountered the problem
of identifying the most probable paths in sets of the type{Zt ≥ ζ (t),∀t ∈ S} . We here present two prominent
examples of this.

Busy period The first example relates to the busy period in a queue fed by Gaussian input. The queue length
process with inputZ and service rate 1 is commonly defined as

Qt = sup
s≤t

(Zt −Zs− (t−s)).

Following [11], letKT be the set of paths that are such that the ongoing busy period at time 0 is longer than
T > 0:

KT
.= {A < 0 < B : B−A > T} ,

with the random interval[A,B] defined as

[A,B] .= [sup{t ≤ 0 : Qt = 0} , inf {t ≥ 0 : Qt = 0}].

When interested in the decay rate of the probability of along busy period, Norros [11] showed that for fBm,
with v(t) = t2H , without losing generality, attention can be restricted to the set

B = { f ∈ R : f (s)≥ s, ∀s∈ [0,1]}

of paths inR that create non-proper busy periods starting at 0 and straddling the interval[0,1]; this is due to

lim
T→∞

1
T2−2H logP(Z ∈ KT) =− inf

f∈B

1
2
‖ f‖2.

The problem is to determine the MPP inB, i.e., β ∗ .= argminf∈B‖ f‖. SinceB is convex and closed,β ∗ is
uniquely determined, but [11] does not succeed in finding an explicit characterization. Both Kozachenkoet al.
[6] and Dieker [5] consider the extension of this setup to a regularly varying (rather than purely polynomial)
variance function:v(t) = L(t)t2H for a slowly varyingL(·), and show that, under specific conditions,

lim
T→∞

L(T)
T2−2H logP(Z ∈ KT) =− inf

f∈B

1
2
‖ f‖2;

hence in this case the same minimization problem needs to be solved.
Tandem The second example corresponds to overflow in the second queue of a tandem queueing network.

Assume that the first queue is emptied at a constant ratec1, whereas the second has link ratec2 (with c1 > c2).
Clearly, the steady-state queue length of the first queue can be represented as

Q1 = sup
s≥0

(Z−s−c1s).

Also, the total queue length behaves as a queue with link ratec2:

Q1 +Q2 = sup
t≥0

(Z−t −c2t).

Therefore, expressing the occupancy of the second queue as the difference of the total buffer content and the
content of the first queue,

{Q2 ≥ b}= {∃t ≥ 0 :∀s≥ 0 : Z−t −Z−s−c2t +c1s≥ b} ;

it is easily seen that we can restrict ourselves tos∈ [0, t], andt ≥ tb
.= b/(c1−c2). By a straightforward time-

shift, we conclude that the decay rate of our interest equals− inf f∈U
1
2‖ f‖2, where

U
.=

⋃
t≥tb

Ut , with Ut
.= { f ∈ R : ∀s∈ [0, t] : f (s)≥ b+c2t−c1(t−s)} .

This decay rate obviously reads− inft≥tb inf f∈Ut
1
2‖ f‖2. Mandjes and van Uitert [8] partly solve the problem of

finding the MPP inUt : for large values ofc1 (above some explicit threshold valuecF
1 ) the MPP is known, and

for smallc1 the MPP is known under some additional condition (that isnot fulfilled in the case of fBm).
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3. The most probable path in{Z≥ ζ on S}

The central problem in this paper is of the following form: given a functionζ and a set of timepointsS, what is
the most probable path in the event{Z≥ ζ onS}? In the rest of the paper, we assume that Gaussian processZ

satisfies the conditions of Theorem 2 so that the infinitesimal spaces are generated simply byZt , . . . ,Z
(k)
t , where

k is the number of derivatives.
In order to keep the presentation simpler, we only consider sets{Z ≥ ζ on S}, with ζ ∈ R. There are two

immediate generalizations, which may be included without too much extra effort. The requirement thatζ ∈ R
is certainly quite restrictive; point-wise and certain discontinuous conditions can also be handled along the
same lines. On the other hand, instead of considering{Z ≥ ζ on S}, one could also study sets{Zsign(ζ ) ≥
ζsign(ζ ) onS}.

Our first general result is a generalization of Proposition 1.

Theorem 3.Let ζ ∈ R and let S⊆ R be compact. Denote

BS
.= { f ∈ R : f (s)≥ ζ (s) ∀s∈ S} .

There exists a functionβ ∗ ∈ BS with minimal norm, i.e.,

β
∗ .= argminf∈BS‖ f‖.

Moreover,
β
∗ ∈ Ro

S∗ ,

where
S∗ = {t ∈ S: β

∗(t) = ζ (t)} .

If the infinitesimal space of the process Z is trivial, i.e., Gt± is generated by random variable Zt , thenβ ∗ ∈RS∗ ,
and

β
∗(t) = E [Zt |Zs = ζ (s) ∀s∈ S∗] .

Remark:The notationRo
S∗ is explained in (5) in Section 2.4, and the meaning of the conditional expectation in

(8) in Section 2.5.

Proof. SinceBS containsζ and it is convex and closed, it has a unique element with minimum norm. LetSn be
a non-decreasing sequence of finite subsets ofSsuch thatS∞

.=
⋃

Sn is dense inS. Denote

Bn = { f ∈ R : f (s)≥ ζ (s) ∀s∈ Sn} , n = 1,2, . . . ,

and letβn be the element inBn with smallest norm. By Proposition 2, the sequenceβn converges, and since the
functions inRare continuous, the limit isβ ∗.

Let U be a bounded open interval such thatS⊂U . Form= 1,2, . . . denote

Um =
{

t ∈U : β
∗(t) > ζ (t)+

1
m

}
.

Since
|βn(t)−β

∗(t)|= |〈βn−β
∗,Γ (t, ·)〉| ≤ ‖βn−β

∗‖sup
u∈U

√
Γ (u,u)

for all t ∈U , there is a numbernm such thatβnm(t) > t +1/(2m) for all t ∈Um.
By Proposition 1,

βnm ∈ Span{Γ (s, ·) : s∈ Snm∩Uc
m} ⊆ RS\Um.

Since the sequence of closed subspacesRS\Um is decreasing inm andβnm → β ∗, it follows that

β
∗ ∈

∞⋂
m=1

RUc
m

= Ro
S∗ .

The last assertion follows directly from Proposition 5. �
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Remark 2.The setS∗ in Theorem 3 need not be the smallest set fulfilling the assertions. For example, ifζ is the
minimum-norm function with conditionζ (1) = 1, and 1∈ S, then the theorem would give the setS itself asS∗,
although the singleton{1} would suffice.

Remark 3.In the case of trivial infinitesimal space, Theorem 3 has a clear intuitive content: the ‘cheapest’ way
to push the process aboveζ is to push it exactly to the curvet 7→ ζ (t) in the subsetS∗; the points inS\S∗ then
come ‘for free’.

The information provided by Theorem 3 is still insufficient for characterizing the MPP in any concrete case.
Such a characterization can often be obtained by studying ‘least likely’ finite-dimensional approximations of
β ∗, defined in such a way that their norm is always less or equal to‖β ∗‖. This idea is borrowed from [8,9].

For any setV ⊆ S, denote

BV
.= { f ∈ R : f (t)≥ ζ (t) ∀t ∈V} , LV

.= { f ∈ R : f (t) = ζ (t) ∀t ∈V} .

Let the unique element with smallest norm inBV andLV be, respectively,

ϕ
V .= argminϕ∈BV‖ϕ‖, ϕ

V .= argminϕ∈LV‖ϕ‖.

In this context we identify a vectort ∈Rn with the set of its distinct components. Note that for anyV ⊆S, ‖ϕV‖
is a lower bound of‖β ∗‖, but it is possible that‖ϕ

V‖> ‖β ∗‖.
Next, we state a proposition showing that the coefficients of theΓ (v, ·), v∈ V in the representation ofϕV

are strictly positive if everyv is needed to make functionϕV feasible.

Proposition 6. Assume a finite V . If for each v∈V it holds thatϕV\{v}(v) < ζ (v), then the coefficientsθv in the
representation

ϕ
V = ∑

v∈V
θvΓ (v, ·)

are all strictly positive.

Proof. Takev∈V and denote
ϕ

V\{v} = ∑
t∈V\{v}

θ̃tΓ (t, ·).

The assumption thatϕV\{v}(v) < ζ (v) implies that‖ϕ
V‖> ‖ϕ

V\{v}‖. Thus

0 < ‖ϕ
V −ϕ

V\{v}‖2

= 〈ϕV −ϕ
V\{v}, ∑

t∈V\{v}
(θt − θ̃t)Γ (t, ·)+θvΓ (v, ·)〉

= θv(ζ (v)−ϕ
V\{v}(v)).

�

The nature of the MPP inS depends crucially on the smoothness ofZ. Section 3.1 is on the non-smooth
case, and Section 3.2 on the smooth case.

3.1. The case of non-smooth Z

Theorem 4 describes the MPP for non-smoothZ. Proposition 7 is crucial in the proof of Theorem 4.

Proposition 7. Assume that Gaussian process Z satisfies the assumptions of Theorem 2. Then the mappings
T 7→ ϕ

T and T 7→ ϕT from{J⊂ R : |J|< ∞} to R are continuous for every fixedζ ∈ R, if and only if G0±, the
infinitesimal space of Z, is trivial.

Proof. First we show the continuity ofϕT andϕT under the triviality assumption, i.e.,G0± = {0}. Consider the
mapT 7→ ϕ

T .



10 Michel Mandjes et al.

1. LetTn andT be finite subsets ofR such thatTn → T. (Notice that in principleT can have a lower cardinality
than theTn.) For everyε > 0, letnε be the smallest number such thatTn ⊂ T +[−ε,ε] for all n≥ nε .

2. For a closed subspaceY of R, denote byPY the orthogonal projection onY. For closed setsV ⊂ R we also
use the shorthand notationPV

.= PRV . Note that evidentlyϕTn = PTnζ , andϕ
T = PTζ .

3. Further, for anyt ∈ R, denote by

Rc
t,ε

.= R[t−ε,t+ε]	Rt = { f ∈ R[t−ε,t+ε] : 〈 f ,Γ (t, ·)〉= 0},

i.e., Rc
t,ε is the orthogonal complement ofRt with respect toR[t−ε,t+ε]. The orthogonal complement ofRT

with respect toRT+[−ε,ε] satisfies

Rc
T,ε

.= RT+[−ε,ε]	RT ⊆ Span
{

Rc
t,ε : t ∈ T

}
. (9)

4. Now, forn≥ nε (which is needed in the second equality),

ϕ
Tn = PTnζ = PTnPT+[−ε,ε]ζ = PTnPTζ +PTnPRc

T,ε
ζ .

As n→∞, the first term converges toPTζ (due to the assumed convergenceTn → T; note thatPTζ is afinite
combination ofΓ (t, ·)’s, t ∈ T). On the other hand,PTnPRc

T,ε
ζ → 0 (asn→ ∞), because the triviality of the

infinitesimal spaces, in conjunction with (9), implies limε→0PRc
T,ε

f = 0 for any fixedf ∈ R.

Then consider the mapT 7→ ϕT .

1. For any finiteT, denote

T
.=

{
t ∈ T : ϕ

T(t) = ζ (t)
}

,

and note thatϕT = ϕ
T . Chooseε > 0 such that for allti , t j ∈ T it holds that|ti − t j | > 2ε. Denote also

T̃n
.= Tn∩ (T +[−ε,ε]). ThenT̃n → T asn→ ∞, and by the first part of the proposition we have

ϕ
T̃n → ϕ

T = ϕ
T . (10)

2. Let thenT ′ be any accumulation point of the sequenceTn, and let(nk) be a subsequence such thatTnk → T ′.
By the continuity ofϕT ,

ϕ
Tnk = ϕ

Tnk → ϕ
T ′ . (11)

3. For anyt ∈ T, taketk ∈ Tnk such thattk → t. Because convergence inR implies uniform convergence on
compacts by (3),

ϕ
T ′(t) = lim

k→∞
ϕ

T ′(tk) = lim
k→∞

ϕ
Tnk (tk)≥ lim

k→∞
ζ (tk) = ζ (t),

where the first equality is due toϕT ′ being continuous, the second by virtue of (11), the inequality because
tk ∈ Tnk, and the last equality due toζ being continuous. Thus,ϕ

T ′ ∈ BT . As ϕT is the element ofBT with

minimal norm, we conclude that‖ϕ
T ′‖ ≥ ‖ϕT‖.

4. Now we prove thatϕ T̃nk ∈ BTnk
for largek. For anyt ∈ T̃nk evidentlyϕ

T̃nk (t) = ζ (t). Now pick t ∈ Tnk \ T̃nk.

By (10) and continuity ofϕ T̃nk andζ , we see thatϕ T̃nk (t) > ζ (t) for k large enough.

5. The fact thatϕ T̃nk ∈ BTnk
for largek, in conjunction with the property thatϕ

Tnk is the element ofBTnk
with

minimum norm, implies the inequality‖ϕ
Tnk‖ ≤ ‖ϕ

T̃nk‖ for largek. Thus, we have obtained the chain

‖ϕ
T‖ ≤ ‖ϕ

T ′‖= lim
k→∞

‖ϕ
Tnk‖ ≤ lim

k→∞
‖ϕ

T̃nk‖= ‖ϕ
T‖

and see that equality must hold everywhere. By the uniqueness of the minimum norm element, we deduce
that ϕ

T ′ = ϕT . Finally, because the limit is independent of the accumulation pointT ′, we get the desired
convergenceϕTn → ϕT .



Large deviations of infinite intersections of events in Gaussian processes 11

Finally, let us show that the existence ofZ′0 implies that the mappingsϕT andϕ
T cannot be continuous. We

first verify this statement forϕT . Suppose the mean-square derivativeZ′0 exists. TakeTn = {1/n} and letζ be
any element inRsuch thatζ ′(0) > 0. Then limTn = {0} andϕ

{0} = 0, but

ϕ
Tn =

ζ (1
n)

Γ (1
n, 1

n)
Γ

(
1
n
, ·
)
→ ζ ′(0)

2v′′(0)
Γ
′(0, ·).

Sinceϕ{s} = ϕ
{s} wheneverζ (s)≥ 0, we obtain a counterexample forϕT as well. �

We now consider setsV of at mostn timepoints such that the norm ofϕV is aslargeas possible: let

bn = sup
{
‖ϕ

V‖ : V ⊆ S, |V| ≤ n
}

.

By Proposition 2,bn ↑ ‖β ∗‖ (cf. the proof of Theorem 3). The following theorem shows that for eachn, the value
bn is attained at some setSn, and provides detailed information on this set. This theorem is the key element in
our method for identifying most probable paths satisfying an infinite number of conditions. We shall see later
that the theorem does not hold in the smooth case.

Theorem 4.Assume that Gaussian process Z satisfies the conditions of Theorem 2 and that the infinitesimal
spaces are trivial. Let bn be as above, and denote by n∗ the possibly infinite number n∗ = inf {n∈ N : bn = bn+1}.
Then

(i) For each n, there exists a (generally non-unique) set Sn ⊆ S with at most n elements such that‖ϕSn‖= bn;
(ii) If ‖ϕSn‖= ‖ϕSn+1‖ for some n, thenβ ∗ = ϕSn∗ ;

(iii) If n ≤ n∗, thenϕSn = ϕ
Sn;

(iv) limn→∞ ϕSn = β ∗;
(v) Assume that n∗ = ∞. Then

∞⋂
m=1

∞⋃
n=m

Sn ⊆ S∗,

where S∗ is the set defined in Theorem 3.

Proof. (i): Take anyn if n∗ = ∞, otherwise anyn≤ n∗. For m= 1,2, . . ., choose ann-element setTm⊆ Ssuch
that

‖ϕ
Tm‖> bn−1 +

(
1− 1

m

)
(bn−bn−1).

If there were a pointt ∈ Tm such thatϕTm(t) > ζ (t), we could, by Proposition 1, remove it from the optimization
without changing the optimal point, i.e., we would haveϕTm\{t} = ϕTm. This is not possible however, because
we required‖ϕTm‖> bn−1. Thus we haveϕTm = ϕ

Tm.
Let us identify the setsTm with elements in

Dn
S

.= {t ∈ Rn : t1 ≤ ·· · ≤ tn, ti ∈ S∀i} .

SinceDn
S is compact, the sequenceTm has a subsequenceTmk converging to some elementSn ∈ Dn

S, that might
have less thann distinct elements. In any case, Proposition 7 yields that

‖ϕ
Sn‖= lim

k→∞
‖ϕ

Tmk‖= bn. (12)

Finally, the proof of the next claim shows that in the casen∗ < ∞ we can just takeSn = Sn∗ for n > n∗.
(ii): If ‖ϕSn‖ = ‖ϕSn+1‖ but ϕSn 6= β ∗, thenϕSn 6∈ BS. Then some of the hyperplanesL{t} strictly separates

ϕSn from BS, that is,ϕSn(t) < ζ (t). It follows that

ϕ
Sn∪{t} 6= ϕ

Sn,

which by the uniqueness minimum norm elements implies that‖ϕSn∪{t}‖> ‖ϕSn‖.
(iii): This was shown already in the proof of claim (i).
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(iv): Take an arbitrary sequence of sets{Dn} satisfyingDn ⊂ Dn+1 ⊆ Sand having a dense limit setD∞
.=

limn→∞ Dn in S. Then by the continuity ofΓ , RD∞ is dense inRS, which implies thatϕDn → β ∗. Since‖ϕDn‖ ≤
‖ϕSn‖ for anyn, ‖ϕSn‖→ ‖β ∗‖.

It suffices to show that
‖ϕ

Sn −β
∗‖2 ≤ ‖β

∗‖2−‖ϕ
Sn‖2.

But this is easily seen to be equivalent to the condition〈ϕSn,β ∗−ϕSn〉 ≥ 0, which is true sinceβ ∗ is on the
same side of the hyperplane

{
f : 〈ϕSn, f 〉= ‖ϕSn‖2

}
as the setBS.

(v): By Cauchy-Schwarz,

‖β
∗−ϕ

Sn‖ ≥ β ∗(s)−ϕSn(s)
‖Γ (s, ·)‖

=
β ∗(s)−ζ (s)
‖Γ (s, ·)‖

for anyn and anys∈ Sn. Denote

Ũε =
{

t ∈ S:
β ∗(t)−ζ (t)
‖Γ (t, ·)‖

> ε

}
.

If ‖β ∗−ϕSn‖ ≤ ε, thenSn ⊆ Ũc
ε . On the other hand,⋂

ε>0

Ũc
ε = S∗.

�

The claim (iii) of the previous proposition is crucial, because it makes it possible to compute the pathsϕSn

when the setSn is known. Our example with fractional Brownian motion in Section 4.1 indicates that the explicit
identification of theSn’s is usually impossible in practice, but general properties can often be deduced.

Here are some other useful properties of the pathsϕSn:

Proposition 8. Assume that Gaussian process Z satisfies the conditions of Theorem 2 and that the infinitesimal
spaces are trivial. Let n≤ n∗.

(i) For each s∈ Sn,
ϕ

Sn\{s}(s) < ζ (s).

(ii) The coefficientsθs in the unique representation

ϕ
Sn = ∑

s∈Sn

θsΓ (s, ·) (13)

are all strictly positive.

Proof. (i): By claim (ii) of Theorem 4, all points inSn are relevant. It follows that we cannot haveϕ
Sn\{s}(s) = s,

because otherwise we would haveϕ
Sn\{s} = ϕ

Sn = ϕSn. Assume that

ϕ
Sn\{s}(s) > ζ (s).

Then
ϕ

Sn\{s} ∈ BSn.

Sinceϕ
Sn\{s} 6= ϕ

Sn andϕ
Sn ∈ LSn\{s}, we obtain the contradictory chain of inequalities

‖ϕ
Sn\{s}‖< ‖ϕ

Sn‖= ‖ϕ
Sn‖< ‖ϕ

Sn\{s}‖.

Thus,ϕSn\{s}(s) < ζ (s).
(ii): Follows from Proposition 6. �

So far we have made rather few assumptions on the variance function. In the last general proposition in the
non-smooth case, we make the additional assumption thatv(t) = Γ (t, t) be everywhere differentiable, including
the origin (necessarily thenv′(0) = 0). We show thatϕSn then touchesζ smoothly at the points ofSn that are
interior points ofS.



Large deviations of infinite intersections of events in Gaussian processes 13

Proposition 9. Assume that Gaussian process Z satisfies the conditions of Theorem 2 and that the infinitesimal
spaces are trivial. Consider a connected closed set S. Assume v be differentiable on the wholeR. Let n≤ n∗ and
denote Sn = {si}n

i=1, wheremin{s∈ S} ≤ s1 < s2 < · · ·< sn ≤max{s∈ S}.
(i) For i = 2, . . . ,n−1,

d
dt

ϕ
Sn(t)

∣∣
t=si

= ζ
′(si),

and
d
dt

ϕ
Sn(t)

∣∣
t=s1

≥ ζ
′(s1),

d
dt

ϕ
Sn(t)

∣∣
t=sn

≤ ζ
′(sn),

where an inequality can be replaced by an equality, if point s1 or sn is an inner point of S.
(ii) Assume additionally that v(t) be twice differentiable outside the origin, and v′′(0) = ∞. Then the curve

ϕSn(t) touches the lineζ (t) from below at the points s1, . . . ,sn−1.

Proof. (i): Denotet = (t1, . . . , tn), ζ (t) = (ζ (t1), . . . ,ζ (tn))T and

f (·) = ζ (t)T
Γ (t)−1

Γ (t1, ·)
...

Γ (tn, ·)

 = θ(t)Γ (t, ·),

whereθ(t) = ζ (t)TΓ (t)−1. Thus f (ti) = ζ (ti) for i = 1, . . . ,n. Taking the derivative off at pointstk, k= 1, . . . ,n,
gives

f ′(tk) = ∑
i 6=k

θi(t)
∂

∂ tk
Γ (ti , tk)+

1
2

θk(t) v′(tk) (14)

(note that here we need thatv′(0) = 0).
Since thesi maximize the norm,

∂

∂ tk
‖ f‖2

∣∣∣∣
t=s

= 0 for k = 2, . . . ,n−1. (15)

Observing that‖ f‖2 = 〈 f ,θ(t)Γ (t, ·)〉= θ(t)ζ (t), this condition can be written as

(∂kθ(s))ζ (s) =−ζ
′(sk)θk(s), k = 2, . . . ,n−1, (16)

where∂kθ(t) = ∂

∂ tk
θ(t).

On the other hand, we can write‖ f‖2 = θ(t)Γ (s)θ(t)T and obtain the expressions

∂

∂ tk
‖ f‖2 =

∂

∂ tk
∑∑θi(t)Γ (ti , t j)θ j(t)

= ∑∑2θi(t)Γ (ti , t j)(∂kθ j(t))+ ∑
i 6=k

2θk(t)θi(t)
(

∂

∂ tk
Γ (ti , tk)

)
+θk(t)2v′(tk)

= 2(∂kθ(t))Γ (t)θ(t)T +2θk(t) f ′(tk), k = 1, . . . ,n−1,

where the last line follows from (14). Finally, notice thatΓ (t)θ(t)T = ζ (t), replacet by s, and use (16) to get

f ′(sk) =− 1
θk(s)

(∂kθ(s))ζ (s) = ζ
′(sk).

For pointss1 andsn, the equality in (15) is replaced by an inequality. Otherwise, the proof is similar.
(ii): By claim (i), it is enough to show that

d2

d2t
ϕ

Sn(t) < 0

at the pointss1, . . . ,sn−1. A direct computation yields

d2

d2t
ϕ

Sn(t) =
1
2 ∑

i
θi(s)(v′′(t)−v′′(t−si)).

By claim (ii) of Proposition 8 and the assumptionv′′(0) = ∞, this expression equals−∞ at all the pointssi . �
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3.2. The case of smooth Z

When processZ has derivatives up to the orderk∈{1,2, . . .}, the analysis gets more involved since the mappings
T 7→ ϕT andT 7→ ϕ

T are not continuous anymore. Fortunately, in the case of smooth processes, only a small
number of points is often enough to determine the most probable path. For example, the most probable path
for the busy period of a queue fed by integrated Ornstein-Uhlenbeck process is solved using just two points
(Section 4.2) whereas infinitely many points are needed in the case of fractional Brownian input (Section 4.1).
The general approach is left for future studies. In this paper, as a starting point, we present in Section 4.2
the solution of the special case of busy periods of the integrated Ornstein-Uhlenbeck inputs (which are once
differentiable).

Instead of imposing conditions on the values ofZ at some points, in the smooth case we could equivalently
also put requirements on the infinitesimal neighborhoods of those points. More precisely, we can require that
theprojections Pt± to the infinitesimal spacesRt± satisfy the original condition in someε-neighborhood, i.e.,
for V again a finite subset ofS,

BV = { f ∈ R : Pt± f (s)≥ Pt±ζ (s), ∀t ∈V, ∀s∈ [t− ε, t + ε]∩S, for someε > 0}. (17)

For any f ∈ BV we have naturallyf (t)≥ ζ (t) for all t ∈V. Moreover, ifζ is nicely behaving, it is also possible
that f (s)≥ ζ (s) in the neighborhood oft ∈V, even if f (t) = ζ (t). There is no easy way to write a generalization
to LV , sinceRt± is spanned byΓ (t, ·), . . . ,Γ (k)(t, ·), and often only some subset of these derivatives results in a
sharp condition.

As an example, let us consider a connected closed setSand the case ofk = 1, i.e., processes which are once
differentiable. Proposition 3 implies that for anyt ∈V the condition in (17) can be written as

0 ≤
(

f (t)−ζ (t), f ′(t)−ζ
′(t)

)(
v(t) 1

2v′(t)
1
2v′(t) 1

2v′′(0)

)−1(
Γ (t,s)
Γ ′(t,s)

)
= ( f (t)−ζ (t))g1(s)+( f ′(t)−ζ

′(t))g2(s),

for s in someε-environment oft, and thegi(s) functions defined appropriately; notice that Var(Z′t) = 1
2v′′(0)

and Cov(Zt ,Z′t) = 1
2(v′(t)− v′(0)) = 1

2v′(t) for smoothZ. One can show thatg1(s) is positive fors in the
neighborhood oft, whereasg2(s) changes its sign att. DenoteSi := {s∈ S : |s− y| > 0 ∀y ∈ R \S}, Sl :=
min{s∈ S} andSr := max{s∈ S}, i.e., the inner, left boundary and right boundary points ofS. ThenBV can

written as the intersectionBV = B(i)
V ∩B(l)

V ∩B(r)
V , where

B(i)
V =

{
f ∈ R : ∀t ∈V ∩Si : { f (t) > ζ (t)} or { f (t) = ζ (t)andf ′(t) = ζ

′(t)}
}
,

B(l)
V =

{
f ∈ R : ∀t ∈V ∩Sl : { f (t) > ζ (t)} or { f (t) = ζ (t)andf ′(t)≥ ζ

′(t)}
}
,

B(r)
V =

{
f ∈ R : ∀t ∈V ∩Sr : { f (t) > ζ (t)} or { f (t) = ζ (t)andf ′(t)≤ ζ

′(t)}
}
.

4. Example: busy periods of Gaussian queues

As an application of the results derived in Section 3, we consider the problem of busy periods of a queue with
Gaussian input, introduced in Section 2.6. We consider both an example of non-smooth input (fBm, Section 4.1)
and smooth input (integrated Ornstein-Uhlenbeck, Section 4.2).

4.1. Fractional Brownian motion

Our results enable an explicit characterization ofβ ∗ in the case thatZ is a fractional Brownian motion (fBm),
S= [0,1], andζ (t) = t for t ∈ S. As discussed in Section 2.6, this gives the logarithmic asymptotics of the
probability of long busy periods in a queue with fBm input.

Assume that the fBmZ has self-similarity parameterH ∈ (0,1), such that

Γ (s, t) =
1
2
(s2H + t2H −|s− t|2H).

Let us first state some properties of the derivative ofϕSn for fixedn≤ n∗.
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Proposition 10.Let H > 1/2, and let n≤ n∗. Denoteψ(t) = d
dt ϕSn(t) and Sn = {si}n

i=1, where0 < s1 < s2 <
· · ·< sn ≤ 1. Then

(i) sn = 1;
(ii) ψ(si) = 1 andψ ′(si) =−∞ for i = 1, . . . ,n−1;

(iii) ψ(0) < 1, andψ(t) = 1 for only one point in(0,s1);
(iv) For each i= 1, . . . ,n−2, ψ(t) = 1 for only one point in(si ,si+1);
(v) ψ(1) < 1, andψ(t) = 1 for two points in(sn−1,1).

Proof. (i) Denotes= (s1, . . . ,sn)T . The self-similarity of fBm gives

Γ (si ,sj) = s2H
n Γ

(
si

sn
,
sj

sn

)
.

Thus,
‖ϕ

Sn‖2 = sT
Γ (s)s= s2−2H

n s̃T
Γ (s̃)s̃,

wheres̃=
(

s1
sn

, . . . ,
sn−1
sn

,1
)

= (s̃1, . . . , s̃n−1,1). SinceϕSn = ϕ
Sn for n≤ n∗, and by recalling thatSn maximizes

the norm, we concludesn = 1.
(ii) This follows from Proposition 9; note thatv′′(0) = ∞.
(iii) Write ψ(t) in the form

ψ(t) = C

[
tα + ∑

s∈Sn, s>t

ρs(s− t)α − ∑
s∈Sn, s<t

ρs(t−s)α

]
, (18)

where

α
.= 2H−1∈ (0,1), C

.= H ∑
s∈Sn

θs, ρs
.=

θs

∑r∈Sn θr
∈ (0,1).

Note that in the right hand side of (18), the first term is increasing and concave, the second is decreasing and
concave, and the third (negative) is decreasing and convex. Henceψ is strictly concave between 0 ands1. Due
to this property, in conjunction withψ(s1) = 1, ψ can obtain the value 1 at most once in(0,s1). On the other
hand, this does happen at least once by the mean value theorem, sinceϕSn(s1) =

∫ s1
0 ψ(τ)dτ = s1.

(iv) Sinceψ ′(si) < 0, i = 1, . . . ,n−1, it is enough to show that within(si ,si+1), ψ ′ can change its sign at
most twice. Write

ψ
′(t) = Cα

[
tβ − ∑

s∈Sn, s>t

ρs(s− t)β − ∑
s∈Sn, s<t

ρs(t−s)β

]
,

whereβ
.= α −1∈ (−1,0). With t ∈ (si ,si+1), make the change of variable

x = sβ

i − tβ

t =
(

sβ

i −x
)1/β

, x∈
(

0,sβ

i −sβ

i+1

)
.

This transforms the first termtβ into a linear function. The powers in the first sum read, in terms ofx:

g j(x)
.=

(
sj −

(
sβ

i −x
)1/β

)β

, j > i.

A straightforward calculation shows thatg′′j (x) > 0, thusg j is convex. An essentially identical calculation shows
the convexity of the functions

h j(x)
.=

((
sβ

i −x
)1/β

−sj

)β

, j ≤ i,

appearing in the second sum. Now the stated follows by observing that the convex function

n

∑
j=i+1

ρsj g j(x)+
i

∑
j=1

ρsj h j(x)
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can cross the linear functionsβ

i −x at most twice.
(v) The sign-change argument of the previous item also works on the interval(sn−1,1). It remains to note

that

ψ(1) = ∑
s∈Sn

θs
d
dt

Γ (s, t)
∣∣
t=1 < ∑

s∈Sn

θsΓ (s,1) = 1,

as a consequence of the fact
d
dt

Γ (s, t) <
Γ (s, t)

t
, 0 < s≤ t.

Thus sinceψ(1) < 1, there are two points on(sn−1,1) such thatψ(t) = 1. �

Applying the previous proposition together with results of Section 3, we get the following qualitative char-
acterizations of the pathsϕSn.

Proposition 11.Let H > 1/2 and Sn = {si}n
i=1, where0 < s1 < s2 < · · ·< sn = 1.

(i) The functionϕSn(t) is concave for t≥ 1/2;
(ii) For n ≥ 2, sn−1 ≤ 1/2;

(iii) There exists a time point un ∈ (sn−1,1) such that

ϕ
Sn(t) ≤ t, t ∈ [0,un],

ϕ
Sn(t) ≥ t, t ∈ [un,1];

(iv) ϕSn(t) < t on [0,un] unless t∈ Sn∪{0,un}, andϕSn(t) > t on (un,1);
(v) The number n∗ is infinite.

Proof. (i) Since for anyt > 0 the second derivative ofΓ (t, ·) is negative after the pointt/2 (i.e., d2

ds2 Γ (t,s)≤ 0
for all s≥ t/2), and the coefficientsθs in the representation (13) are positive by claim (ii) of Proposition 8, the
second derivative ofϕSn is negative after the time point 1/2. This proves the claim on concavity fort ≥ 1/2.

(ii) By Propositions 9 and 10,ddt ϕSn(t) must be increasing somewhere aftersn−1, i.e., there is a subinterval
of (sn−1,1) whereϕSn(t) is convex. However by (i),ϕSn(t) is concave in[1/2,1].

(iii) and (iv) Follows directly from Proposition 10.
(v) The infiniteness ofn∗ follows from the fact that the above characterization of theSn’s was shown to hold

for anyn. (If n∗ were finite, we would haveϕSn∗ (t)≥ t for all t ∈ [0,1].) �

Proposition 12.Let H < 1/2. The number n∗ is infinite. Let Sn = {si}n
i=1, where0< s1 < s2 < · · ·< sn ≤ 1. The

number sn is 1 for all n. The functionϕSn(t) is concave for t≤ 1/2. There exists a time point un ∈ (0,s1) such
that

ϕ
Sn(t) ≥ t, t ∈ [0,un],

ϕ
Sn(t) ≤ t, t ∈ [un,1].

Moreover,ϕSn(t) < t on [un,1] unless t∈ Sn∪{un}, andϕSn(t) > t on (0,un).

Proof. The proof is a simpler variant of the caseH > 1/2, sinceϕSn turns out to be convex inside each interval
(sj ,sj+1). This is seen by the applying the change of variable used in item (iv) in the proof of Proposition 10,
applied directly to the path itself instead of the second derivative. As regards the form ofϕSn in (0,s1), we only
need to note that the derivative ofϕSn is convex in this interval. �

Examples of the shapes of the pathsϕSn are shown in Figure 1. We can now prove our main result on fBm:

Theorem 5.For an fBm with H> 1/2, the set S∗ has the form

S∗ = [0,s∗]∪{1} ,
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Figure 1. The shapes ofϕS3(t)− t for fBm with H = 0.8 (left; in this cases1 is too close to 0 to be seen in the figure) and
H = 0.2 (right).

where s∗ ∈ (0,1). The functionβ ∗ has the expression

β
∗(t) = E [Zt |Zs = s, ∀s∈ [0,s∗],Z1 = 1]

= χ[0,s∗](t)+
Cov[Zt ,Z1 |F ]

Var[Zt |F ]
(1−χ[0,s∗](1)),

whereF = σ(Zs : s∈ [0,s∗]), and

‖β
∗‖2 = ‖χ[0,s∗]‖2 +

(1−χ[0,s∗](1))2

Var(Z1−E [Z1 |Fs, s∈ [0,s∗]])
,

whereχ[0,t] is the most probable path in R satisfyingχ[0,t](s) = s for all s∈ [0, t].
For an fBm with H= 1/2 (i.e., the Brownian motion), we have

S∗ = [0,1].

For an fBm with H< 1/2, we have
S∗ = [s∗,1],

where s∗ ∈ (0,1),

β
∗(t) = E [Zt |Zs = s, ∀s∈ [s∗,1]] = χ[s∗,1] and ‖β

∗‖2 = ‖χ[s∗,1]‖2,

whereχ[t,1] is the most probable path in R satisfyingχ[t,1](s) = s for all s∈ [t,1].

Remark 4.For the caseH = 1/2, S∗ is not the minimal set, the singleton{1} would suffice.

Proof. H> 1/2:
1o SetS∗ cannot be the whole interval since the caseβ ∗(t) = t for all t ∈ [0,1] is ruled out because we

know from [11] thatχ[0,1] is not the optimal busy period path. On the other hand,S∗ 6= {1}, sinceΓ (1, ·) is not
in B.

By claim (iv) of Theorem 4,β ∗ is a limit of the functionsϕSn. By Proposition 11,ϕSn(t) is at or below the
diagonal on[0,un] and strictly above it on(un,1). On the other hand, Proposition 10 shows that on each interval
(si ,si+1) (for i = 0, . . . ,n− 1; s0 = 0 andsn = 1) ϕSn is first concave then convex and finally concave again.
Thus, on interval[un,1], ϕSn is either concave or first convex and then concave; this behavior is qualitatively
illustrated by theϕS3 shown in Figure 1. Combine this with the properties mentioned in the first paragraph to
get

lim
n→∞

ϕ
Sn(t) = t, ∀t ∈ [0,s∗]∪{1} and lim

n→∞
ϕ

Sn(t) > t, ∀t ∈ (s∗,1)∪{1}

for somes∗ ∈ (0,1).
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2o For any functionf ∈ R, define

ϕ f (t) = E [Zt |Zs = f (s) ∀s∈ [0,s∗]] ,
ψ f (t) = E [Zt |Zs = f (s) ∀s∈ [0,s∗]; Z1 = 1] .

The conditional distribution of the pair(Zt ,Z1) w.r.t. F is a two-dimensional Gaussian distribution with (ran-
dom) meanE [ (Zt ,Z1) |F ]. Thus, the further conditioning on{Z1 = 1} can be computed according to the for-
mula of conditional expectation in a bivariate Gaussian distribution:

ψ f (t) = ϕ f (t)+
Cov[Zt ,Z1 |F ]

Var[Z1 |F ]
(1−ϕ f (1)) = ϕ f (t)+c(t)((1−ϕ f (1)),

wherec(t) = Cov[Zt ,Z1 |F ]/Var[Z1 |F ] does not depend onf . Applying this to the functionf (t)≡ 0 yields

c(t) = ψ0(t).

Since〈ψ0,Γ (u, ·)〉= 0 for u∈ [0,s∗], ψ0 minimizes theR-norm in the set

R⊥[0,s∗]∩{ f : f (1) = 1} .

Denote byP the orthogonal projection on the subspaceR[0,s∗]. Forg∈ R⊥[0,s∗], we have

g(1) = 〈g,Γ (1, ·)〉= 〈g,(I −P)Γ (1, ·)〉,

and it follows that the elementg in R⊥[0,s∗] ∩ { f : f (1) = 1} with minimal norm must be a multiple of(I −
P)Γ (1, ·). Thus,

ψ0 =
1

‖(I −P)Γ (1, ·)‖2 (I −P)Γ (1, ·).

The counterpart ofPΓ (1, ·) in the isometry (1) isE [Z1 |F ], and it follows that the counterpart ofψ0 is the
random variable

Z1−E [Z1 |F ]
Var(Z1−E [Z1 |F ])

.

Thus,
‖ψ0‖2 = Var(Z1−E [Z1 |F ])−1 .

Now, note that
β
∗(t) = E [Zt |Zs = s, ∀s∈ [0,s∗],Z1 = 1] = ψχ[0,s∗] ,

ϕχ[0,s∗] = χ[0,s∗], andψ0 is orthogonal toχ[0,s∗]. Thus,

‖β
∗‖2 = ‖χ[0,s∗]‖2 +

(1−χ[0,s∗](1))2

Var(Z1−E [Z1 |F ])
.

H = 1/2: A well known result.
H < 1/2: Using the similar type of argument as forH > 1/2, it is seen that the shapes of theϕSn (see Figure

1) are such that the limiting path must be of the formβ ∗(t) > t if t ∈ (0,s∗) andβ ∗(t) = t if t ∈ {0}∪ [s∗,1] for
somes∗ ∈ (0,1). �

The quantities in the expression ofβ ∗ can be computed. The functionχ[0,s∗] is the counterpart of the random
variableMs∗ in [12] in the isometry (1), see also [11]. Let us focus on the caseH > 1/2. Note first that for a
multivariate Gaussian distribution the conditional variances and covariances, given a subset of the variables, are
constants, and this carries over to Gaussian processes as well. Then apply the general relation,

Cov[Zs,Zt |Zu, u∈ [0,1]] = EZsZt −Cov(E[Zs|F ],E[Zt |F ]),

recall the prediction formula of Thm. 5.3 in [12]

E[Zt |Zu, u∈ [0,s∗]] =
∫ s∗

0
Ψt(s∗,u)dZu,
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Figure 2. The differenceβ ∗(t)− t for fBm with H = 0.8 (left) andH = 0.2 (right).
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Figure 3. The derivative ofβ ∗(t) for fBm with H = 0.8 andH = 0.2. The dashed lines correspond to the server rate 1.

and use the covariance formula

Cov

(∫ s∗

0
Ψs(s∗,u)dZu,

∫ s∗

0
Ψt(s∗,v)dZv

)
= H(2H−1)

∫ s∗

0

∫ s∗

0
Ψs(s∗,u)Ψt(s∗,v)|u−v|2H−2dudv.

The expression ofΨs(s∗,u) contains an integral, and numerical computation ofβ ∗ from an expression contain-
ing multiple integrals may be hard. As regards the numbers∗, we have not found how to obtain any explicit
expression for it.

However, by knowing the structure ofS∗, or even by just knowing from Theorem 3 that the MPP is deter-
mined by a set where it touches the diagonal, it is easy to obtain discrete approximations of the MPPs using
some graphical mathematical tool. Figures 2 and 3 show the shapes of the pathsβ ∗ in two fBm cases.

4.2. Integrated Ornstein-Uhlenbeck process

Consider a Gaussian processZt with stationary increments and variancev(t) = t−1+e−t . This is an integrated
Ornstein-Uhlenbeck model, which can be interpreted as the Gaussian counterpart of the Anick-Mitra-Sondhi
model [1]. Since the rate process is defined by the stochastic differential equation

dXt =−βXtdt +σdWt ,

whereW denotes the standard Brownian motion,Z is exactly once differentiable and the infinitesimal space
Gt± is generated byZt andZ′t ; in the above differential equation bothβ andσ should be equated to 1 to get the
desired variance function. The differentiability property can also be deduced by observing the spectral density
of Z′t , which is 1/(4π(1+λ 2)).
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Figure 4. Integrated Ornstein-Uhlenbeck model withv(t) = t−1+e−t . On the left, the differenceβ ∗(t)− t. On the rigth,
the derivative ofβ ∗(t) (solid line) and the server rate (dashed line).

Input paths inB, i.e., path resulting in a busy period starting att = 0 and lasting at least tillt = 1, necessarily
belong to the set

F = { f ∈ R : f ′(0)≥ 1, f (1)≥ 1}.

The next theorem shows that the most probable path inF is also the most probable path inB, despiteB⊆ F.
The resulting path is shown in Figure 4.

Theorem 6.Assume that v(t) = t−1+e−t . Then the most probable path in B= { f ∈ R : f (s)≥ s, ∀s∈ [0,1]}
is given by

β
∗(t) = t +

(e−1)2(t−1+e−t)− (et −1)2e−t

4e−1−e2 . (19)

Proof. Application of Proposition 3 gives that the mimimizing path inF is

f ∗ = argmin{‖ f‖ : f ∈ R, 〈 f ,Γ ′(0, ·)〉 ≥ 1, 〈 f ,Γ (1, ·)〉 ≥ 1}.

It is easy to see that both conditions〈 f ,Γ ′(0, ·)〉 ≥ 1 and〈 f ,Γ (1, ·)〉 ≥ 1 are needed, and by Proposition 1,
f ∗ ∈ Span{Γ ′(0, ·),Γ (1, ·)}. Thus,

f ∗ = (1, 1)
( 1

2v′′(0) 1
2v′(1)

1
2v′(1) v(1)

)−1(
Γ ′(0, ·)
Γ (1, ·)

)
.

Insertingv(t) = t − 1+ e−t and doing some simple manipulations gives thatf ∗(t) equals the formula in the
right hand side of (19). One can show thatf ∗(t) ≥ t for all t ∈ [0,1], for example, using the Taylor series
representation. Thus the optimum pathf ∗ in the ‘larger set’F is also in the ‘smaller set’B. Conclude that
β ∗ = f ∗. �
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