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Wireless Data Performance in Multi-Cell Scenarios

ABSTRACT
The performance of wireless data systems has been extensively studied in the context of a
single base station. In the present paper we investigate the flow-level performance in networks
with multiple base stations. We specifically examine the complex, dynamic interaction
introduced by the strong impact of interference from neighboring base stations. We derive two
types of lower and upper bounds for the number of active flows, transfer delays and flow
throughputs in the various cells. While the first type of bounds are rather rough and simple to
compute, the second type of bounds are sharper, but harder to calculate. In order to obtain
closed-form estimates for the latter bounds, we introduce two limit regimes, termed fluid and
quasi-stationary regime, where the system dynamics evolve on a very fast and a very slow time
scale, respectively. Importantly, the performance in both limit regimes is insensitive, thus
yielding simple, explicit estimates that render the detailed statistical characteristics of the
system largely irrelevant. Numerical experiments show that the upper bounds evaluated in the
quasi-stationary regime provide conservative and extremely tight approximations.
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1 Introduction

Next-generation wireless networks are expected to support a wide variety of high-speed
data applications, in addition to conventional voice services and current low-bandwidth
data services such as short messaging. The integration of these heterogeneous applications
on a common transmission infrastructure raises similar challenges as in wireline integrated
networks. In wireless environments, these issues are further exacerbated by interference
problems, the intrinsically limited bandwidth, and the highly variable and unpredictable
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propagation characteristics. Specifically, the channel quality may vary widely among spa-
tially distributed users due to distance-related attenuation. In addition, the channel con-
ditions for a given user may vary dramatically over time because of fading effects.
Wireless circuit-switched voice networks rely on power control mechanisms for adjusting
the transmit power to compensate for the varying channel quality and maintain a fixed
transmission rate. Various data applications on the other hand, such as file transfers and
Web browsing sessions, are less sensitive to packet-level delays, and do not have a stringent
rate requirement. Such elastic applications are well-suited for rate control algorithms which
dynamically adapt the transmission rate over time so as to match the fluctuations in the
channel quality and available transmission resources (transmit power and time slots). In
addition, the fraction of transmission resources allocated to the individual data users can
be adapted as the number of active users varies over time. In case the transmissions are
‘orthogonal’ (e.g. time sharing or power sharing with orthogonal code words) and the avail-
able resources are constant over time and evenly shared among the active data users, the
flow-level performance may be described by a Processor-Sharing model, with the service
requirements of the various users normalized by their time-average transmission rates. No-
tably, the performance is then insensitive, in the sense that the distribution of the number
of active flows, the delays, and the throughputs only depend on the statistical character-
istics of the system through easily calculated load factors. The notion of ‘cell capacity’,
critical for dimensioning purposes, can then be defined independently of the detailed traffic
statistics and propagation conditions [6].
The variations in the channel quality in fact open up the possibility of scheduling the data
transmissions to the various users when their instantaneous transmission rates are relatively
high [2, 4, 14, 16, 17]. While fading is considered to have a predominantly adverse impact
for constant-rate voice connections, it thus provides the opportunity to achieve throughput
gains for elastic data transfers. An important example of such a channel-aware scheduling
policy is the Proportional Fair algorithm for the CDMA 1xEV-DO system [13]. In certain
cases the flow-level performance of the Proportional Fair algorithm may also be modeled
by a Processor-Sharing type queue, but with a state-dependent service rate that accounts
for the throughput gains from channel-aware scheduling [7].
All the above papers study scenarios with just a single isolated base station (BS). In the
present paper we investigate the flow-level performance in data networks with multiple BSs.
We assume that the BSs transmit at full power as long as there are any active users, and
reduce the power to zero otherwise. We further suppose that within each cell the transmis-
sions are orthogonal and that the available resources are shared in a fair manner among the
active users. Between cells, however, the transmissions do interfere, and we explicitly take
into account the complex, dynamic interaction caused by the changing activity patterns
of neighboring BSs. (The interference between cells in fact provides a potential incentive
for scheduling transmissions based on the activity state of neighboring BSs, or even coor-
dinate activity patterns and adjust transmit powers taking into account the configuration
of active flows. We will comment further on these scheduling options later in the paper.)
The resulting model amounts to a network of multi-class Processor-Sharing queues, where
the service rates for the various classes at each queue vary over time as governed by the
activity state of the other queues. The intricate correlation among the various BSs renders
an exact analysis elusive in general. In the single-class case, the model reduces to a so-called
coupled-processors model, which even for two queues is barely tractable [9, 12], reflecting
the complexity of the model in general. Therefore, we focus on the derivation of bounds
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and approximations. In particular, we derive strict lower and upper bounds for the number
of active flows in the various cells, by assuming minimum and maximum interference and
thus minimum and maximum service rates.
In fact, we obtain two types of bounds: (i) the first-degree bounds assume minimum and
maximum interference incurred by the cell under consideration itself; (ii) the second-degree
bounds assume minimum and maximum interference experienced by the neighboring cells,
but allow the cell under consideration to be influenced by its neighbors. While the first-
degree bounds are relatively rough and can be explicitly computed, the second-degree
bounds are sharper, but correspond to a Processor-Sharing queue in a time-varying en-
vironment, and cannot be calculated analytically. In order to obtain closed-form estimates
for the latter type of bounds, we introduce two limit regimes, termed fluid and quasi-
stationary regime, where the time-varying environment evolves on a very fast and a very
slow time scale, respectively. These two limit regimes provided explicit formulas for the
distribution of the number of active flows, the mean transfer delays, and the flow through-
puts. Importantly, the performance in both limit regimes is insensitive, and only depends
on easily computed load factors, thus yielding simple estimates that render the detailed
traffic properties and propagation features largely irrelevant. We will specifically consider
lower bounds for the number of active flows evaluated in the fluid regime and upper bounds
based on the quasi-stationary regime. Some theoretical arguments as well as the numerical
experiments that we perform for various network topologies indicate that the former tend
to be optimistic, while the latter tend to be conservative and quite often remarkably sharp
approximations.
The remainder of the paper is organized as follows. In Section 2 we present a detailed
model description. We collect some useful preliminaries in Section 3. In Section 4 we
derive sample-path bounds for the number of active flows in the various cells. In Section 5
we introduce the fluid and quasi-stationary regimes mentioned above. We examine some
stability issues in Section 6. In Section 7 we discuss the numerical experiments that we
conducted to illustrate the results. In Section 8 we make some concluding remarks.

2 Model description

We consider a network of BSs, indexed by the set N , which provide service to the data
users in the corresponding cells through a shared downlink.

Radio environment. In evaluating the flow-level performance, it is useful to characterize
the radio environment in terms of feasible transmission rates of the various users. By feasible
rate, we mean the long-term transmission rate that a user would receive if it were the only
user in the cell. The feasible rate for a given user depends on its channel quality, which in
turn depends on its relative location to the serving BS in conjunction with the propagation
characteristics. Because of inter-cell interference, the channel quality additionally depends
on the relative position of the user to neighboring BSs, and whether these surrounding BSs
are transmitting or not.
Rather than modeling these system-specific aspects explicitly, it will be convenient to in-
troduce a class structure to capture the dependence of the feasible rates on the propagation
characteristics, the network topology and the spatial configuration of the users. The classes
encapsulate these detailed properties, and implicitly correspond to specific subregions of
the coverage area. Specifically, we assume that the users in cell i may be categorized into
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Ki classes, and denote by Ci,A(k) the feasible rate of class-k users in cell i when the set of
active BSs is A ⊆ N . We will frequently omit the index k and just write Ci,A when the
class identity is not essential.
We assume that the feasible rates satisfy a natural monotonicity property: the larger the
set of active BSs, and thus the larger the inter-cell interference, the smaller the feasible
rate, i.e.,

A ⊆ B ⇒ Ci,A ≥ Ci,B. (1)

In the definition of Ci,A it is immaterial whether or not cell i is included in the set A, and
it will be convenient to adopt the convention Ci,A ≡ Ci,A∪{i} ≡ Ci,A\{i}.

Traffic characteristics. Class-k flows arrive to cell i as a Poisson process of rate λi(k).
Each flow is associated with a unique serving BS for its entire duration, and in particular
we do not consider hand-offs between cells. Note that hand-offs will tend to be rare for
data transfers, since they predominantly result from user mobility, which typically occurs
on a relatively slow time scale compared to the flow-level dynamics.
The flow sizes are independent and identically distributed with mean σ. (The results
trivially extend to the case where the flow sizes are also cell- and class-dependent.)

Radio resource sharing. We assume that the BSs operate at full power as long as there
are any active flows to serve, and use zero power otherwise. Within each cell transmissions
are orthogonal and the available radio resources (time slots and transmit power) are evenly
shared among the active flows, obliviously of the instantaneous channel conditions and the
activity state of the neighboring BSs. Thus, when the set of active BSs is A and the number
of active flows in cell i is ni, the actual transmission rate of class-k flows in cell i is

Ci,A(k)/ni. (2)

The analysis may be generalized to the case where the actual transmission rate of class-k
flows in cell i is Ci,A(k)Gi(ni)/ni. The function Gi(·) may be interpreted as a gain fac-
tor accounting for the throughput improvements from channel-aware scheduling algorithms,
which opportunistically allocate radio resources taking into account the instantaneous chan-
nel conditions of the various users [2, 4, 7, 14].

Remark 1 Since the nominal transmission rates in an actual system are constrained to a
discrete set, we consider a finite number of user classes, i.e., Ki < ∞ for all i ∈ N . How-
ever, the results readily extend to a continuum of user classes (corresponding to infinites-
imally small subregions). The latter scenario may be motivated by the fact that received
throughputs are randomly scattered around the nominal rates because of incremental redun-
dancy techniques and transmission errors. The role of incremental redundancy is especially
critical when the selection of the transmission rate is based on full interference inferred from
pilot channel measurements, rather than the actual interference experienced on the traffic
channel.

Remark 2 The need to explicitly distinguish between several user classes arises from the
fact that the feasible rates in different locations are impacted by inter-cell interference in a
non-uniform manner. The latter property in fact provides a potential incentive to allocate
radio resources based on the activity state of the neighboring BSs. For example, users on
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the boundary of the cell are affected disproportionately by inter-cell interference compared
to users in the middle of the cell. Thus, it pays to schedule users on the periphery when few
neighboring BSs are active, and schedule users in the center when many surrounding BSs
are active. Note that the rationale behind such intra-cell scheduling strategies is somewhat
reminiscent of the objective of channel-aware scheduling algorithms to exploit multi-user
diversity caused by independent fading. The throughput benefits from intra-cell scheduling
strategies in a static context have been explored in [3]. Observe however that such strate-
gies may cause starvation effects and long flow-level delays, since the activity state of the
surrounding BSs will tend to evolve on a relatively slow time scale. Intra-cell scheduling
may be combined with coordination of the activity phases of adjacent BSs to achieve further
throughput improvements. Such inter-cell scheduling strategies have been considered in [3]
as well. In a dynamic setting, one could additionally adjust the transmit powers (and in
particular coordinate activity phases) of the BSs based on the configuration of active flows.

3 Preliminaries

The model described in the previous section corresponds to a network of multi-class Processor-
Sharing queues, where the service rates for the various classes at each queue vary over time
as governed by activity state of the other queues. The complex interaction between the
various queues renders an exact analysis impractical in general. In the single-class case, i.e.,
Ki = 1 for all i ∈ N , the model reduces to a so-called coupled-processors model. The latter
model has been studied in detail for the case of two queues. Fayolle & Iasnogorodski [12]
showed that in the case of exponentially distributed service times the analysis of the joint
queue length distribution may be formulated as a Riemann-Hilbert problem. Boxma &
Cohen [9] considered the case of generally distributed service times, and showed that the
joint workload distribution may be obtained as the solution to a boundary value problem.
For the case of more than two queues, hardly any results are known [8].
The fact that even the single-class two-queue case is barely tractable, testifies to the com-
plexity of the model in general. Therefore, we focus in the next sections on the derivation
of bounds and approximations. The numerical experiments presented later indicate that
the bounds and approximations are quite often remarkably tight.
As mentioned above, the complexity of the model stems from the fact that the service rate at
each queue is time-varying, depending on the activity state of the other queues. In deriving
the bounds and approximations, it will be convenient to consider a reference system for a
cell in isolation where the activity state of the other cells is fixed, so that the service rates
are fixed as well. Specifically, if the service rates of class-k flows in cell i are always Ci,A(k),
then the cell in isolation behaves as a standard multi-class Processor-Sharing system with
load ρi,A =

∑Ki

k=1 ρi,A(k), where

ρi,A(k) =
λi(k)σ

Ci,A(k)
.

In particular, the reference system is stable if and only if ρi,A < 1, in which case the
stationary distribution of the number of active flows of the various classes is given by

π(m1, . . . , mKi
) = (1 − ρi,A)

(
∑Ki

k=1 mk

m1 . . .mKi

) Ki
∏

k=1

ρi,A(k)mk .
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Thus, the stationary distribution of the total number of active flows is

πi,A(n) = (1 − ρi,A)ρn
i,A, (3)

and the mean number of active class-k flows is

E[ni,A(k)] =
ρi,A(k)

1 − ρi,A
. (4)

Using Little’s law, we obtain that the mean class-k delay is

E[Ti,A(k)] =
E[ni,A(k)]

λi,A(k)
=

σ

(1 − ρi,A)Ci,A(k)
,

and the class-k flow throughput, defined as the ratio of the mean flow size to the mean flow
delay, is

γi,A(k) =
σ

E[Ti,A(k)]
= (1 − ρi,A)Ci,A(k). (5)

4 Performance bounds

We now present some relatively simple lower and upper bounds for the number of active
flows in the various cells. The bounds rely on the basic property that increasing or de-
creasing the service rates decreases or increases the number of active flows, as formalized
in the next proposition. Let ni(t) be the number of active flows in cell i at time t. Let A(t)
be the set of active BSs at time t. Let n−

i (t) and n+
i (t) be the number of active flows in

two reference systems where the service rates of the users in cell i are given by C−
i (t) and

C+
i (t), respectively.

Proposition 1 If C−
i (t) ≥ Ci,A(t) ≥ C+

i (t) for all t, then n−
i (t) ≤ ni(t) ≤ n+

i (t) for all t.

Proof The proof follows from (2) in combination with sample-path arguments. 2

The above proposition provides a method for constructing various bounds by making specific
choices for C−

i (t) and C+
i (t).

First-degree bounds. We first derive rather crude bounds for the number of active
flows, obtained by assuming minimum or maximum service rates in cell i, i.e., maximum or
minimum interference from other cells. Let ni,A(t) be the number of active flows in cell i
at time t when the service rates are always Ci,A.

Proposition 2 The number of active flows in cell i at time t is larger (resp. smaller) than
that obtained when the service rates in cell i are always Ci,∅ and Ci,N , respectively, i.e.,

ni,∅(t) ≤ ni(t) ≤ ni,N (t), ∀t.

Proof Since ∅ ⊆ A(t) ⊆ N at any time t, we deduce from (1) that

Ci,∅ ≥ Ci,A(t) ≥ Ci,N , ∀t.

The statement then follows from Proposition 1 by taking C−
i (t) = Ci,∅ and C+

i (t) = Ci,N .
2
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Second-degree bounds. We now derive tighter bounds for the number of active flows
by assuming minimum or maximum service rates in the other cells j 6= i, but allowing the
service rates in cell i itself to be influenced by the activity state of the other cells.
Let n′

i,∅(t) and n′
i,N (t) be the number of active flows in cell i at time t, assuming that the

service rates in the cells j 6= i are always Cj,∅ and Cj,N , respectively. Let A∅(t) = {j ∈
N \ {i} : nj,∅(t) > 0} and AN (t) = {j ∈ N \ {i} : nj,N (t) > 0} be the sets of active BSs at
time t when the service rates in the cells j 6= i are always Cj,∅ and Cj,N , respectively. Noting
that the cells j 6= i then behave independently, we have that the stationary distribution of
these sets is given by

Pr[A∅(t) = B] =
∏

j∈B
(1 − πj,∅(0)) ×

∏

j 6∈B
πj,∅(0),

and

Pr[AN (t) = B] =
∏

j∈B
(1 − πj,N (0)) ×

∏

j 6∈B
πj,N (0),

for all B ⊆ N \ {i}, with the convention πj,A(0) = 0 if ρj,A ≥ 1.

Proposition 3 The number of active flows in cell i at time t is larger (resp. smaller) than
that obtained when the service rates in the cells j 6= i are always Cj,∅ and Cj,N , respectively,
i.e.,

n′
i,∅(t) ≤ ni(t) ≤ n′

i,N (t), ∀t.

Proof Using Proposition 2 for all j 6= i, we find that A∅(t) ⊆ A(t) ⊆ AN (t) at any time t,
and hence we deduce from (1) that

Ci,A∅(t) ≥ Ci,A(t) ≥ Ci,AN (t), ∀t.

The statement then follows from Proposition 1 by taking C−
i (t) = Ci,A∅(t) and C+

i (t) =
Ci,AN (t). 2

5 Limiting regimes

The bounds derived in the previous section are much simpler than the original performance
measures since the actual set of active BSs is replaced by a virtual set that evolves inde-
pendently of the number of active flows in the considered cell. The second-degree bounds
are much finer than the first-degree ones but intractable in general. The difficulty arises
from the fact that the number of active flows n′

i,∅(t) (resp. n′
i,N (t)) evolves like the number

of customers in a multi-class Processor-Sharing queue with correlated per-class service rate
variations, driven by a random environment described by the process A∅(t) (resp. AN (t)).
In this section, we introduce approximations of the bounds based on two limit regimes,
termed fluid and quasi-stationary, where the processes A∅(t) and AN (t) evolve on an in-
finitely fast and an infinitely slow time scale, respectively. Such approximations turn out
to be powerful in analyzing multi-class Processor-Sharing systems (they were previously
applied to systems modeling the integration of streaming and data traffic in wireline net-
works [11], and more recently to evaluate the performance impact of user mobility in wireless
data systems [5]).
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Here we consider an arbitrary stationary and ergodic process A′(t) describing the evolution
of the set of active BSs. We assume this process is independent of the state of the considered
cell i. This process might, for example, represent A∅(t) or AN (t). Consider now a family
of systems, parametrized by s ∈ (0,∞) and obtained by replacing the process A′(t) by
A′(s × t). The parameter s represents the speed of variations in the set of active BSs.

Quasi-stationary regime. The quasi-stationary regime is obtained when the speed of
variations s tends to 0. In the limit for s → 0, the set of active BSs is frozen to its initial
state. Thus the quasi-stationary regime corresponds to the system where the set of active
BSs is constant and equal to B with probability Pr[A′(0) = B].
Assuming ρi,N < 1, we deduce from (3) the distribution of the number of active flows in
cell i in the quasi-stationary regime:

πqs
i (n) = E[πi,A′(n)] = E[(1 − ρi,A′)ρn

i,A′ ],

where the expectation is taken with respect to the distribution of A′(0).
In view of (4), the mean number of active class-k flows is:

E[nqs
i (k)] = E

[

ρi,A′(k)

1 − ρi,A′

]

.

We deduce the class-k flow throughput:

γqs
i (k) =

λi(k)σ

E[nqs
i (k)]

= E[(Ci,A′(k)(1 − ρi,A′))−1]−1.

For example, the class-k flow throughput in the quasi-stationary regime of the upper bound
of Proposition 3 is given by:

γqs
i (k) =







∑

B:
N′⊂B⊂N\{i}

∏

j∈B\N ′

ρj,N
∏

j 6∈B
(1 − ρj,N ) (Ci,B(k)(1 − ρi,B))−1







−1

,

where N ′ = {j ∈ N \ {i} : ρj,N ≥ 1}.

Fluid regime. The fluid regime is obtained when the speed of variations s tends to ∞.
In the limit for s → ∞, the set of active BSs evolves so rapidly that each class-k flow in
cell i sees a constant feasible rate, equal to his mean feasible rate E[Ci,A′(k)]. Thus the
fluid regime is the system where the set of active BSs is constant and equal to E[A′(0)].
The traffic load of cell i in the fluid regime is given by:

ρfl
i =

∑

k∈Ki

λi(k)σ

E[Ci,A′(k)]
. (6)

If ρfl
i < 1, the distribution of the number of active flows is then:

πfl
i (n) = (1 − ρfl

i )
(

ρfl
i

)n
.

The mean number of active class-k flows is:

E[nfl
i (k)] =

ρfl
i (k)

1 − ρfl
i

, with ρfl
i (k) =

λi(k)σ

E[Ci,A′(k)]
.
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We deduce the class-k flow throughput:

γfl
i (k) =

λi(k)σ

E[nfl
i (k)]

= E[Ci,A′(k)](1 − ρfl
i ).

A question of importance is whether these quasi-stationary and fluid regimes provide actual
bounds for the performance of the original system. From recent studies on single-class
Processor Sharing queues with time-varying capacity [11], the performance in the quasi-
stationary (resp. fluid) regime is worse (resp. better) than that of the actual system. Thus
for any cell i that contains a single class, the quasi-stationary regime of the upper bound
ni,N (t) is itself an upper bound for the number of active flows in cell i, while the fluid
regime of the lower bound ni,∅(t) is itself a lower bound. It proves extremely difficult to
extend this result to multi-class cells. The numerical results presented in Section 7 suggest
however that the result still tends to hold.

6 Stability condition

We now examine the stability of the system. The following stability condition is based on
the first-degree bounds derived in Section 4.

Proposition 4 If ρi,N < 1, then cell i is stable.

Proof As ρi,N < 1 is the necessary and sufficient condition for the stability of cell i in
the reference system where the set of active BSs is N , the result is a direct consequence of
Proposition 2. 2

The second-degree bounds provide a tighter stability condition. As in Section 5, we first
consider a virtual system where the set of active BSs is given by an independent stationary
and ergodic process A′(t). Let n′

i(t) be the number of active flows in cell i at time t and ρfl
i

the traffic load in the fluid regime, given by (6). The following Lemma can be proved as in
Theorem 1 in [5].

Lemma 1 If ρfl
i < 1, then the stochastic process n′

i(t) is stable.

Let ρfl
i,N be the load of the second-degree upper bound in the fluid regime:

ρfl
i,N =

∑

k∈Ki

λi(k)σ

E[Ci,AN (k)]
.

Using Lemma 1 and Proposition 3, we immediately obtain:

Proposition 5 If ρfl
i,N < 1, then cell i is stable.

Note that Proposition 5 is stronger than Proposition 4 since:

ρfl
i,N ≤

∑

k∈Ki

λi(k)σ

Ci,N (k)
= ρi,N .

Remark 3 The sufficient stability conditions of Propositions 4 and 5 have their natural
counterpart in the form of necessary conditions, but these are likely to be loose in practice.
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It follows from Proposition 5 that a sufficient condition for the stability of the overall
network is:

∀i ∈ N , ρfl
i,N < 1.

For a two-cell network, it may be verified that this condition is in fact also necessary. In
the case of a single class per cell, this follows from the stability condition of a two-processor
coupled system [9]. It proves extremely difficult to derive the exact stability condition
when the network contains more than two cells. This may notably be explained by the fact
that the stability condition does generally depend on the flow size distribution. Consider a
network of three cells for instance, with a very large number of active flows in one cell and a
small number of active flows in the other two cells. The mean service rate of active flows in
the “full” cell depends on the steady state of the other two cells, which is indeed sensitive
to the flow size distribution (the two cells behave as a two-processor coupled system). Thus
the stability condition is itself sensitive. We can give a general necessary stability condition,
however.

Proposition 6 If the network is stable, then there is at least one cell i such that ρi,N < 1.

Proof Assume that ρj,N ≥ 1 for all cells j. Starting from any initial state where the
set of active BSs A(0) is the entire set N , i.e., all cells have at least one active flow, the
number of active flows in cell i behaves independently of the number of active flows in other
cells as long as A(t) = N . Specifically, the number of active flows in cell i evolves like the
number of customers in a multi-class Processor-Sharing queue of load ρi,N (cf. Section 3).
As ρi,N ≥ 1, there is a positive probability that this queue never empties. Since the number
of cells is finite, there is a positive probability that no cell empties. The system is unstable.

2

In view of Propositions 4–6, we deduce the stability condition of networks with homogeneous
loads, i.e., such that the traffic load ρi,N of cell i when other cells are always active is the
same for all i. In this case, the necessary and sufficient stability condition simply reads:

∀i ∈ N , ρi,N < 1.

Such homogeneous networks may represent regular topologies (like hexagonal networks)
with uniform traffic distribution, or networks with non-regular topologies but planned in
such a way that large cells cover areas with lower traffic density, which is indeed the case
in well-engineered networks.

7 Numerical Results

The results of the previous sections hold in quite general settings. In this section we make
some specific assumptions in order to conduct numerical experiments. In particular, we
consider a set of feasible rates in line with the High Data Rate (HDR) standard [4, 13].
These results can, however, be easily extended to UMTS HSDPA as well.
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7.1 Experimental setting

Radio environment. As mentioned in Section 2, the feasible rate of a user depends
on his position and the set of active BSs through his signal-to-noise-and-interference ratio
(SNR). As mentioned above, we will consider a discrete set of rates as defined in the HDR
standard. Table 1 shows the typical SNR requirements for the various rates at a one
percent frame-error rate based on AWGN channel assumptions [4]. This table also lists
the corresponding Eb/N0 values. Note that the target Eb/N0 values are approximately
constant for all data rates except the three highest rates. For convenience, we assume a
constant Eb/N0 target of 2.5 dB for the numerical experiments, thus linearizing the SNR
thresholds. Since the users with the highest data rates are least demanding of transmission
resources, it is reasonable to expect that slightly altering their target Eb/N0 values should
not drastically affect the overall performance characteristics of the system.

Rate cv SNR Eb/N0

v kb/s dB dB

0 2457.6 9.5 6.49
1 1843.2 7.2 5.44
2 1228.8 3.0 3.00
3 921.6 1.3 2.55
4 614.4 -1.0 2.01
5 307.2 -4.0 2.02
6 204.8 -5.7 2.08
7 153.6 -6.5 2.53
8 102.6 -8.5 2.28
9 76.8 -9.5 2.54

10 38.4 -12.5 2.55

Table 1: Feasible rates in HDR systems.

The SNR of a user is in turn a function of his position and the interference from active BSs,
as follows:

SNRi,A(u) =
Pi(u)

η + Ii,A(u)
,

where Pi(u) is the power received at position u from the serving BS i, η is the background
noise, and Ii,A(u) is the interference caused by the set of active BSs A. The received power
Pi(u) includes signal attenuation due to fading and path loss. We do not consider fading
effects in this paper. The received power then is given by Pi(u) = PΓi(u), where P is
the power transmitted by a BS, assumed to be the maximum transmit power and identical
for all BSs, and Γi(u) is the path loss function. Following standard models, the path loss
function is given by:

Γi(u) =

{

1 if d(i, u) ≤ ε,
(

ε
d(i,u)

)α
otherwise,

(7)

where ε is a reference distance very close to BS i where full power is received, d(i, u) is the
distance from position u to BS i, and α is the path loss exponent. The path loss exponent
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depends on the propagation environment, and has typical values between 2 and 5. The
interference term is given by:

Ii,A(u) = P
∑

j∈A
j 6=i

Γj(u).

Network topology. We will consider two types of networks: linear networks with equidis-
tant BSs placed on a line, and regular hexagonal networks as shown in Figure 2. For the
latter type of networks, we further distinguish between cells with omni-directional antennas,
referred to as omni-cells here, as shown in Figure 2 and sectored cells as shown in Figure 11.
We first consider omni-cells, and sectored cells will be discussed further at the end of this
section. R denotes the farthest distance covered by a BS, so that for linear networks, the
distance between adjacent BSs is 2R and for hexagonal networks, cells are regular hexagons
with sides of length R and the distance between neighboring BSs is

√
3R. Note that the

framework of our model is general enough to allow for different sized or shaped cells. For
greater transparency we provide here examples of how this model can be used for certain
symmetric topologies.
Linear networks as shown in Figure 1 model highway or street scenarios and users are placed
on a line on either side of the BS. In hexagonal networks as shown in Figure 2, users are
placed on the plane. A user’s position is represented in polar coordinates by (r, θ), with a
reference BS at (0, 0). For linear networks, θ = 0 and θ = Π correspond to the two sides of
a BS.

Discrete rates and classes. Recall that the feasible rate of a user is dependent on his
position as well as the set of active BSs. For a given set of active BSs then, the cell can be
partitioned into regions such that all users in a given region have identical feasible rates.
Denote rv,A(θ) to be the farthest distance from the BS where a rate of cv can be achieved
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Figure 3: Impact of interference on feasible rates in a linear network (R = 3, α = 2).

with the set of active BSs A, along the angle θ from the BS. For a linear network θ = 0
or Π and rv,A(·) ≤ R. When A = ∅ this results in symmetric spacings of rv on either
side, and similarly for A = N . The sizes and number of these regions change with the set
A, as shown in Figure 3, with the normalization r0,∅(·) = 1. We will assume throughout
this section that inter-cell interference is due only to direct neighbors. This approximation
is quite common, and is reasonable given the fall-off in path loss with distance under the
power-law decay assumed in (7). For a cell with normalized radius R = 3 and path loss
exponent α = 2, Figure 3 shows the regions of possible feasible rates for all four possible
sets of active BSs. The words on and off on each side of the cell in Figure 3 denote the
activity of the BS on that respective side. We observe that for a user near r = 1.5, the
rate is reduced from 1228.8 kb/s to 921.6 kb/s as the active set changes from no neighbor
being active to both being active. For a similar change in active set, a user near r = 1.9
experiences a feasible rate reduced in half from 614.4 kb/s to 307.2 kb/s. The effect of
inter-cell interference is to shrink all regions toward the BS. Thus, changes in feasible rates
are considerable for certain positions, especially users who are close to the edge of the cell,
with lower data rates. These users are the most demanding on the transmission resources
and are affected the most by the rate changes. Such rate changes, therefore, are expected
to have a significant impact on the flow-level performance.

In hexagonal networks, due to the hexagonal shape of the cells, rv,A(θ) ≤
√

3R√
3 cos θ′+sin θ′

where θ′ = θ mod Π/3. When A = ∅ the regions with identical feasible rates form con-
centric rings around the BS. Figure 4 shows how these regions change with respect to A,
normalized with r0,∅(·) = 1. As the set of active BSs, A, changes from ∅, no interference,
to {1, 2, 3, 4, 5, 6}, interference from all direct neighbors, the rings shrink considerably and
feasible rates at positions away from the center change significantly. For example, a user
at r = 2.5, θ = 0 has a feasible rate of 307.2 kb/s when no other BS is active, and the
feasible rate is halved to 153.6 kb/s when all direct neighbors are active. For a user at
r = 2.8, θ = 0, a similar change in A reduces the feasible rate to a third, from 307.2 kb/s
to 102.6 kb/s.
The class structure described in Section 2 corresponds to subregions of the cell based on
the feasible rate and variations in this rate due to changes in inter-cell interference. The
regions described above are specific to a given set of active BSs. When the set of active
BSs is not static, users may belong to different regions as their feasible rates change. We
create user classes then, by partitioning the cell into subregions where feasible rates and
their variations are identical. Two users belonging to the same class will thus have identical
feasible rates for any set of active BSs.
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Figure 4: Impact of interference on feasible rates in a hexagonal network with omni-cells
(R = 3, α = 2).

Traffic characteristics. We assume that data flows arrive according to a Poisson process
of rate λi in cell i, and that the arrivals are uniformly distributed throughout the cell. Under
this assumption and the definition of classes above, the arrival rate of class-k data flows is
λi(k) = λiSi(k)/Si, where Si(k) is the surface of the subregion k and Si is the surface of
cell i. The concept of surface corresponds to segments in linear networks and to areas in
hexagonal networks.

7.2 Flow-level performance.

We study flow-level performance through flow throughput as defined by (5) for some class-k
flows as well as for an arbitrary flow in a given cell. We present throughput results of the
first-degree bounds presented in Section 4 and the appropriate regimes of the second-degree
bounds of Section 5, and compare these to simulation results. The second-degree bounds for
performance shown are the quasi-stationary regime of the lower bound and the fluid regime
of the upper bound. The numerical results will show that the regimes of these second-degree
bounds are indeed quite tight. Note that the lower and upper bounds for performance
presented here correspond to the upper and lower bounds, respectively, for the number of
active flows considered in Sections 4 and 5. The simulations are performed for exponentially
distributed flow sizes. We will, however, also present a case of hyperexponential flow sizes
in order to study how sensitive the throughput is to the flow size distribution.
For throughput results for an arbitrary flow, we will consider two cases of load for each
network topology: homogeneous load among all cells and heterogeneous load where the
load of all cells except the reference cell is always set to 0.8. Results are plotted for varying
load, ρi,N , and it is this notion of load that we will refer to as load for the rest of this
section. Values for the parameters η, P , and ε are normalized such that r0,∅(·) = 1.
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Figure 5: Throughput of an arbitrary flow in a linear network with homogeneous load
(R = 1.5, α = 4).

Linear networks. Figures 5 and 6 show throughput of an arbitrary flow in a linear
network with homogeneous and heterogeneous load, respectively. A linear network was
simulated as a ring of cells as opposed to a line in order to avoid the effects of cells on
the edge. It has been shown in Section 6 that the system is unstable for ρi,N ≥ 1 for
homogeneous networks. We observe this in Figure 5 where the flow throughput of the
actual system is zero for ρi,N ≥ 1. In Figure 6 the throughput of the actual system is
above zero past this point because the load in the neighboring cells is less than one. For
both cases of load shown here, the first-degree bounds are not too rough because each cell
has only two direct interferers. The second-degree bounds are quite tight and the quasi-
stationary regime of the lower bounds serves as a good conservative approximation. Note
that the duration of a file transfer tends to be fairly small relative to the idle or busy period
of a BS, as is well captured by the quasi-stationary regime. Indeed, this has been found
for simpler models in a time-varying environment [11], and apparently remains true in the
more complicated model under consideration here.
Figure 7 shows flow throughput for five arbitrarily chosen classes in a linear network with
homogeneous load. These five classes correspond, respectively, to the subregions surround-
ing the points at distances of 0.8, 1.0, 1.2, 1.4, and 1.5 from the BS, which has a coverage
distance of R = 1.5. The throughput of flows is higher for users closer to the BS. The quasi-
stationary regime of the lower bound is shown again to be an excellent approximation.
We now consider different flow size distributions in order to study the sensitivity of flow
size distribution to flow throughput. In particular we consider increasingly variable flow
sizes, characterized by a hyperexponential distribution defined as follows:

Pr[σ > x] =
a exp

−ax
E[σ] + exp

−x
aE[σ]

a + 1
.
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Figure 6: Throughput of an arbitrary flow in a linear network with heterogeneous load
(R = 1.5, α = 4).
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Figure 7: Per-class flow throughput in a linear network with homogeneous load (R =
1.5, α = 4).
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Figure 8: Throughput of an arbitrary flow with hyperexponential distribution with varying
parameter a, in a hexagonal network with heterogeneous load (R = 1.5, α = 4).

Such a distribution corresponds to a fraction a/(a + 1) of small flows of size E[σ]/a and a
fraction 1/(a+1) of large flows of size aE[σ] and the variance in flow sizes increases with the
parameter a. Figure 8 shows results of simulations with hyperexponential flow sizes with
a = 5, 10, and 50, along with results of exponential flow sizes and the bounds. We observe
that the system is fairly insensitive to the flow size distribution. It has been suggested in
Section 6 that the stability condition is indeed sensitive to the flow size distribution. The
fluid and quasi-stationary regimes of the bounds, however, are insensitive. The closeness of
these bounds suggests that the performance may be relatively insensitive, as shown in the
numerical results. For the rest of this paper we will continue with exponentially distributed
flow sizes.

Hexagonal networks: omni-cells. Figures 9 and 10 plot flow throughput for a hexag-
onal network of omni-cells with homogeneous and heterogeneous load, respectively. A
hexagonal network is simulated with 19 cells on a plane in the pattern shown in Figure 2.
In order to reduce the run time and computational complexity for the simulations, the BSs
on the outer ring are set to be always active. We have performed simulations not presented
here in which the BSs on the outer ring were set to be always idle, and simulations of a
37-cell network with the outer ring of BSs always active. In comparison with simulations
of the 37-cell network, we find our original set-up of 19 cells with outer BSs always active
to be sufficiently close and we continue with this set-up for further simulations of hexago-
nal networks with omni-cells. Note that we are interested in the flow performance in the
reference cell at the center of such a network. The effects of the outer ring of BS is thus
quite small for this reference cell, under the power-law decay assumed in (7).
The reference cell has six direct neighbors, and thus the difference between no direct neigh-
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Figure 9: Throughput of an arbitrary flow in a hexagonal network with homogeneous load
(R = 1.5, α = 4).
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Figure 10: Throughput of an arbitrary flow in reference cell i in a hexagonal network with
heterogeneous load (R = 1.5, α = 4).
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Figure 11: Hexagonal network with 120◦ sectors in each cell.

bor being active to all such neighbors being active can be quite substantial, compared
to linear networks with similar-sized cells. This effect would explain the relatively loose
first-degree bounds in Figures 9 and 10. The second-degree bounds, especially the quasi-
stationary regime of the lower bound are, however, remarkably close to the simulation
results for ρi,N < 1, which is a reasonable operating regime. Note that we show here results
for R = 1.5, which may be quite small for hexagonal networks that are typically deployed
in rural areas. As we increase R to be more realistic with rural scenarios, the bounds are
closer because of the reduced effect of interference in larger cells. We point out, however,
that for similar-sized cells, a larger number of interfering BSs leads to looser first-degree
bounds.

Hexagonal networks: sectors. We have assumed above that cells have omni-directionally
antennas. In practice, cells are typically divided into sectors, with a directional antenna in
each sector. Configurations for such network topologies differ in the number of sectors per
cell (ranging from two to six) and the orientation of the directional antennas with respect
to neighboring cells. We will show here an example of a symmetric network topology of
cells with three 120◦ sectors each, oriented in a symmetric fashion, as shown in Figure 11.
The power received at position u from sector i, Pi(u), now includes signal attenuation
as a function of the angle from the center beam of the transmitting directional antenna.
The received power at position (r, θ) is now given by Pi(r, θ) = PΓi(r)Ĥi(θ) where Ĥi(θ)
depends on the antenna pattern. The signal attenuation due to angle separation from the
center beam of the antenna can be reasonably estimated by [1]:

Ĥi(θ) = 10Hi(θ)/10, Hi(θ) = −min

{

12

(

θ′

θi,3dB

)2

, Hm

}

,

where θ′ is the angle separation from the user and the center beam of the antenna at sector
i, θi,3dB is the horizontal beam width of antenna i (typically 70◦ for 120◦ sectors), and
Hm = 20 dB is the maximum loss.
Due to these directional antennas, a user in a given sector may experience interference
from fewer interferers, as compared to the network with omni-directional antennas. In the
topology given in Figure 11, for a user in reference sector 0a, sectors 1c and 2b are primary
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Figure 12: Impact of interference on feasible rates in a sectored hexagonal network (R =
2, α = 2).

interferers, while sectors 3b, 4a, 5a, and 6c are secondary interferers. Figure 12 shows the
effect of the activity of these interfering sectors on the feasible rate regions in the reference
sector 0a. For these results, we make an approximation by assuming that Ĥi(θ) = 1 if
θ′ > 60◦, thus ignoring interference from other sectors of the same cell.
Figures 13 and 14 show throughput of an arbitrary flow in sectored hexagonal networks
with homogeneous and heterogeneous loads, respectively. We use the topology shown in
Figure 11 and assume that interference is due only to primary interferers, thus only sectors
1c and 2b interfere with transmissions in sector 0a. We observe that in comparison with
hexagonal networks of omni-cells, the first-degree bounds are close, due to fewer interferers.
As seen in other results presented so far, the quasi-stationary regime of the lower bound is
a very good approximation.

8 Conclusion

We have modeled networks of multiple BSs, including the complex interactions of their
activity periods through mutual interference. We derived first-degree bounds by assuming
maximum and minimum interference in the cell under consideration. We also obtained
closer bounds in the form of quasi-stationary and fluid regimes of second-degree bounds
which assume maximum and minimum interference in neighbors of the reference cell. Nu-
merical experiments for typical and realistic network topologies showed that these bounds
are indeed quite close, and further demonstrated that the quasi-stationary regime of the
lower bound for performance is an extremely accurate approximation. The results highlight
the importance of capturing the dynamic activity patterns of neighboring BSs. Models of a
BS in isolation as considered in most previous work basically correspond to the first-degree
bounds, which only provide a very rough approximation, at best.
The observation that the lower bound for performance is so tight, especially in hexagonal
networks, may be explained as follows. In a system with strong interactions between the
activity periods of the BSs, there is a tendency toward synchronization among the BSs. For
example, when its neighboring BSs are active, a BS would serve its users at lower rates,
thus causing it to stay active also, as its neighbors. Similarly, when the neighboring BSs are
inactive, users enjoy higher rates, allowing flows to be served quicker, thus enabling the BS
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Figure 13: Throughput of an arbitrary flow in a sectored hexagonal network with homoge-
neous load (R = 1.5, α = 3).
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Figure 14: Throughput of an arbitrary flow in a sectored hexagonal network with hetero-
geneous load (R = 1.5, α = 3).
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to return to an inactive state, as its neighbors. This coupling effect is stronger when there
are more neighbors, as in hexagonal networks. Observe that the lower bound essentially
assumes perfect coupling, and thus captures this coalescing effect more so than the upper
bound.
It is worth recalling that we assumed that the BSs always transmit at full power when there
are any active users. We further supposed that the transmission resources are shared in a
fair manner among the active users, regardless of the activity state of neighboring BSs. In
principle, the throughput may be improved by scheduling the transmissions to the various
users based on the activity state of interfering BSs. For example, Figures 3, 4 and 12
indicate that edge users experience a strong increase in feasible rates when neighboring BSs
are idle. This suggests that their throughputs may be increased by scheduling such users
when the corresponding BSs are inactive. (Note that this form of scheduling requires not
only that the activity state of neighboring BSs is known, but also that the locations of active
users are known. Such information might be available in future wireless networks.) Further
throughput gains may be obtained by coordinating the activity patterns of adjacent BSs
and adjusting the transmit powers based on the configuration of active users. The above
options provide useful instruments to enhance performance, although wedded with potential
pitfalls and challenging implementation issues. We leave these as interesting avenues for
further research.
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