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ABSTRACT

Consider a family of probabilities for which the decay is governed by a large deviation principle. To find an

estimate for a fixed member of this family, one is often forced to use simulation techniques. Direct Monte Carlo

simulation, however, is often impractical, particularly if the probability that should be estimated is extremely

small. Importance sampling is a technique in which samples are drawn from an alternative distribution, and

an unbiased estimate is found after a likelihood ratio correction. Specific exponentially twisted distributions

were shown to be good sampling distributions under fairly general circumstances. In this paper, we present

necessary and sufficient conditions for asymptotic efficiency of a single exponentially twisted distribution,

sharpening previously established conditions. Using the insights that these conditions provide, we construct

an example for which we explicitly compute the ‘best’ change of measure. However, simulation using the new

measure faces exactly the same difficulties as direct Monte Carlo simulation. We discuss the relation between

this example and other counterexamples in the liturature.

We also apply the conditions to find necessary and sufficient conditions for asymptotic efficiency of the

exponential twist in a Mogul′skĭı sample-path problem. An important special case of this problem is the

probability of ruin within finite time.
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1. Introduction

Given a probability distribution ν, we are interested in estimating a rare event probability
ν(A). In direct Monte Carlo methods, the usual estimator is the proportion of times that A
occurs in a certain number of independent samples from ν. However, an inherent problem
of this approach is that many samples are needed to obtain a reliable estimate for ν(A). In
fact, the required computing time for estimating ν(A) may exceed any reasonable limit.

As an important special case, direct Monte Carlo methods are inappropriate for simulating
large deviation probabilities. A family of probability measures {νε : ε > 0} is said to satisfy a
large deviation principle (LDP) if νε(A) decays exponentially as ε → 0 for a wide class of sets



2

A. Given such a family, we refer to a probability of the form νε0(A) for some ε0 > 0 and some
event A as a large deviation probability. Probabilities of this type are encountered in many
fields, e.g., statistics, operations research, information theory, and financial mathematics.

A widely used technique to estimate rare-event probabilities is importance sampling. In
importance sampling, one samples from a probability measure λ different from νε0 , such that
the νε0-rare event becomes λ-likely. A practical and widely used choice for λ is a so-called
exponentially twisted distribution; still, there is freedom to choose any distribution within
this family. To evaluate the changes of measure, efficiency criteria have been developed. In
this paper, we use the asymptotic efficiency criterion.

In some specific cases, exponentially twisting is known to be asymptotically efficient. In his
seminal paper, Siegmund (1976) gives a result of this type for the estimation of the probability
that a random walk exceeds a level b > 0 before dropping below some fixed a ≤ 0, where
he lets b → ∞ (provided this probability is non-zero). A problem related to Siegmund’s is
the estimation of a level-crossing probability P (X1 + . . . + Xn > M, for some n) for real-
valued i.i.d. random variables X1, X2, . . .. For the estimation of this probability, Lehtonen
and Nyrhinen (1992b) show the asymptotic efficiency of the exponential twist in the regime
M → ∞; they also establish uniqueness properties of the exponential twist. Related results
in a more general Markovian setting are obtained by Asmussen (1989) and Lehtonen and
Nyrhinen (1992a). Collamore (2002) extends this to a multi-dimensional setting.

Another example for which an exponential twist is known to yield asymptotic efficiency
relates to the ‘Cramér-type’ probability P (X1+. . .+Xn ≥ γn) for γ > EX1, where n → ∞. In
case X1, X2, . . . have a special Markovian structure, this was found by Bucklew et al. (1990).
Sadowsky (1993) focuses on stability issues in the special case of i.i.d. random variables. To
estimate P (Sn ≥ γn) for generally distributed Sn, Sadowsky and Bucklew (1990) show that
that there exists an asymptotically efficient exponential twist if {Sn/n} satisfies the conditions
of the Gärtner-Ellis theorem; this is also observed by Szechtman and Glynn (2002).

Recently, it was noted that a successful application of an importance sampling distribu-
tion based on large deviation theory critically depends on the specific problem at hand. In
particular, Glasserman and Wang (1997) give variations on both the level-crossing problem
and the Cramér-type problem, and show that exponential twists can be inefficient if the rare
event A is not so nice. In fact, they obtain the stronger result that the so-called relative
error can even become unbounded in these examples. Similar observations have been made
by Glasserman and Kou (1995) in a queueing context.

Given the examples of efficient and inefficient simulation with exponentially twisted dis-
tributions, a natural question is whether there exist conditions for asymptotic efficiency.
Sadowsky and Bucklew (1990) give a sufficient condition for asymptotic efficiency of the ex-
ponential twist for simulating P (Sn/n ∈ A) in the case that {Sn/n} satisfies the conditions of
the Gärtner-Ellis theorem. Both necessary and sufficient conditions are established by Sad-
owsky (1996) in a general abstract setting. Sadowsky also notes that his sufficiency condition
generalizes the earlier results of Sadowsky and Bucklew (1990).

The main contribution of the present paper is that it improves the conditions stated by
Sadowsky (1996). The improvements are twofold. On the one hand, we relax the underlying
assumptions that are needed for a necessary and a sufficient condition to hold. Most notably,
we do not require convexity of the large deviation rate function. On the other hand, we
sharpen the necessary and sufficient conditions themselves, i.e., we show that our necessary
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condition is weaker and that our sufficient condition is stronger.
To establish the results, we employ a number of standard arguments from large deviation

theory. In particular, we rely on a basic large deviation result known as Varadhan’s Integral
Lemma or Laplace Principle. It is not new to apply this lemma to derive efficiency properties
of rare event simulation; see Glasserman et al. (1999) and Dupuis and Wang (2002). However,
it was not used in Sadowsky’s general abstract setting to find general necessary and sufficient
conditions. This is accomplished in the present paper.

The transparency of the proofs, as well as the simplicity of our conditions, enable us to
derive some interesting and appealing new results. Indeed, we show that our conditions are
‘tight’ in the sense that the necessary condition coincides with the sufficient condition under
a weak additional assumption.

Furthermore, we address the uniqueness of an asymptotically efficient exponential twist
under certain convexity conditions. We show that there is only one exponentially twisted
distribution that can be asymptotically efficient. This candidate twist turns out to be the
twist suggested by large deviation theory. However, some problems rise if this change of
measure is not asymptotically efficient, as we illustrate in a simple example. We also discuss
the relation between our example and the counterexamples studied by Glasserman and Wang
(1997) and Dupuis and Wang (2002).

To illustrate the use of our conditions, we apply them to a well-known problem, for which we
derive new results. In fact, we obtain an equivalent characterization of asymptotic efficiency
in the Mogul′skĭı time-varying level-crossing problem studied by Sadowsky (1996).

The paper is organized as follows. After providing the necessary preliminaries in Section 2,
we state and prove our necessary and sufficient conditions in Section 3. We apply these
conditions to the Mogul′skĭı sample-path problem in Section 4. Section 5 relates the use of a
single exponential twist to other approaches.

2. Preliminaries

This section provides the basic background on importance sampling and asymptotic effi-
ciency, and discusses their relationship with large deviation techniques. For a more detailed
discussion on importance sampling and asymptotic efficiency, see Asmussen and Rubinstein
(1995), Heidelberger (1995), and references therein. Valuable sources for large deviation tech-
niques are the books by Dembo and Zeitouni (1998) and Deuschel and Stroock (1989). A
good introduction to both large deviation theory and applications is the monograph by den
Hollander (2000).

2.1 Importance sampling
Let X be a topological space, equipped with some σ-field B containing the Borel σ-field. Given
a probability measure ν on (X ,B), we are interested in the simulation of the ν-probability
of a given event A ∈ B, where ν(A) is small. The idea of importance sampling is to sample
from a different distribution on (X ,B), say λ, for which A occurs more frequently. This is
done by specifying a measurable function dλ/dν : X → [0,∞] and by setting

λ(B) :=
∫

B

dλ

dν
dν. (2.1)

Since λ must be a probability measure, dλ/dν should integrate to unity with respect to ν.
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Assuming equivalence of the measures ν and λ, set dν/dλ := (dλ/dν)−1 and note that

ν(A) =
∫

A

dν

dλ
dλ =

∫
X

1A
dν

dλ
dλ,

where 1A denotes the indicator function of A. The importance sampling estimator ν̂λ(A) of
ν(A) is found by drawing N independent samples X(1), . . . , X(N) from λ:

ν̂λ(A) :=
1
N

N∑
i=1

1{X(i)∈A}
dν

dλ
(X(i)).

It is clear that ν̂λ(A) is an unbiased estimator, i.e., Eλν̂λ(A) = ν(A). However, one has the
freedom to choose an efficient distribution λ in the sense that the variance of the estimator
is small. In particular, it is of interest to find the change of measure that minimizes this
variance. Since ν̂λ(A) is by construction unbiased, it is equivalent to minimize

∫
A

(
dν

dλ

)2

dλ =
∫
X

1A

(
dν

dλ

)2

dλ.

It is not difficult to see that a zero-variance estimator is found by letting λ be the conditional
distribution of ν given A [see, e.g., Heidelberger (1995)]. However, the resulting estimator is
infeasible for simulation purposes, since then dν/dλ depends on the unknown quantity ν(A).
This motivates the use of another optimality criterion, asymptotic efficiency.

2.2 Asymptotic efficiency
To formalize the concept of asymptotic efficiency, we introduce some notions that are exten-
sively used in large deviation theory.

A function I : X → [0,∞] is said to be lower semicontinuous if the level sets ΦI(α) := {x :
I(x) ≤ α} are closed subsets of X for all α ∈ [0,∞). The interior and closure of a set B ⊆ X
are denoted by Bo and B respectively.

Definition 1 A function I : X → [0,∞] is called a rate function if it is lower semicontinuous.
If ΦI(α) is compact for every α ≥ 0, I is called a good rate function.

A set B ∈ B is called an I-continuity set if infx∈Bo I(x) = infx∈B I(x) = infx∈B I(x).

The central notion in large deviation theory is the large deviation principle.

Definition 2 A family of probability measures {νε : ε > 0} on (X ,B) satisfies a large devia-
tion principle (LDP) with rate function I if for all B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
ε→0

ε log νε(B) ≤ lim sup
ε→0

ε log νε(B) ≤ − inf
x∈B

I(x).

Throughout this paper, we assume that the family {νε} satisfies an LDP. We fix some rare
event A ∈ B, i.e., infx∈Ao I(x) > 0, implying that νε(A) decays exponentially as ε → 0. Since
ν(A) is supposed to be a large deviation probability, we have ν = νε0 for some ε0.
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The definition of asymptotic efficiency is related to the so-called relative error. Consider
an i.i.d. sample X

(1)
λε

, . . . , X
(N)
λε

from an importance sampling distribution λε. The relative
error of the importance sampling estimator

ν̂λε(A)N :=
1
N

N∑
i=1

1{
X

(i)
λε

∈A
} dνε

dλε

(
X

(i)
λε

)
(2.2)

is defined as

ηN (λε, A) :=
Varλε ν̂λε(A)N

νε(A)2
=

Eλε

(
ν̂λε(A)N

)2

νε(A)2
− 1.

The idea behind this definition is that the square root of the relative error is proportional to
the width of a confidence interval relative to the (expected) estimate itself; hence, it measures
the variability of ν̂λε(A)N .

For asymptotic efficiency, the number of samples required to obtain a prespecified relative
error should vanish on an exponential scale. Set N∗

λε
:= inf{N ∈ N : ηN (λε, A) ≤ ηmax}.

Definition 3 An importance sampling family {λε} is called asymptotically efficient if

lim sup
ε→0

ε log N∗
λε

= 0, (2.3)

for some given maximal relative error 0 < ηmax < ∞.

In the literature, asymptotic efficiency is sometimes referred to as asymptotic optimality,
logarithmic efficiency, or weak efficiency.

We briefly relate Definition 3 to other frequently used definitions for asymptotic efficiency.
By definition of ηN (λε, A), we have

N∗
λε

= inf

{
N ∈ N :

1
N

∫
A

(
dνε

dλε

)2

dλε ≤ (ηmax + 1)νε(A)2
}

=



∫
A

(
dνε
dλε

)2
dλε

(ηmax + 1)νε(A)2


 . (2.4)

Equation (2.4) implies

lim sup
ε→0

ε log N∗
λε

≤ lim sup
ε→0

ε log
∫

A

(
dνε

dλε

)2

dλε − 2 lim inf
ε→0

ε log νε(A), (2.5)

with equality if the limit limε→0 ε log νε(A) exists [see, e.g., Section 2.4 of Royden (1968)].
Sufficient for the existence of this limit is that A be an I-continuity set; in that case,
limε→0 ε log νε(A) = − infx∈A I(x). In many applications, A is indeed an I-continuity set,
in which case asymptotic efficiency is equivalent to

lim sup
ε→0

ε log
∫

A

(
dνε

dλε

)2

dλε ≤ −2 inf
x∈A

I(x). (2.6)

By similar arguments, one can also readily see that

lim sup
ε→0

log
∫
A

(
dνε
dλε

)2
dλε

log νε(A)
≥ 2

is equivalent to asymptotic efficiency when A is an I-continuity set.
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3. The efficiency of exponential twisting

This section investigates the asymptotic efficiency of the estimators that are based on an
exponential twist. After formalizing the imposed assumptions, we state our necessary and
sufficient conditions for asymptotic efficiency of an exponentially twisted change of measure.
The relation between these conditions and the conditions developed by Sadowsky (1996) is
provided in Subsection 3.2. Under specific convexity assumptions, some intuitively appealing
theorems can be proven, see Subsection 3.3. The insights gained by the theoretical results
culminate in a counterintuitive example of the Cramér-type, which is the subject of Subsec-
tion 3.4.

3.1 Necessary and sufficient conditions
Let X be a topological space and B be a σ-field on X containing the Borel σ-field. We assume
that X is also a vector space, but not necessarily a topological vector space. Throughout
this section, we fix a rare event A ∈ B and a continuous linear functional ξ : X → R. Having
a topological vector space in mind, we write 〈ξ, ·〉 for ξ(·). We are given a family {νε} of
probability measures on (X ,B).

Assumption 1 Assume that

(i) X is a vector space endowed with some regular Hausdorff topology,

(ii) {νε} satisfies the LDP with a good rate function I,

(iii) it holds that

lim
M→∞

lim sup
ε→0

ε log
∫
{x∈X :〈ξ,x〉≥M}

exp[〈ξ, x〉/ε]νε(dx) = −∞,

and similarly for ξ replaced by −ξ,

A new family of probability measures {λξ
ε} is defined by

dλξ
ε

dνε
(x) := exp

(
〈ξ, x〉/ε − log

∫
X

exp[〈ξ, y〉/ε]νε(dy)
)

=
exp[〈ξ, x〉/ε]∫

X exp[〈ξ, y〉/ε]νε(dy)
. (3.1)

The measures {λξ
ε} are called exponentially twisted with twist ξ. If the family {λξ

ε} is asymp-
totically efficient, we simply call the exponential twist ξ asymptotically efficient.

The following proposition plays a key role in the proofs of this section.

Proposition 1 Let dλξ
ε/dνε be given by (3.1), and let B ∈ B. Under Assumption 1, we have

lim inf
ε→0

ε log
∫

B

(
dνε

dλξ
ε

)2

dλξ
ε ≥ − inf

x∈X
[I(x) − 〈ξ, x〉] − inf

x∈Bo
[I(x) + 〈ξ, x〉]

lim sup
ε→0

ε log
∫

B

(
dνε

dλξ
ε

)2

dλξ
ε ≤ − inf

x∈X
[I(x) − 〈ξ, x〉] − inf

x∈B
[I(x) + 〈ξ, x〉].
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Proof. Fix B ∈ B and note that

ε log
∫

B

(
dνε

dλξ
ε

)2

dλξ
ε = ε log

∫
B

dνε

dλξ
ε

dνε

= ε log
∫

B
exp

(
log
∫
X

exp(〈ξ, y〉/ε)νε(dy) − 〈ξ, x〉/ε

)
νε(dx)

= ε log
∫
X

exp (〈ξ, x〉/ε) νε(dx) + ε log
∫

B
exp (−〈ξ, x〉/ε) νε(dx).(3.2)

By Assumption 1 and the continuity of the functional ξ, Varadhan’s Integral Lemma [The-
orem 4.3.1 in Dembo and Zeitouni (1998)] applies. Thus, the limit of the first term exists
and equals

lim
ε→0

ε log
∫
X

exp (〈ξ, x〉/ε) νε(dx) = sup
x∈X

[〈ξ, x〉 − I(x)].

A similar argument can be applied to the second term in (3.2). The conditions of Varad-
han’s Integral Lemma are again satisfied to apply the lemma to the continuous functional
−ξ. Now we use a variant of this lemma (see, e.g., Exercise 2.1.24 in Deuschel and Stroock
(1989)) to see that for any open set G and any closed set F

lim inf
ε→0

ε log
∫

G
exp (−〈ξ, x〉/ε) νε(dx) ≥ − inf

x∈G
[I(x) + 〈ξ, x〉],

lim sup
ε→0

ε log
∫

F
exp (−〈ξ, x〉/ε) νε(dx) ≤ − inf

x∈F
[I(x) + 〈ξ, x〉].

In particular, these inequalities hold for Bo and B. The claim follows by adding the two terms
in (3.2), which is allowed since the limit of the first term exists [see the reasoning following
Inequality (2.5) and Section 2.4 of Royden (1968)]. �

The necessary and sufficient conditions, formulated in the next theorem, follow almost
immediately from Proposition 1.

Theorem 1 Let Assumption 1 hold. The exponential twist ξ is asymptotically efficient if

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈Ao

I(x). (3.3)

Let Assumption 1 hold and let A be an I-continuity set. If the exponential twist ξ is
asymptotically efficient, then

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈Ao

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈A

I(x). (3.4)

Proof. Sufficiency follows from (2.5), the upper bound of Proposition 1, and the LDP of
Assumption 1(ii):

lim sup
ε→0

ε log N∗
λξ

ε
≤ lim sup

ε→0
ε log

∫
A

(
dνε

dλξ
ε

)2

dλξ
ε − 2 lim inf

ε→0
ε log νε(A)

≤ − inf
x∈X

[I(x) − 〈ξ, x〉] − inf
x∈A

[I(x) + 〈ξ, x〉] + 2 inf
x∈Ao

I(x).
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For necessity the argument is similar. Note that the lower bound of Proposition 1 implies
that

lim sup
ε→0

ε log
∫

A

(
dνε

dλξ
ε

)2

dλξ
ε ≥ − inf

x∈X
[I(x) − 〈ξ, x〉] − inf

x∈Ao
[I(x) + 〈ξ, x〉].

Moreover, by the large deviation upper bound, lim infε→0 ε log νε(A) ≤ − infx∈A I(x). Com-
bining these observations with the assumption that A is an I-continuity set, we have

0 = lim sup
ε→0

ε log N∗
λξ

ε

= lim sup
ε→0

ε log
∫

A

(
dνε

dλξ
ε

)2

dλξ
ε − 2 lim

ε→0
ε log νε(A)

≥ − inf
x∈X

[I(x) − 〈ξ, x〉] − inf
x∈Ao

[I(x) + 〈ξ, x〉] + 2 inf
x∈A

I(x),

as desired. �

As suggested by the form of Theorem 1, the sufficient condition is also necessary under a
weak condition on the set A. We formalize this in the following corollary.

Corollary 1 Let Assumption 1 hold, and assume that A is both an I-continuity set and an
(I + ξ)-continuity set. Exponentially twisting with ξ is asymptotically efficient if and only if

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] = 2 inf
x∈A

I(x).

Proof. From Theorem 1 it is obvious that

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈A

I(x)

is necessary and sufficient. The reverse inequality holds trivially. �

Remark. Sadowsky (1996) uses a more general notion than asymptotic efficiency, namely
ν-efficiency. Given an I-continuity set A, the importance sampling distribution λξ

ε is said to
be ν-efficient if

lim sup
ε→0

ε log
∫

A

(
dνε

dλξ
ε

)ν

dλε ≤ −ν inf
x∈A

I(x).

In this terminology, we have established conditions for 2-efficiency (see the remarks after
Definition 3). To obtain conditions for ν-efficiency with general ν ≥ 2, the statements in the
subsection are easily modified. As an example, when A is an (I + (ν − 1)ξ)-continuity set
and when Assumption 1(iii) holds with ξ replaced by (ν−1)ξ and −(ν −1)ξ, the exponential
twist ξ is ν-efficient if and only if

inf
x∈X

[I(x) − (ν − 1)〈ξ, x〉] + inf
x∈A

[I(x) + (ν − 1)〈ξ, x〉] = ν inf
x∈A

I(x).

�
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3.2 Relation with Sadowsky’s conditions
General necessary and sufficient conditions for asymptotic efficiency were also developed
by Sadowsky (1996). In this subsection, we compare the conditions of Theorem 1 with
Sadowsky’s conditions. In the course of the exposition, it becomes clear that the underlying
assumptions of Subsection 3.1 are less restrictive than Sadowsky’s assumptions. Moreover,
we show that our sufficient condition in Theorem 1 is weaker than Sadowsky’s sufficiency
condition, and that the accompanying necessary condition is stronger than his necessary
condition. Thus, the results of the previous subsection improve Sadowsky’s conditions.

In addition to the notation of the preceding subsection, we first introduce some new notions.
In this subsection, X denotes a topological vector space, and X ∗ denotes the space of linear
continuous functionals ξ : X → R. Let f : X → (−∞,∞] be a convex function. A point
x ∈ X is called an exposed point of f if there exists a δ ∈ X ∗ such that f(y) > f(x)+〈δ, y−x〉
for all y 	= x. δ is then called an exposing hyperplane of I at x.

To compare our results to Sadowsky’s, we first recapitulate Sadowsky’s conditions. The
following set of assumptions will be referred to as Sadowsky’s assumptions.

Assumption 2 (Sadowsky) Assume that

(i) X is a locally convex Hausdorff topological vector space,

(ii) {νε} satisfies the LDP with a convex good rate function I,

(iii) for every δ ∈ X ∗,

Λ(δ) := lim sup
ε→0

ε log
∫
X

exp[〈δ, x〉/ε]νε(dx) < ∞,

(iv) A satisfies

0 < inf
x∈Ao∩F

I(x) = inf
x∈A

I(x) = inf
x∈A

I(x) < ∞,

where F denotes the set of exposed points of I.

We say that Assumption 2’ is satisfied if Assumption 2(i), Assumption 2(ii), and Assump-
tion 2(iii) hold, and if A is an I-continuity set in the sense of Definition 1 with 0 <
infx∈A I(x) < ∞.

Although Assumption 2 looks very similar to Assumption 1, there are crucial differences.
To start with, X is not assumed to be a topological vector space in Assumption 1(i). To see

the importance of this difference for applications, note that the space D([0, 1], R) of càdlàg
functions on [0, 1] with values in R is a (regular, Hausdorff) vector space but no topologi-
cal vector space when equipped with the Skorohod topology. Another difference is that the
regularity of X assumed in Assumption 1(i) seems not be present in Assumption 2(i). How-
ever, this regularity is implicit: any real Hausdorff topological vector space is automatically
regular.

Moreover, the convexity of the large deviation rate function is not assumed in Assump-
tion 1(ii). Note that this convexity is granted when an LDP is derived using an (abstract)
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Gärtner-Ellis type theorem, but that it can be lost by an application of the Contraction
Principle.

At first sight, there is no clear relation between Assumption 1(iii) and Assumption 2(iii).
However, Lemma 4.3.8 of Dembo and Zeitouni (1998) states that Assumption 2(iii) implies
Assumption 1(iii), since γξ and −γξ are continuous linear functionals, e.g., for γ = 2. We
remark that the relevant limit of Assumption 2(iii) exists by Theorem 4.5.10(a) of Dembo
and Zeitouni (1998).

The fourth part of Assumption 2 is closely related to requiring that A be an I-continuity
set. In fact, it is a stronger assumption than I-continuity of A. Given that Assumption 2(iv)
holds for A, γ ∈ A is called a point of continuity if I(γ) = infx∈A I(x) and there exists a
sequence {γn} ⊂ Ao ∩F such that γn → γ. We now show that there always exists a point of
continuity for a set satisfying Assumption 2(iv) in case I is a good rate function. First note
that infx∈Ao∩F I(x) = infx∈A I(x) implies that for any n ∈ N we can find a γn ∈ Ao∩F ∩Kn,
where

Kn := {x ∈ X : I(x) ≤ inf
y∈A

I(y) + 1/n}.

Use infx∈A I(x) < ∞ and the goodness of the rate function I to see that Kn is a compact
subset of X . Since Kn decreases in n, we obviously have {γn} ⊂ K1. Hence, one can substract
a subsequence that converges, say, to γ∗ ∈ K1. Since Kn is closed for every n and {γ·} is
eventually in Kn, we must also have that γ∗ ∈ Kn for every n. As a consequence, we have
I(γ∗) ≤ infx∈A I(x). Moreover, since {γn} ⊂ Ao ∩ F , we also see that γ∗ ∈ Ao ∩ F ⊂ A.
Therefore, I(γ∗) = infx∈Ao∩F I(x) = infx∈A I(x), and γ∗ is a point of continuity.

In the above comparison between Assumption 1 and Assumption 2, we have shown the
following.

Proposition 2 Assumption 2 implies that Assumption 1 holds and that A is an I-continuity
set.

In the remainder of this subsection, we compare the necessary and sufficient conditions of
Theorem 1 to the conditions in Sadowsky (1996). In order to do this, we have to make sure
that Sadowsky’s conditions hold, i.e., we assume the stronger Assumption 2. We start by
repeating Sadowsky’s conditions.

Theorem 2 (Sadowsky) Let Assumption 2 hold. The exponential twist ξ is asymptotically
efficient if

(a) there is a point of continuity γ such that I(γ) = 〈ξ, γ〉 − Λ(ξ),

(b) I(x) + 〈ξ, x〉 ≥ I(γ) + 〈ξ, γ〉 for all x ∈ A,

(c) either 〈ξ, x〉 ≥ 〈ξ, γ〉 for all x ∈ A, or there exists an x ∈ F such that x is an exposed
point of I.

Let Assumption 2 hold. If the twist ξ is asymptotically efficient, then

(a) there is a point of continuity γ such that I(γ) = 〈ξ, γ〉 − Λ(ξ),
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A

γ

A

γ

Figure 1: Efficient simulation with twist ξγ (left) and inefficient simulation with twist ξγ

(right).

(b’) I(x) + 〈ξ, x〉 ≥ I(γ) + 〈ξ, γ〉 for all x ∈ Ao ∩ F .

If 〈ξ, x〉 ≥ 〈ξ, γ〉 for all x ∈ A in part (c) of the sufficient condition, γ is called a dominating
point.

Proposition 3 Let Assumption 2 hold. The sufficient condition in Theorem 2 implies the
sufficient condition in Theorem 1.

Proof. By condition (a) of Theorem 2, there exists a point of continuity γ ∈ A such that
I(γ) = infx∈A I(x) = 〈ξ, γ〉 − Λ(ξ). Since we assume that an LDP holds for some convex I
[Assumption 2(ii)] and that Assumption 2(iii) holds, by Theorem 4.5.10(b) in Dembo and
Zeitouni (1998) we have I(x) = supδ∈X∗ [〈δ, x〉 − Λ(δ)], and hence I(x) ≥ 〈ξ, x〉 − Λ(ξ).
Combining this with I(γ) = 〈ξ, γ〉 − Λ(ξ), we conclude

inf
x∈X

[I(x) − 〈ξ, x〉] ≥ −Λ(ξ) = I(γ) − 〈ξ, γ〉,

where the inequality may obviously be replaced by an equality.
It is immediate from condition (b) of Theorem 2 that infx∈A[I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉.

Since infx∈Ao I(x) = I(γ), this implies the sufficient condition (3.3) in Theorem 1. �

Remark. It is important to notice that we did not use part (c) of Sadowsky’s sufficient
condition in the proof of Proposition 3. Hence this part is redundant. In particular, the
notion of dominating points plays no role. Still, there is a relation between dominating
points and asymptotic efficiency. We illustrate this with a two-dimensional example depicted
in Figure 1.

Let ν be the distribution of a random variable X on Rd, and denote the distribution of the
sample mean of n i.i.d. copies of X by νn. Note that 1/n plays the role of ε in this example.
Let ν be such that Cramér’s theorem holds. (In Figure 1, νn is a zero-mean bivariate Gaussian
distribution with covariance of the form Σ/n for a diagonal matrix Σ). In the left and right
panel, two different sets A are drawn. We are interested in νn(A).

As indicated by the dashed level curve of I, the ‘most likely point’ in A is in both cases
γ, i.e., arg infx∈A I(x) = I(γ). In the next subsection, we see that there is only one ex-
ponential twist ξγ ∈ R2 that is interesting for simulation purposes. The level curve of
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I + ξγ + infx∈X [I(x) − ξt
γx] that goes through γ is depicted as a solid line. Since both

sets A are I- and (I + ξγ)-continuity sets, the twist ξγ is asymptotically efficient if and only
if A lies entirely ‘outside’ the solid level curve (see Corollary 1). Hence, in the left panel the
twist ξγ is asymptotically efficient twist and in the right panel it is not.

We now turn to dominating points. Every I-continuity set that touches γ and that is
contained in the halfspace above the dotted line has dominating point γ. Obviously, such
a set lies outside the solid level curve, and one can therefore estimate νn(A) asymptotically
efficiently by an exponential twist. Notice that convexity of A implies that A has a dominating
point, so that asymptotic efficiency can be achieved. However, if A is neither convex nor has
a dominating point, Figure 1 indicates that it may still be possible to simulate asymptotically
efficiently. �

Proposition 4 Let Assumption 2 hold. The necessary condition in Theorem 2 is implied by
the necessary condition in Theorem 1.

Proof. Since the rate function I is good [Assumption 2(ii)] and A is an I-continuity set in the
sense of Assumption 2(iv), there exists a point of continuity γ ∈ A such that infx∈A I(x) =
I(γ), and a sequence {γn} in Ao ∩F with I(γn) → I(γ) and γn → γ (cf. the reasoning above
Proposition 2). By arguing along subsequences if necessary, we may assume that γn → γ
without loss of generality. The necessary condition in Theorem 1 implies

2I(γ) ≤ inf
x∈Ao

[I(x) + 〈ξ, x〉] − sup
x∈X

[〈ξ, x〉 − I(x)]

≤ lim
n→∞[I(γn) + ξ(γn)] − [〈ξ, γ〉 − I(γ)] = 2I(γ).

As a result, the inequalities can be replaced by equalities and we obtain

sup
x∈X

[〈ξ, x〉 − I(x)] = 〈ξ, γ〉 − I(γ) and inf
x∈Ao

[I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉.

By Theorem 4.5.10(a) of Dembo and Zeitouni (1998), we also have supx∈X [〈ξ, x〉 − I(x)] =
Λ(ξ) under Assumption 2. Hence, I(γ) = 〈ξ, γ〉 − Λ(ξ) and part (a) of Sadowsky’s necessary
condition is derived. Part (b’) is immediate by noting that infx∈Ao [I(x)+〈ξ, x〉] = I(γ)+〈ξ, γ〉
implies that I(x) + 〈ξ, x〉 ≤ I(γ) + 〈ξ, γ〉 for all x ∈ Ao. �

3.3 Convexity considerations
In this subsection, we study the uniqueness of an asymptotically efficient exponential twist.

We restrict ourselves to the case that the large deviation rate function has specific convexity
properties, motivated by the case that the LDP is established by using an (abstract) Gärtner-
Ellis type theorem. Therefore, we make the same assumptions as Sadowsky (1996).

However, exposed points play no role in the analysis, so we slightly modify Sadowsky’s
framework to make it more easy. As a consequence, Assumption 2’ is used instead of As-
sumption 2. Moreover, we also adapt the definition of a point of continuity that we used in the
previous subsection. In this subsection, γ is called a point’ of continuity of the I-continuity
set A if I(γ) = infx∈A I(x) < ∞ and there exists a sequence {γn} ⊂ Ao such that γn → γ.

We already saw that Theorem 4.5.10 of Dembo and Zeitouni (1998) holds under Assump-
tion 2’, i.e., that

Λ(ξ) = sup
x∈X

[〈ξ, x〉 − I(x)] and I(x) = sup
ξ∈X∗

[〈ξ, x〉 − Λ(ξ)]. (3.5)
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Theorem 3 Let Assumption 2’ hold, and let both Λ and I be strictly convex on their do-
mains. If there exist two (different) points’ of continuity, then there is no asymptotically
efficient exponential twist.

Proof. Let γ be a point’ of continuity, and let {γn} ⊂ Ao satisfy γn → γ and I(γn) → I(γ).
Due to the strict convexity of Λ and by the second identity in (3.5), there exists at most one
ξγ ∈ X ∗ such that I(γ) = 〈ξγ , γ〉 − Λ(ξγ). For all other twists ξ ∈ X ∗, we apparently have
I(γ) > 〈ξ, γ〉 − Λ(ξ), and therefore

inf
x∈X

[I(x) − 〈ξ, x〉] = − sup
x∈X

[〈ξ, x〉 − I(x)] = −Λ(ξ) < I(γ) − 〈ξ, γ〉.

Consequently, ξ 	= ξγ cannot be asymptotically efficient, as

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈Ao

[I(x) + 〈ξ, x〉] < I(γ) − 〈ξ, γ〉 + lim
n→∞[I(γn) + 〈ξ, γn〉]

= I(γ) − 〈ξ, γ〉 + I(γ) + 〈ξ, γ〉 = 2I(γ),

contradicting the necessary condition in Theorem 1. If ξγ does not exist, then the claim is
proven. Hence, we assume its existence; i.e., the supremum over X ∗ in (3.5) is attained for
x = γ. This leaves ξγ as the only candidate for asymptotic efficiency.

The same argument applies to a different point’ of continuity, say, η 	= γ. This point also
gives us a candidate twist (existence may again be assumed). The two twists are denoted by
ξγ and ξη. The claim follows after showing that ξγ 	= ξη.

Suppose ξγ = ξη. Since 〈ξγ , γ〉 − Λ(ξγ) = I(γ) = I(η) = 〈ξη, η〉 − Λ(ξη), we have for
0 ≤ α ≤ 1:

I(γ) = α[〈ξγ, γ〉 − Λ(ξγ)] + (1 − α)[〈ξη, η〉 − Λ(ξη)] = 〈ξγ , αγ + (1 − α)η〉 − Λ(ξγ).

From this it follows that Λ(ξγ) = 〈ξγ , αγ +(1−α)η〉− I(γ). This equality obviously holds for
α = 1, so we obtain a contradiction with the first identity in (3.5) and the strict convexity of
I. �

The arguments in the above proof yield the following corollary.

Corollary 2 Let Assumption 2’ hold, and let Λ be strictly convex on its domain. There
exists at most one asymptotically efficient twist.

Remark. Under the assumptions of Theorem 3 and in the notation of its proof, the expo-
nential twist ξγ is asymptotically efficient if infx∈A[I(x) + 〈ξγ , x〉] = I(γ) + 〈ξγ , γ〉; condition
(3.3) is thus neatly rewritten. The necessary condition (3.4) can be rephrased in a similar
way. �

Evidently, the twist of Corollary 2 is the best possible choice for simulation if it is asymp-
totically efficient. However, this this is not always the best choice. Using a simple example,
we discuss more counterintuitive observations in the next subsection.
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ξ̃

ξ∗1

3/2

Figure 2: Illustration of the example in Subsection 3.4

3.4 An example
In this subsection, we discuss the difficulties that arise when the candidate twist of Corollary 2,
hereafter also called the large deviation twist, is not asymptotically efficient. We construct
a simple example to illustrate these issues, and we address the relation with other examples
given by Glasserman and Wang (1997) and Dupuis and Wang (2002).

Before introducing the example, we first describe a criterion for discriminating between
exponential twists. Building upon the idea behind the definition of asymptotic efficiency,
it is sensible to use Cξ := lim supε→0 ε log N∗

λξ
ε
, where N∗

λξ
ε

is given in (2.4). Obviously, an
exponential twist ξ1 outperforms ξ2 if Cξ1 < Cξ2 . In other words, the number of samples
required to obtain a fixed relative error should have the lowest possible exponential rate.
Note that Equation (2.5) shows that, under specific assumptions on A, it is equivalent to
minimize the decay of the second moment of the estimator.

We construct an example in the well-studied Cramér framework to illustrate some problems
with this criterion when no asymptotically efficient twist exists. Consider an i.i.d. sequence
X1, X2, . . . of two-dimensional zero-mean Gaussian vectors with covariance I, i.e., Xj

i are
standard normal and X1

i is independent of X2
i . The distribution of 1

n

∑n
i=1 Xi is denoted by

νn. By Cramér’s theorem (e.g., Theorem 2.2.30 of Dembo and Zeitouni (1998)), {νn} satisfies
the LDP with good rate function

I(x) =
1
2
‖x‖2,

where ‖ · ‖ denotes the Euclidean norm on R2. Let A := {(x, y) : x ≥ 3/2, y ≥ 1}, and
consider the simulation of νn(A). This example is illustrated in Figure 2.

It is readily checked that A is both an I-continuity set and an (I + ξ)-continuity set for
any ξ ∈ R2. One can also easily see that

Cξ = − inf
x∈R2

[
1
2
‖x‖2 − ξtx

]
− inf

x∈A

[
1
2
‖x‖2 + ξtx

]
+ inf

x∈A
‖x‖2

=
1
2
‖ξ‖2 − inf

x∈A

[
1
2
‖x‖2 + ξtx

]
+ inf

x∈A
‖x‖2

= −1
2

inf
x∈A

‖x + ξ‖2 + inf
x∈A

‖x‖2 + ‖ξ‖2.

The most probable point in A is arg infx∈A ‖x‖2 = (0, 1), and one can check that the large
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deviation twist reads ξ∗ = (0, 1). However, this twist is not asymptotically efficient: Cξ∗ =
7/8. Even direct Monte Carlo, corresponding to the zero-twist, shows better performance
than the large deviation twist: C(0,0) = 1/2 < 7/8 = C(1,0)! This possibility was first observed
by Glasserman and Wang (1997).

In case the large deviation twist is asymptotically inefficient, Dupuis and Wang (2002)
do some simulation experiments to show that simulation with this twist may give unstable
estimates. Since the large deviation twist can apparently theoretically be outperformed (in
terms of Cξ), it is natural to study the stability of other (better) twists. In order to compute
the Cξ-minimizing twist in our example, one can readily see that for −ξ 	∈ A,

inf
x∈A

‖x + ξ‖2 =
{

(ξ1 + 3/2)2 ξ2 > 1/2 + ξ1;
(ξ2 + 1)2 otherwise.

Straightforward calculations show that the best twist is ξ̃ = (1/6, 2/3), with Cξ̃ = 1/12.
It is also interesting to compute the twists that perform better than the large deviation

twist ξ∗, i.e., {ξ : Cξ < 7/8}. Equivalently, we compute for which ξ it holds that

1
2

inf
x∈A

‖x + ξ‖2 − ‖ξ‖2 > 1/8.

This set is also drawn in Figure 2. Notice that ξ̃ has a ‘central’ position in the set.
Although the twist ξ̃ is theoretically optimal, simulation from the twisted measure faces

exactly the same difficulties as direct Monte Carlo. Of course, this is caused by the fact that
the mean of the ξ̃-twisted measure is no element of A. To illustrate the problem, we perform
a small simulation experiment. We let n = 50 and perform 1 000 000 000 simulation runs
under the measure induced by the (theoretically best) twist ξ̃. (The period of the random
number generator is large enough.) Note that the probability of interest can be bounded by
νn(A) ≤ Φ(

√
n) + Φ(3

√
n/2) ≈ 7.69 10−13, where Φ denotes the complement of the standard

normal distribution function. Not surprisingly, we do not hit A in any of the simulation runs,
leaving 0 as the resulting estimate.

This example shows that it should always be checked first whether there exists an asymp-
totically efficient twist, otherwise the resulting estimate may be highly unreliable. If there is
no such twist, alternative simulation methods should be considered. In Section 5, we discuss
some of these methods.

4. Application: Mogul
′
skĭı sample-path probabilities

In this section, we apply the results of Section 3 to the simulation problem of a time-varying
level-crossing probability. The underlying large deviations are governed by an LDP that is,
following Dembo and Zeitouni (1998), usually referred to as Mogul′skĭı’s theorem.

Sadowsky (1996) was the first to consider this problem in the form that we do. In fact,
he showed that Assumption 2 holds for this problem, and used Theorem 2 to study asymp-
totically efficient simulation. However, the transparency of our conditions in Theorem 1 and
the ideas used in the proofs make it possible to gain new insight into this example. To be
more specific, we obtain necessary and sufficient conditions for asymptotic efficiency of the
large deviation exponential twist in Subsection 4.2. By giving a counterexample, we correct
Sadowsky’s claim that this exponential twist is never asymptotically optimal. Moreover, in
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Subsection 4.3, we formulate necessary and sufficient conditions for asymptotic efficiency of
an appealing estimator based on the best exponential twist, to which Sadowsky refers as the
sequential estimator. An important application of the results of this section is the simulation
of ruin probabilities with finite time horizon.

We start with some preliminaries.

4.1 Preliminaries
Notation Let Z1, Z2, . . . be a sequence of i.i.d. zero-mean random variables taking values
in R, with distribution PZ . The logarithmic moment generating function of PZ is given
by ΛZ(θ) := log E(eθZ1) for θ ∈ R. Its Fenchel-Legendre transform is defined as Λ∗

Z(z) :=
supξ∈R[ξz − ΛZ(ξ)]. We set dom Λ∗

Z := {z ∈ R : Λ∗
Z(z) < ∞}.

For 0 ≤ t ≤ 1, let the scaled polygonal approximation for the partial sums of Zi be given
by

Sn(t) :=
1
n


nt�∑
i=1

Zi +
(

t − �nt�
n

)
Z
nt�+1, (4.1)

where �·� denotes the largest integer that is smaller than ·. Take X to be the Banach space of
continuous functions x : [0, 1] → R with x(0) = 0, endowed with the sup norm topology. We
use the interval [0, 1] only for simplicity; the reasoning in this section applies to any interval
of the form [0, T ], T > 0. The distribution of Sn(·) in X is denoted by νn. Note that we
replace ε by 1/n throughout this section. As in Section 3.2, we define for ξ ∈ X ∗,

Λ(ξ) := lim
n→∞

1
n

log
∫
X

exp(n〈ξ, x〉)νn(dx).

The space of absolutely continuous functions AC on [0, 1] plays an important role in the
sequel. It is defined as

AC :=

{
x :

k∑
	=1

|t	 − s	| → 0, s	 < t	 ≤ s	+1 < t	+1 =⇒
k∑

	=1

|x(t	) − x(s	)| → 0

}
.

As in Sadowsky (1996), we consider the estimation of a time-varying level-crossing proba-
bility. That is, we are interested in estimating νn(A) efficiently, where

A := {x ∈ X : x(t) ≥ e(t) for some t ∈ [0, 1]},
for some lower semicontinuous (with respect to the relative Euclidean topology on [0, 1])
e : [0, 1] → (0,∞].

It is possible to consider the (more general) problem with non-centered random variables
Z and e : [0, 1] → (−∞,∞] such that e(t)/t > EZ1. However, since a simple transformation
converts this problem to our framework, we restrict ourselves without loss of generality to
the simpler setup.

In the special case that e has the form e(t) = a + bt for some a, b ≥ 0, ν(A) corresponds
to a ruin probability for the finite horizon case. Simulation of this probability is studied by
Lehtonen and Nyrhinen (1992b), whereas Asmussen (2000, X.4) and Asmussen et al. (2002)
consider the analog in continuous time; then, a Lévy process replaces the random walk.

Proposition 7 below generalizes the findings in Lehtonen and Nyrhinen (1992b) to the case
of a time-varying level crossing probability.
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Assumptions To be able to apply the uniqueness results of Subsection 3.3, we have to make
sure that Assumption 2’ and some additional strict convexity assumptions hold. To this end,
we need the following problem-specific assumptions:

Assumption 3 We assume that

(i) ΛZ(θ) < ∞ for all θ ∈ R,

(ii) PZ is non-degenerate,

(iii) Λ∗
Z is strictly convex,

(iv) 0 < inft∈[0,1] e(t) < ∞.

For Assumption 2(ii) to hold, we need an LDP for the family {νn}. In Section 5.1 of Dembo
and Zeitouni (1998), it is shown that {νn} satisfies the LDP under Assumption 3(i) with the
convex good rate function

I(x) :=
{ ∫ 1

0 Λ∗
Z(ẋ(t))dt if x ∈ AC;
∞ otherwise.

This result is referred to as Mogul ′skĭı’s theorem.
Note that Assumption 3(i) can be considerably relaxed for a Mogul′skĭı-type LDP to hold.

One then uses different spaces equipped with different topologies, which are less convenient
than X with the topology of uniform convergence. Mogul′skĭı (1976) allows the logarithmic
moment generating function to be finite only in a neighborhood of zero and uses the space
of càdlàg functions D endowed with the (completed) Skorohod topology; see also Mogul′skĭı
(1993). Dembo and Zajic (1995) and de Acosta (1994) work under the hypothesis of a finite
logarithmic generating function of |Z|.

In the present paper, however, we use Assumption 3 to ease the exposition. In fact,
Assumption 3 was introduced to apply the results of Section 3. This is highlighted by following
proposition.

Proposition 5 If e(τ̃)/τ̃ ∈ (dom Λ∗
Z)o for some τ̃ ∈ arg infτ∈[0,1] τΛ∗

Z(e(τ)/τ), then As-
sumption 3 implies Assumption 2’. Moreover, both the rate function I and the logarithmic
generating function Λ are strictly convex on their domains.

Before proving this proposition, we need some auxiliary lemmas. We start by showing that
A is closed. To this end, consider

AM
m := {x ∈ X : x(t) ≥ M(t) for some t ∈ [0, 1] or x(t) ≤ m(t) for some t ∈ [0, 1]}, (4.2)

where M : [0, 1] → (−∞,∞] is lower semicontinuous and m : [0, 1] → [−∞,∞) is upper
semicontinuous with m ≤ M on [0, 1]. Lemma 1 states that AM

m is closed, which implies that
A is closed by choosing m = e and M ≡ −∞.

Lemma 1 AM
m is closed in X .
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Proof. Let {xn} be a sequence in AM
m converging in sup norm to some x ∈ X . Suppose

that x 	∈ AM
m , and set ε := min(inft∈[0,1][M(t) − x(t)], inft∈[0,1][x(t) − m(t)])/2. Since [0, 1] is

compact, the infima in this expression are attained, so that ε > 0. From the convergence in
sup norm it follows that |xn(t)−x(t)| ≤ ε for all t ∈ [0, 1] and n large enough. By construction
of ε, a contradiction is obtained by noting that this would imply xn 	∈ AM

m . �

Because A is a non-empty [cf. Assumption 3(iv)] closed set and I is a good rate function,
there must exist an x̃ ∈ A with I(x̃) = infx∈A I(x). Set Aτ := {x ∈ X : x(τ) ≥ e(τ)} for
τ ∈ [0, 1]. It is standard that by Jensen’s inequality,

inf
x∈Aτ

∫ 1

0
Λ∗

Z(ẋ(t))dt ≥ inf
x∈Aτ

τ
1
τ

∫ τ

0
Λ∗

Z(ẋ(t))dt ≥ inf
x∈Aτ

τΛ∗
Z

(∫ τ

0
ẋ(s)ds/τ

)
= τΛ∗

Z(e(τ)/τ).

Consequently, a minimizing argument x̃τ of infx∈Aτ I(x) is a piecewise straight line that
reaches e at τ and is constant on [τ, 1]. If τ̃ minimizes τΛ∗

Z(e(τ)/τ), then arg infx∈A I(x) = x̃τ̃ .
Since we know that x̃ exists, we also know that τ̃ exists (which can also be seen directly).
Note that x̃ and therefore τ̃ may not be unique.

Lemma 2 If e(τ̃)/τ̃ ∈ (dom Λ∗
Z)o for some τ̃ with τ̃Λ∗

Z(e(τ̃)/τ̃) = infx∈A I(x), then A is an
I-continuity set.

Proof. Similar arguments as in the proof of Lemma 1 show that Ao = {x ∈ X : x(t) >
e(t) for some t ∈ [0, 1]}. As A is closed, it suffices to prove that infx∈A I(x) = infx∈Ao I(x).
For τ ∈ [0, 1] and ε > 0, define γε

τ by

γε
τ (t) :=

{
(e(τ) + ε)t/τ if 0 ≤ t ≤ τ ;

e(τ) + ε if τ < t ≤ 1.
(4.3)

Let τ̃ be such that τ̃Λ∗
Z(e(τ̃)/τ̃) = infx∈A I(x). Note that γε

τ̃ ∈ Ao and that I(γε
τ̃ ) =

τ̃Λ∗
Z([e(τ̃)+ ε]/τ̃). By convexity of Λ∗

Z and the fact that there is a neighborhood of e(τ̃)/τ̃ on
which Λ∗

Z is finite, Λ∗
Z is continuous on this neighborhood, and therefore Λ∗

Z([e(τ̃) + ε]/τ̃) ↓
Λ∗

Z(e(τ̃)/τ̃) as ε ↓ 0 [note that inft∈[0,1] e(t)/t > 0 as a consequence of Assumption 3(iv)]. By
monotone convergence, I(γε

τ̃ ) converges to I(γτ̃ ). �

Proof of Proposition 5. First note that Assumption 3(iv) guarantees that A is a rare
event and avoids trivialities. As a (separable) Banach space, X is a locally convex topological
vector space, as assumed in Assumption 2(i). We already noted that Assumption 3(i) implies
the required LDP of Assumption 2(ii), as in Section 5.1 of Dembo and Zeitouni (1998).

To check Assumption 2(iii), Sadowsky (1996, p. 407) shows that there exists a bounded
function fξ : [0, 1] → R with the property that ξ �→ fξ is linear and

Λ(ξ) = lim
n→∞

1
n

log
∫
X

exp(n〈ξ, x〉)νn(dx) =
∫ 1

0
ΛZ(fξ(t))dt.

Since ΛZ is finite and convex, ΛZ is continuous. Moreover, the boundedness of fξ implies
that Λ(ξ) is finite for any ξ ∈ X ∗.

The claim that A is an I-continuity set follows from Lemma 2.
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We now turn to the convexity. It follows from the proof of the Hölder inequality [see, e.g.,
Royden (1968)] that ΛZ is strictly convex when PZ is non-degenerate [Assumption 3(ii)].
Obviously, Λ inherits strict convexity from ΛZ , and I is also strictly convex on AC by As-
sumption 3(iii). �

We are now ready to apply the results of Section 3.

4.2 Exponentially twisted simulation
To be able to state the necessary and sufficient conditions for the time-varying level-crossing
problem, we have to specialize the conditions in Theorem 1 to this case. We have already
seen that the paths

γτ (t) :=
{

t(e(τ)/τ) if 0 ≤ t ≤ τ ;
e(τ) if τ < t ≤ 1,

(4.4)

minimize I over Aτ , and that I(γτ ) = τΛ∗
Z(e(τ)/τ). As earlier, we set

τ̃ := arg inf
τ∈[0,1]

τΛ∗
Z(e(τ)/τ).

The existence of τ̃ was already established from the goodness of the Mogul′skĭı rate function.
Its uniqueness turns out to be essential for efficient simulation, as the following lemma shows.

Lemma 3 Let Assumption 3 hold, and let, for some τ̃ ∈ arg infτ∈[0,1] τΛ∗
Z(e(τ)/τ), e(τ̃)/τ̃ ∈

(dom Λ∗
Z)o. There is at most one asymptotically efficient twist.

If τ̃ is unique, the only exponential twist that can achieve asymptotic efficiency is 〈ξτ̃ , x〉 =
αx(τ̃), where α = arg supθ∈R[θ(e(τ̃)/τ̃) − ΛZ(θ)].

If there are two points τ̃1, τ̃2 ∈ arg infτ∈[0,1] τΛ∗
Z(e(τ)/τ) satisfying e(τ̃1)/τ̃1, e(τ̃2)/τ̃2 ∈

(dom Λ∗
Z)o and τ̃1 	= τ̃2, there is no asymptotically efficient exponential twist.

Proof. The first claim follows from Corollary 2 and Proposition 5.
We now focus on the case that τ̃ is unique. It is readily seen that ξτ̃ ∈ X ∗. As is clear

from the proof of Theorem 3, the first part of the claim follows once we have shown that
I(γτ̃ ) = 〈ξτ̃ , γτ̃ 〉 − Λ(ξτ̃ ). Let τ̃n := �nτ̃�/n, so that τ̃n → τ̃ as n → ∞. Then we have by
independence,∫

X
exp(nα〈ξτ̃ , x〉)νn(dx) =

∫
X

exp(nαx(τ̃))νn(dx)

=
∫

Rn

exp


α

nτ̃n∑
i=1

zi + α(τ̃ − τ̃n)znτ̃n+1


PZ(dz1) · · ·PZ(dzn)

=
∫

R

exp(α(τ̃ − τ̃n)z)PZ(dz)
(∫

R

exp(αz)PZ(dz)
)nτ̃n

.

Observe that ΛZ(θ) < ∞ for all θ ∈ R by Assumption 3(i), and that ΛZ is continuous due
to its convexity. Consequently, the first integral of the last expression converges to 1. We
conclude that

Λ(ξτ̃ ) = lim
n→∞

1
n

log
∫
X

exp(nαx(τ̃))νn(dx) = τ̃ΛZ(α),
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Figure 3: Two possibilities for the minimizing argument of infx∈A[I(x) + αx(τ̃)].

implying ξτ̃ (γτ̃ ) − Λ(ξτ̃ ) = αe(τ̃) − τ̃ΛZ(α). By definition of α, this equals τ̃Λ∗
Z(e(τ̃)/τ̃) =

I(γτ̃ ).
The last claim is a consequence of Theorem 3. �

Motivated by Lemma 3, we assume the uniqueness of the minimizer τ̃ of τΛ∗
Z(e(τ)/τ) in

the remainder of this section. Before the necessary and sufficient condition of Section 3 can
be applied to this problem, we need some additional assumptions to ensure that A is an
(I + ξτ̃ )-continuity set.

A minimizing argument of infx∈A[I(x) + αx(τ̃)] must hit e in [0, 1] and has some value
β ∈ R at time τ̃ . Moreover, it is a piecewise straight line by Jensen’s inequality, so that there
are two possibilities. In the first case, x reaches e(τ) at some τ ≤ τ̃ , then assumes some value
β ∈ R at τ̃ , and is constant on [τ̃ , 1]. This path is denoted by x̌β,τ . Another possibility is
that x has some value β at τ̃ , reaches e(τ) for some τ > τ̃ , and then becomes constant. This
path is denoted by x̂β,τ . The two possible cases are illustrated by the solid lines in Figure 3.

Lemma 4 Assume that τ̃ is unique. If one of the following two conditions holds, then A is
an (I + ξτ̃ )-continuity set:

1. there exists an x ∈ arg infx∈A[I(x)+αx(τ̃)] of the form x̌β,τ for some β ∈ R and τ ≤ τ̃ ,
for which e(τ)/τ ∈ (dom Λ∗

Z)o,

2. there exists an x ∈ arg infx∈A[I(x)+αx(τ̃)] of the form x̂β,τ for some β ∈ R and τ > τ̃ ,
for which (e(τ) − x(τ̃)/(τ − τ̃) ∈ (dom Λ∗

Z)o.

Proof. The claims can be proven using an ε-argument similar to the one used the proof of
Lemma 2. The perturbed paths are drawn as the dashed lines in Figure 3; the details are
left to the reader. �

Lemma 2 and Lemma 4 are useful for applying the following proposition.

Proposition 6 Let Assumption 3 hold, and suppose that τΛ∗
Z(e(τ)/τ) has a unique mini-

mizer τ̃ . Moreover, let A be both an I-continuity set and an (I + ξτ̃ )-continuity set.
The exponential twist ξτ̃ (x) = αx(τ̃) is asymptotically efficient if and only if

τ̃Λ∗
Z

(
e(τ̃)
τ̃

)
+ αe(τ̃) = min

{
infτ∈[0,τ̃ ]

(
τΛ∗

Z

(
e(τ)
τ

)
+ infβ∈R

[
(τ̃ − τ)Λ∗

Z

(
β−e(τ)

τ̃−τ

)
+ αβ

])
,

infτ∈(τ̃ ,1] infβ
[
τ̃Λ∗

Z

(
β
τ̃

)
+ (τ − τ̃)Λ∗

Z

(
e(τ)−β

τ−τ̃

)
+ αβ

]}
. (4.5)
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Proof. The claim follows from Corollary 1. Indeed, note that

− inf
x∈X

[I(x) − 〈ξτ̃ , x〉] = Λ(ξτ̃ ) = τ̃ΛZ(α) = αe(τ̃) − τ̃Λ∗
Z(e(τ̃)/τ̃),

so the left hand side of (4.5) is just 2 infx∈A I(x)− infx∈X [I(x)−〈ξτ̃ , x〉]. As discussed before
Lemma 4, there are two possible cases for the minimizing argument of infx∈A[I(x) + αx(τ̃)].
It is immediate that x̌β,τ satisfies for τ ≤ τ̃

I(x̌β,τ ) + αx̌β,τ (τ̃) = τΛ∗
Z

(
e(τ)
τ

)
+ (τ̃ − τ)Λ∗

Z

(
β − e(τ)
τ̃ − τ

)
+ αβ,

where the second term should be interpreted as zero for τ = τ̃ . This corresponds to the left
panel in Figure 3. By the same reasoning, one obtains for the other possible paths x̂β,τ ,

I(x̂β,τ ) + αx̂β,τ (τ̃) = τ̃Λ∗
Z

(
β

τ̃

)
+ (τ − τ̃)Λ∗

Z

(
e(τ) − β

τ − τ̃

)
+ αβ.

Hence, the right hand side of (4.5) equals infx∈A[I(x) + αx(τ̃)]. �

Remark. Equation (4.5) can be slightly simplified using ΛZ . Note that

infβ∈R

[
(τ̃ − τ)Λ∗

Z

(
β−e(τ)

τ̃−τ

)
+ αβ

]
=

−(τ̃ − τ) supβ∈R

[
−αβ−e(τ)

τ̃−τ − Λ∗
Z

(
β−e(τ)

τ̃−τ

)]
+ αe(τ),

and that the sup-term in this expression equals ΛZ(−α) by the duality lemma [Lemma 4.5.8
of Dembo and Zeitouni (1998)]. Thus, (4.5) is equivalent to

τ̃Λ∗
Z

(
e(τ̃)
τ̃

)
+ αe(τ̃) = min

{
infτ∈[0,τ̃ ]

(
τΛ∗

Z

(
e(τ)
τ

)
− (τ̃ − τ)ΛZ(−α) + αe(τ)

)
,

infτ∈(τ̃ ,1] infβ
[
τ̃Λ∗

Z

(
β
τ̃

)
+ (τ − τ̃)Λ∗

Z

(
e(τ)−β

τ−τ̃

)
+ αβ

]}
.

�

Example. Let the Zi have a standard normal distribution, i.e., ΛZ(ξ) = Λ∗
Z(ξ) = 1

2ξ2. Set
e(τ) = 1 + |2τ − 1|. It is easy to check that τΛ∗

Z(e(τ)/τ) = e(τ)2/(2τ) is minimized for
τ̃ = 1/2, and thus α = 2. It is also immediate that e(τ)2/(2τ) + 2τ − 1 + 2e(τ) attains its
minimal value over [0, 1/2] in τ = 1/2. The minimizing β in (4.5) turns out to be 1/(2τ), and
the infimum over [1/2, 1] of the resulting function is τ = 1/2. Consequently, we can estimate
the desired probability efficiently by exponential twisting. Therefore, this example corrects
the unproven claim of Sadowsky (1996) that no exponential twist is asymptotically efficient.

Different behavior is observed if e(τ) = 1 + |τ − 1/2|. Again, τ̃ = 1/2 and α = 2, but now
it turns out that the infimum in (4.5) is attained for τ = 1. Therefore, the same twist as
earlier is now asymptotically inefficient. �

Obviously, to implement the simulation procedure, the exponential twist in the abstract Ba-
nach setting should be translated into an importance sampling distribution for (Z1, . . . , Zn).
Sadowsky (1996) shows that the exponentially θ-twisted distribution of Z,

P θ
Z(dz) := exp(θz − ΛZ(θ))PZ(dz),
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are the ‘building blocks’ for the required exponential twist. Namely, Z1, . . . , Z
nτ̃� should be

sampled from Pα
Z , Z�nτ̃ from P

α(nτ̃−
nτ̃�)
Z , and Z�nτ̃+1, . . . , Zn from PZ ; the Zi should also

be mutually independent. Using the realizations of the Zi, one can construct a sample path
with (4.1). The resulting paths are samples from the exponentially ξτ̃ -twisted distribution
λξτ̃

n .

4.3 Sequential simulation
The remainder of this section is devoted to a simplification of the simulation scheme (i.e.,
the measure λξτ̃

n ) studied in Section 4.2. The new scheme overcomes an intuitive difficulty
with an exponentially twisted change of measure. Suppose a path sampled from λξτ̃

n remains
below e on [0, �nτ̃�/n], it has little chance of hitting e after �nτ̃�/n. Indeed, sampling from
the original measure PZ typically avoids hitting e. By the form of the estimator (2.2), such
a sample path does not contribute to the resulting estimate.

The idea of the simplified simulation scheme is to sample every random variable Zi from
Pα

Z , until e has been hit. The simulation is then stopped. This setup was studied in Sadowsky
(1996), where it was called sequential sampling. Note that this contrasts with exponential
twisting as described in the preceding subsection, since there we twist up to a fixed twist-
horizon nτ̃ . In the simplified setting of this subsection, this horizon is sample-dependent.

Since both exponential twisting and sequential sampling are algorithms for estimating the
same probability, it is legitimate to ask which procedure is better. To answer this question to
some extent, our aim is to develop conditions for asymptotic efficiency of sequential sampling.
These conditions are then the ‘sequential analog’ of Proposition 6.

Intuitively, it depends on the specific form of e if the probability of hitting e on [�nτ̃�/n, 1]
is small enough for the simplification to work. In Proposition 2 of Sadowsky (1996), a
sufficient condition is found in terms of a saddle point inequality. The sufficient condition
of Proposition 7 improves this result significantly. Moreover, our necessary condition is also
extremely ‘close’ to the sufficiency condition.

Throughout this subsection, we adopt the setup and notation that was introduced in Sub-
section 4.1. Also recall the definition of α in Lemma 3. Since the assumptions used here
differ slightly from Assumption 3, it is worth to state them as Assumption 4.

Assumption 4 We assume that

(i) ΛZ(θ) < ∞ for all θ ∈ R,

(ii) PZ is non-degererate,

(iii) τ̃ ∈ arg inf τΛ∗
Z(e(τ)/τ) is unique,

(iv) e(τ̃)/τ̃ ∈ (dom Λ∗
Z)o,

(v) 0 < inft∈[0,1] e(t) < ∞.

In the previous subsection, we have seen that this set of assumptions guarantees that an
LDP holds, and that A is an I-continuity set [Assumption 4(iii) and Assumption 4(iv)], see
Lemma 2. The uniqueness of τ̃ of Assumption 4(iii) is required to have a unique twist α for
the distribution of the Zi.
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Proposition 7 Let Assumption 4 hold, and let e be lower semicontinuous. Sequential sam-
pling is asymptotically efficient if

inf
t∈[0,1]

[
tΛ∗

Z

(
e(t)
t

)
+ αe(t) − tΛZ(α)

]
= 2τ̃Λ∗

Z

(
e(τ̃)
τ̃

)
. (4.6)

Let Assumption 4 hold, and let e be upper semicontinuous. If sequential sampling is asymp-
totically efficient, then

inf
{t∈(0,1]:e(t)/t∈(dom Λ∗

Z)o}

[
tΛ∗

Z

(
e(t)
t

)
+ αe(t) − tΛZ(α)

]
= 2τ̃Λ∗

Z

(
e(τ̃)
τ̃

)
. (4.7)

Proof. It is important to note that (2.6) is equivalent to asymptotic efficiency, since A is an
I-continuity set.

We introduce some notation used throughout the proof.
Notation. Let g : [0, 1] → [0,∞] be given by g(t) := tΛ∗

Z(e(t)/t) for t > 0 and g(0) := 0,
and define f : [0, 1] → [−∞,∞) by

f(t) := −αe(t) + tΛZ(α).

Define for τ ∈ (0, 1]

Ãτ := {x ∈ X : x(t) < e(t) for t ∈ [0, τ), x(τ) ≥ e(τ)},

i.e., Ãτ are the paths that hit e for the first time at τ . Note that the Ãτ are disjoint and that⋃
τ∈[0,1] Ãτ = A.
Paths generated by the sequential sampling procedure are in general no elements of X ,

since the simulation is stopped at some random time. To overcome this, note that stopping a
simulation run is the same as continuing the simulation by drawing from PZ . In other words,
importance sampling is ‘turned off’ in the sense that the sampling distribution becomes PZ

after hitting e. Therefore, the distribution in X of sample paths generated by the sequential
estimation procedure is well-defined and is denoted by µn. One can readily check that on
Ãτ , we have (for x in the support of νn)

dνn

dµn
(x) = exp(−nαx(τ) + nτΛZ(α)). (4.8)

In the proof of the sufficient condition, we use the function ζ : X → [−∞,∞) given by

ζ(x) :=
{

f(τ) if x ∈ Ãτ ;
−∞ otherwise.

Since ζ is in general not upper semicontinuous, we cannot apply Varadhan’s Integral Lemma
to prove the sufficient condition. However, we it is quite fruitful to use some ideas of its proof
[Theorem 4.3.1 in Dembo and Zeitouni (1998)].

The sufficient condition. In the proof it is essential that the functions involved have specific
continuity properties. Obviously, f is upper semicontinuous under the assumption that e is
lower semicontinuous. In order to see that g is lower semicontinuous, let {tn} be a sequence
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in [0, 1] converging to some t ∈ [0, 1]. For t = 0, it certainly holds that lim infn→∞ g(tn) ≥
0 = g(0). Therefore, we assume t > 0. Since inft∈[0,1] e(t)/t > 0 and Λ∗

Z is non-decreasing on
[0,∞) (Z1 is centered), we observe that

lim inf
n

tnΛ∗
Z(e(tn)/tn) = t lim inf

n
Λ∗

Z(e(tn)/tn) = tΛ∗
Z(lim inf

n
e(tn)/tn)

= tΛ∗
Z(lim inf

n
e(tn)/t) ≥ tΛ∗

Z(e(t)/t),

where the last inequality uses the lower semicontinuity of e. Hence, g is lower semicontinuous.
Let ε > 0. For any t ∈ [0, 1], by semicontinuity we know that there exists an open

neighborhood Tt of t with

inf
τ∈Tt

g(τ) ≥ g(t) − ε and sup
τ∈Tt

f(τ) ≤ f(t) + ε. (4.9)

Since
⋃

t∈[0,1] Tt is an open cover of the compact space [0, 1], one can find N and t1, . . . , tN ∈
[0, 1] such that

⋃N
i=1 Tti = [0, 1].

As dνn/dµn ≤ exp(nζ) on each of the sets Ãτ , the cover-argument implies that [see
Lemma 1.2.15 of Dembo and Zeitouni (1998)]

lim sup
n→∞

1
n

log
∫

A

dνn

dµn
dνn ≤ lim sup

n→∞
1
n

log
∫

A
exp(nζ(x))νn(dx)

=
N

max
i=1

lim sup
n→∞

1
n

log
∫
⋃

τ∈Tti
Ãτ

exp(nζ(x))νn(dx).

The integral in this expression can be bounded by noting that ζ is majorized on
⋃

τ∈Tti
Ãτ

using (4.9):

∫
⋃

τ∈Tti
Ãτ

exp(nζ(x))νn(dx) ≤ exp[f(ti) + ε]νn


 ⋃

τ∈Tti

Ãτ




Although
⋃

τ∈Tti
Ãτ is in general not closed, it is contained in the closed set {x : x(t) ≥

e(t) for some t ∈ Tti} [to see that this set is closed, use Lemma 1 for M = e on Tti and
M = ∞ on [0, 1]\Tti ]. Therefore, by the large deviation upper bound, Jensen’s inequality,
and (4.9),

lim sup
n→∞

1
n

log νn


 ⋃

τ∈Tti

Ãτ


 ≤ − inf

{x:x(t)≥e(t) for some t∈Tti}
I(x) = − inf

t∈Tti

g(t) ≤ −g(ti) + ε.

Combining the preceding three displays, we obtain

lim sup
n→∞

1
n

log
∫

A

dνn

dµn
dνn ≤ N

max
i=1

[f(ti) − g(ti)] + 2ε

≤ sup
t∈[0,1]

[f(t) − g(t)] + 2ε.

The sufficiency condition follows by letting ε → 0.



4. Application: Mogul ′skĭı sample-path probabilities 25

The necessary condition. We now turn to the necessary condition. Since A is an I-
continuity set and we suppose that sequential sampling is asymptotically efficient, we have

lim sup
n→∞

1
n

log
∫

A

dνn

dµn
dνn ≤ −2τ̃Λ∗

Z

(
e(τ̃)
τ̃

)
. (4.10)

Let ε > 0. The upper semicontinuity of e implies that for all t ∈ (0, 1] there exists a δ ∈ (0, t)
such that

sup
τ∈(t−δ,t]

e(τ) ≤ e(t) + ε. (4.11)

Fix t ∈ (0, 1], and define

Aδ,ε
t :=

{
x : x(τ) < e(τ) for τ ∈ [0, t − δ]; x(t) > e(t);

x(τ) < sups∈(t−δ,t] e(s) + ε for τ ∈ (t − δ, t]

}
.

Note that Aδ,ε
t ⊂ A and that it is open by the fact that AM

m in Lemma 1 is closed [set
m(t) = e(t) and m = −∞ on [0, 1]\{t}; M = e on [0, t − δ] and M = sups∈(t−δ,t] e(s) + ε on
(t − δ, t]].

We deduce that by definition of Aδ,ε
t ,

1
n

log
∫

A

dνn

dµn
dνn ≥ 1

n
log
∫

Aδ,ε
t

dνn

dµn
dνn

≥ 1
n

log
∫

Aδ,ε
t

exp

(
−nα

[
sup

τ∈(t−δ,t]
e(τ) + ε

]
+ ntΛZ(α)

)
νn(dx)

≥ −α[e(t) + 2ε] + tΛZ(α) +
1
n

log νn(Aδ,ε
t ),

where we used (4.11) for the last inequality.
Recall the definition of γτ and γε

τ in (4.4) and (4.3). Now two cases are distinguised.
Case 1: γt and e do not intersect before t.
Let t be such that γt and e do not intersect before t. Choose δ such that (4.11) is met, and

set

η :=
1
2

min
(

inf
τ∈[0,t−δ]

[e(τ) − γt(τ)] , ε
)

.

By the usual arguments, it is readily seen that η > 0 and γη
t ∈ Aδ,ε

t . Since I(γη
t ) = tΛ∗

Z([e(t)+
η]/t), we have by monotonicity of Λ∗

Z on [0,∞) and the large deviation lower bound,

lim inf
n→∞

1
n

log
∫

A

dνn

dµn
dνn ≥ f(t) − 2αε − inf

x∈Aδ,ε
t

I(x)

≥ f(t) − 2αε − tΛ∗
Z([e(t) + η]/t)

≥ f(t) − 2αε − tΛ∗
Z([e(t) + ε/2]/t).

Since ε was arbitrary, we obtain a nontrivial lower bound if e(t)/t ∈ (dom Λ∗
Z)o.
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An auxiliary result. Before proceeding with the complementary case, we first prove an
auxiliary result: asymptotic efficiency implies that for any t ∈ (0, 1] with e(t)/t ∈ (dom Λ∗

Z)o,

α
e(t)
t

− ΛZ(α) + Λ∗
Z

(
e(t)
t

)
≥ 0. (4.12)

We work towards a contradiction by supposing that (4.12) is not satisfied for some t̂ with
e(t̂)/t̂ ∈ (dom Λ∗

Z)o. Without loss of generality, we may suppose that γt̂ does not intersect
with e before t̂. By the above derived lower bound for ‘Case 1’,

lim sup
n→∞

1
n

log
∫

A

dνn

dµn
dνn ≥ lim inf

n→∞
1
n

log
∫

A

dνn

dµn
dνn

≥ f(t̂) − t̂Λ∗
Z

(
e(t̂)
t̂

)
> 0.

Since −2τ̃Λ∗
Z(e(τ̃)/τ̃) ≤ 0, this contradicts the assumption that sequential sampling is asymp-

totically efficient.
Case 2: γt intersects e before t. We now suppose that γt intersects e before t, and the first

time that this occurs is denoted by t̄ < t. Use e(t)/t = e(t̄)/t̄ and the ‘auxiliary result’ to see
that

−f(t) + tΛ∗
Z

(
e(t)
t

)
= t

[
α

e(t)
t

− ΛZ(α) + Λ∗
Z

(
e(t)
t

)]

≥ t̄

[
α

e(t̄)
t̄

− ΛZ(α) + Λ∗
Z

(
e(t̄)
t̄

)]

= −f(t̄) + t̄Λ∗
Z

(
e(t̄)
t̄

)
.

We conclude that the infimum in (4.7) will not be attained by a t for which γt intersects with
e before t.

Therefore, if sequential sampling is asymptotically efficient, we must have by (4.10)

inf
{t∈(0,1]:e(t)/t∈(dom Λ∗

Z)o}

[
tΛ∗

Z

(
e(t)
t

)
− f(t)

]
≥ − lim inf

n→∞
1
n

log
∫

A

dνn

dµn
dνn

≥ − lim sup
n→∞

1
n

log
∫

A

dνn

dµn
dνn

≥ 2τ̃Λ∗
Z

(
e(τ̃)
τ̃

)
.

The reverse inequality follows from the assumption that e(τ̃)/τ̃ ∈ (dom Λ∗
Z)o. �

As a result of the sufficient condition in Proposition 7, sequential sampling is asymptotically
efficient if the saddle point inequality

αe(t) − tΛZ(α) ≥ τ̃Λ∗
Z(e(τ̃)/τ̃)

holds for all t ∈ [0, 1]. This sufficient condition was given by Sadowsky (1996).
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Example. Consider the example given on page 21, in which e(τ) = 1 + |τ − 1/2|. We saw
already that τ̃ = 1/2 and α = 2. The infimum on the left hand side of (4.6) is attained
at τ = 1/2, which implies that sequential sampling is asymptotically efficient. Note that
exponential twisting was not asymptotically efficient. �

5. Discussion

In case any exponential twist for estimating ν(A) is asymptotically inefficient, there are a
number of alternatives. First of all, it may be possible to write the rare event A as a union of
m < ∞ disjoint rare events A1, . . . , Am, for which the probabilities can be estimated efficiently
by an exponential twist. The sum of these probabilities is then an asymptotically efficient
estimator for ν(A). In many applications, however, A cannot be written in that form. To
overcome this, one can approximate ν(A) by ν(

⋃m
i=1 Ai) for suitably chosen A1, . . . , Am and

bound the error in some sense, as in Boots and Mandjes (2002). A variant of this approach is
based on mixing relevant exponential twists; details can be found in Sadowsky and Bucklew
(1990). In a hitting probability framework, Collamore (2002) uses related ideas to find an
estimator that is arbitrarily ‘close’ to asymptotic efficiency.

Another possibility to deal with asymptotically inefficient exponential twists is the recent
adaptive approach to importance sampling described by Dupuis and Wang (2002). Although
the authors illustrate this approach in an setting based on Cramér’s Theorem, they claim
it is useful in a more general setting. This dynamic exponential twisting contrasts with the
approach taken in this paper, as we consider a fixed exponential twist.

Although our definition of asymptotic efficiency is mathematically convenient, several other
criteria for discriminating between estimators have been proposed. Notably, the amount of
time (or work) required to generate one simulation replication was not taken into account in
our definition of asymptotic efficiency. Glynn and Whitt (1992) elaborate on a definition in
which this is incorporated.

As the application in Section 4 indicates, it requires some work to apply the rather abstract
conditions in a practical problem. In particular, the conditions can be used to find an
efficient exponential twist in an abstract setting, but this twist should be translated in an
implementable change of measure. This translation can only be done on a case by case basis,
if possible at all.
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