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ABSTRACT
In this paper we consider the Generalized Processor Sharing (GPS) mechanism serving two
traffic classes. These classes consist of a large number of independent identically distributed
Gaussian flows with stationary increments. We are interested in the logarithmic asymptotics
or exponential decay rates of the overflow probabilities. We first derive both an upper and
a lower bound on the overflow probability. Scaling both the buffer sizes of the queues and
the service rate with the number of sources, we apply Schilder’s sample-path large deviations
theorem to calculate the logarithmic asymptotics of the upper and lower bound. We discuss
in detail the conditions under which the upper and lower bound match. Finally we show that
our results can be used to choose the values of the GPS weights. The results are illustrated
by numerical examples.
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1 Introduction

A major trend in communication networking is constituted by the integration of a growing
range of traffic types over a common network infrastructure. These traffic types are highly
heterogeneous, with respect to both (i) their diverse Quality-of-Service (QoS) requirements
in terms of packet delay, loss, and throughput metrics, and (ii) their specific (stochastic)
properties. We now comment on both types of heterogeneity.

(i) Heterogeneous QoS, packet scheduling. FIFO queues lack the capability of offering multiple
QoS levels. Hence, if a FIFO queue is used to support traffic classes with heterogeneous QoS
requirements, all classes should be offered the most stringent of these requirements. This
approach clearly leads to inefficient use of network resources: some of the classes get a better
QoS than requested.
The need for efficient QoS-differentiating mechanisms motivates the development of discrim-
inatory scheduling disciplines that actively distinguish between streams of the various traffic
types. Packet versions of the ideal fluid discipline Generalized Processor Sharing (GPS), see
e.g. [22, 23], are considered to be suitable candidates. In GPS, each class is guaranteed a
certain minimum service rate; if one of the classes does not fully use this guaranteed rate,
the residual capacity is redistributed among the other classes (in proportion to their guaran-
teed rates). Note that this makes GPS a work-conserving discipline. GPS is considered as a
promising compromise between isolation and sharing: each traffic class is protected against
‘misbehavior’ of other classes, whereas at the same time significant multiplexing gains between
classes can be achieved.
In this paper we focus on two classes sharing the total service capacity C according to GPS.
We assign guaranteed rate φiC to class i, which can be claimed by class i at any time – the φi

are referred to as weights, i = 1, 2. Both classes are assigned a queue, that fills when the input
rate temporarily exceeds the capacity available. When both classes are backlogged, i.e., have
non-empty queues, both are served at their guaranteed rate. If one of the classes does not
fully use its guaranteed rate, then the unused capacity is made available to the other class. It
is clear that, in order to fully benefit from GPS, the weights should be chosen appropriately.
This is not a straightforward task, that usually relies on expressions (or approximations) for
the buffer content distributions of the queues. Weight setting procedures available from the
literature are often restricted to special classes of input traffic, see, e.g., [11, 13] for the case
of leaky-bucket regulated traffic.

(ii) Heterogeneous traffic, Gaussian models. To model the heterogeneity of the input traffic,
Gaussian source models have proven to be particularly useful. Traditional traffic models,
like for instance Markov-modulated Poisson processes or exponential on-off sources, allow
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only a mildly correlated traffic arrival process. As time correlations decay relatively fast
in these models, they are referred to as short-range dependent. Traffic measurements in the
1990s, however, convincingly showed that for various types of traffic such correlations typically
decay relatively slowly, motivating the use of long-range dependent models [14]. Gaussian
models cover both short-range (for instance Ornstein-Uhlenbeck-type inputs) and long-range
dependent traffic (for instance fractional Brownian motion, abbreviated to fBm), and are
therefore considered to be extremely useful.
A complicating issue in the choice of the appropriate traffic model is the fact that network
traffic is usually influenced by feedback loops (think of TCP), which control how the user’s
traffic supply is transmitted into the network. Kilpi and Norros [12] argue that (non-feedback)
Gaussian traffic models are still justified as long as the aggregation is sufficiently large (both
in time and number of flows), due to Central Limit type of arguments.
The Gaussian model is also justified by several theoretical results. Among these we mention
Taqqu et al. [25], who consider the superposition of many heavy-tailed on-off sources, and
prove convergence of the resulting aggregate traffic process to fBm (after rescaling time ap-
propriately). It was recently shown in [8] that this convergence carries over to the queueing
process, justifying the choice of fBm as a good approximation of traffic inputs in queueing
models.
In this paper we focus on GPS queues with Gaussian inputs. Our framework concentrates
on traffic heterogeneity across the GPS classes, rather than within classes. We assume both
classes to consist of superpositions of i.i.d. sources.

Large deviations. Above we motivated the interest in GPS queues with Gaussian inputs. Our
study focuses on a large-deviations analysis of this model.
Over the past two decades, significant research efforts have been made on the large-deviations
analysis of queueing models. These efforts have culminated in a wealth of contributions to the
understanding of the occurrence of rare events in queues. In particular, the celebrated many-
sources scaling, introduced in the seminal paper of Weiss [27], has provided a rich framework
for obtaining large-deviations results. In a many-sources setting, one considers a queue fed
by the superposition of n i.i.d. traffic sources, with queueing resources (service rates, buffer
thresholds) scaled with n as well. This framework is motivated by the fact that the number of
sources multiplexed in a network resource (particularly in the core) is typically large. Under
mild conditions on the source behavior, explicit expressions are available for the exponential
decay of the probability that the buffer content in a single FIFO queue exceeds a certain level.
Early references in this large-deviations framework are the logarithmic asymptotics found in,
e.g., Botvich and Duffield [5] and Courcoubetis and Weber [6].
In contrast, only few large-deviations results are known for queues operating under a non-
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FIFO scheduling discipline. In [18], Mannersalo and Norros initiated the study of the priority
mechanism, whereas in [19] they examine the GPS discipline. In both papers useful intuition
and heuristics were developed. Their results on the priority mechanism were further enhanced
in [17]; notably a lower bound on the decay rate of overflow in the low-priority queue was found,
as well as conditions under which this lower bound coincides with the exact value. The main
goal of the present paper is to obtain similar rigorous many-sources large-deviation results for
the two-class GPS system. It is noted that GPS in the large-buffer regime (rather than the
many-sources regime) is better understood; significant contributions are, e.g., [4, 26, 28].

Contribution. The results of the paper can be summarized as follows. In the first place, we
derive upper and lower bounds for the overflow probabilities in the two-queue GPS system.
These are generic in that they do not only apply to Gaussian inputs, but in fact to any input
traffic model. Then we evaluate these bounds in the many-sources framework, i.e., we derive
their exponential decay rates (in the number of sources n), after rescaling the link speed C ≡ nc

as well as the buffer threshold B ≡ nb. We do this by using large-deviations machinery, in
particular the multi-dimensional version of the classical Cramér result for sample means, and
the pathwise large-deviations principle of Schilder. We then prove tightness of the derived
bounds under certain conditions, and present an intuitive motivation why tightness can be
expected more generally. Finally we address the problem of finding appropriate weights. In
particular, we focus on the operational issue of finding weights such that the QoS-requirement
is met for all combinations of sources within some predefined region.

The paper is organized as follows. Section 2 deals with preliminaries on GPS, Gaussian sources,
and large deviations. Section 3 presents the generic upper and lower bounds on the overflow
probability of (without loss of generality) queue 1. We first focus on the regime in which the
mean rate of the type-2 sources, nµ2, is below their guaranteed rate nφ2c; lower and upper
bounds on the decay rate are derived in Sections 4 and 5. Section 6 deals with the (easier)
case nµ2 ≥ nφ2c. A discussion on the results is given in Section 7; it turns out that three
generic regimes can be distinguished. Section 8 addresses weight setting procedures. Section
9 concludes.

2 Model and preliminaries

In Section 2.1 we introduce the two-class GPS model with the necessary notation. Then we
discuss in Section 2.2 Gaussian sources. The large-deviations theorems of Cramér and Schilder
will be presented in Section 2.3.
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2.1 Generalized Processor Sharing

We consider a system where traffic is served according to the GPS mechanism, consisting of
two queues sharing a link of capacity nc. We assume the system to be fed by traffic from two
classes, where class i uses queue i, for i = 1, 2. Without loss of generality it is assumed that
both classes consist of n flows (see Remark 2.2). We assign a weight φi ≥ 0 to class i and,
again without loss of generality, assume that these add up to 1, i.e., φ1 + φ2 = 1. The GPS
mechanism then works as follows. Class i receives service at rate nφic when both classes are
backlogged. Because class i gets at least service at rate nφic when it has backlog, we will refer
to it as the guaranteed rate of class i. If one of the classes has no backlog and is transmitting
at a rate less than or equal to its guaranteed rate, then this class is served at its transmission
rate, while the other class receives the remaining service capacity. If both classes are sending
at rates less than their guaranteed rates, then they are both served at their sending rate,
and some service capacity is left unused. We assume that the buffer sizes of both queues are
infinitely large.
Without loss of generality, we focus on the workload of the first queue. The goal of this paper is
to derive the logarithmic asymptotics for the probability that the stationary workload exceeds
a threshold nb. Denoting by Qi,n ≡ Qi,n(0) the stationary workload in the i-th GPS queue at
time 0, the probability of our interest reads

P(Q1,n ≥ nb). (1)

We denote by Aj,i(s, t) the amount of traffic generated by the j-th flow of class i in the
interval (s, t], j = 1, . . . , n, i = 1, 2. Defining Bi,n(s, t) as the total service that was available
for class i in the interval (s, t], we have the following identity:

Qi,n(t) = Qi,n(s) +
n∑

j=1

Aj,i(s, t) − Bi,n(s, t), ∀s < t, with s, t ∈ R. (2)

The stationary queue can be represented by:

Qi,n(0) = sup
t>0






n∑

j=1

Aj,i(−t, 0) − Bi,n(−t, 0)




 , (3)

where the negative optimizing t corresponds to the beginning of the busy period that includes
time 0, as argued in [24]. In Section 3 we rewrite our problem in terms of the empirical mean
processes n−1

∑n
j=1 Aj,i(·, ·), i = 1, 2. We define the realization of n−1

∑n
j=1 Aj,i(0, r) by fi(r),

i.e., we speak of fi(·) as the path of the empirical mean process of class i. By Ai[fi](s, t) we then
denote the value of n−1

∑n
j=1 Aj,i(s, t) for the (given) path fi(·), i.e., Ai[fi](s, t) := fi(t)−fi(s).

For notational convenience we use f(·) to denote the two-dimensional path (f1(·), f2(·)).
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2.2 Gaussian processes

We assume the n flows of class i to be i.i.d. Gaussian processes with stationary increments.
Let Aj,i(s, t) be distributed as Ai(s, t), where Ai(s, t) can be considered as the ‘generic’ ran-
dom variable corresponding to the amount of traffic of a single class-i flow arriving in the
interval (s, t], i = 1, 2. We denote the corresponding mean traffic rate and variance function
by µi and vi(·) respectively: for all s < t, EAi(s, t) = µi(t − s) and VarAi(s, t) = vi(t − s).
We also define the aggregate mean rate µ := µ1 + µ2 and the aggregate variance func-
tion v(·) := v1(·) + v2(·). To guarantee stability, we assume that µ < c. In order to apply
Schilder’s sample-path large-deviations principle (LDP) (Theorem 2.5), we also need to in-
troduce the centered process Āi(t) := Ai(0, t) − µit. The covariance function Γi(s, t) is for
all s < t defined by

Γi(s, t) := Cov[Ai(0, s), Ai(0, t)] = Cov[Āi(s), Āi(t)] =
1
2
(vi(s) + vi(t) − vi(t − s)).

Finally we make the following assumptions on the variance function.

Assumption 2.1 We assume that, for i = 1, 2, (A1) vi(·) is continuous, differentiable on
(0,∞); (A2)

√
vi(·) is strictly increasing and strictly concave; (A3) for some α < 2 it holds

that vi(t)t−α → 0 as t → ∞.

Assumptions (A1) and (A3) are required to apply ‘Schilder’, see [1]. Assumption (A2) is
needed in the proof of Lemma 5.9.

Remark 2.2 Above we assumed that both classes consist of n sources, but the analysis can
be easily extended to the case of an unequal number of sources. The scenario with class i

having nβi flows, mean µi and variance vi(·) is equivalent to a scenario where class i has n flows,
mean βiµi and variance βivi(·), due to the infinitely divisibility of the Gaussian distribution.

2.3 Sample-path large deviations

The analysis in the present paper relies on a sample-path LDP for (centered) Gaussian pro-
cesses. This subsection is devoted to a brief description of the main theorem in this field, (the
generalized version of) Schilder’s theorem [3]. However, we start by recalling the multivariate
version of the well-known Cramér’s theorem, see [9, Thm. 2.2.30].

Theorem 2.3 [Multivariate Cramér] Let Xj ∈ Rd be i.i.d. d-dimensional random vectors,
j = 1, . . . , n, distributed as a random vector X. Then n−1

∑n
j=1 Xj satisfies the following

LDP:
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(a) For any closed set F ⊂ Rd,

lim sup
n→∞

1
n

log P



 1
n

n∑

j=1

Xj ∈ F



 ≤ − inf
x∈F

Λ(x);

(b) For any open set G ⊂ Rd,

lim inf
n→∞

1
n

log P



 1
n

n∑

j=1

Xj ∈ G



 ≥ − inf
x∈G

Λ(x),

where the large-deviations rate function Λ(·) is given by

Λ(x) := sup
θ∈Rd

(
〈θ, x〉 − log Ee〈θ,X〉

)
, (4)

with the notation 〈 , 〉 denoting the usual inner product: 〈a, b〉 := aTb =
∑d

i=1 aibi.

Remark 2.4 Consider the specific case that X has a multivariate Normal distribution with
mean vector µ and (d × d) non-singular covariance matrix Σ. Using log Ee〈θ,X〉 = 〈θ, µ〉 +
1
2θTΣθ, it is not hard to derive that, with (x − µ)T ≡ (x1 − µ1, . . . , xd − µd),

θ� = Σ−1(x − µ) and Λ(x) =
1
2
(x − µ)TΣ−1(x − µ), (5)

where θ� optimizes (4); it is well-known that Λ(·) is convex.

We now sketch the framework of Schilder’s sample-path LDP, as established in [3], see also
[10]. We restrict ourselves to the aspects that are relevant in the present study; for more details
we refer to [1, 18, 21]. Consider, n i.i.d. centered Gaussian processes Āj,i(·), for i = 1, 2, with
stationary increments and covariance Cov[Āj,i(s), Āj,i(t)] = Γi(s, t). Define, for i = 1, 2, the
path space Ωi as

Ωi :=
{

ωi : R → R, continuous, ωi(0) = 0, lim
t→∞

ωi(t)
1 + t

= lim
t→−∞

ωi(t)
1 + t

= 0
}

,

which is a separable Banach space by imposing a specific norm, as explained in [18]. We adhere
to the approach in [18] by choosing Ω = Ω1 × Ω2 as our path space, where

{
Āj,1(·)

}n

j=1
and{

Āj,2(·)
}n

j=1
are independent.

Next we introduce and define the reproducing kernel Hilbert space Ri ⊆ Ωi – see [2] for a more
detailed account – with the property that its elements are roughly as smooth as the covariance
functions Γi(s, ·). We start from a ‘smaller’ space Si, defined by

Si :=




ωi : R → R, ωi(·) =
n∑

j=1

aj,iΓi(sj , ·), aj,i, sj ∈ R, j = 1, . . . , n; n ∈ N




 .
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The inner product on this space Si is, for ωa,i, ωb,i ∈ Si, defined as

〈ωa,i, ωb,i〉Ri
:=

〈
n∑

j=1

aj,iΓi(sj , ·),
n∑

k=1

bk,iΓi(sk, ·)
〉

Ri

=
n∑

j=1

n∑

k=1

aj,ibk,iΓi(sj , sk); (6)

notice that this implies 〈Γi(s, ·), Γi(·, t)〉Ri
= Γi(s, t). We now define the norm ||ωi||Ri

:=√〈ωi, ωi〉Ri
. The closure of Si under this norm is defined as the space Ri. Because we have

assumed the processes Āj,1(·) and Āj,2(·) to be independent, we can define the reproducing
kernel Hilbert space of the bivariate process (Āj,1(·), Āj,2(·)) by R := R1 × R2. The inner
product in R, with ωa,i, ωb,i ∈ Ri, obviously reads

〈(ωa,1, ωa,2), (ωb,1, ωb,2)〉R = 〈ωa,1, ωb,1〉R1 + 〈ωa,2, ωb,2〉R2 .

Now we can define the rate function of the sample-path LDP by

I(ω) :=

{
1
2 ||ω||2R if ω ∈ R;
∞ otherwise.

(7)

Under assumptions (A1) and (A3) the following sample-path LDP holds.

Theorem 2.5 [Generalized Schilder] n−1
∑n

j=1 Āj,i(·) satisfies the following LDP:
(a) For any closed set F ⊂ Ω,

lim sup
n→∞

1
n

log P



 1
n

n∑

j=1

Āj,i(·) ∈ F



 ≤ − inf
ω∈F

I(ω);

(b) For any open set G ⊂ Ω,

lim inf
n→∞

1
n

log P



 1
n

n∑

j=1

Āj,i(·) ∈ G



 ≥ − inf
ω∈G

I(ω).

3 Generic upper and lower bound on the probability

In a GPS framework the workloads of the queues are intimately related: it is not possible to
write down an explicit expression for Qi,n(0), for i = 1, 2, without using the evolution of the
workload in the other queue. This makes the analysis of GPS systems hard. In this section we
derive explicit upper and lower bounds for Q1,n(0) in terms of the processes

∑n
j=1 Aj,i(·, ·),

i = 1, 2.
In the remainder of this paper, we have to distinguish between two regimes. The most involved
regime is µ2 < φ2c, which we refer to as underload for class 2. In this regime, class 2 is stable
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regardless of the behavior of the other class. The other regime is µ2 ≥ φ2c, the regime where
class 2 is said to be in overload. Although the bounds that are derived in this section hold
for both regimes, they are only useful in the regime with underload for class 2 – they will be
exploited in Sections 4 and 5. The analysis for the regime with class 2 in overload is presented
in Section 6.
Note that the results in this section hold regardless of the distribution of the inputs. We
mention that bounds similar to the ones that we apply in the next lemmas, have been used
in [26, 28].

Trivially, we can rewrite the overflow probability to

P (Q1,n(0) ≥ nb) = P




⋃

x≥0

{Q1,n(0) + Q2,n(0) ≥ nx + nb, Q2,n(0) ≤ nx}


 . (8)

Because of the work-conserving nature of GPS, it is easily seen that the following relation
holds for the total queue:

Q1,n(0) + Q2,n(0) = sup
t>0






n∑

j=1

(Aj,1(−t, 0) + Aj,2(−t, 0)) − nct




 . (9)

Substituting this relation for Q1,n(0) + Q2,n(0) in the right-hand side of (8), we find

P




⋃

x≥0




sup
t>0






n∑

j=1

(Aj,1(−t, 0) + Aj,2(−t, 0)) − nct




 ≥ nx + nb, Q2,n(0) ≤ nx








. (10)

We denote the optimizing t in the above supremum by t�. Following [24], −t� can be in-
terpreted as the beginning of the busy period of the total queue containing time 0. Next we
consider Q2,n(0). Let us denote by −s� the beginning of the busy period of queue 2 containing
time 0. Then clearly, s� ∈ [0, t�], since the busy period of the total queue cannot start after
the start of the busy period of queue 2. Now using the supremum relation (3), we obtain

Q2,n(0) = sup
s∈(0,t]






n∑

j=1

Aj,2(−s, 0) − B2,n(−s, 0)




 . (11)

In order to find bounds for P(Q1,n(0) ≥ nb), it follows from (10) that we need to bound the
class-2 workload at time 0, Q2,n(0). Given its representation in (11), this means that we have
to find bounds on the service that was available for class 2 during the busy period containing
time 0.

9



We introduce the following additional notation:

En :=






∃x ≥ 0, t > 0 : ∀s ∈ (0, t] :
(1/n)

∑n
j=1 (Aj,1(−t, 0) + Aj,2(−t, 0)) ≥ x + b + ct,

(1/n)
∑n

j=1 Aj,2(−s, 0) ≤ x + φ2cs





;

Fn :=






∃x ≥ 0, t > 0 : ∀s ∈ (0, t] : ∃u ∈ [0, s) :
(1/n)

∑n
j=1 (Aj,1(−t, 0) + Aj,2(−t, 0)) ≥ x + b + ct,

(1/n)
∑n

j=1 (Aj,2(−s, 0) + Aj,1(−s,−u)) ≤ x + φ1cu − cs





.

In the next lemmas we derive the lower and upper bound for the overflow probability of class 1.

Lemma 3.1 [Lower bound]

P (Q1,n(0) ≥ nb) ≥ P (En) .

Proof. Recall that −s� denotes the beginning of the busy period of queue 2 that contains
time 0. Hence, the workload of class 2 is positive in the interval (−s�, 0], indicating that class 2
claims at least its guaranteed rate in this interval: B2,n(−s�, 0) ≥ nφ2cs

�. Using this lower
bound in (11), we derive

Q2,n(0) ≤ sup
s∈(0,t]






n∑

j=1

Aj,2(−s, 0) − φ2ncs




 . (12)

The lower bound for P(Q1,n(0) ≥ nb) is now found by substituting (12) for Q2,n(0) in (10). �

Lemma 3.2 [Upper bound]

P (Q1,n(0) ≥ nb) ≤ P (Fn) .

Proof. From (11) it follows that we need an upper bound for B2,n(−s�, 0). We distinguish
between two scenarios: (a) queue 1 is strictly positive during (−s�, 0] and (b) queue 1 has
been empty at some time in (−s�, 0].

(a) Since both queues are strictly positive during (−s�, 0], both classes claim their guaranteed
rate, i.e., B2,n(−s�, 0) = nφ2cs

�.

(b) Trivially, B2,n(−s�, 0) ≤ ncs� − B1,n(−s�, 0). Bearing in mind that queue 1 has been
empty in (−s�, 0], we define u� := inf{u ∈ [0, s�) : Q1,n(−u) = 0}. Hence both queues
were strictly positive during (−u�, 0], and consequently both classes are assigned their

10



guaranteed rates. Together with (2) this yields

B1,n(−s�, 0) = B1,n(−s�,−u�) + B1,n(−u�, 0)

= Q1,n(−s�) +
n∑

j=1

Aj,1(−s�,−u�) + nφ1cu
�

≥ inf
u∈[0,s�)






n∑

j=1

Aj,1(−s�,−u) + nφ1cu




 .

This implies

B2,n(−s�, 0) ≤ ncs� − inf
u∈[0,s�)






n∑

j=1

Aj,1(−s�,−u) + nφ1cu




 . (13)

As the right hand side of (13) is larger than nφ2cs
�, we derive

B2,n(−s�, 0) ≤ ncs� − inf
u∈[0,s�)






n∑

j=1

Aj,1(−s�,−u) + nφ1cu




 .

We now use this upper bound in (11) to obtain

Q2,n(0) ≥ sup
s∈(0,t]






n∑

j=1

Aj,2(−s, 0) − ncs + inf
u∈[0,s)






n∑

j=1

Aj,1(−s,−u) + nφ1cu









 .

Substituting this for Q2,n(0) in (10) then yields the desired upper bound. �

Remark 3.3 Compare the sets En and Fn; evidently, En ⊆ Fn. Any path f of the sample-
mean process in Fn defines epochs u� and s� (as identified in the proof of Lemma 3.2). It
is not hard to see that if these epochs match, f is also in En. From the proof of Lemma 3.2,
taking u� = s� means that scenario (a) applies, where queue 1 is strictly positive during the
busy period of queue 2 containing time 0. These simple observations turn out to play a crucial
role in the discussion presented in Section 7.

4 Lower bound on the decay rate: class 2 in underload

Sections 4 and 5 concern the regime in which class 2 is in underload, i.e., µ2 < φ2c. In Section 4
we determine the decay rate of the upper bound on P(Q1,n(0) ≥ nb) as presented in Lemma 3.2.
Then in Section 5 we calculate the decay rate of the lower bound on P(Q1,n(0) ≥ nb) as
presented in Lemma 3.1.
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Because of Lemma 3.2,

− lim sup
n→∞

1
n

log P (Q1,n(0) ≥ nb) ≥ − lim sup
n→∞

1
n

log P (Fn) .

We now investigate the decay rate in the right-hand side of the previous display. Defining the
set of paths

As,t,u
b,x :=

{
f

∣∣∣∣∣
A1[f ](−t, 0) + A2[f ](−t, 0) ≥ x + b + ct,

A2[f ](−s, 0) + A1[f ](−s,−u) ≤ x − φ1cu + cs

}
,

Schilder’s sample-path LDP yields

− lim
n→∞

1
n

log P (Fn) = inf
x≥0

JL(b, x), where JL(b, x) := inf
t>0

inf
f∈ ⋂

s∈(0,t]

⋃
u∈[0,s)

As,t,u
b,x

I(f). (14)

Notice that we used that the decay rate of a union of events is just the infimum of the
individual decay rates. Unfortunately, we do not have such a relation for an intersection
of events. However, it is possible to find an explicit lower bound, as presented in the next
theorem.

Theorem 4.1

− lim sup
n→∞

1
n

log P (Q1,n(0) ≥ nb) ≥ − inf
x≥0

JL(b, x)

where

JL(b, x) ≥ inf
t>0

sup
s∈(0,t]

inf
u∈[0,s)

inf
f∈As,t,u

b,x

I(f). (15)

Proof. The first claim follows directly from the above. Now consider the second claim.
Because for all s ∈ (0, t], for given t,

⋂

r∈(0,t]

⋃

u∈[0,r)

Ar,t,u
b,x ⊆

⋃

u∈[0,s)

As,t,u
b,x ,

we have for all s ∈ (0, t],

inf
f∈ ⋂

s∈(0,t]

⋃
u∈[0,s)

As,t,u
b,x

I(f) ≥ inf
f∈ ⋃

u∈[0,s)
As,t,u

b,x

I(f).

Hence, it also holds for the maximizing s,

inf
f∈ ⋂

s∈(0,t]

⋃
u∈[0,s)

As,t,u
b,x

I(f) ≥ sup
s∈(0,t]

inf
f∈ ⋃

u∈[0,s)
As,t,u

b,x

I(f).

This implies the second claim. �
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5 Upper bound on the decay rate: class 2 in underload

This section concentrates on the decay rate of the lower bound on P(Q1,n(0) ≥ nb) as given
in Lemma 3.1. The procedure turns out to be more involved than that of Section 4.

Because of Lemma 3.1,

− lim inf
n→∞

1
n

log P (Q1,n(0) ≥ nb) ≤ − lim inf
n→∞

1
n

log P (En) .

We now investigate the decay rate in the right-hand side of the previous display. Define the
set of paths

As,t
b,x := {f | A1[f ](−t, 0) + A2[f ](−t, 0) ≥ x + b + ct, A2[f ](−s, 0) ≤ x + φ2cs}.

Similarly to Theorem 4.1, Schilder’s sample-path LDP yields the following upper bound.

Lemma 5.1

− lim inf
n→∞

1
n

log P (Q1,n(0) ≥ nb) ≤ inf
x≥0

JU (b, x), where JU (b, x) := inf
t>0

inf
f∈ ⋂

s∈(0,t]
As,t

b,x

I(f).

The objective of this section is to prove that, under some assumptions,

JU (b, x) = inf
t>0

sup
s∈(0,t]

inf
f∈As,t

b,x

I(f). (16)

Again, because of the fact that an intersection is involved, no explicit expression for JU (b, x)
is available. We therefore take the following approach: we first derive in Section 5.1 a lower
bound for JU (b, x), and then in Section 5.2 we give conditions under which this lower bound
matches the exact value of JU (b, x).

Remark 5.2 Notice the similarity between the right-hand sides of (15) and (16), in particular
if the optimizing s and u in (15) coincide, see also Remark 3.3.

5.1 Lower bound on JU(b, x)

The following lemma gives a lower bound for JU (b, x). Its proof is analogous to that of the
second claim in Theorem 4.1.

Lemma 5.3

JU (b, x) ≥ inf
t>0

sup
s∈(0,t]

inf
f∈As,t

b,x

I(f).
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The lower bound in Lemma 5.3 can be expressed more explicitly. To this end, we first concen-
trate on calculating the minimum of I(f) over f ∈ As,t

b,x, for fixed s andt. The result, as stated
in Lemma 5.4, requires the introduction of two functions. First recall the large-deviations rate
function Λ(·, ·), of the bivariate Normal random variable (A1(−t, 0)+A2(−t, 0), A2(−s, 0)), as
given in (5),

Λ(y1, y2) :=
1
2

(
y1 − µt

y2 − µ2s

)T

Σ(s, t)−1

(
y1 − µt

y2 − µ2s

)
, Σ(s, t) =

(
v(t) Γ2(s, t)

Γ2(s, t) v2(s)

)
.

We also define

ki(x, s, t) := µis +
(x + b + (c − µ)t)

v(t)
Γi(s, t).

Lemma 5.4 For s ∈ (0, t],

inf
f∈As,t

b,x

I(f) = Υb,x(s, t) :=

{
Λ(x + b + ct, x + φ2cs), if k2(x, s, t) > x + φ2cs;

(x + b + (c − µ)t)2/2v(t), if k2(x, s, t) ≤ x + φ2cs.

Proof. Using Theorem 2.3,

inf
f∈As,t

b,x

I(f) = inf
y1≥x+b+ct,y2≤x+φ2cs

Λ(y1, y2).

Because Λ(·, ·) is convex in y1 and y2, we can use the Lagrangian to find the infimum over y1

and y2:

L(y1, y2, ξ1, ξ2) = Λ(y1, y2) − ξ1(y1 − x − b − ct) + ξ2(y2 − x − φ2cs),

with ξ1, ξ2 ≥ 0. Two cases may occur, depending on the specific values of x, s and t. (i) If x, s

and t are such that k2(x, s, t) > x+φ2cs, then both constraints are binding, i.e., y1 = x+b+ct

and y2 = x + φ2cs. (ii) If x, s and t are such that k2(x, s, t) ≤ x + φ2cs, then only the first
constraint is binding, i.e., y1 = x + b + ct, and y2 = k2(x, s, t). �

Remark 5.5 Note that the θ� in Theorem 2.3 are related to the Lagrange multipliers ξ1 and
ξ2 that are used in the proof of Lemma 5.4. In case (i) θ�

1(s, t) = ξ1 > 0 and θ�
2(s, t) = −ξ2 > 0,

whereas in case (ii) θ�
1(s, t) = ξ1 > 0 and θ�

2(s, t) = −ξ2 = 0.

Observe that Υb,x(s, t) is continuous at s ↓ 0, i.e.,

Υb,x(0, t) =
(x + b + (c − µ)t)2

2v(t)
.

Now Lemmas 5.3 and 5.4 yield the final lower bound for JU (b, x), as stated in the next
corollary.
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Corollary 5.6

JU (b, x) ≥ inf
t>0

sup
s∈(0,t]

Υb,x(s, t).

Interpretation of Υb,x(s, t). The decay rate I(f) can be interpreted as the cost of having a
path f , and, likewise, Υb,x(s, t) as the cost of generating a traffic pattern in the set As,t

b,x.
The proof of Lemma 5.4 shows that the first constraint, i.e., y1 ≥ x + b + ct is always binding,
whereas the second constraint, i.e., y2 ≤ x+φ2cs, is sometimes binding, depending on the value
of k2(x, s, t) compared to x+φ2cs. Observe that k2(x, s, t) is in fact a conditional expectation:

k2(x, s, t) ≡ E[A2(−s, 0) | A1(−t, 0) + A2(−t, 0) = x + b + ct].

The two cases of Lemma 5.4 can now be interpreted as follows. (i) The optimal value for y2 is
x + φ2cs. In this case, k2(x, s, t), which is the expected value of the amount of traffic sent by
class 2 in (−s, 0] given that in total x + b + ct is sent during (−t, 0], is larger than x + φ2cs:
with high probability the second constraint is not met just by imposing the first constraint.
In terms of cost, this means that in this regime additional cost is incurred by imposing the
second constraint. (ii) The optimal value for y2 is precisely k2(x, s, t), and is smaller than x +
φ2cs: A1(−t, 0) + A2(−t, 0) = x + b + ct implies A2(−s, 0) > x + φ2cs with high probability.
Intuitively this means that, given that the first constraint is satisfied, the second constraint is
already met, with high probability.

Using this reasoning, it follows after some calculations that we can rewrite Υb,x(s, t) in a
helpful way as shown in the next corollary. The first term accounts for the cost of satisfying
the first constraint in As,t

b,x, the second term (which is possibly 0) for the second constraint.

Corollary 5.7

Υb,x(s, t) =
(x + b + ct − E[A1(−t, 0) + A2(−t, 0)])2

2Var[A1(−t, 0) + A2(−t, 0)]

+
max2 {E[A2(−s, 0) | A1(−t, 0) + A2(−t, 0) = x + b + ct] − x − φ2cs, 0}

2Var[A2(−s, 0) | A1(−t, 0) + A2(−t, 0) = x + b + ct]
.

Two regimes for φ2. Corollary 5.7 implies that

inf
t>0

sup
s∈(0,t]

Υb,x(s, t) ≥ inf
t>0

(x + b + (c − µ)t)2

2v(t)
. (17)

Let the optimum in the right-hand side be attained in tc (which is, in fact, a function of x, but
we suppress x here, as x is held fixed in this section). Suppose that for all s ∈ (0, tc] it holds
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that k2(x, s, tc) < x + φ2cs, then obviously the inequality in (17) is tight. This corresponds to
a critical weight φc,U

2 (x) above which there is tightness. This critical value is given by

φc,U
2 (x) := inf

{
φ2 : sup

s∈(0,tc]

{k2(x, s, tc) − x − φ2cs} ≤ 0

}

≡ sup
s∈(0,tc]

k2(x, s, tc) − x

cs
. (18)

The resulting two regimes can be intuitively described as follows.

Large φ2. If φ2 > φc,U
2 (x), using the interpretation in terms of conditional expectations, the

buffer content of queue 2 at time 0 is likely to be below nx. Hence, if in total n(x + b + ctc)
is sent during (−tc, 0], it is likely that at time 0, the buffer of class 1 has value nb.

Small φ2. If φ2 < φc,U
2 (x) then the guaranteed rate for class 2 is relatively small, meaning

that its buffer content may easily grow. Again in total (at least) n(x + b + ctc) has been sent
during the interval (−tc, 0], but now it is not obvious that most of it goes to the buffer of
class 1. Class 2 has to be ‘forced’ to take at most its guaranteed rate during this interval.

5.2 Conditions for exactness

As the overflow behavior in case of φ2 ≥ φc,U
2 (x) is essentially different from that in case

of φ2 < φc,U
2 (x), we will consider in this section the two regimes separately.

The procedure followed will be the same for both regimes. Let us denote the optimizing s

and t in Corollary 5.6 by s� and t�, respectively. (Notice that s� and t� are functions of x,
but, for conciseness, we again suppress the argument x.) First we use Schilder’s theorem to
determine the most probable path in As�,t�

b,x for the regime of φ2 under consideration. Denoting
this optimal path by f� we then check whether

f� ∈



⋃

t≥0

⋂

s∈(0,t]

As,t
b,x



 . (19)

If so, the optimal path giving rise to the lower bound of Corollary 5.6, is in fact the optimal path
for Ju(b, x). Consequently, under the condition (19), the lower bound and Ju(b, x) coincide.

Case A: φ2 larger than critical weight

Because of the definition of φc,U
2 (x), it holds for all φ2 ≥ φc,U

2 (x) that

inf
t>0

sup
s∈(0,t]

Υb,x(s, t) =
(x + b + (c − µ)tc)2

2v(tc)
,
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as identified before. The next theorem states that, for these φ2, the lower bound on JU (b, x)
(see Corollary 5.6) actually equals JU (b, x). We omit its proof because it essentially follows
from the proof of Theorem 3.9 in [17].

Theorem 5.8 If φ2 ≥ φc,U
2 (x), then

JU (b, x) = inf
t>0

sup
s∈(0,t]

Υb,x(s, t) =
(x + b + (c − µ)tc)2

2v(tc)
,

and the most probable paths are, for r ∈ [−tc, 0),

f�
1 (r) = −E[A1(r, 0) | A1(−tc, 0) + A2(−tc, 0) = x + b + ctc] = −k1(x,−r, tc);

f�
2 (r) = −E[A2(r, 0) | A1(−tc, 0) + A2(−tc, 0) = x + b + ctc] = −k2(x,−r, tc).

Case B: φ2 smaller than critical weight

The analysis of this regime is more involved than that of case A. First we will show in the
next lemma that in this regime both constraints in Lemma 5.4 are met with equality. Its proof
is omitted here, as it is along the lines of Lemma 3.10 in [17]. Note that Assumptions (A2)
and (A3) are used in the proof.

Lemma 5.9 If φ2 < φc,U
2 (x), then k2(x, s�, t�) > x + φ2cs

�.

The next lemma gives the most probable paths in the set As,t
b,x for the regime where for given x, s

and t we have that k2(x, s, t) > x+φ2cs. We give the most probable paths for r ∈ [−t, 0), but
they can be trivially extended to the entire real axis.

Lemma 5.10 If k2(x, s, t) > x + φ2cs, then, for r ∈ [−t, 0), the most probable paths in As,t
b,x

are

f1(r) = −E[A1(r, 0) | A1(−t, 0) + A2(−t, 0) = x + b + ct, A2(−s, 0) = x + φ2cs];

f2(r) = −E[A2(r, 0) | A1(−t, 0) + A2(−t, 0) = x + b + ct, A2(−s, 0) = x + φ2cs].

Proof. This is shown by using the arguments of the proofs of Lemma 3.11 in [17] and
Proposition 1 in [21]. �

Easy calculations show that we can rewrite the above-mentioned paths as

f1(r) = µ1r − θ�
1(s, t)Γ1(−r, t);

f2(r) = µ2r − θ�
1(s, t)Γ2(−r, t) − θ�

2(s, t)Γ2(−r, s),
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where the θ� follow from Theorem 2.3 (see also Remark 5.5). Interestingly, only one covariance
function is involved in the most probable path of class 1, meaning that its path will be
symmetric around −1

2 t.

Now we present conditions under which the lower bound of Corollary 5.6 matches JU (b, x),
with an approach that is similar to the one followed in [17] for tandem and priority queues.
First we introduce new notation. For r1 < r2,

EAi(r1, r2) := E[Ai(r1, r2) | A1(−t�, 0) + A2(−t�, 0) = x + b + ct�], i = 1, 2,

with Var(·) and Cov(·, ·) defined similarly. For r ∈ (−t�, 0) we define the functions

m(r) :=
EA2(r, 0) − x + φ2cr√

VarA2(r, 0)
, m(r) :=

m(r)
m(−s�)

,

ρ(r) :=
Cov(A2(r, 0), A2(−s�, 0))√
VarA2(r, 0) VarA2(−s�, 0)

.

Again, we should formally write mx(·) and ρx(·) to indicate the dependence on x, but we
leave out the subscript x in this section. Both m(·) and ρ(·) attain a maximum 1 at r = −s�;
for m(·) this follows from Corollary 5.7 and Lemma 5.9; for ρ(·) from the fact that it is a
correlation coefficient.

Theorem 5.11 If φ2 < φc,U
2 (x), then

JU (b, x) = inf
t>0

sup
s∈(0,t]

Υb,x(s, t) = Λ(x + b + ct�, x + φ2cs
�),

under the condition that m(r) ≤ ρ(r) for all r ∈ (−t�, 0). The corresponding most probable
paths are, for i = 1, 2,

f�
i (r) = −E[Ai(r, 0) | A2(−s�, 0) = x + φ2cs

�].

Proof. We have to show that (19) holds. Straightforward calculations show that indeed
A1[f�](−t�, 0) + A2[f�](−t�, 0) = x + b + ct�, as desired. Now it remains to be shown that,
if m(r) ≤ ρ(r) for all r ∈ (−t�, 0), then A2[f�](r, 0) ≤ x − φ2cr for all r ∈ (−t�, 0) . This
follows immediately from the following (standard) decomposition:

A2[f�](r, 0) = −f�
2 (r)

= EA2(r, 0) +
Cov[A2(r, 0), A2(−s�, 0)]

VarA2(−s�, 0)
(
x + φ2cs

� − EA2(−s�, 0)
)
.

The fact that the decay rate now equals Λ(x + b + ct�, x + φ2cs
�) is due to Lemma 5.9. This

proves the stated. �
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Remark 5.12 Note that the condition m(r) ≤ ρ(r) for all r ∈ (0, t�) only involves properties
of the class-2 input process. The above Theorem 5.11 therefore holds for any class-1 Gaussian
process with stationary increments.

Remark 5.13 Following the approach in [17], the optimal input rate paths g1(·) and g2(·),
which are the first derivatives of f�

1 (·) and f�
2 (·), can be calculated. Assuming v′(0) = 0,

these paths exhibit similar properties as those in [17]: (i) g1(−t�) + g2(−t�) = c and (ii)
g2(−s�) = φ2c. Hence, at time −t� the total input rate is c, making the server operate at full
capacity. Then at time −s� the total input rate of queue 2 is φ2c, meaning that queue 2 starts
claiming its guaranteed rate.

6 Analysis of the decay rate: class 2 in overload

In this section the decay rate of P(Q1,n(0) ≥ nb) is calculated for the regime φ2c ≤ µ2.

Theorem 6.1 If φ2 ≤ µ2/c, then

− lim
n→∞

1
n

log P(Q1,n(0) ≥ nb) = inf
t≥0

(b + (φ1c − µ1)t)2

2v1(t)
. (20)

Proof. We first show that the desired expression is a lower bound. Denote by Qnc
i,n(0) the

stationary workload of queue i if it is served (in isolation) at a constant rate nc. Then the
lower bound follows from

P(Q1,n(0) ≥ nb) ≤ P



∃t > 0 :
1
n

n∑

j=1

Aj,1(−t, 0) ≥ b + φ1ct



 ,

due to Q1,n(0) ≤ Qnφ1c
1,n (0).

The upper bound is a matter of computing the rate function of a feasible path. Let t� be the
optimizer in the right-hand side of (20). For r ∈ [−t�, 0) define

f�
1 (r) := −E[A1(r, 0) | A1(−t�, 0) = b + φ1ct

�] = µ1r − (b + (φ1c − µ1)t�)
v1(t�)

Γ1(−r, t�);

f�
2 (r) := −E[A2(r, 0) | A1(−t�, 0) = b + φ1ct

�] = µ2r.

This path clearly leads to overflow in queue 1 of the GPS system (as the type-2 sources claim
their weight, such that exactly service rate nφ1c is left for the type-1 sources). The norm
of f�

2 (·) is obviously 0, as these sources are transmitting at mean rate; the rate function
corresponding to f�

1 (·) equals the desired expression. �
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7 Discussion of the results

In this section we will discuss the results of the previous sections. We identify three regimes
for the value of φ2, corresponding to three generic overflow scenarios. Case (i) directly relates
to the overload regime of Section 6; Cases (ii) and (iii) to the underload regime of Sections 4
and 5.
For Case (i) our analysis immediately yields the exact decay rate, see Theorem 6.1. For Cases
(ii) and (iii), however, the situation is more complicated. Theorems 4.1, 5.8, and 5.11 provide
bounds on the decay rate. We strongly believe, however, that under fairly general conditions
these bounds coincide. This claim is justified (1) by heuristic arguments in Section 7.1, (2) by
extensive numerical experiments, as reported in Section 7.2, and (3) by explicit results for the
special case of Brownian motion input in Section 7.3. In this section we use J(b) to denote
the decay rate of P(Q1,n(0) ≥ nb), given that it exists.

7.1 Structure of the solution

Ad Case (i): Class 2 in overload. First consider the situation φ2 ≤ µ2/c =: φo
2. In this scenario

the type-2 sources claim their guaranteed rate nφ2c with overwhelming probability, so that
overflow in queue 1 resembles overflow in a FIFO queue with link rate nφ1c; this principle
plays a crucial role in the proof of Theorem 6.1. We repeat it here for comparison with Cases
(ii) and (iii).

For φ2 ∈ [0, φo
2] :

J(b) = inf
t>0

(b + (φ1c − µ1)t)2

2v1(t)
.

Ad Case (ii): Class 2 in underload, with φ2 small. As argued in Sections 4 and 5, in this
regime it is not sufficient to require that n(x + b + ct) traffic is generated in t units of time,
since, with high probability, a considerable amount of traffic will be left in queue 2. Hence,
additional effort is required to ensure that queue 2 stays below nx.

Based on heuristic arguments, we present two claims.

A. Regarding the optimal values of u and s. Recall the probabilistic upper bound in
Lemma 3.2. In the proof of that lemma, −s� denotes the beginning of the busy period of
the second queue, which contains time 0. Hence, the second queue remains backlogged
during the interval (−s�, 0] and claims at least its guaranteed rate nφ2c, leaving at most
rate nφ1c to the first queue. Parallelling the proof of Lemma 3.2, two scenarios are
possible: in scenario (a) queue 1 was continuously backlogged during (−s�, 0], whereas
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in scenario (b), queue 1 has been empty after time −s�, i.e., queue 1 was empty at some
time −u� during the busy period of queue 2.

Scenario (b) is not likely to be optimal, for the following reason. As queue 1 was empty
at −u�, it does not benefit from any effort before −u�; queue 1 has to build up its
entire buffer in the interval (−u�, 0]. Now recall that queue 2 already started to show
deviant behavior from time −s� < −u�, claiming its guaranteed rate. However this
additional effort of queue 2 before time −u� is of no ‘benefit’ for queue 1. In order for
queue 1 to fully exploit that queue 2 takes its guaranteed rate during (−s�, 0], it should
be continuously backlogged during this interval, as in scenario (a). We therefore expect
that in the most likely scenario u� = s�.

B. Regarding the optimal value of x. We introduced x in the left-hand side of (8). From
this representation it follows immediately that nx can be interpreted as the amount of
traffic left in queue 2 (at the epoch when the total queue size reaches n(x + b)).

We argued before that queue 2 has to claim its guaranteed rate during (−s�, 0]. If
a positive amount of traffic is left in queue 2 at time 0, the type-2 sources apparently
‘generated too much traffic’; the guaranteed rate could have been claimed with less effort.
We therefore expect that in the most likely scenario x� = 0. Notice that an essential
condition here is that φ2 > µ2/c, as otherwise a build-up of traffic in queue 2 would not
be ‘wasted effort’.

Because of Claims A and B, we expect that this regime applies to φ2 ∈ [φo
2, φ

c
2], with

φc
2 := sup

s∈(0,tc(0)]

k2(0, s, tc(0))
cs

.

Define
(

z1(t)
z2(s)

)
:=

(
b + (c − µ)t
(φ2c − µ2)s

)
.

We expect that the following relation holds:

For φ2 ∈ [φo
2, φ

c
2] :

J(b) =
1
2

inf
t≥0

sup
s∈[0,t]

(
z1(t)
z2(s)

)T (
v1(t) + v2(t) Γ2(s, t)

Γ2(s, t) v2(s)

)−1 (
z1(t)
z2(s)

)
,

provided that for all r ∈ (−t�(0), 0) it holds that m0(r) ≤ ρ0(r).

Ad Case (iii): Class 2 in underload, with φ2 large. Here overflow of the total queue implies
overflow of queue 1. Consequently we expect the following relation.
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For φ2 ∈ [φc
2, 1] :

J(b) = inf
t>0

(b + (c − µ)t)2

2v(t)
.

In Appendix A.1 it is formally shown that this result applies for φ2 ∈ [supx≥0 φc,U
2 (x), 1].

Arguments similar to claim B above (and extensive numerical experiments) however suggest
that supx≥0 φc,U

2 (x) = φc
2.

7.2 Numerical results

Section 7.3 verifies the claims of Section 7.1 for the special case of Brownian inputs. Extensive
numerical experiments, however, suggest that the claims are valid under considerably more
general conditions – we have not found any counterexamples so far. In this subsection we
present two numerical examples.

Example 1. In this example type-1 sources are fractional Brownian motion (fBm) with
µ1 = 0.2 and v1(t) = t2H , with Hurst parameter H = 0.75, whereas type-2 sources are
Ornstein-Uhlenbeck (OU) sources with µ2 = 0.3 and v2(t) = t+e−t−1. Take c = 1 and b = 1.
Here φo

2 = 0.3, while numerical computations yield that φc
2 = 0.4914. Empirically, it turns

out that in Case (ii) where φ2 ∈ [φo
2, φ

c
2], it holds that m0(r) ≤ ρ0(r) for all r ∈ (−t�(0), 0).

Hence we can compare the upper and lower bounds. As they turn out to match, we conclude
that we found the exact value of the decay rate. Regarding Case (iii) where φ2 ∈ [φc

2, 1], we
empirically find that indeed supx≥0 φc,U

2 (x) = φc
2, implying the correctness of the relation that

we expected.
A specific example is considered in the left panel of Figure 1. There we focus on a situation in
which φ2 is in regime (ii): φ2 = 0.4. Numerical computations yield that x� = 0, t� = 6.1819,
while s� = u� = 5.6853. The figure shows the traffic rates of both classes as a function of
time. The total buffer starts to build up at time −t�, whereas queue 2 starts a busy period
at −s�. More detailed inspection yields that with these traffic rates, at time 0 the first queue
has indeed overflow, whereas the second queue is empty – in other words: the path is feasible.

Example 2. In this example we interchange the two classes of Example 1. Now φo
2 = 0.2

and φc
2 = 0.7232. We again find supx≥0 φc,U

2 (x) = φc
2, so that the relation we expected for

Case (iii) holds.
For Case (ii) however, we now do not find the exact decay rate. Consider the example φ2 = 0.4.
In the computation of the lower bound we find x� = 0, t� = 5.0723, and s� = u� = 5.0597.

Again we verified the ‘exactness condition’, but now we found r ∈ (−t�, 0) such that m(r) >

ρ(r) – hence, the upper bound does not hold. The right panel of Figure 1 explains what
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Figure 1: Left panel: type 1 corresponds to fBm and type 2 to OU; right panel: type 1
corresponds to OU and type 2 to fBm.

happens. The corresponding input rate path of the fBm sources has a ‘dip’ at time −s�.
Consequently this path is not feasible: it is true that the sources build up b + ct� traffic, as
desired, but a positive amount of traffic is left in the second queue at time 0.
Despite the fact that in this case our approach does not yield the exact outcome of the decay
rate in Case (ii), it still provides us with useful information. (1) In the first place, we do
not have an upper bound, but fortunately the lower bound on the decay rate still applies.
Such a lower bound corresponds to an upper bound on the probability of interest, which is of
practical interest, as typically communication networks have to be designed such that overflow
is sufficiently rare. (2) Numerical experiments showed that the amount of fluid left in the
second queue at time 0 is usually extremely small. This makes us believe that the lower bound
is relatively close to the exact outcome. (3) (Rough) full-link approximations, as introduced
in [19], optimize over paths f such that there is a t > 0 such that A1[f ](−t, 0) + A2[f ](−t, 0)
exceeds b+ ct, while at the same time A2[f ](−t, 0) ≤ φ2ct. It is easily seen that this procedure
provides a more conservative lower bound (as it a priori chooses s = t). The observations (1),
(2), and (3) justify to use, in Case (ii), the lower bound as an approximation, as is done in
Section 8.1.

7.3 Brownian motion input

In this section we consider the special case that both types of sources correspond to Brownian
motions: v1(t) = λ1t, v2(t) = λ2t. The formulae from the previous subsection can be evaluated
explicitly, as shown in [16]. The result is given below. In particular, in the proof of this result
– see [16] – it turns out that both Claims A and B hold.
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Theorem 7.1 Suppose vi(t) = λit, i = 1, 2. Then, with

φc
2 = 1 − λ1 − λ2

λ1 + λ2

(
1 − µ1 + µ2

c

)
− µ1

c
; φo

2 =
µ2

c
,

it holds that (i) for φ2 ∈ [0, φo
2],

J(b) = 2
φ1c − µ1

λ1
b;

(ii) for φ2 ∈ [φo
2, φ

c
2],

t� = s� = u� = b

/√
(φ1c − µ1)2 + (φ2c − µ2)2

λ1

λ2
;

J(b) =
1
2

(
(b + (φ1c − µ1)t�)2

λ1t�
+

(φ2c − µ2))2

λ2
t�
)

;

(iii) for φ2 ∈ [φc
2, 1],

J(b) = 2
c − µ

λ1 + λ2
b.

Notice that in all three Cases (i)-(iii) it holds that J(b) is linear in b; for Case (ii) it takes
some simple algebra to see this.

8 Weight setting

This section focuses on the operational issue of selecting appropriate weights in a two-class
GPS system. With any set of weights φ ≡ (φ1, φ2) an admissible region S(φ) can be associated,
i.e., combinations of sources of both classes such that the required QoS is realized. Obviously
the size and shape of S(φ) depends critically on the weights φ chosen. We refer to, e.g., Zhang
et al. [29] for a study on these admissible regions S(φ) for given weights (in the setting of
short-range dependent inputs in the large-buffer regime).
When selecting appropriate weights, various objectives could be chosen. In this section we
investigate two approaches. Following Elwalid and Mitra [11], we assume in Section 8.2 that,
for practical reasons, it should be avoided to switch between a large number of different weights
– in fact, we require that just one set of weights φ be used. Therefore, we consider the situation
that the user population fluctuates just mildly around some ‘operating point’ (n̄1, n̄2). We
develop an algorithm to find a φ such that some ‘ball’ around n̄1, n̄2 is contained in S(φ).
In Section 8.3 we take the opposite approach and allow infinitely many weight adaptations,
and we compute the resulting admissible region S = ∪φS(φ). Both Sections 8.2 and 8.3 require
fast and straightforward approximations of the overflow probabilities in the GPS system. We
start with these in Section 8.1.
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8.1 Approximation of the overflow probabilities

In this section we develop an approximation for the overflow probabilities in both queues of
the GPS system. Recall that for i = 1, 2, ni is the (typically large) number of sources of type
i. We denote the stationary buffer content in this GPS model with unequal number of sources
by Qi, the service rate by C, and the buffer threshold of queue i by Bi. Invoking Remark 2.2,
the GPS model with n1 �= n2 is equivalent to a GPS model with n sources in both classes,
mean rates (ni/n)µi and variance functions (ni/n)vi(·). We scale the buffer threshold and
service rate with n such that nbi ≡ Bi and nc ≡ C. Now we can apply our earlier results,
where we assumed both classes to consist of n sources.
To approximate the overflow probabilities, three regimes are distinguished as in Section 7.
Again, we concentrate on the first queue; the second queue can be treated analogously. Define
∆i(n1, n2) := − log P(Qi ≥ Bi). Then it holds that ∆i(n1, n2) ≡ − log P(Qi,n ≥ nbi), with its
approximation given by ∆̄i(n1, n2) := nJ(bi).

First define φo
2 := n2µ2/C. Consider

1
2

inf
t>0

(B1 + (C − n1µ1 − n2µ2)t)2

n1v1(t) + n2v2(t)
;

denote the minimizer by tc, and define also

φc
2 := sup

s∈[0,tc]

(
Γ2(tc, s)
C s v(tc)

)
(B1 + (C − n1µ1 − n2µ2)tc) .

(i) If φ2 ∈ [0, φo
2], then

∆̄1(n1, n2) =
1
2

inf
t>0

(B1 + (φ1C − n1µ1)t)2

n1v1(t)
.

(ii) If φ2 ∈ (φo
2, φ

c
2), then

∆̄1(n1, n2) =

1
2

inf
t>0

sup
s∈(0,t]

(
z1(t, n1, n2)
z2(s, n1, n2)

)T(
n1v1(t) + n2v2(t) n2Γ2(s, t)

n2Γ2(s, t) n2v2(s)

)−1(
z1(t, n1, n2)
z2(s, n1, n2)

)
,

where
(

z1(t, n1, n2)
z2(s, n1, n2)

)
:=

(
B1 + (C − n1µ1 − n2µ2)t

(φ2C − n2µ2)s

)
.

(iii) If φ2 ∈ [φc
2, 1], then

∆̄1(n1, n2) =
1
2

inf
t>0

(B1 + (C − n1µ1 − n2µ2)t)2

n1v1(t) + n2v2(t)
.
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8.2 Weight setting algorithm

This subsection focuses on a procedure for finding weights (φ1, φ2) such that both classes
receive the desired QoS, despite (mild) fluctuations in the number of sources present. More
precisely, for specified (positive) numbers δi, we require that ∆i(n1, n2) ≥ δi for all (n1, n2) in
a ‘ball’ B(n̄1, n̄2) around (n̄1, n̄2) :

B(n̄1, n̄2) :=
{
(n1, n2) ∈ N

2 | γ1(n1 − n̄1)2 + γ2(n2 − n̄2)2 ≤ 1
}

,

for positive γ1, γ2. It can be easily verified that the procedure described below works, in fact,
for any ‘target area’ B that is finite and convex, rather than just these ellipsoidal sets.
To simplify our algorithm, we use the following expansion of ∆̄i(n1, n2) around (n1, n2) =
(n̄1, n̄2):

∆̄i(n1, n2) ≈ ∆̄i(n̄1, n̄2) + (n1 − n̄1)
∂∆̄i(n1, n2)

∂n1

∣∣∣∣
(n1,n2)=(n̄1,n̄2)

+ (n2 − n̄2)
∂∆̄i(n1, n2)

∂n2

∣∣∣∣
(n1,n2)=(n̄1,n̄2)

. (21)

This approximation requires the evaluation of two partial derivatives, which can be done
relatively explicitly, as described in Appendix A.2.
Relying on (21), we have to verify whether for all (n1, n2) ∈ B(n̄1, n̄2) and i = 1, 2,

∆̄i(n̄1, n̄2) + (n1 − n̄1, n2 − n̄2)Tei ≥ δi,

where

ei ≡ (ei1, ei2) :=

(
∂∆̄i(n1, n2)

∂n1

∣∣∣∣
(n1,n2)=(n̄1,n̄2)

,
∂∆̄i(n1, n2)

∂n2

∣∣∣∣
(n1,n2)=(n̄1,n̄2)

)
.

Because of the convex shape of B(n̄1, n̄2), we only have to verify this condition for the
two points on the boundary ∂B(n̄1, n̄2) having a tangent with slopes equal to −e11/e12 and
−e21/e22 respectively. Denoting these points by (n�

11, n
�
12) and (n�

21, n
�
22), we have

(n�
i1, n

�
i2) :=



n̄1 +

√(
γ1 +

e2
i2

e2
i1

γ2
1

γ2

)−1

, n̄2 +

√(
γ2 +

e2
i1

e2
i2

γ2
2

γ1

)−1


 ,

i = 1, 2. We say that φ is feasible if Ki := ∆̄i(n̄1, n̄2) + (n�
i1 − n̄1, n

�
i2 − n̄2)Tei ≥ δi for both

i = 1 and 2. Notice that Ki is a function of the weights; as φ1 + φ2 = 1, we can write Ki(φ1).
K1(φ1) will increase in φ1, whereas K2(φ1) will decrease.
This suggests the following solution to the weight setting problem: (i) First find the smallest
φ1 such that K1(φ1) ≥ δ1. If this does not exist, then there is no solution. (ii) If it does
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exist, then verify if for this φ1 it holds that K2(φ1) ≥ δ2. If this is true, then the weight
setting problem can be solved; if not, then there is no solution (i.e., there is no φ such that
B(n̄1, n̄2) ⊆ S(φ)).

Example 3. We first explain how requirements on the admissible numbers of sources naturally
lead to a set of the type B(n̄1, n̄2).

• Our analysis assumes fixed numbers of sources of both types, but in practice this number
fluctuates in time: sources arrive, and stay in the system for a random amount of time.
Now suppose that sources of both types arrive according to Poisson processes (with
rates νi, for i = 1, 2), and that, if admitted, these would require service for some random
duration (with finite means EDi). If there were no admission control, the distributions
of the number of jobs of both types are Poisson with means (and variances!) n̄i = νiEDi.

• Suppose the system must be designed such that this mean (n̄1, n̄2) ± twice the standard
deviation should be in the admissible region, i.e., should be contained in S(φ). This
suggests choosing

B(n̄1, n̄2) =

{
(n1, n2) ∈ N

2

∣∣∣∣∣

(
n1 − n̄1

2
√

n̄1

)2

+
(

n2 − n̄2

2
√

n̄2

)2

≤ 1

}
.

In this example we choose n̄1 = 900 and n̄2 = 1600, which leads to:

B(n̄1, n̄2) = B(900, 1600) =
{
(n1, n2) ∈ N

2 | 16(n1 − 900)2 + 9(n2 − 1600)2 ≤ 57600
}

.

We suppose that both types of sources correspond to Brownian motions, with µ1 = 0.2,
µ2 = 0.3, v1(t) = 2t, and v2(t) = t. We rely on explicit results for Brownian motions, as
summarized in Appendix A.2, in particular for the partial derivatives of the ∆̄i(n1, n2) with
respect to the numbers of sources. We choose C = 1000, B1 = 35, and B2 = 25.
First suppose the performance targets are δ1 = 9 and δ2 = 7 (roughly corresponding to
overflow probabilities 1.2 ·10−4 and 9.1 ·10−4). Figure 2 shows that no weights φ exist to meet
this target (to guarantee that the overflow probability in queue 1 is small enough, φ1 should
be larger than 0.39, but this implies that K2(φ1) < 5.7 < δ2). Now suppose that δ1 = 8 and
δ2 = 6. Then an analogous reasoning gives that φ1 should be chosen in the interval (0.34, 0.37).

8.3 Admissible region

While above we restricted ourselves to just one set of weights, we might allow to switch weights
whenever necessary. Clearly, the resulting admissible region can be obtained as the union of
the admissible regions for fixed weights.
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Figure 2: The curves Ki(φ1) of Example 3.

Example 4. In Figure 3 we have computed the admissible region for the same types of sources
as in the previous subsection, with performance targets δ1 = 5, δ2 = 7. We have not succeeded
in finding explicit expressions for the boundary of the admissible region.

9 Concluding remarks

We have considered a two-class GPS system with Gaussian inputs in the many-sources regime.
We have focused on the asymptotic decay rate of the buffer overflow probability, as function
of the number of sources.
We have found the exact value of the decay rate in case one of the classes generates on average
more than its guaranteed rate. The opposite case turned out to be considerably harder; there
we have developed upper and lower bounds on the decay rate. These appear to be tight
under fairly general conditions, as corroborated by extensive numerical experiments, as well
as explicit calculations for the special case of Brownian motion sources, and further justified
by heuristic arguments. Explicitly finding these conditions, however, remains a challenging
problem. The asymptotic results directly lead to approximations for the overflow probability,
which we have used to develop weight-setting procedures.

Future research directions include: (1) The results of Section 3 applying to arbitrary sources, it
can be expected that our main results hold for more general traffic classes than just Gaussian.
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Our analysis depends heavily on the availability of a sample-path LDP (‘Schilder’), which
suggests the examination of other traffic processes for which such an LDP is known – for
instance exponential on-off sources, see [27]. (2) Another possible extension could be GPS
systems with more than just two classes. (3) Our results suggest that, under general conditions,
the upper and lower bounds, as derived in this paper, coincide. Further analysis is needed
to determine the (minimal) conditions under which they match. (4) Section 8 provides a
procedure for finding a weight vector φ such that some (finite, convex) ‘target area’ B is fully
contained in the admissible region S(φ). Suppose that it is not possible to find a single weight
such that B ⊂ S(φ) – for instance because the target area is relatively large – but suppose that
B ⊂ ∪φS(φ). In this case it is necessary to switch between weights to cover B. Now a relevant
question is: how to choose a collection of weigths φI, φII, . . ., such that the GPS scheduler has
to switch weights as infrequently as possible.
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A Appendix

A.1 Analysis of underload regime with large φ2

This appendix focuses on the underload regime with large φ2. By deriving the counterpart for JL(b, x)

of Theorem 5.8, we can prove that for a specific range of φ2 the derived upper and lower bounds match.

We first introduce some new notation:

k̄2(x, s, t, u) := E[A2(−s, 0) + A1(−s,−u) | A1(−t, 0) + A2(−t, 0) = x + b + ct],

φc,L
2 (x) := sup

s∈(0,tc(x)]

inf
u∈[0,s)

k̄2(x, s, tc(x), u) − x + c(u − s)

cu
.

Lemma A.1 For all x ≥ 0, it holds that φc,L
2 (x) ≤ φc,U

2 (x).
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Proof. Notice that k̄2(x, s, t, u) and k2(x, s, t) coincide for u = s. Then the stated follows directly

from the definitions of φc,L
2 (x) and φc,U

2 (x). �

The counterpart of Theorem 5.8 follows directly now.

Lemma A.2 If φ2 ≥ φc,L
2 (x), then

JL(b, x) =
(x + b + (c − µ)tc)2

2v(tc)
.

This leads to the following result.

Theorem A.3 If φ2 ∈ [supx≥0 φc,U
2 (x), 1], then

− lim
n→∞

1

n
log P(Q1,n(0) ≥ nb) = inf

t>0

(b + (c − µ)t)2

2v(t)
.

Proof. Due to Lemma A.1, if φ2 ≥ supx≥0 φc,U
2 (x), then also φ2 ≥ φc,L

2 (x) for all x ≥ 0. Now the

stated follows directly from the fact that, for all x ≥ 0, Theorem 5.8 and Lemma A.2 apply. Hence

the infima over t and x can be interchanged, and the result follows. �

Our numerical experiments suggest that supx≥0 φc,U
2 (x) = φc,U

2 (0). The following shows that this

property holds under a sufficient condition that can be verified (relatively) easily. Denote by sc(x)

the optimizing s ∈ (0, tc(x)] in (18).

Lemma A.4 If, for all x ≥ 0,

v′(tc(x))

v(tc(x))
Γ2(s

c(x), tc(x)) ≥ 2
∂Γ2(s, t)

∂t

∣∣∣∣
s=sc(x),t=tc(x)

, (22)

then supx≥0 φc,U
2 (x) = φc,U

2 (0).

Proof. We prove that φc,U
2 (·) is decreasing under condition (22). For brevity write

∂k2

∂s
≡ ∂k2(x, s, t)

∂s

∣∣∣∣
s=sc(x),t=tc(x)

,
∂k2

∂t
≡ ∂k2(x, s, t)

∂t

∣∣∣∣
s=sc(x),t=tc(x)

.

Notice that tc(x) and sc(x) satisfy

x + b + (c − µ)tc(x)

2(c − µ)
=

v(tc(x))

v′(tc(x))
, sc(x)

∂k2

∂s
= k2(x, sc(x), tc(x)) − x. (23)

It is easy to check that the derivative of φc,U
2 (·) is non-positive if

sc(x)

(
∂k2

∂s

dsc(x)

dx
+

∂k2

∂t

dtc(x)

dx
+

∂k2

∂x
− 1

)
− dsc(x)

dx
(k2(x, sc(x), tc(x)) − x) ≤ 0.

Notice that because of the second equation in (23) various terms cancel out. Now due to

∂k2

∂x
=

Γ2(s, t)

v(t)
≤ Γ2(s, t)

v2(t)
≤ Γ2(s, t)√

v2(s)v2(t)
≤ 1,

(apply Assumption A2), and dtc(x)/dx ≥ 0 (see Lemma 3.1 in [15]), it is left to check that ∂k2/∂t ≤ 0.

It is a matter of straightforward calculus, using the first equation in (23), to show that this is equivalent

to (22). �
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A.2 Weight setting algorithm: partial derivatives

In this appendix, we determine expressions for the partial derivatives of ∆̄1(n1, n2) to the numbers

of sources, as required in the weight setting algorithm of Section 8.2. The Cases (i), (ii), (iii) below

correspond to the regimes identified in Section 8.1.

(i) Based on Theorem 2.3, in the regime φ2 ∈ [0, φc
2],

∆̄1(n1, n2) = inf
t>0

sup
θ∈R

(
θ(B1 + (φ1C − n1µ1)t) − 1

2
θ2n1v1(t)

)
.

The inner supremum is attained for

θ� =
B1 + (φ1C − n1µ1)t

n1v1(t)
.

Denoting the optimizing t by t�, we derive

∂∆̄1(n1, n2)

∂n1
= −θ�µ1t

� − 1

2
(θ�)2v1(t

�),
∂∆̄1(n1, n2)

∂n2
= 0.

(ii) Similarly, in the regime φ2 ∈ [φc
2, φ

o
2], ∆̄1(n1, n2) can be rewritten as

inf
t>0

sup
s∈(0,t]

sup
θ∈R2

(
θT

(
z1(t, n1, n2)

z2(s, n1, n2)

)
− 1

2
θT

(
n1v1(t) + n2v2(t) n2Γ2(s, t)

n2Γ2(s, t) n2v2(s)

)
θ

)
.

The optimizing θ is given by

θ� =

(
n1v1(t) + n2v2(t) n2Γ2(s, t)

n2Γ2(s, t) n2v2(s)

)−1 (
z1(t, n1, n2)

z2(s, n1, n2)

)
.

Straightforward computations give that, with the optimizing s, t denoted by s�, t�,

∂∆̄1(n1, n2)

∂n1
= −θ�

1µ1t
� − 1

2
(θ�

1)2v1(t
�),

∂∆̄1(n1, n2)

∂n2
= −θ�

1µ2t
� − θ�

2µ2s
� − 1

2
θ�T

(
v2(t

�) Γ2(s
�, t�)

Γ2(s
�, t�) v2(s

�)

)
θ�.

(iii) In the third regime φ2 ∈ [φo
2, 1],

∆̄1(n1, n2) = inf
t>0

sup
θ∈R

(
θz1(t, n1, n2) − 1

2
θ2(n1v1(t) + n2v2(t))

)
.

The inner supremum is attained for

θ� =
z1(t, n1, n2)

n1v1(t) + n2v2(t)
.

Denoting the optimizing t by t�, we derive

∂∆̄1(n1, n2)

∂n1
= −θ�µ1t

� − 1

2
(θ�)2v1(t

�),
∂∆̄1(n1, n2)

∂n2
= −θ�µ2t

� − 1

2
(θ�)2v2(t

�).
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Now we consider the special case that both types of sources correspond to Brownian motions. We

assume v1(t) = λ1t, v2(t) = λ2t. We again consider the three regimes separately. We have explicit

formulae for the ‘critical’ values of φ2:

φc
2 = 1 − n1λ1 − n2λ2

n1λ1 + n2λ2

(
1 − n1µ1 + n2µ2

C

)
− n1µ1

C
; φo

2 =
n2µ2

C
.

(i) In this case

t� =
B1

φ1C − n1µ1
; ∆̄1(n) = 2

φ1C − n1µ1

n1λ1
B1.

This yields:

∂∆̄1

∂n1
= −2B1

φ1C

n2
1λ1

;
∂∆̄1

∂n2
= 0.

(ii) In this case

t� = B1

/√
(φ1C − n1µ1)2 + (φ2C − n2µ2)2

n1λ1

n2λ2
;

∆̄1(n1, n2) =
1

2

(
(B1 + (φ1C − n1µ1)t

�)2

n1λ1t�
+

(φ2C − n2µ2))
2

n2λ2
t�

)
.

Also s� = t�. This yields:

∂∆̄1

∂n1
= −(B1 + (φ1C − n1µ1)t

�)
µ1

n1λ1
− 1

2

(B1 + (φ1C − n1µ1)t
�)2

n2
1λ1t�

;

∂∆̄1

∂n2
= −(φ2C − n2µ2)t

� µ2

n2λ2
− 1

2

(φ2C − n2µ2))
2

n2
2λ2

t�.

(iii) In this case

t� =
B1

C − n1µ1 − n2µ2
; ∆̄1(n1, n2) = 2

C − n1µ1 − n2µ2

n1λ1 + n2λ2
B1.

This yields:

∂∆̄1

∂n1
= − 2B1µ1

n1λ1 + n2λ2
− 2B1λ1

C − n1µ1 − n2µ2

(n1λ1 + n2λ2)2
;

∂∆̄1

∂n2
= − 2B1µ2

n1λ1 + n2λ2
− 2B1λ2

C − n1µ1 − n2µ2

(n1λ1 + n2λ2)2
.
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