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ABSTRACT

This paper focuses on simulating fractional Brownian motion (fBm). Despite the availability of several exact

simulation methods, attention has been paid to approximate simulation (i.e., the output is approximately fBm),

particularly because of possible time savings. In this paper, we study the class of approximate methods that

are based on the spectral properties of fBm’s stationary incremental process, usually called fractional Gaussian

noise (fGn). The main contribution is a proof of asymptotical exactness (in a sense that is made precise) of

these spectral methods. Moreover, we establish the connection between the spectral simulation approach and

a widely used method, originally proposed by Paxson, that lacked a formal mathematical justification. The

insights enable us to evaluate the Paxson method in more detail. It is also shown that spectral simulation is

related to the fastest known exact method.
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1. Introduction

Fractional Brownian motion (fBm) is a widely used Gaussian process with a variety of applications,
e.g. in communications engineering, (geo)physics, finance, bioengineering and fractal imaging. There-
fore, simulation of fBm has drawn a lot of attention. Although it is possible to generate a discrete-time
realization of fBm (‘exact’ simulation), many ‘approximate’ methods have been proposed as alterna-
tives to exact simulation. Each of these methods has its own advantages and drawbacks.

Among the approximate simulation methods, spectral techniques have become quite popular in
the recent past. Spectral methods can be used for simulating stationary processes. In the Fourier
filtering method by Saupe [14, pp. 93–94], the spectral approach is used for approximating fBm. By
construction, the resulting sample is a good approximation for fBm in the spectral domain. However,
some problems arise the time domain; fBm is a non-stationary process, while the approximating Saupe
sample is stationary. This problem is circumvented in the spectral method by Yin [17] by simulating
the stationary increments of fBm, known as fractional Gaussian noise (fGn). Yin’s approach is closely
related to the family of spectral simulation methods that is analyzed in the present paper — see also
[1, 9].

The connections between spectral and related methods are not so transparent, and it is in some
cases not even clear why the produced samples should be a good approximation for realizations of
fGn or fBm. Moreover, it is very difficult to develop a fair criterion for evaluation of the approximate
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methods; one must trade off accuracy and efficiency (speed). Most accuracy analyses include the
statistical estimation or testing of the samples [11, 12]. As we will see, these tests may be misleading.

In this paper, we show that the spectrally simulated samples are (in some sense) asymptotically
exact. Moreover, we establish the links between the spectral approach and the method proposed
by Paxson [12]. This enables us to conclude that Paxson samples are also asymptotically exact. In
addition, it makes it possible to study the mean square error at each sample point and the covariance
structure of the approximating sample.

The paper is organized as follows. Section 2 consists of the preliminaries: the introduction of fBm
and fGn, and a brief review of exact generation of fGn. Since fGn is the incremental process of fBm,
a discretized realization of fBm is then obtained from this sample by taking cumulative sums. Some
background on spectral densities is also provided in Section 2. The main results of this paper are
presented in Section 3. The intuitively plausible fact is proved that spectrally simulated samples are
(in a sense that will be made precise) asymptotically exact, and the connections between the different
spectral methods are established. The error analysis and the numerical comparison of the approximate
covariances are the topic of Section 4.

2. Preliminaries

2.1 Definitions
In the pioneering work of Mandelbrot and van Ness [10], fBm was originally defined as a stochastic
integral with respect to ordinary Brownian motion. The family of fractional Brownian motions is
indexed by a single parameter H ∈ (0, 1), which is called the self-similarity or Hurst parameter.
Standardized fBm with Hurst parameter H is a centered continuous-time Gaussian process BH(·)
with covariance function

ρ(s, t) ≡ EBH(s)BH(t) =
1
2
{
t2H + s2H − |t− s|2H

}
(2.1)

for s, t ≥ 0. Note that BH reduces to an ordinary Brownian motion for H = 1/2.
The incremental process of fractional Brownian motion is a stationary discrete-time process and

is called fractional Gaussian noise (fGn). We define the fractional Gaussian noise X = {Xk : k =
0, 1, . . .} by

Xk := BH(k + 1) −BH(k).

It is clear that any Xk has a standard normal distribution; the complication, however, is the covariance
between the Xk. To be precise, straightforward computations show that the autocovariance function
γ(·) of X is given by

γ(k) ≡ EXn+kXn =
1
2
[|k − 1|2H − 2|k|2H + |k + 1|2H

]
(2.2)

for k ∈ Z. By writing down the Taylor expansion of the function h(x) = (1− x)2H − 2 + (1 + x)2H at
the origin and noting that γ(k) = 1

2k
2Hh(1/k) for k ≥ 1, it is easily seen from (2.2) that

γ(k) ∼ H(2H − 1)|k|2H−2 (2.3)

as |k| → ∞. Therefore, the autocovariance function is non-summable for H > 1/2. This phenomenon
is called long-range dependence, indicating (relatively) slow decay of the covariance function. The
present paper covers both the long-range dependent case, i.e. H > 1/2, and the short-range dependent
case H ≤ 1/2. However, we often focus on the long-range dependent case, since it is the worst case
for the spectral approach (as will become clear in Section 3).
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2.2 Exact simulation of fractional Brownian motion
There exist algorithms for simulating general stationary Gaussian processes with a given autocovari-
ance function. Evidently, these algorithms can be used for generating fGn. An fBm sample is then
found by computing the cumulative sums of this fGn sample. The so-called self-similarity property
(i.e., the fact that BH(at) has the same finite-dimensional distributions as aHBH(t)) can be used to
obtain a sample on an arbitrary equispaced grid.

The method proposed by Hosking [7] simulates the sample recursively, conditioning on all so far
generated points. The required computation time is of order N2 when N sample points are needed.
The Cholesky method [1] uses the Cholesky decomposition of the covariance matrix, which results in
an order N3 algorithm. As pointed out in [5], both methods implicitly compute the same matrix,
but the Hosking method achieves that more efficiently. However, the Cholesky method can also be
applied to the covariance matrix of fBm, in which case the methods work differently.

In the specific case of fGn, another exact method is the method first mentioned by Davies and
Harte [4]. It is of order N logN , i.e., even faster than the Hosking method. The method was later
simultaneously generalized by Dietrich and Newsam [6] and Wood and Chan [16]. The algorithm
is based on the fact that the covariance matrix of a stationary discrete-time Gaussian processes
can be embedded in a so-called circulant matrix. This latter matrix should be positive definite for
the algorithm to work, which is indeed the case for fGn. The constructed circulant matrix can
be diagonalized explicitly, and the computations are done efficiently with the so-called Fast Fourier
Transform (FFT) algorithm. To be able to establish the connections between this method and the
spectral simulation approach of Section 3, we describe the algorithm in more detail.

With the Davies and Harte method, an fGn sample of size N can be constructed as follows:

• Define αk := γ(k) for k = 0, . . . , N −1, αN := 0 and αk := γ(2N −k) for k = N +1, . . . , 2N −1.
Compute the (discrete) Fourier transform (λk)2N−1

k=0 of (αk)2N−1
k=0 with the FFT algorithm. Recall

that the Fourier transform of (αk)j−1
k=0 is given by

λn =
j−1∑
k=0

αk exp
(

2πi
nk

j

)
(2.4)

for n = 0, . . . , j − 1. When j is a power of two, the number of calculations required by the FFT
algorithm is of order j log2(j); a considerable gain in speed compared to the straightforward
calculation of order j2. The λj are real by construction and they are non-negative in the fGn
case when αN is set to γ(N), see [3]. However, we set αN = 0 for reasons that become clear in
Section 3. This has no influence on the resulting fGn sample as long as the λj are non-negative
(in practice, this is satisfied for any reasonable sample size N).

• The output fGn sample is Z0, . . . , ZN−1, where the sequence (Zk)2N−1
k=0 is the Fourier transform

of

wk :=




√
λk

2NU
(0)
k k = 0;√

λk

4N

(
U

(0)
k + iU

(1)
k

)
k = 1, . . . , N − 1;√

λk

2NU
(0)
k k = N ;√

λk

4N

(
U

(0)
2N−k − iU

(1)
2N−k

)
k = N + 1, . . . , 2N − 1,

(2.5)

with U (i)
k i.i.d. standard normal random variables for k = 0, . . . , 2N − 1, and mutually indepen-

dent vectors U (0) and U (1).

Note that ZN , . . . , Z2N−1 is also an fGn sample, but this sample is not independent of the sample
Z0, . . . , ZN−1, nor is Z0, . . . , Z2N−1 an fGn sample. The reader may easily check that Z is real
by construction.
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In addition to these exact methods, several approximation algorithms have been proposed. Some
of them can be found in [5], including spectral simulation. The Conditionalized Random Midpoint
Displacement method [11] is notable for its accuracy, but we remark that the latter method does not
produce stationary samples to approximate fGn.

2.3 Spectral densities
Instead of analyzing a stochastic process in the time domain, one could consider the so-called spectral
or frequency domain. It turns out that the so-called spectral density characterizes all frequency
information of stationary processes (see e.g. [13]). This spectral density is computed as follows for
frequencies −π ≤ λ ≤ π:

f(λ) :=
∞∑

j=−∞
γ(j) exp(ijλ), (2.6)

where γ(·) denotes the autocovariance function (e.g. of fGn (2.2)). The autocovariance function is
recovered by applying the inversion formula

γ(j) =
1
2π

∫ π

−π

f(λ) exp(−ijλ)dλ. (2.7)

In this paper, we are particularly interested in the spectral density of fractional Gaussian noise. It
can be seen [15] that this density is given by

f(λ) = 2 sin(πH)Γ(2H + 1)(1 − cosλ)
[|λ|−2H−1 +B(λ,H)

]
, (2.8)

where Γ(·) denotes the Gamma function and

B(λ,H) :=
∞∑

j=1

{
(2πj + λ)−2H−1 + (2πj − λ)−2H−1

}
(2.9)

for −π ≤ λ ≤ π.
Unfortunately, it is not known how this can be simplified further. However, a quite useful result is

the proportionality of this spectral density to |λ|1−2H near λ = 0, checked by noting that 1−cos(λ) =
1
2λ

2 + O(λ4) as |λ| → 0. Therefore, f has a pole at zero for H > 1/2. For H < 1/2, f is non-
differentiable at zero. From Equation (2.6), it follows that a pole at zero in the spectral density
corresponds to long-range dependence.

To numerically evaluate the spectral density of fGn, the infinite sum in Equation (2.9) must be
truncated. When the truncation parameter is chosen quite large, the function evaluation becomes
computationally more demanding. Paxson [12] suggests and tests a useful approximation to overcome
this problem. He shows that

B̃3(λ,H) :=
3∑

j=1

{
(a+

j )−2H−1 + (a−j )−2H−1
}

+
(a+

3 )−2H + (a−3 )−2H + (a+
4 )−2H + (a−4 )−2H

8Hπ
(2.10)

approximates f(λ) quite well, where a±j = 2πj ± λ.

3. Spectral simulation, the Paxson method, and the approximate circulant method

The idea of spectral simulation is to simulate a process in the spectral domain and transform the
resulting sample to the time domain. Although it is not possible to obtain exact fGn or fBm samples
by taking this approach, we will shortly see that the accuracy increases as the sample size grows.

In the course of the exposition, it becomes clear that spectral simulation is closely related to the
Paxson method and the Davies and Harte method. The resulting modification of the Davies and
Harte method (which produces approximate samples, but is also faster) will be called the approximate
circulant method.
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3.1 Spectral simulation
The spectral analysis of a stationary discrete-time Gaussian process X = {Xn : n = 0, . . . , N − 1}
shows that it can be represented in terms of the spectral density as

Xn =
∫ π

0

√
f(λ)
π

cos(nλ)dB1(λ) −
∫ π

0

√
f(λ)
π

sin(nλ)dB2(λ), (3.1)

where the equality is to be understood as equality in distribution. The two integrators are mutually
independent (ordinary) Brownian motions. This result is called the spectral theorem; using (2.7), its
validity is easily checked by showing that the right-hand side of (3.1) has covariance function (2.2).
In what follows, we assume that the required sample size N is a power of two.

We briefly interrupt the exposition to make clear how
∫ π

0
φ(s)dB(s) should be interpreted for some

function φ and an ordinary Brownian motion B as stochastic integrator. This will be helpful for
establishing the result that spectrally simulated samples are (in some sense) asymptotically exact.
The integral

∫ π

0
φ(s)dB(s) has a natural definition when the integrand φ is a so-called simple function,

which means that there exists a positive integer � and a strictly increasing sequence of real numbers
(tj)�

j=0 with t0 = 0 and t� = π, as well as a bounded sequence of real numbers (φj)�−1
j=0 such that φ(s)

can be written as φ(s) = φj for s ∈ (tj , tj+1] (the value at 0 is an arbitrary real number). For such a
simple function φ, the stochastic integral has the following definition:∫ π

0

φ(s)dB(s) :=
�−1∑
j=0

φj(B(tj+1) −B(tj)). (3.2)

It is known that every square integrable function ψ can be written as a limit in L2 (the space of all
Lebesgue square integrable functions on [0, π]) of a sequence (ψm) of simple functions; the subset of
simple functions is dense in L2. Then there exists a random variable Z such that

lim
m→∞ E

[(
Z −

∫ π

0

ψm(s)dB(s)
)2
]

= 0. (3.3)

This random variable is unique in the sense that another random variable that satisfies (3.3) is almost
sure equal to Z. This makes it possible to take this Z as the definition of the stochastic integral∫
ψ(s)dB(s). We refer to the type of convergence (3.3) as convergence in L2–norm. Moreover, it can

be shown that Z is independent of the approximating sequence (ψm)m. We will need the following
implication of this observation: when a given sequence of simple functions (ψm)m converges in L2–
norm to ψ, the corresponding sequence of stochastic integrals

(∫
ψm(s)dB(s)

)
m

converges in L2–norm
to
∫
ψ(s)dB(s). More on stochastic integration can be found in any textbook on stochastic calculus,

e.g. [8].
Spectral simulation is based on approximating Equation (3.1); the integrand is replaced by a simple

function. Define ξn(λ) :=
√
f(λ)/(2π) cos(nλ) and fix some integer �. After setting tk = πk/� for

k = 0, . . . , �− 1, we define a simple function ξ(�)n on [0, π] for 0 ≤ n ≤ N − 1 by

ξ(�)n (λ) :=

√
f(t1)
π

cos(nt1)1{0}(λ) +
�−1∑
k=0

√
f(tk+1)

π
cos(ntk+1)1(tk,tk+1](λ). (3.4)

Let θ(�)
n (λ) be defined as ξ(�)n (λ), but with the cosine terms replaced by sine terms. The first integral

in (3.1) is approximated by
∫ π

0
ξ
(�)
n (λ)dB1(λ), which can be computed using Equation (3.2). Since a

similar approximation can be made for the second integral, we arrive at the following approximation
X̂

(�)
n of Xn:

X̂(�)
n :=

�−1∑
k=0

√
f(tk+1)

�

[
cos(ntk+1)U

(0)
k − sin(ntk+1)U

(1)
k

]
, (3.5)
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where U (i)
k are again i.i.d. standard normal random variables for k = 0, . . . , � − 1. The two vectors

U (0) and U (1) should also be mutually independent, since B1 and B2 are independent as well.
It should be noted that for H > 1/2, we approximate the spectral density by functions that have

no pole at 0. As already pointed out, this pole is equivalent to long-range dependence. Hence, we
approximate a long-range dependent process by a short-range dependent process. Still, we may obtain
a sample with a covariance structure that approximates the structure determined by (2.2) and (2.3)
very well. This issue is explored further in Section 4.

The FFT can be used to calculate (3.5) efficiently. To this end, we define the sequence (ak)k=0,...,2�−1

by

ak :=




0 k = 0;
1
2

(
U

(0)
k−1 + iU

(1)
k−1

)√
f(tk)/� k = 1, . . . , �− 1;

U
(0)
k−1

√
f(tk)/� k = �;

1
2

(
U

(0)
2�−k−1 − iU

(1)
2�−k−1

)√
f(t2�−k)/� k = �+ 1, . . . , 2�− 1.

(3.6)

Using (2.4), one can check that the Fourier transform of (ak) is real and equals (3.5).
Since ξ(�)n approximates ξn better for larger �, an interesting question is whether the approximate

sample converges to an exact sample as � → ∞. However, different types of convergence of random
variables and processes exist; it is at first sight not clear in what sense the approximate sample
converges. In the remainder of this subsection, we deal with this convergence issue.

Convergence We start by deriving the covariance structure of X̂(�). From (3.5) it follows that the
covariance between X̂(�)

m and X̂(�)
n for n,m = 0, . . . , N − 1 is given by

Cov(X̂(�)
m , X̂(�)

n ) =
�−1∑
k=0

f(tk+1)
�

cos((m− n)tk+1), (3.7)

which depends only on m−n. Hence, the spectral simulation method produces stationary approximate
samples. A more detailed numerical analysis of the covariance structure is deferred to Section 4.

It is readily checked with (2.7) that Cov(X̂(�)
m , X̂

(�)
n ) converges to γ(|m − n|) as � → ∞. From

this fact, it is not difficult to deduce that the finite-dimensional distributions of X̂(�) converge in
distribution to the corresponding finite-dimensional distributions of X as � → ∞. However, we will
not prove this, since we can prove an even stronger convergence result: every sample point X̂(�)

n

converges in L2–norm to the corresponding exact sample point Xn as �→ ∞.
The proof of this fact is based on the definition of the stochastic integral appearing in (3.1). Because

f is integrable, the function ξn is certainly square integrable for 0 ≤ n ≤ N − 1. Recall that the
discussion on stochastic integration showed that if the sequence of simple functions (ξ(�)n )� satisfies,
for fixed 0 ≤ n ≤ N − 1,

lim
�→∞

∫ π

0

[
ξn(λ) − ξ(�)n (λ)

]2
dλ = 0, (3.8)

then
∫ π

0
ξ
(�)
n (λ)dB1(λ) converges in L2–norm to

∫ π

0
ξn(λ)dB1(λ) as �→ ∞. It is indeed true that (3.8)

holds; a similar result holds for the second integrand of (3.1). A proof of these facts can be found in
the appendix. By the independence of B1 and B2, we deduce that every sample point X̂(�)

n converges
to Xn in L2–norm, i.e., in mean square sense.

Since the ‘error’ X̂(�)
n −Xn is a centered Gaussian variable for every n (with a variance that decays to

zero in �), we have E|X̂(�)
n −Xn|2p = Cp(E|X̂(�)

n −Xn|2)p for some constant Cp > 0 depending only on
p. Thus, X̂(�)

n converges to Xn in Lp–norm for every p ≥ 1! Because of the normality, this is equivalent
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to convergence in probability. This convergence of the individual sample points is readily extended to
a joint convergence result: the finite-dimensional distributions of X̂(�) converge in probability to the
corresponding finite-dimensional distributions of X as �→ ∞.

An interesting question is at what rate the convergence takes place. By the way the stochastic
integral is constructed, this rate is related to the rate of convergence of (3.8) and its θn-counterpart.
Since the spectral density is proportional to |λ|1−2H near λ = 0, we observe that by monotone
convergence:

σ2

X̂
(�)
n −Xn

= ‖ξn − ξ(�)n ‖2 + ‖θn − θ(�)
n ‖2

≥
∫ π/�

0

(√
f(λ)
2π

cos(nλ) −
√
f(π/�)

2π
cos(nπ/�)

)2

dλ

∼ CH

∫ π/�

0

[
λ1/2−H − (π/�)1/2−H

]2
dλ

= CHπ
1−2H

(
1

4 − 4H
− 1

3/2 −H
+

1
2

)
�2H−2,

where CH denotes some constant. Thus, the rate of convergence is quite slow.
Since the length of the output sequence of the FFT algorithm applied to (3.6) must be at least the

sample size N , the smallest possible choice for � is N/2, although better results are obtained for larger
�. For � = N/2, the spectral simulation approach is closely related to the Paxson method, as will be
made clear in the next subsection.

3.2 The Paxson method
Paxson [12] proposes a rather intuitive method for simulating fractional Gaussian noise. By studying
the output statistically, he tests if the resulting samples have indeed the desired properties. Unfor-
tunately, the paper lacks a thorough justification of the proposed procedure, and it remains unclear
why the obtained sample should be (close to) Gaussian.

However, with the formulas above, it is possible to make the arguments precise. In the Paxson
method, the approximate fGn sample is the Fourier transform of

bk :=




0 k = 0;√
Rkf(tk)

N exp(iΦk) k = 1, . . . , N/2;
b∗N−k k = N/2 + 1, . . . , N − 1,

where Rk are independent exponentially distributed random variables with mean 1 for k ≥ 1, and the
asterisk denotes the complex conjugate. Besides ΦN/2, which is set to zero, the Φk are independent
uniformly distributed random variables on [0, 2π] for k ≥ 1, also independent of the Rk. In this case,
tk equals 2πk/N . Note that the obtained sample is real by construction.

Because Rk is exponentially distributed with mean 1,
√

2Rk exp(iΦk) has the same distribution as
U

(0)
k + iU

(1)
k , where U (0)

k and U
(1)
k are independent standard normal random variables in the usual

notation. This fact is also used in the well-known Box-Muller algorithm to simulate Gaussian random
variables (e.g., [1]).

Let us now compare this with the spectral simulation method for � = N/2. In that case, the sample
is the Fourier transform of (see (3.6))

b′k :=




0 k = 0;√
f(tk)
2N

(
U

(0)
k−1 + iU

(1)
k−1

)
k = 1, . . . , N/2 − 1;√

2f(tk)
N U

(0)
k−1 k = N/2;√

f(tk)
2N

(
U

(0)
N−k−1 − iU

(1)
N−k−1

)
k = N/2 + 1, . . . , N − 1,

(3.9)
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where the U (i)
k have their usual meaning. At this point it becomes clear what the relation between

the spectral method and the Paxson method is; by comparing bk to b′k, we see that the value of bN/2

is the only difference (of course, the indexing of the random variables U (i) differs, but this has no
impact). However, this effect will vanish for ‘large’ N ; it is readily checked that it does not affect the
convergence result of the previous subsection. Thus, the accuracy of the Paxson method increases
with the sample size N , and is even exact as N → ∞ in the sense that each sample point converges
to an ‘exact’ sample point in probability. This new result is the consequence of studying the Paxson
method as a special case of the spectral simulation approach.

We can now argue that Paxson’s suggestion to set ΦN/2 = 0 is not useful, since this destroys the
normality of bN/2, which is reflected in every sample point, cf. (2.4). This is the reason that Paxson
finds in some cases that the resulting sample points have a ‘nearly’ normal distribution. Therefore,
we set

bN/2 =

√
f(tN/2)

2N
U

(0)
N/2,

although (as earlier) the imaginary part has no influence on the sample. In the remaining of this
paper, we call this improved Paxson method simply the Paxson method.

The method is faster than the Davies and Harte method, although still of order N log(N). This is
because the Paxson method requires just one Fourier transform of a sequence of size N , instead of
two transforms of size 2N . Hence, the Paxson method is approximately four times faster than the
exact Davies and Harte method, provided that N is large. It may thus offer a good alternative to
exact simulation when large sample sizes are required. Empirical observations show that the Paxson
method is slightly less than three times faster for N = 215 when the Paxson approximation for the
spectral density (2.10) is used; apparently the asymptotic regime is not reached yet. A more detailed
runtime comparison is made in [5].

The fBm samples produced with Paxson fGn samples have the special property that the end point
is always 0. This property is easily seen by using the definition of the FFT transform (2.4):

N−1∑
n=0

N−1∑
k=0

bk exp
(

2πi
nk

N

)
=

N−1∑
k=0

bk

N−1∑
n=0

exp
(

2πi
nk

N

)
= Nb0 = 0.

This highly undesirable property of Paxson fBm samples can be regarded as a fractional Brownian
bridge-effect.

Having recognized that the Paxson method equals the spectral simulation method with � = N/2,
a natural question is what can be said about spectral simulation with � = N . The next subsection
shows that there is a connection with the Davies and Harte method.

3.3 The approximate circulant method; connection with the Davies and Harte method
In this subsection, we make the remarkable observation that the spectral simulation approach is
related to the circulant diagonalization algorithm of Davies and Harte. In that algorithm, the λk are
calculated with (2.4), which can be rewritten as

λk =
N−1∑
j=0

γ(j) exp
(

2πi
jk

2N

)
+

N−1∑
j=1

γ(j) exp
(

2πi
(2N − j)k

2N

)

=
N−1∑

j=−N+1

γ(j) exp
(

2πi
jk

2N

)
. (3.10)

Letting tk = πk/N , we may approximate this by replacing the finite sum by an infinite sum
∞∑

j=−∞
γ(j) exp(ijtk)
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when N is ‘large’. Note that this is just the spectral density (2.6). In that case, we approximate λk

with f(tk) for k = 0, 1, . . . , N and with f(t2N−k) for k = N + 1, . . . , 2N − 1. To avoid problems with
the pole, f(0) has to be approximated by a finite value. Since we can compute λ0 directly from (3.10)
using (2.2), the choice f(0) = λ0 = N2H − (N − 1)2H seems justified.

Instead of using the exact λk, we investigate what happens when the approximations f(tk) are used
in the Davies and Harte algorithm to generate a sample. The FFT is then applied to (see (2.5))

ck :=




√
f(tk)
2N U

(0)
k k = 0;√

f(tk)
4N

(
U

(0)
k + iU

(1)
k

)
k = 1, . . . , N − 1;√

f(tk)
2N U

(0)
k k = N ;√

f(t2N−k)
4N

(
U

(0)
2N−k − iU

(1)
2N−k

)
k = N + 1, . . . , 2N − 1.

(3.11)

The first N coefficients of the Fourier transform constitute an approximate fGn sample. Because the
only difference with the Davies and Harte method (that was based on a circulant matrix) is the use of
approximate λk, we will refer to this method as approximate circulant method. The input coefficients
(ck) closely resemble (3.6) with � = N ; the differences are the coefficients for k = 0 and k = N . Again,
the effects of this difference vanish as the sample size N grows, which indicates that the method is
asymptotically exact in the sense described earlier.

Moreover, we can measure now how the spectral simulation method with � = N performs in the
spectral domain for finite N : it can be calculated what ‘spectral’ error is made by using the spectral
density (2.6) rather than the λk. A further investigation of this issue is found in the next section.

By approximating λk with the value of the spectral density at tk, the number of applications of the
FFT on a sequence of size 2N is halved. Instead, the spectral density is evaluated in 2N points; this
is done in order N time. Therefore, the spectral simulation method with � = 2N is theoretically twice
as fast as the exact Davies and Harte method for large N . However, the method is in practice only a
bit faster than the exact method for reasonable sample sizes.

This observation indicates that it makes no sense to increase � further to 2N in the spectral sim-
ulation method. Still, sometimes (e.g. in time series analysis) the autocovariances of some relevant
process are unknown, although the spectral density has some known closed form. Then, it is an
interesting option to simulate such a process with the approximate spectral simulation method with
� = 2N . Note that the proof in the appendix indicates that the convergence result holds for any
stationary Gaussian process with spectral density f(·).

3.4 Improvements
We have seen that the function ξ

(�)
n defined in (3.4) converges to ξn in the sense of (3.8), which led

to all theoretical results in the current section. A natural question is if this simple function is the
only possible choice for which this type of convergence holds. A glance at the proof indicates that
the answer is negative. The function ξ

(�)
n was constructed by evaluating the spectral density in the

rightmost point of each interval of the grid. Looking at (3.7), another interesting possiblity is to
replace f(tk+1)/� by∫ tk+1

tk

f(λ)
π

dλ. (3.12)

Unfortunately, it depends on the spectral density f(·) whether this integral can be computed (effi-
ciently). In the fGn case, this integral cannot be computed directly, but should be approximated (e.g.,
by integrating f numerically). For k = 0, the integral can be approximated accurately by replacing
f(λ) by its Taylor expansion sin(πH)Γ(2H + 1)λ1−2H , cf. (2.8).

Instead of using computationally intensive numerical integration techniques to calculate (3.12), it
is also possible to interpolate f(·) linearly between the grid points (this is impossible for k = 0 when
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H > 1/2 because of the pole at 0, but the Taylor based approximation can then be used). This variant
is similar to the approach described in Section 3.1; the spectral density is evaluated at the middle
point of each interval on the grid, instead of the rightmost point.

These possibilities will not be investigated in the remaining part of this paper; we will focus on the
Paxson and the approximate circulant method.

4. Evaluation of the methods

4.1 Error analysis
As already pointed out in the preceding section, the connection between the Davies and Harte method
and the approximate circulant method is useful to perform an error analysis.

Define the ‘spectral’ error σ2
k for k > 0 by

σ2
k :=



√√√√ ∞∑

j=−∞
γ(j) exp(πijk/N) −

√√√√ N−1∑
j=−N+1

γ(j) exp(πijk/N)




2

. (4.1)

For this moment, we will neglect the notational technicalities involving the factor
√

2N instead of√
4N in wN and cN . Then, σ2

k is the variance of wk − ck, up to a constant scaling factor, see (2.5)
and (3.11).

Denote the approximate circulant sample by X̌ and the exact Davies and Harte sample by X. It is
readily checked that the ‘time domain’ error X̌n −Xn is a centered Gaussian variable with variance

σ2
X̌n−Xn

=
1

2N

2N−1∑
k=0

σ2
k,

which does not depend on n. The convergence result of the previous section guarantees that σ2
X̌n−Xn

decays to 0 as N → ∞.
Notice that this observation concerns the fGn sample, but that it is also interesting to calculate the

variance σ2
Y̌n−Yn

of the error Y̌n − Yn =
∑n

j=0(X̌j −Xj) of the corresponding fBm sample. It may be
checked that σ2

Y̌n−Yn
depends on n and is given by

σ2
Y̌n−Yn

=
1

2N

2N−1∑
k=0

σ2
k




 n∑

j=0

cos2(πjk/N)




2

+


 n∑

j=0

sin2(πjk/N)




2

 .

Since σ2
k is, in the presence of a pole in the spectral density (H > 1/2), large when k is either small

or large, the term between the square brackets is approximately n2 for these values of k. This implies
that the expected square error of the fBm sample σ2

Y̌n−Yn
is proportional to n2 for large sample sizes,

i.e. σ2
Y̌n−Yn

≈ Cn2σ2
X̂n−Xn

for some positive constant C. Since σ2
X̂n−Xn

converges to zero as N → ∞,
the expected square error of a fBm sample point at fixed n converges to zero as well.

4.2 Numerical analysis of the autocovariance function
Since the autocovariance function characterizes a stationary Gaussian sample uniquely, insight into
the performance of the spectral simulation method can be gained by comparing the approximate
covariances to the desired covariances.

We have already seen that spectrally simulated fGn samples are stationary. This holds also for
Paxson and approximate circulant samples, for which the autocovariance functions γ̃P resp. γ̃AC are
given by

γ̃P(k) =
N/2−1∑

j=1

f(2πj/N)
N/2

cos(2πjk/N) +
f(π)
2N

(−1)k (4.2)
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Figure 1: The autocovariance function of the Paxson method and the approximate circulant method
with the autocovariance function of fractional Gaussian noise (dashed) for H = 0.8.

and

γ̃AC(k) =
N−1∑
j=1

f(πj/N)
N

cos(πjk/N) +
N2H − (N − 1)2H

2N
+
f(π)
2N

(−1)k (4.3)

for k = 0, . . . , N − 1.
Some problems arise for the Paxson method at this point. Recall that in a sample of size N , the

(co)variances γ(0), . . . , γ(N−1) are approximated by γ̃P(0), . . . , γ̃P(N−1). From (2.2) follows that the
autocovariance function γ(k) decreases in k for H > 1/2, but this is not the case for the approximation
γ̃P(k), since this function is symmetrical around k = N/2.

To illustrate this problem, the autocovariance function γ̃P is plotted together with the autocovari-
ance function γ for H = 0.8 and N = 28 in the upper panel of Figure 1. The lower panel consists of
the functions γ̃AC and γ.

Besides the symmetry problem of γ̃P, the differences with the exact autocovariance function are
relatively large; even negative covariances are present in Paxson samples for N = 28. Still, the Paxson
method passed many tests (see Paxson [12]), even without the normality improvement of Section 3.
It should be noticed that γ̃P approximates γ better as the sample size N increases, which is probably
the reason for Paxson’s empirical finding that satisfactory samples are obtained for N = 215.

According to the lower panel of Figure 1, the approximate circulant method is more promising.
Except for high-lag autocovariances, the function γ̃AC is almost indistinguishable from γ, which will
even improve when N → ∞.

However, we are particularly interested in the tail behavior of γ̃AC when H > 1/2, which cannot
be observed in Figure 1. In view of (2.3), this tail behavior is best studied on a log-log scale; for
fGn with Hurst parameter H = 0.8, the graph of γ on a log-log scale is a straight line with slope
2H − 2 = −0.4 for large k. This plot is given in Figure 2 for the approximate circulant method with
H = 0.8 for N = 211 and N = 213. Since we are mainly interested in the tail behavior, the plot
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Figure 2: The tail of the autocovariance function of the approximate circulant method on a log-log
scale. The dashed line is the exact autocovariance function (H = 0.80).

of the autocovariance function starts at k = 210. We see that the exact autocovariance function is
indeed a straight line, but that this is not the case for the autocovariance function of the approximate
circulant method. The differences at the left end of the graph are quite small, and can presumably
even be made smaller by implementing one of the suggested improvements of Section 3. Interestingly,
the solid line curves upwards for the approximate circulant method. Of course, this has to do with
the fact that a long-range dependent process is approximated by a short-range dependent process.

If a sample of size N is needed, an obvious improvement is to take the first N elements of an
approximate circulant sample of size 2N . This corresponds to the spectral simulation method with
� = 2N .

5. End notes and conclusions

As we have seen, a convenient property of spectral simulation is the convergence in probability of the
approximate fGn sample points to exact fGn sample points. The rate at which this convergence takes
place and the implications for the corresponding fBm sample are interesting yet unsolved problems.

The spectral simulation approach for one-dimensional fBm can be extended to higher dimensions
(for appropriately defined higher dimensional fBm), for instance by the so-called turning bands method
[17]. It should be noted that the Davies and Harte method can also be extended to higher dimensions
[6, 16].

The main results can be summarized as follows:

• The described spectral simulation method provides the theoretical foundation for the Paxson
method, which clarifies many empirical observations and leads to an important improvement of
the method.

• A natural extension of the Paxson method, the approximate circulant method, has a direct
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connection with the exact Davies and Harte method. The obtained insights show that the
accuracy of both methods increases as the sample size grows, and that the methods are even
asymptotically exact in the sense that the expected square error at each sample point converges
to zero.

• It is possible to perform an error analysis for the approximate circulant method. This shows
that the expected square error of the corresponding fBm sample at sample point n grows ap-
proximately like n2.

• Whereas the errors in the covariances are quite large for the Paxson method (although they
vanish asymptotically), the autocovariance function of the approximate circulant method is
visually almost indistinguishable from the exact autocovariance function. Still, this autocovari-
ance function does not show the desired hyperbolical tail behavior when H > 1/2. In fact, it is
theoretically impossible to obtain this structure in spectrally simulated samples, since spectral
density of fGn is approximated by functions without pole at 0.

Appendix: Proof of (3.8)

We keep n fixed throughout the proof, and start by showing that θ(�)
n converges to θn in L2–norm as

�→ ∞, where θn(λ) =
√

f(λ)
2π sin(nλ). Note that f has a pole at 0, but that the sine-term compensates

this pole. Thus, θn(λ) is continuous on [0, π] for every Hurst parameter 0 < H < 1. It follows that

[θn(λ)]2 is Riemann integrable on [0, π], which implies that lim�→∞
∫ π

0

[
θ
(�)
n (λ)

]2
dλ =

∫ π

0
[θn(λ)]2 dλ.

Since θ(�)
n (λ) → θn(λ) for every 0 ≤ λ ≤ π as �→ ∞, we have the desired convergence of θ(�)

n to θn in
L2–norm, see for instance Theorem 4.5.4 of Chung [2].

More care is needed to prove a similar fact for the ξn functions. When 0 < H ≤ 1/2, the same
reasoning as above applies. However, ξn has a pole at 0 for 1/2 < H < 1. Still, f is Riemann integrable
because f is a spectral density; in fact,

∫ π

0
f(λ)dλ = π. For any ε > 0, this makes it possible to find

a δ > 0 (independent of �) such that∫ δ

0

[
ξ(�)n (λ) − ξn(λ)

]2
dλ ≤

∫ δ

0

[
ξ(�)n (λ) + ξn(λ)

]2
dλ ≤ 4

∫ δ

0

[ξn(λ)]2 dλ

≤ 4
∫ δ

0

f(λ)dλ < ε/2,

where the first two inequalities use the fact that ξn(λ) ≥ ξ
(�)
n (λ) ≥ 0 for small λ. As earlier, we have

ξ
(�)
n (λ) → ξn(λ) for every δ ≤ λ ≤ π, and the Riemann integrability of [ξn(λ)]2 on [δ, π], which implies

that lim�→∞
∫ π

δ

[
ξ
(�)
n (λ)

]2
dλ =

∫ π

δ
[ξn(λ)]2 dλ. Hence, it is possible to find an � with the property

that
∫ π

δ

[
ξ
(�)
n (λ) − ξn(λ)

]2
dλ < ε/2 and the claim is proven.

Note that the arguments of the proof apply for a general spectral density, not necessarily the spectral
density of fGn.
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